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Abstract

Classical regression analysis is usually performed in two steps. In a first step an ap-
propriate model is identified to describe the data generating process and in a second step
statistical inference is performed in the identified model. An intuitively appealing ap-
proach to the design of experiment for these different purposes are sequential strategies,
which use parts of the sample for model identification and adapt the design according
to the outcome of the identification steps. In this paper we investigate the finite sample
properties of two sequential design strategies, which were recently proposed in the liter-
ature. A detailed comparison of sequential designs for model discrimination in several
regression models is given by means of a simulation study. Some non-sequential designs
are also included in the study.

Keywords and Phrases: optimal design, robust design, discrimination design, sequential design,
F -test

1 Introduction

In many applications precise knowledge of a statistical model describing the data generating
process is not available and the analysis of the data is usually performed in two steps. In a first
step the data is used to identify an appropriate model from a given class of competing models
and the second step consists in the statistical analysis in the identified model (parameter esti-
mation, prediction etc.). An experimental design for one task may be exceptionally inefficient
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for the other. Consider for example the regression model Y = f(X)+ ε, where ε has a centered
normal distribution. The real valued function f is assumed to belong to a given class of linear
nested models, say F = {g1, . . . , gk}, where

gj(x) =

�j∑
i=1

βjifi(x), j = 1, . . . , k,(1.1)

are competing nested models, 1 ≤ �1 < �2 < . . . < �k and f1, . . . , f�k
are given and known

regression functions.

Typically, the discrimination between these models is performed by a sequence of step-wise
F -tests for the hypotheses

H0j : f = gj−1 versus H1j : f = gj,

[see Anderson (1962)]. More precisely, starting with the model gk the hypotheses

H0j :=

⎛
⎜⎝

βj,�j−1+1

...

βj,�j

⎞
⎟⎠ = 0 j = k, . . . , 2(1.2)

are subsequently tested at a specified level, say αj ∈ (0, 1), and we select the model gj0 for which
the first test rejects the corresponding hypothesis. The test in the jth step is the classical F -test,
which is based on the statistic

Fj =
RSSj−1 − RSSj

RSSj
· N − �j

�j − �j−1
,(1.3)

where RSSj denotes the residual sum of squares from the total sample in the jth model. The
inference in the identified model is usually done by classical methods for linear regression [see
e.g. Seber (1977)].
An intuitive approach to the design of experiment for these different purposes are sequential
strategies, which use parts of the sample for model identification and adapt the design accord-
ing to the outcome of the experiments sequentially. In the literature there are essentially two
proposals for sequential designs, which are useful for the rather different objects of discrimi-
nation and inference in the identified model. Montepiedra and Yeh (1997, 2002) proposed a
two stage sequential procedure. One part of the sample is used for the identification of the
appropriate model, while the design in the second stage is chosen for a most efficient inference
in the identified model (see Section 2.2 for more details). In general, the analysis based on this
sequential design is very difficult, because this procedure usually yields dependencies in the
data and classical estimation and distribution theory is not directly applicable.
Recently, Biswas and Chaudhuri (2002) proposed a new sequential strategy, where the ob-
ject of the design is to select the “correct” model from the family of nested models as well
as to efficiently estimate the parameters associated with that model. They showed that the
corresponding tests used in the discrimination step keep their preassigned levels and that the
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sequential design is able to identify the “correct” model with a probability converging to one
if the sample size tends to infinity. Moreover, the sequential design converges to the optimal
design corresponding to the “true” model.

The purpose of the present paper is to obtain a better understanding of the performance of
sequential designs for model discrimination. We present a detailed finite sample size comparison
of the two sequential design strategies for model identification with three main objectives. First,
we investigate how the size of the samples in the different stages of the sequential designs affects
the performance of the procedures. It is demonstrated that performance of the sequential
designs depends sensitively on the choice of the sample sizes in the individual steps of the
sampling procedure. Secondly, we compare the sequential designs of Montepiedra and Yeh
(1997, 2002) with the designs proposed by Biswas and Chaudhuri (2002). Third, we compare
these designs with some non-sequential designs proposed in the literature [see Lau and Studden
(1985), Dette (1995), Dette and Röder (1997)].
In Section 2 we briefly review the two different concepts of sequential design for model discrim-
ination. Section 3 contains a detailed investigation of the properties of sequential designs by
means of a simulations study. We consider univariate, multivariate polynomials and Fourier
regression models and investigate how the choice of the sampling proportions affects the perfor-
mance of the different sequential procedures. For each sequential procedure we identify a “best
configuration for the sample sizes in the different steps. Finally, in Section 4 we present a com-
parison of the best sequential procedures, which also includes some non-sequential designs. It
is demonstrated that non-sequential discrimination designs and the procedure of Montepiedra
and Yeh (1997, 2002) usually yield substantially smaller rates of misspecification compared to
the sequential procedure of Biswas and Chaudhuri (2002). Moreover, the efficiencies between
the different designs in the identified model are fairly comparable. Finally, some conclusions
and recommendations for the design of experiments for model identification and parameter
estimation in the identified model are given in Section 5.

