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Dimension Reduction for Time Series from

Intensive Care

Vivian Lanius and Ursula Gather

Department of Statistics, University of Dortmund

Abstract

A modi�ed version of principal component analysis (PCA) for time series is

investigated. The approach is in the frequency domain as in Brillinger (1975).

Available knowledge on the subject matter can be incorporated via rotational

methods. This eases the interpretation of the obtained component series. An

application to hemodynamic data from intensive care yields clinically mean-

ingful component series of low dimension. We describe the results from this

application and compare them with those obtained from a standard PCA.

1 Introduction

In situations where many variables are simultaneously measured on the same sam-

pling item repeatedly over time, classical monitoring tools from statistical process

control must often contend with both high auto{ and crosscorrelations in the data.

To cope with this ood of observations, we try to reduce �rstly the number of mon-

itored time series to a few component series that contain the essential information.

The extracted signals can then be processed by an appropriate process control pro-

cedure.

Principal component analysis (PCA, Pearson, 1901, Hotelling, 1933) has proven to

be a helpful tool for dimension reduction. In statistical process control, this method

is often applied in spite of the correlations at various time{lags. Brillinger (1975)

suggests a PCA for time series that takes such autocorrelations into account.

In this paper, we are particularly interested in the online monitoring of hemodynamic

data acquired from a Clinical Information System (CIS) on the surgical intensive

care unit at the Klinikum Dortmund. Because it is the main aim to develop an

alarm system there is a strong need for statistical methods which provide the online

detection of clinically relevant patterns such as trends, level{shifts and outliers.

Therefore we consider Brillinger's PCA for time series and examine some modi�ca-

tions of that procedure and its application to hemodynamic time series data. The

paper is organized as follows. In Section 2 we briey review the main ideas of stan-

dard PCA and introduce the PCA for time series as suggested by Brillinger (1975).

Section 3 deals with some complications when performing dynamic PCA. We give a
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solution that guarantees the extraction of meaningful component series. In Section 4

we apply the method to observations from intensive care and compare the results to

those obtained from a classical PCA. We conclude with some suggestions for further

research.

2 Dynamic principal component analysis

Principal component analysis is a common statistical technique for analyzing multi-

variate data. Depending on the application, it can be motivated from di�erent points

of view. With the objective of data reduction, a geometrically intuitive explanation

of the procedure is the following. Starting from a sample of n independent obser-

vations x

i

2 R

k

; i = 1; : : : ; n, of a random variable X 2 R

k

, we search for the best

approximation of the data points which is located in an r{dimensional hyperplane,

r < k, in the sense of minimizing the squared Euclidean distances. Looked at the

population level, PCA aims at �nding the r{dimensional subspace that contains the

best linear r{dimensional predictor of X. Thus, we have to solve the minimization

problem

min

�2R

k

;A2R

k�k

;rk(A)=r

E[(X � ��AX)

0

(X � ��AX)]; (1)

where r < k. With E(X) = �

X

and Cov(X) = �

X

, a solution of (1) is given by

A = LL

0

and � = �

X

� LL

0

�

X

, where L = [l

1

; : : : ; l

r

] and l

1

; : : : ; l

k

are the eigen-

vectors of �

X

corresponding to the ordered eigenvalues �

1

� �

2

� : : : � �

k

� 0. As

a normalization constraint, we will impose l

0

j

l

j

= 1; j = 1; : : : ; k. The linear com-

bination �

j

= l

0

j

X; j = 1; : : : ; k; is called the j{th principal component (PC) of X.

It has the appealing property Var[�

j

] = �

j

and Cov[�

i

; �

j

] = 0; i 6= j. PCA is often

introduced as a method of �nding those linear combinations of the observed vari-

ables that successively capture a maximal amount of variance under the constraint

of uncorrelatedness. Provided that all eigenvalues �

j

; j = 1; : : : ; k are distinct, the

principal component transformation is uniquely determined up to multiplications

of the eigenvectors by the factor �1. Further details and results can be found in

Jolli�e (2002) and Flury (1988).

The standard PCA approach exploits the covariance structure of the k random vari-

ables measured on n independent sampling units. However, when dealing with mul-

tivariate stochastic processes fX(t); t 2 Zg, this classical procedure for dimension

reduction should be improved because lagged dependencies between components of

the random vector, as well as instantaneous ones, can provide important and useful

information.