2 Two sequential strategies revisited

2.1 The sequential design of Biswas and Chaudhuri (2002)

The method of Biswas and Chaudhuri (2002) starts with a convex combination of the D-optimal
designs for the individual models and this design is updated in several steps. To be precise,
let ξj denote the D-optimal design for the regression model gj (j = 1, . . . , k) and assume that

N = m0 +m1 + . . .+ms experiments are permitted. Let α
(0)
i = 1

k
(i = 1, . . . , k) and consider as

the design for the first stage ξ(0) :=
∑k

i=1 α
(0)
i ξi the uniform mixture of the D-optimal designs

for the models g1, . . . , gk.
The first m0 observations are chosen at experimental conditions sampling randomly from the
design ξ(0), which defines the initial design. This design is sequentially updated by s ≥ 0 steps
in the following way. For r = 1, . . . , s the sample of m0 + . . . + mr−1 observations is used to
test subsequently the hypotheses (1.2). The hypothesis H0j will be rejected with some specified

3



level αj
r if T j

r > cj
r, where the statistic T j

r is defined by

T j
r =

∑r−1
i=0

{
RSS

(i)
j−1 − RSS

(i)
j

}
∑r−1

i=0 RSS
(i)
j

·
∑r−1

i=0 (mi − �j)

r(�j − �j−1)
,(2.1)

and RSS
(i)
j denotes the residual sum of squares based on a least squares fit in the model gj from

the mi observations in the ith step (i = 0, . . . , r − 1). Note that in contrast to the classical F -
statistic defined in (1.3) these sums are calculated separately for each sample of mi observations
(i = 0, . . . , r − 1). It was shown by Biswas and Chaudhuri (2002) that the critical values cj

r

can be obtained as the αj
r quantiles of an F -distribution with r(�j − �j−1) and

∑r
i=0(mi − �j)

degrees of freedom.
The design for the next mr observations is then defined as follows. Let j0 denote the first
index for which the null-hypotheses H0k, . . .H0j0+1 are accepted and the null-hypothesis H0j0

is rejected (if all tests accept the corresponding null-hypothesis we put j0 = 1), then the model

gj0 is selected and the design is updated by ξ(r) =
∑k

i=1 α
(r)
i ξi, where the new weights α

(r)
i are

defined by

α
(r)
i =

{ (
α

(r−1)
i + 1

(k+r−1)

)
/
∑

if i = j0

α
(r−1)
i /

∑
if i �= j0

and
∑

is a normalizing constant defined by the condition
∑k

i=1 α
(r)
i = 1. The next mr design

points are then generated from the design ξ(r).
This procedure is repeated to obtain m0 + . . . + ms = N observations, where the observations
at the rth stage are taken by sampling randomly from the design ξ(r). Finally the sequence of
tests for the hypotheses H0k, H0k−1, . . . , H02 based on the statistics T k

s+1, . . . , T
2
s+1 is performed

for the total sample and the model gj0 is chosen for which the corresponding test rejects the
null-hypothesis for the first time (in other words: T i

s+1 ≤ ci
s+1; i = k, . . . , j0 +1; T j0

s+1 > cj0
s+1). It

was shown by Biswas and Chaudhuri (2002) that under appropriate (asymptotic) assumptions
on N, s, m0, . . . , ms and αj

r (r = 0, . . . , s, j = 1, . . . , k) this procedure identifies the “correct”
model with probability converging to one. Moreover, the information matrix of the design ξ(s)

in the identified model , say gj0, converges to the information matrix of the D-optimal design
for this model, say Mj0, and the corresponding parameter estimate in the identified model has
an asymptotic normal distribution with asymptotic mean βj0 ∈ R

�j0 and covariance matrix
1
N

M−1
j0

[see Biswas and Chaudhuri (2002) for more details].

2.2 The two-stage procedure of Montepiedra and Yeh (1997, 2002)

Recently, Montepiedra and Yeh (1997, 2002) proposed a two-stage procedure for the construc-
tion of efficient designs for model discrimination and estimation of the parameters in the iden-
tified model. The total sample of N observations is splitted into two parts, say n0 +n1 = N. In
a first step n0 observations are taken according to a non-sequential discrimination design. The
data obtained from this design is used to select the appropriate model among g1, . . . , gk, say

4



gj0. For the second step let Xj0(n0) ∈ R
n0×�j0 denote the design matrix of the design from the

first step in the model gj0, then the next n1 observations are taken such that the determinant

|f · XT
j0(n0)Xj0(n0) + (1 − f) · XT

j0(n1)Xj0(n1)|(2.2)

becomes maximal, where Xj0(n1) is the design matrix in the model gj0 obtained from these
new observations and f ∈ (0, 1) is a weight to be determined by the experimenter. After all
N = n0 + n1 observations have been collected from the two-stage design, the model selection
step will be repeated using the total sample and the parameters in the identified model are
estimated. Although this procedure is intuitively appealing, it has not been shown so far that
this will yield a consistent procedure in a strong statistical sense. For example, the (F )-tests
in the final step will usually not keep the preassigned level and it is not obvious that for
an increasing sample size (in both steps) the “correct” model is identified with a probability
converging to 1.