One approach to adapt PCA techniques to the time series situation is singular spec-

trum analysis (SSA, Danilov, 1997, Goljandina et al., 2001). SSA was originally

designed for univariate time series and requires decomposing the so{called trajec-

tory matrix obtained from the initial time series by the method of delays. A couple
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of rather specialized approaches from the analysis of multivariate spatio{temporal

meteorological data are Multichannel SSA (a multivariate extension to SSA), prin-

cipal oscillation pattern analysis and Hilbert empirical orthogonal functions (for

references compare Jolli�e, 2002). However, the main aim of these methods is not

dimension reduction but rather the detection of common (oscillation) patterns.

We consider an earlier approach by Brillinger (1975). It provides a PCA in the fre-

quency domain with the objective of approximating a stationary multivariate time

series by a �ltered version of itself, where the �lter has reduced rank.

For simplicity, let us assume that the k{dimensional stationary time series X(t) =

(X

1

(t); : : : ; X

k

(t))

0

, with E[X(t)] = 0, possesses an absolutely summable autocovari-

ance function Cov[X(t);X(t�s)] = �

X

(s); s 2 Z. While the standard PCA de�nes

PCs as linear combinations of the observations corresponding to the same sampling

item, Brillinger suggests to form PC series by a sum of linear combinations

�(t) =

X

s

b(t� s)X(s); t = 0;�1;�2; : : : ; (2)

such that the approximation error series

�(t) =X(t)�

X

s

c(t� s)�(s); t = 0;�1;�2; : : : (3)

is small. Here, fb(s); s 2 Zg and fc(s); s 2 Zg are �lters with r � k{ and k � r{

dimensional matrices. Note, that the PC series de�ned in (2) are sums of lin-

ear combinations of past, present and future observations of the time series, since

fb(s); s 2 Zg is not required to be causal. Minimizing the expected approximation

error as in (1), a�ords to solve

min

fb(s)g; fc(s)g

E

" 

X(t)�

X

s

c(t� s)�(s)

!

� 0

 

X(t)�

X

s

c(t� s)�(s)

!#

: (4)

This yields the �lters

b(s) = (2�)

�1

Z

2�

0

B(�) exp(is�) d�; (5)

c(s) = (2�)

�1

Z

2�

0

C(�) exp(is�) d�;

where

B(�) =

2

6

6

4

l

1

(�)

� 0

.

.

.

l

r

(�)

� 0

3

7

7

5

; C(�) = [l

1

(�); : : : ; l

r

(�)] = B(�)

� 0

:

Here l

j

(�) denotes the j{th normalized eigenvector of the spectral density matrix

f(�); � 2 [0; 2�], corresponding to the j{th eigenvalue, where �

1

(�) � �

2

(�) �
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: : : � �

k

(�) � 0, and q

�

is the complex conjugate of q 2 C . Because the spectral

decomposition is performed at all frequencies, we also speak of dynamic eigenvectors

and dynamic eigenvalues. The minimum of (4) is given by

E[�(t)

0

�(t)] =

Z

2�

0

k

X

j=r+1

�

j

(�) d�:

Applying the �lter from (5) to the time series yields the principal component series

�(t) with spectral density diag(�

1

(�); : : : ; �

r

(�)); � 2 [0; 2�], i.e., the principal com-

ponents are uncorrelated at all time lags. A frequency domain PCA is equivalent to

a classical PCA carried out at each individual frequency.

In practice, the �lters fb(s)g and fc(s)g have to be estimated from a stretch of time

series observations x(t); t = 1; : : : ; T . A consistent estimator of the spectral den-

sity matrix can be obtained by smoothing the periodogramm matrices. Eigenvalue{

eigenvector decompositions of the estimated spectral density matrices at each Fourier

frequency yield estimates of �(�) and B(�). A more detailed description of the pro-

cedure and of its asymptotic properties can be found in Brillinger (1975).

3 Complications and possible remedies

As Brillinger (1975, Section 9.5) points out, some problems may arise when perform-

ing a PCA in the frequency domain. First of all, each of the (standardized) complex

eigenvectors of the spectral density matrices is only de�ned up to multiplication by

the factor v

j

(�), where v

j

(�) 2 C with modulus jv

j

(�)j = 1. This fact complicates

the situation severely because, at each frequency, each of the eigenvectors can be

rotated within the complex space.