3 How many observations should be taken at each stage?

Usually efficiencies are used to compare different designs, but due to the randomness of the
sequential procedures these efficiencies cannot be calculated directly. In this section we use
a simulation to evaluate the performance of the different designs. We simulated 5.000 times
a specific scenario for the designs described in Section 2. In each simulation we investigate
the performance of the different discrimination strategies, where the level of the corresponding
F -tests was always taken as 5%. These simulations are used for two purposes:

• The calculation of the rate of a “correct” identification of the underlying model (we simply
count how often the “correct” model is chosen in the 5.000 trials).

• The determination of the D-efficiency

|XT
j0

Xj0 |1/�j

in the identified model. For this purpose we define an “averaged” sequential design and this
design is used for the efficiency calculations (for more details see Section 3.1 and 3.2).

We considered three cases of regression models, the univariate cubic polynomial model, a
quadratic model with two factors and the Fourier-regression model of degree 2, for which
the D-optimal designs in the nested submodels [which are needed in the sequential procedure
of Biswas and Chaudhuri (2002)] are known from the literature. For the sake of simplicity we
restrict ourselves to the approximate design case [see Kiefer (1974)] and in our simulation study
the experimental conditions are chosen randomly from the corresponding approximate designs.

3.1 Sample sizes in the procedure of Biswas and Chaudhuri

In this subsection we investigate the performance of the sequential procedure of Biswas and
Chaudhuri (2002) with respect to the choice of the number of stages and with respect to the
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sample sizes in the different steps. In Example 3.1 and 3.2 we consider a polynomial with one
and two factors, respectively, while Example 3.3 deals with a Fourier regression model. We give
a rather complete description of Example 3.1 and briefly summarize the essential features for
the other two examples.

Figure 3.1: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d) in
the identified cubic and quadratic regression model for various sequential designs of Biswas and
Chaudhuri (2002) with N = 100 observations. Solid lines: design (A); dashed lines: design
(B); dotted lines: design (C); nearly solid lines: design (D). The designs are defined in (3.2).

Example 3.1 (Cubic regression). Consider the cubic regression model

g3(x) = β30 + β31x + β32x + β32x
2 + β33x

3;(3.1)

on the interval [−1, 1]. For the sake of brevity we only report the results for the sample size
N = 100 with four different choices for the stages; simulations for other cases showed a very
similar picture. We considered the following partitions in the sequential scheme of Biswas and
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Chaudhuri (2002)

m0

N
= . . . = m9

N
= 1

10
(A)

m0

N
= . . . = m4

N
= 1

5
(B)

m0

N
= m2

N
= m3

N
= 3

10
, m4

N
= 1

10
(C)

m0

N
= m1

N
= 1

2
(D)

(3.2)

where N denote the total sample size, here N = 100. Figures 3.1(a) and (c) show the rate
of “correct” specification if the cubic or quadratic model are “correct”, respectively. The
model under consideration was g3(x) = 1 + x + x2 + b33x

3 (b33 �= 0) in the cubic case and
g2(x) = 1+x+ b22x

2 for the quadratic case. We also performed a simulation study in the linear
case g1(x) = 1 + b11x. If this model is the “correct” one, all designs in (3.2) behaved similary
and for this reason the results are not depicted. From Figures 3.1(a) and (c) we observe that
the rate of “correct” specification of the sequential procedure of Biswas and Chaudhuri (2002)
is improved, if large sample sizes are chosen in the first steps of the sequential procedure.
The allocation scheme (D) yields the uniformly best rates of “correct” model specification,
independently of the “correct” model. This performance can even be improved by choosing all
100 observations in the first step which does not yield a sequential procedure.
The results for the corresponding efficiencies of the “averaged” designs are presented in Figures
3.1 (b) and (d). From Figure 3.1 (b) we observe the opposite behaviour for the efficiencies in
the cubic case. Here the sequential design (A) yields the best efficiency and the performance
is usually improved by using finer partitions. On the other hand, if the quadratic model is
“correct”, the sequential design with the finest partition has only a better performance if the
parameter β22 is relatively small, for moderate values of β22, the design (C) is preferrable, while
for large values of the parameter β22 the design (B) yields the best efficiencies [see Figure 3.1
(d)]. However, it should be remarked that the differences between the efficiencies of the different
designs are relatively small compared to the differences between the probabilities of “correct”
specification. The D-efficiencies of the four designs in the cubic, quadratic and linear models
differ by at most 7%, 2%, 6%, respectively. On the other hand, we observe more substantial
differences between the probabilities of “correct” specification in the cubic and quadratic model
(provided that the parameter β33 of the highest coefficient is not too large or too small). For
example, in the cubic model the probabilities of “correct” specification between the best and
worst sequential design can differ between 70% and 35% if the parameter β33 varies in the
interval [1, 2] [see Figure 3.1 (a)]. Similarly, in the quadratic case we observe a difference
between 33% and 81% if the parameter β22 varies in the interval [0.3, 1] [see Figure 3.1(c)].

Example 3.2 (Quadratic regression with two factors). In order to study the question if
the properties of the sequential designs observed in the previous example depend on the number
of factors in the model we investigate in our second example a quadratic regression model with
two factors, that is

g5(x) = 1 + x1 + x2 + x1x2 + x2
1 + b55x

2
2; x1, x2 ∈ [−1, 1].(3.3)

The nested models are given by

g4(x) = 1 + x1 + x2 + x1x2 + b44x
2
1(3.4)
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g3(x) = 1 + x1 + x2 + b33x1x2(3.5)

g2(x) = 1 + x1 + b22x2(3.6)

g1(x) = 1 + b11x1.(3.7)

The D-optimal designs used for the sequential procedure of Biswas and Chaudhuri (2002) can
be found by standard methods and are not stated explicitly for the sake of brevity; see also
Kono (1962) and Lim and Studden (1988) for some particular cases.

Figure 3.2: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d) in
the sub-models g5 and g2 of the quadratic regression model with two factors for various sequential
designs of Biswas and Chaudhuri (2002) with N = 200 observations. Solid lines: design (A);
dashed lines: design (B); dotted lines: design (C); nearly solid lines: design (D). The designs
are defined in (3.2).

The corresponding rejection probabilities and efficiencies are depicted in Figure 3.2(a), (b),
(c) and (d) for the model g5 and g2, respectively. We observe the same phenomena as in the
cubic case. Finer partititions in the sequential procedure of Biswas and Chaudhuri (2002)
yield substantially smaller rates of “correct” specifiation but slightly larger efficiencies for the
estimation of the parameters in the “true” model g5. In the model g2 the design (D) from (3.2)
is the best with respect to the criterion of a “correct” specification and the efficiency criterion
and all designs are ordered in the same way with respect to both criteria. In general the
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differences between the efficiencies are relatively small [between 0.97 and 0.99 in the model g5

and between 0.68 and 0.75 in the model g2] while more substantial differences can be observed
for the probabilities of “correct” specification [see Figures 3.2 (a) and (c)]. We finally note that
these differences are larger as in the case of the univariate cubic regression model considered in
Example 3.1.

Figure 3.3: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d)
in the sub-models g4 and g2 of the Fourier regression model for various sequential designs of
Biswas and Chaudhuri (2002) with N = 200 observations. Solid lines: design (A); dashed lines:
design (B); dotted lines: design (C); nearly solid lines: design (D). The designs are defined in
(3.2).

Example 3.3 (Fourier regression). In the third example of our study we investigate the
performance of the sequential designs of Biswas and Chaudhuri (2002) for the quadratic trigono-
metric regression model

g4(x) = 1 + sin x + cos x + sin(2x) + b44 cos(2x); x ∈ [−π, π] .(3.8)

Here the nested models are given by

g3(x) = 1 + sin x + cos x + b33 sin(2x)(3.9)
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g2(x) = 1 + sin x + b22 cos x(3.10)

g1(x) = 1 + b11 sin x.(3.11)

The results of the corresponding rejection probabilities and efficiencies in the identified model
are depicted in Figure 3.3(a), (b) and (c), (d) for the model g4 and g2 based on a sample with
N = 200 observations, respectively. With respect to the criterion of “correct” specification
we observe exactly the same picture as in the previous examples. Finer partitions of the total
sample yield smaller probabilities of “correct” specification and the differences between the four
designs in (3.2) are substantial. On the other hand the picture is not so clear with respect to the
efficiency criterion. The differences between the four sequential designs are very small [at most
5% in the model g4 and at most 3% in the model g2; see Figure 3.3(b) and (d), respectively],
but there exists no uniformly best design. In model g4 the design (B) seems to be the best while
in model g2 the design (D) is most efficient for a broad range of the parameter b22. Finally, we
note that the design (A) with the finest partition does not yield the best efficiencies in both
cases.