PC series are de�ned as sums of linear combinations of all measured variables such

that an interpretation can be diÆcult. However, often the correlation patterns in-

dicate groups of variables, including possibly single variable groups, whose within{

group correlations are high while the between{group correlations are low. It is

desirable that each of the r component series primarily represents the compressed

information provided by solely those variables of one of these groups. Due to nu-

merical diÆculties, the algorithm used for the spectral decomposition (the statisti-

cal software package R 1.5.1 provides an interface to the EISPACK routines) may

produce eigenvectors that are rotated in di�erent, even opposite directions at adja-

cent Fourier frequencies (despite the corresponding spectral density matrices having

nearly identical eigenvectors). We will give an example of this situation in Sec-

tion 4. As the resulting principal component �lters depend on eigenvectors at each

frequency, there is consequently a large number of possible �lters for the principal

component transformation. This does not cause any problem if one is interested
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only in the best approximant series

f

X(t) =

P

s

c(t � s)�(s) or functions thereof.

The choice of the �lter is however relevant for the construction of the PC series.

Problems arise if we wish to extract a few latent components and then interpret

them in terms of the subject matter or context.

Moreover, in the matrices B(�), the position of the eigenvectors with a similar

orientation may shift due to a change in size of the corresponding eigenvalues,

e.g. for �

1

6= �

2

, we may get B(�

1

) = (l

1

(�

1

); l

2

(�

1

); : : : ; l

r

(�

r

)) and B(�

2

) =

(l

2

(�

1

); l

1

(�

1

); : : : ; l

r

(�

r

)). This has an e�ect on the estimated �lters. The PC se-

ries from (2) represent a �ltered version of the observed series x(t) such that the

components successively capture a maximal amount of variance at each frequency. If

the order of similarly directed eigenvectors changes across di�erent frequency bands,

the PC series do not necessarily represent groups of a few closely related variables.

In this situation diÆculties arise with respect to the interpretation of the resulting

PC series. To our knowledge, this aspect has not been discussed in the literature

so far. Brillinger (1975)'s example focusses on an analysis of the estimated dy-

namic eigenvalues and the gain and the phase of the entries in the two �rst dynamic

eigenvectors. From this it is concluded that the �rst principal component series is

essentially proportional to an average of the observed time series, but estimates of

the PC series are not given. Shumway and Sto�er (2000) also apply PCA in the

frequency domain but concentrate on the dynamic eigenvalues and the analysis of

certain frequencies. A generalized dynamic factor model for the analysis of multi-

variate time series is considered by Forni et al. (2000). Their estimation procedure

is based on the concept suggested by Brillinger. However, as their objective is to

separate common and idiosyncratic e�ects of the observed series, they focus on the

construction of the approximant series. Our main concern is the construction of a

few interpretable PC series, which can subsequently be monitored in order to detect

patterns such as level{shifts and trends. The advantage of meaningful PC series in

statistical process control is that the source of detected deviations from the process

under control can be traced more easily.

In classical factor analysis, interpretable factors are often derived by rotating the

�rst retained factors. A factor analytic model in the time series context is implicitly

presumed of the form

X(t) = �+

X

s

c(t� s)�(s) + �(t):

Such dynamic factor models, with various further assumptions are considered by

Geweke (1977), Pe~na and Box (1987), Stock and Watson (1988), Molenaar et al.

(1992), Forni et al. (2000), among others. Here we are simply interested in a linear

transformation of the time series based on principal component methods instead of

imposing model assumptions. Therefore we will merely borrow the idea of rotating

the extracted components in an attempt to achieve a simple structure.

There are several possible criteria according to which a rotation can be performed.

We will concentrate on orthogonal transformations such that the rotation reduces

to the choice of new coordinate axes of the PC subspace. Common rotation criteria
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like varimax or orthomax operate automatically but do not necessarily solve all the

problems stated above. As the rotation has to be carried out at each frequency,

such \blind" rotation criteria can yield loading matrices with similarly directed but

di�erently ordered column vectors. Even worse, the same criterion can result in

di�erent directions at distinct frequencies.