We have demonstrated in Example 3.1 - 3.3 that in general the probabilities of “correct”
specification are substantially more sensitive with respect to the number of steps and the
sample sizes in the different stages of the procedure of Biswas and Chaudhuri (2002) than
the efficiencies. In all examples considered in our study designs with a finer partition yield
lower rates of “correct” specification and the design (D) has a substantially better performance
than the other designs in (3.2). In many cases this design is also the best with respect to the
efficiency criterion in the identified model. In the other cases the differences with respect to the
D-efficiency are very small. Further simulations, which are not given here for the sake of brevity
show exactly the same picture. The sequential design proposed by Biswas and Chaudhuri (2002)
should be constructed with only a few stages such that the sample sizes m0, m1 for the initial
steps are not too small, because the loss of efficiency in the identified model is negligable, but
the probability of “correct” specification is improved substantially. Based on our numerical
experience we recomend to use only two stages if experiments are performed according to the
sequential design of Biswas and Chandhuri (2002).

3.2 Sample sizes in the procedure of Montepiedra and Yeh

We now perform a similar study for the two-stage designs proposed by Montepiedra and Yeh
(1997, 2002). For the sake of comparison the same examples as in Section 3.1 are considered.
Again we give a rather detailed description for the (univariate) cubic regression model and
summarize the essential features for the two other examples.

Example 3.4 (Cubic regression model). As design for the first stage Montepiedra and Yeh
(1997, 2002) proposed the nonsequential discrimination design of Dette (1994), that is

ξDisc =

(
−1 −0.40825 0.40825 1

0.2 0.3 0.3 0.2

)
.(3.12)
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We considered three possible allocations of the N = 100 = n0 + n1 observations, namely

n0

N
= n1

N
= 1

2
(E)

n0

N
= 3

4
, n1

N
= 1

4
(F )

n0

N
= 1

4
, n1

N
= 3

4
(G)

(3.13)

where N denotes the total sample size and the design for the second stage is obtained by
maximizing the function defined by (2.2) in the corresponding approximate setup with weight
f = n0/(n0 + n1) [see Montediedra and Yeh (1997, 2002) for more details]. For example in the

Figure 3.4: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d) in
the identified cubic and quadratic regression model for various two-stage designs of Montepiedra
and Yeh (1997, 2002) with N = 100 observations. Solid lines: design (E); dashed lines: design
(F); dotted lines: design (G). The designs are defined in (3.13).

situation (E) we obtain the designs

ξE,3 =

(
−1 −0.4645 0.4645 1

0.298 0.202 0.202 0.298

)
, ξE,2 =

(
−1 0 1

0.395 0.210 0.395

)
, ξE,1 =

(
−1 1
1
2

1
2

)
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for the second stage if the cubic, quadratic or linear model have been chosen in the first stage,
respectively. Similarly, in the case (F) and (G) these designs are given by

ξF,3 =

(
−1 −0.4784 0.4784 1

0.3925 0.1075 0.1075 0.3925

)
, ξF,2 = ξF,1 =

(
−1 1
1
2

1
2

)

and

ξG,3 =

(
−1 −0.4544 0.4544 1

0.266 0.234 0.234 0.266

)
, ξG,2 =

(
−1 0 1

0.354 0.292 0.354

)
, ξF,1 =

(
−1 1
1
2

1
2

)

respectively. Figure 3.4 (a),(c) show the rates of “correct” specification of the underlying model
and the corresponding efficiencies in the identified model for the three two-stage designs, if the
cubic or quadratic model are “correct”. The corresponding efficiencies in the “correct” model
are depicted in Figure (b) and (d). Results for the linear case are not presented because the
differences between the two-stage designs are negligible. We observe that the probabilities of
“correct” specification for the quadratic model are increasing with the sample size for the first
step [see Figure 3.4(a) and (c)]. In the cubic model the design (F) which allocates a larger
sample size to the first case is the best while the design (G) is the worst. A comparison of the
efficiencies also yields substantial differences between the two-stage designs in the cubic model
[see Figure 3.4(c)]. The efficiencies differ by more than 10% if β33 ≤ 1. In the quadratic model
we observe only differences of approximately 5% [see Figure 3.4(d)]. Note that the design (F)
yields the best efficiencies in the cubic model.

Example 3.5 (Quadratic regression with two factors). In this example we investigate the
performance of the different two-stage designs in the quadratic model with two factors defined
by (3.3). The probabilities of “correct” specification and the corresponding efficiencies of the
designs in the “true” model are depicted in Figure 3.5 for the model g5 and g2. In the other
models we observe a similar picture. It is interesting to note that in the model g5 the designs
have a similar performance with respect to the criterion of “correct” specification, where the
design (E) with equal sample sizes for both stages is the best [see Figure 3.5(a)]. However, the
differences with respect to the efficiency criterion are more remarkable and the design (F) is the
best if g5 is the “correct” model [see Figure 3.5(b)]. On the other hand in model g2 the designs
(E) and (F) behave very similar (with slight advantages for the design (F)) and the two-stage
design (G) cannot be recommended [see Figure 3.5(c) and (d)].

Example 3.6 (Fourier regression). The final example of this section considers again the
quadratic Fourier regression model (3.8) discussed in Example 3.3. For the design in the
first stage of the procedure of Montepiedra and Yeh (1997, 2002) an optimal discrimination
design proposed by Dette and Haller (1998) was used. This design maximizes a product of
D1-efficiencies corresponding to the different models and is given by

ξDisc =

(
−π −3

5
π −1

5
π 1

5
π 3

5
π π

1
10

1
5

1
5

1
5

1
5

1
10

)
.(3.14)
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Figure 3.5: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d) in
the identified sub-model g5 and g2 of the quadratic regression model with two factors for various
two-stage designs of Montepiedra and Yeh (1997, 2002) with N = 200 observations. Solid lines:
design (E); dashed lines: design (F); dotted lines: design (G). The designs are defined in (3.13).
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The probabilities of “correct” specification and the corresponding efficiencies in the “correct”
model are depicted in Figure 3.6 (a), (b) and (c), (d) for the model g4 and the model g2,
respectively. In the other models we observed a similar picture. From Figure 3.6 we observe a
substantial superiority of the design (F) (taking 75% of the observations in the first stage) with
respect to the efficiency criterion and the criterion of “correct” specification in both models g4

and g2. Again the design (G) has the worst performance.

Figure 3.6: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d) in
the identified sub-model g4 and g2 of the Fourier regression model for various two-stage designs
of Montepiedra and Yeh (1997, 2002) with N = 200 observations. Solid lines: design (E);
dashed lines: design (F); dotted lines: design (G). The designs are defined in (3.13).

The results of Example 3.4 - 3.6 can be summarized to obtain a recommendation for the choice
of the sample sizes in the two-stage design proposed by Montepiedra and Yeh (1997, 2002). In
most cases the design (F) is the best with respect to the criterion of “correct” specification of
the underlying model. There is one situation, where the design (E) is better, but in this case
the differences between all two-stage designs are negligible. In contrast to the sequential designs
of Biswas and Chaudhuri (2002) the differences between the two-stage designs with respect to
the efficiency criterion are remarkable. In all cases we observe a substantial improvement of
efficiency by the two-stage design (F). Additional simulations for other models, which are not
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shown here for the sake of brevity, showed a similar picture. Thus taking 75% of the total
observation in the first stage and only 25% of the observations in the second stage seems to
be a good strategy for the two-stage design of Montepiedra and Yeh (1997, 2002). Finally,
we remark that the corresponding F -tests do not keep the preassigned level, if the designs are
constructed by the two-stage procedure of Montepiedra and Yeh (1997, 2002). For example, in
the univariate cubic and quadratic model the simulated level varies between 7% and 9%, while
the preassigned level is 5% [see Example 3.4].

4 A comparison of sequential designs

In this section we compare the two sequential designs proposed in Section 2. For the sake of
brevity and transparency we investigate from each sequential approach only one design, which
is in our opinion the best. Additionally we include in our comparison two non-sequential designs
in each example. These designs were introduced by various authors to obtain good designs for
discrimination or robust designs with respect to the assumption on the regression model [see
Spruill (1990) or Läuter (1974) among many others].
For the sequential design proposed by Biswas and Chaudhuri (2002) we used the design (D)
from (3.2) with only two stages, because the impact of these designs on the probability of
“correct” specification in finite samples is more severe than on the efficiencies with respect to
estimation in the identified model. For the two-stage design proposed by Montepiedra and
Yeh (1997, 2002) we used the design (F) in (3.13) which uses 75 % of the observations in the
first step. Moreover, in order to obtain a fair comparison the nominal level of the F -test was
adjusted such that the effective level of the resulting tests is precisely 5% (see the discussion at
the end of Section 3). The results are presented in the same way as in Section 3. We show the
simulated rejection probabilities and D-efficiencies under the assumption that a specific model
is “correct”. Again we consider the univariate polynomial model, a quadratic model with two
factors and the Fourier-regression model of degree 2.

Example 4.1 (Cubic regression). The sequential designs of Biswas and Chaudhuri (2002)
and Montepiedra and Yeh (1997, 2002) have been described in Example 3.1 and 3.4 respectively.
As model robust design we chosed the design

ξRobust =

(
−1 −0.4011 0.4011 1

0.3194 0.1806 0.1806 0.3194

)
,(3.15)

which was proposed by Dette (1990). The discrimination design is the design ξDisc defined in
(3.12).
If the linear model is “correct” the differences between the four designs are negligible and
therefore not depicted. Figure 4.1 (a) and (c) show the probabilities of “correct” specification
in the cubic and quadratic model, respectively. We observe that the discrimination, model
robust and the two-stage design of Montepiedra and Yeh (1997, 2002) have a substantially
better performance than the sequential procedure of Biswas and Chaudhuri (2002) with respect
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to this criterion. This superiority is more visible in the cubic model. Note that we chosed the
best design (D) in (3.2) with respect to the criterion of “correct” specification [see Figure
3.1] and all other designs in (3.2) have a worse performance. Comparing the remaining three
designs we observe that the discrimination design ξDisc ist the best, while the two-stage design
of Montepiedra and Yeh (1997, 2002) is better than the model robust design ξRobust. The picture
in the quadratic model is similar. There is only a minor difference between the design ξDisc and
the two-stage design of Montepiedra and Yeh (1997, 2002). The model robust design ξRobust