A possible remedy is to exploit background knowledge on the subject matter. Ro-

tations according to the Procrustes criterion can then be employed where a target

matrix with an ideal pattern of the loading matrix L is speci�ed in advance. The

eigenvectors are forced as much as possible into default directions that reect certain

dependencies among the variables. This proceeding at each frequency facilitates the

interpretation of the resulting PC series.

By the usage of rotational methods, we can gain meaningful PC series on the one

hand. On the other hand, we lose one appealing property: the uncorrelatedness of

the PC series. As one can easily see by inspecting the power spectrum of �(t), the

coherency is not necessarily equal to zero anymore for all frequencies. Jolli�e (1995)

discusses such drawbacks associated with rotation subject to the normalization con-

straints.

A further problem is the non{causality of the �lters that determine the principal

component transformation. There are future observations available in a retrospective

analysis, but, in our context of online statistical process control, there is a need for

procedures that work in real{time without great time delay. Another approach

regarding the non{causality of the �lter is pursued by Molenaar (1987) who exploits

a result by Robinson and Silvia (1978). They show that within each set of stable

�lters having the same gain, there exists a unique �lter which has minimum phase{

lag at all frequencies and which is causal. As this approach may lead to components,

which are not easy to interpret, it will not be considered here further.

4 Application to time series from intensive care

In a retrospective analysis 100 multivariate time series representing the hemody-

namic system of a patient in intensive care were analyzed by standard PCA and

PCA in the frequency domain. Each of these data sets consists of observations of

ten variables measured every minute: arterial diastolic pressure (APD), arterial sys-

tolic pressure (APS), arterial mean pressure (APM), central venous pressure (CVP),

pulmonary arterial diastolic pressure (PAPD), pulmonary arterial systolic pressure

(PAPS), pulmonary arterial mean pressure (PAPM), heart rate (HR), pulse (pulse),

and blood temperature (TEMP). The length of each of these time series is between

2500 and 7000 observations with possibly a few missing values being replaced by

linear interpolation.

The methods as described in Section 2 are not robust against outliers. In order to

reduce the e�ect of measurement errors that can frequently be found in observations
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of physiological variables we replaced the outliers as follows. They are detected for

each variable individually by means of an online univariate outlier detection proce-

dure (Fried, 2002). According to suggestions by Davies et al. (2002), the repeated

median is used to �t a local linear trend to the observations in a moving time win-

dow of width 31 �rst. The robust scale functional ~�

QN

suggested by Rousseeuw

and Croux (1993) is employed to compute a robust local scale estimate from the

residuals of the robust regression. An incoming observation is identi�ed as an out-

lier and replaced by the extrapolation of the local linear trend if the absolute value

of its residual exceeds three times the local scale estimate. This online procedure

is well adapted for a robust �ltering of noisy physiological time series with trends,

level shifts and time{varying variability. A few outliers are not detected in situa-

tions where gross errors occur in combination with missing values. Here the linear

interpolation produces short trends or level shifts caused by outlying observations.

Subsequent to the outlier replacement, the time series were individually standard-

ized in order to accommodate for di�erent scales among the measured variables.

A reason to be cautious when applying the PCA in the frequency domain to physi-

ological time series is their non{stationarity. The stationarity assumption is needed

for statistical estimation and inference. We are, however, mainly concerned with

an explorative analysis of the intensive care data and therefore restrict ourselves

to a purely descriptive examination. A �nite sample version of the minimization

problem (4) and a geometrical justi�cation serve as a basis for our approach, see

the Appendix. In practice we smoothed the periodogram slightly by means of a

modi�ed Daniell{window of width less than one percent of the length of the time

series in order to reduce some of the variability caused by noise. We took care not

to produce a too large bias.

Because a physician is mostly interested in a few meaningful PC series, rotations

according to the Procrustes criteria were performed at each frequency. The required

target matrix was chosen on the basis of background knowledge gained in prelimi-

nary data analyses. Gather, Imho�, Fried (2002) and Imho�, Fried, Gather (2002)

use graphical models (Lauritzen and Wermuth, 1989) for time series as suggested

by Dahlhaus (2000) to analyze the linear dependencies among the hemodynamic

variables in the intensive care situation. They �nd a clear pattern of strong de-

pendencies between the arterial blood pressures (APD, APM, APS), between the

intrathoracic pressures (PAPD, PAPM, PAPS, and CVP), and between heart rate

and pulse. As these �ndings well agree with medical experience, we chose a target

matrix that forces the eigenvectors to represent the three groups above and in ad-

dition one further component essentially representing the blood temperature. This

choice automatically �xes the number of retained PC series to four components.