Figure 4.1: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d) in
the cubic and quadratic regression model for various sequential and non-sequential designs with
N = 100 observations. Solid lines: the sequential design (D) of Biswas and Chaudhuri (2002);
dashed lines: the two-stage design (F) of Montepiedra and Yeh (1997, 2002); dotted lines:
non-sequential discrimination design; nearly solid lines: non-sequential model-robust design.

has a slightly worse performance but it has a substantial better rate of “correct” specification
then the sequential design of Biswas and Chaudhuri (2002) [see Figure 4.1 (c)]. We mention
again that the nominal level for the two-stage design of Montepiedra and Yeh (1997, 2002) was
chosen substantially smaller than 5% such that the effective (simulated) level is precisely 5%.
A comparison of the efficiencies of the four designs can be found in Figure 4.1(b) and (d) for
the cubic and quadratic model, respectively (in the linear model the differences are negligible).
In the cubic polynomial the design of Biswas and Chaudhuri (2002) has about 10 % less
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efficiency than the discrimination, model robust and two-stage design, while the efficiencies
of the lastnamed designs differ only between 2% and 4%. In the quadratic model [see Figure
4.1(d)] the sequential design of Biswas and Chaudhuri (2002) yields the best efficiencies, while
the model robust and the two-stage design of Montepiedra and Yeh (1997, 2002)) are 2% and
4% less efficient. The discrimination design ξDisc has the worst performance with a loss of
efficiency between 10% – 15% compared to the best case.

Figure 4.2: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d)
in the the sub-models g5 and g2 of the quadratic regression model with two factors for various
sequential and non-sequential designs with N = 200 observations. Solid lines: the sequential
design (D) of Biswas and Chaudhuri (2002); dashed lines: the two-stage design (F) of Mon-
tepiedra and Yeh (2002); dotted lines: non-sequential discrimination design; nearly solid lines:
non-sequential model-robust design.

Example 4.2 (Quadratic regression with two factors). Model-robust designs and optimal
discrimination designs for the class {g1, . . . , g5} defined by the quadratic model with two factors
in (3.13) have been determined by Dette and Röder (1997). The discrimination design ξDisc with
respect to a uniform prior coincides with the D-optimal design for the full model (Kono, 1962),
while the model robust design ξRobust has mass 0.16 at the four points (∓1,∓1), mass 0.08 at
(∓1, 0) and (0,∓1), and mass 0.04 at the origin. The total sample size is N = 200 and for the
sequential method of Biswas and Chaudhuri (2002) we considered the case of m0 = m1 = 100.
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Figure 4.2 (a) and (c) show the corresponding probabilities of “correct” specification if the
model g5 or g2 is the underlying model. Figures corresponding to the cases g4 and g3 are
very similar and are therefore not presented, while we did not find any substantial differences
between the four designs in the model g1. Again we observe substantially higher probabilities of
“correct” identification for the non-sequential designs and the two-stage design of Montepiedra
and Yeh (1997, 2002). In the model g5 the non-sequential discrimination design and the two-
stage procedure yield the highest rates of “correct” specification, while the model robust and
the design of Biswas and Chaudhuri (2002) have a slightly worse performance [see Figure 4.2
(a)]. In the model g2 all designs except the sequential design of Biswas and Chaudhuri (2002)
have a similar performance [see Figure 4.2 (c)]. A comparison of the efficiencies for the four
designs is presented in Figure 4.2 (b) and (d) corresponding to the cases where the model g5

or g2 is the “correct” regression model, respectively. Here we observe much smaller differences
between the different designs. For example, in the model g5 the design ξDisc is the best, because
it is in fact also D-optimal for the quadratic regression, but the other designs are at most
2% less efficient. Similarly, if g2 is the “true” model the model robust design is the best.
Thus for models with two factors the differences between the efficiencies are either negligible
or non-sequential designs or two-stage designs are more efficient than the design of Biswas and
Chaudhuri (2002).

Example 4.3 (Fourier regression). A model robust design for the trigonometric regression
model has been proposed by Lau and Studden (1985)

ξRobust =

(
−2.4294 −1.2530 0 1.2530 2.4294

0.1965 0.2252 0.1566 0.2252 0.1965

)
.(3.16)

Figure 4.3 (a) and (c) show the corresponding probabilities of “correct” specification if the
model g4, or g2 is the underlying model. In the case where the model g1 is “correct” all designs
produced similar results, while the situation for model g3 is similar as presented here for the
cases g2 and g4. We observe substantially larger probabilities of “correct” identification for the
non-sequential designs and the design of Montepiedra and Yeh (1997, 2002). For example, if
the model g4 is “correct”, the sequential design of Biswas and Chaudhuri (2002) is the worst
with respect to the criterion of “correct” specification and the two stage design of Montepiedra
and Yeh (1997, 2002) is the best. On the other hand, in the model g2 the non-sequential
discrimination design yields the highest rates of “correct” identification, while the sequential
design of Biswas and Chaudhuri (2002) is the worst. In all considered cases the non-sequential
designs and the two-stage designs of Montepiedra and Yeh (1997, 2002) performed substantially
more reliable than the sequential procedure of Biswas and Chaudhuri (2002) with respect to
the criterion of “correct” model identification. A comparison of the efficiencies for the four
designs is presented in Figure 4.3 (b) and (d) corresponding to the cases where the model g4

and g2 is the “correct” regression model. Here we observe much smaller differences between
the sequential and non-sequential designs. For example in the model g4 the discrimination
design ξDisc defined in (3.14) is the best [because it is in fact also D-optimal for the quadratic
trigonometric regression], but the sequential designs are at most 6% less efficient [see Figure
4.3(b)]. Similarly, in the model g2 the discrimination design ξDisc is again D-optimal, but the
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model robust and the design of Biswas and Chaudhuri (2002) are at most 4% less efficient [see
Figure 4.3(d)]. However, in this case the sequential procedure of Montepiedra and Yeh (2002)
yields a loss of efficiency of more than 30% (although it has the highest rates of “correct”
specification.

Figure 4.3: Simulated probabilities of “correct” specification (a), (c) and efficiencies (b), (d)
in the the sub-models g4 and g2 of the Fourier regression model for various sequential and
non-sequential designs with N = 200 observations. Solid lines: the sequential design (D) of
Biswas and Chaudhuri (2002); dashed lines: the two-stage design (F) of Montepiedra and Yeh
(2002); dotted lines: non-sequential discrimination design; nearly solid lines: non-sequential
model-robust design.

5 Conclusions

In this paper we presented a numerical comparison of different design strategies for two different
goals in regression models

• identification of an appropriate model

• efficient estimation of the parameters in the identified model
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Two sequential and non-sequential design strategies are investigated in a univariate polynomial,
a quadratic model with two factors and a trigonometric regression model. For the sequential
designs of Biswas and Chaudhuri (2002) and the two-stage designs of Montepiedra and Yeh
(1997, 2002) it is shown that a relative large proportion of the total sample should be taken
at the initial stage in order to obtain good rates of “correct” specification of the underlying
model. The influence of the size (and number) of the stages in a sequential procedure on the
efficiency in the identified model is much smaller compared to the effect on the probability
of “correct” specification. The two-stage designs proposed by Montepiedra and Yeh (2002)
provide good probabilities of “correct” identification of the underlying model and reasonable
efficiencies for the estimation of the parameters in the identified model. However, due to
the dependencies of the observations obtained from sequential sampling, the corresponding F -
tests for the identification of the model do not keep the preassigned level and the statistical
properties of the estimator in the underlying model are not clear in general. Additionally, the
determination of the design for the second step seems to be difficult, because this problem is
equivalent to an optimal design problem in a Bayesian linear regression model.
The sequential strategy proposed by Biswas and Chaudhuri (2002) yields to a sequence of non-
standard F -tests which keep the preassigned level. Moreover, for large sample sizes the “cor-
rect” model is identified with high probability, the sequential design is close to the D-optimal
design for the “correct” model and the estimates obtained from this design are consistent and
asymptotically normal. Although these properties are interesting from a theoretical (asymp-
totic) point of view, our numerical results show that these designs can only be recommended
for very large sample sizes, because of their low rate of “correct” identification of the underlying
model. In the situations considered in our study the two-stage designs of Montepiedra and Yeh
(2002) and the non-sequential discrimination and model robust designs of Dette (1990, 1994)
yield substantially higher rates of “correct” identification of the underlying model and (at least)
comparable efficiencies for the estimation of the parameters in the underlying “correct” model.
In many cases the efficiencies of these designs are even higher. The poor performance of the
sequential designs proposed by Biswas and Chaudhuri (2002) can be explained by the fact that
a modified version of the classical F -test is used in the identification steps. This modification is
required to keep the preassigned level of the corresponding tests from the dependent data, and
usually causes a substantial loss of power. The two-stage designs introduced by Montepiedra
and Yeh (1997, 2002) do not yield exact tests, because inference is based on the standard F -test
with dependent data. The non-sequential designs yield a sequence of F -tests for the identifi-
cation step, which keep the preassigned levels and the calculation is usually simpler because it
can be performed by standard algorithms [see e.g. Läuter (1974)].
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