Usually for choosing the number of PCs, criteria based on the eigenvalues of the

covariance matrix are employed to ensure that a certain amount of variability in the

data is explained. Here we draw on previous analyses of the hemodynamic variables

that show that retaining four PC series yields satisfactory results (Fried et al., 2002).
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As can be seen in Figure 1, this remains true in the frequency domain. We show the
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Figure 1: Mean cumulative percentage of variability successively captured by the

�rst r; r = 1; : : : ; 10; principal components from an analysis of 100 patients

cumulative percentage of variability accounted for by the �rst r; r = 1 � r � 10, PC

series at each frequency, that is the measure

r

P

j=1

�

j

(�

i

)=

10

P

j=1

�

j

(�

i

); �

i

= �i=200; i =

1; : : : ; 200, averaged over the corresponding curves of the 100 patients. We �nd that

by retaining 4 PC series we account on average for at least 83:6% of the variability

at each frequency. As further components do not contribute considerable amounts

to the cumulative percentage of variance anymore, we can justify the decision to

retain only four components.

If we inspect the dynamic eigenvectors for all patients and all Fourier frequencies

we notice that before rotation the �rst PC series is generally an average of the ten

observed variables, with distinct weights of the variables for the individual patients.

Generally, the imaginary entries are relatively small compared to the real entries for

most frequencies. An example of this is provided in Figure 2, where we depict the

progression of the entries of the �rst dynamic eigenvector of one patient for a period

of 100 Fourier frequencies. We �nd considerable high absolute real entries for the

variables HR and pulse as well as the arterial blood pressures. With the exception

of two frequencies, the dynamic eigenvectors are strikingly stable across the 100 ad-

jacent Fourier frequencies. However, for two single frequencies the Eispack routines

compute the �rst eigenvector as showing in nearly the opposite direction. This is

one of the diÆculties pointed out in Section 3. For the second and further dynamic

eigenvectors, we �nd more of such undesirable features along with a great insta-

bility of the dynamic eigenvectors. The directions of the eigenvectors can be very

8
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Figure 2: Real and imaginary parts of the entries of the 10{dimensional complex

eigenvectors without rotation over a range of 100 Fourier frequencies for one patient,

HR and pulse (dashed), arterial blood pressures (solid), pulmonary artery pressures

(bold solid), CVP (bold dashed), TEMP (dotted)

distinct across the various frequencies. This may primarily be due to the very small

amount we used for smoothing the periodograms. Although the high variability is

still remarkable and we are far from recognizing common dynamic eigenvectors for

all Fourier frequencies, the rotations according to the Procrustes criterium clearly

improve the situation. In particular, the �rst three rotated dynamic eigenvectors

have relatively high positive entries for the groups of variables found by means of

graphical models respectively.

A crucial point in our analysis is to get an idea of the form of the PC �lter in the time

domain. First, we illustrate the impact of the past, present and future observations

on the principal component series �(t) at each time point t by plotting the Euclidean

norm of the four row vectors in the �lter matrices fb(s)g for lags s = �20; : : : ; 20.

Further lags can be neglected as the �lter matrices, and therefore the vector lengths

as well, are almost zero. In Figure 3 we show the minimum, quartiles, median and

maximum of the vector norms for the PC �lters of the 100 patients. It can be seen

that the PC series �(t) is mainly a linear combination of the observations at time

point t. Observations at further lags contribute very little information. As opposed

to the �rst three PC series, the loadings of the fourth PC series at time lag zero

have only a rather low impact.

In this regard we are interested in the size of the entries of the �lter matrix at lag

zero, especially in view of their enhanced interpretability. Figure 4 gives box{plots
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Figure 3: Five{number summaries of the Euclidean norms of the four loading vectors

of the principal component �lter matrices for lags �20; : : : ; 0; : : : ; 20

of the loadings of the four PC series at time lag zero. As anticipated and due to the

Procrustes rotations in the frequency domain, inspection of the loadings of the �rst

three PC series shows high positive entries on the groups of variables speci�ed in

the target matrix and entries close to zero for the other variables. The loadings of

the fourth PC series are rather small, where additionally the entry for the variable

temperature has been forced to be positive. An inspection of this loading vector for

each of the 100 �lter matrices shows that this linear combination can often be inter-

preted as representing the di�erence between arterial blood pressures, intrathoracic

pressures or heart rate and pulse, instead of representing the temperature depending

on the patient.

Similar representations for the loading matrices at lags close to but di�erent from

zero still show noticeably higher absolute loadings on the speci�ed groups of vari-

ables. However, these loadings can be both positive and negative with no clear

pattern being recognizable. Altogether, the �lter matrix at lag zero is dominating

for the construction of the PC series.
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Figure 4: Box{Plots of the real entries in the four loading vectors of the �lter matrix

at lag zero for 100 patients after Procrustes{rotation at each Fourier frequency

From these �ndings it can be conjectured that the �rst three of the resulting PC

series after rotation can readily be interpreted in terms of the arterial blood pres-

sures, heart rate and pulse, and the intrathoracic pressures, respectively, while the

fourth PC series does not have the same meaning for each of the patients. In Figure

5 we display a sequence of the observed time series and the extracted PC series

with and without rotation for one patient. The series have been shifted by con-

stants for purposes of illustration. Obviously the �rst PC series without rotation

captures most of the variability and most of the structure contained in the observed

variables. The other PC series are more stable and do not provide that much infor-

mation. In contrast, the �rst three PC series after rotation are readily interpretable.

With regard to the fact that the loadings at lags di�erent from zero are very small,

it is of interest to compare the performance of the PCA for time series and the

classical PCA with respect to the approximation error. Therefore we computed the

sample total error variances, i.e., the trace of the sample error covariance matrices

tr (

P

T

t=1

^
�(t)

^
�(t)

� 0

), of the approximation error obtained from the standard and the

dynamic approach for each patient.

As the minimization problem (4) includes that of (1) as a special case, the total

error variance of the PCA according to Brillinger is of course at least as small as
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Figure 5: Top: Standardized time series of ten hemodynamic vital signs, arterial

blood pressures (solid), HR and pulse (dashed), TEMP (dotted), pulmonary artery

pressures (bold solid), CVP (bold dashed). Center: Extracted dynamic PC series

after Procrustes{rotation representing arterial blood pressures (solid), HR and pulse

(dashed), intrathoracic pressures (bold solid), linear combination of various variables

(dotted). Bottom: Extracted dynamic PC series without rotation, ordered from

�rst PC series(top) to fourth PC series (bottom)

that of the standard PCA. Figure 6 gives an impression of the improved approxi-

mation that can be achieved by taking into account the time series structure of the

data. On average, the total error variance from the PCA in the frequency domain

is approximately 64% of the one resulting from a classical PCA.

Regarding the considerably low �lter loadings at lags di�erent from zero, we are also

interested in an examination of truncated versions of the PC �lters, where future and

possibly also past observations beyond some time lags s

�

p

and s

�

f

are not considered.

Neglecting future observations is an intuitive way to \remove" the non{causality of

the PC �lter. In comparison to a classical PCA, this approach still allows for some

12
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Figure 6: Scatterplot of the total error variances after performing a classical PCA

and a PCA in the frequency domain for 100 patients

of the time{lagged dependencies in the data. On the other hand, relatively short

�lters meet the demands of an application in the online{monitoring context.

We therefore examine how a truncation of the PC �lter a�ects the approximation

error (3), knowing that the total error variance is minimized for the �lter of full

length.

In Figure 7 we show the total variance of the approximation error for one pa-

tient subject to the truncation lag s

�

= s

�

f

= s

�

p

, where fb(s); �s

�

� s � s

�

g,

fc(s); �s

�

� s � s

�

g and s

�

= 1; : : : ; 900. For cut o� lags with 900 < s

�

� 3743 = T

the approximation error is almost constant, slightly varying between 0:47 and 0:53.

For truncation lags s

�

� 60, the approximation is even worse than that resulting

from a standard PCA on the same time series (total error variance approximately

0:81). This behaviour of the total error variance subject to the truncation lag is

typical for all of the analyzed time series. Hence, such a brute force truncation

at \small" time lags is not advisable if one's interest is the minimization of the

approximation error (3) without any constraints on the form of the �lter. In our

example, truncation lags beyond some cut o� value, say s

�

= 420, are acceptable in

terms of the size of the total error variance. Yet, such PC �lters are not desirable in

an online application as they exceed the number of (future) observations that can

appropriately be considered. One{sided truncations that completely neglect future

observations seem to be even worse. Therefore, a mere truncation of the resulting

PC �lters is not a solution if we are interested in both a consideration of the time{

13
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Figure 7: Total variance of the approximation error subject to the PC �lter trunca-

tion lag s

�

� 900 for one patient with a total of T = 3743 observations

lagged dependency structure and short time �lters. To this end, one could modify

the minimization problem (4) and impose suitable constraints on the PC �lter.

5 Discussion and Conclusion

The aim of our investigation was to examine the performance of PCA for time series

in the frequency domain (compared to standard PCA) with the intention of reducing

multivariate time series of hemodynamic variables to a small number of meaningful

component series.

We �nd that the non{uniqueness of the dynamic eigenvectors heavily complicates

the computation of the PC �lter. Nevertheless, Procrustes rotation at all Fourier

frequencies improves the situation and yields interpretable PC series. Compared to

standard PCA, the consideration of the dependencies between the time series obser-

vations yields a better approximation in terms of the total error variances. However,

this advantage should be balanced by the fact that the PCA in the frequency do-

main needs long sequences of observations, yields non{causal �lters and requires

more computation time, which is undesirable in the online{monitoring situation.

An investigation of the obtained PC �lters in the time domain reveals a high impact

of the observations at lag zero on the PC series but considerably low loadings at

further lags. On the other hand, brute force truncations of the PC �lters at small

or moderate time lags o�er no acceptable solution in terms of a small approxima-

tion error. Here further investigations of the e�ect of a mere �lter truncation and

modi�cations or re�ned approaches seem to be necessary.
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One further diÆculty is that due to the variability across patients we need patient{

speci�c �lters. These have to be estimated from a sequence of the individual time

series observations. The obtained �lter could then be used in the online{monitoring

context, but this approach does not allow for changes in the dynamic dependency

structure that might become noticeable through the estimated PC �lter.

In view of these complications it remains questionable whether the time series ap-

proach is to be preferred to a classical PCA for an online dimension reduction of

physiological time series. Further examinations of the obtained �lters are required.

6 Appendix: Geometrical justi�cation

For simplicity we set E(X(t)) = 0 and denote by x(t) the centered observations of

the observed k{dimensional time series with mean 0. The objective is to �nd �lters

fb(s); s 2 Zg and fc(s); s 2 Zg, with r � k{ and k � r{dimensional matrices as

entries, r < k, that minimize

T

X

t=1

" 

x(t)�

X

s

c(t� s)�(s)

!

� 0

 

x(t)�

X

s

c(t� s)�(s)

!#

; (6)

where

�(t) =

X

s

b(t� s)x(s); t = 0;�1;�2; : : : :

Note, that given a sequence (y(s)) 2 C

k

; s = 1; 2; : : : ; T we can consider the expres-

sion

d

(T )

y

(�) =

T

X

s=1

y(s) exp(�i�s); �1 < � <1

that is de�ned as the �nite Fourier transform of (y(s)).

The periodogram of y(s) at frequency �

j

= 2�j=T; j 2 Z is de�ned in terms of the

discrete Fourier transform d

(T )

y

of y(s) by

I

(T )

yy

(�

j

) = (2�T )

�1

d

(T )

y

(�

j

) d

(T )

y

(�

j

)

0 �

: (7)

These transformations are not restricted to realizations of stationary processes but

are de�ned for any set of time series observations.
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Replacing the error series �(t) = x(t)�

P

s

c(t� s)�(s) in (6) we have

T

X

t=1

�(t)

� 0

�(t) =

T

X

t=1

tr (�(t)

� 0

�(t)) = tr

 

T

X

t=1

�(t) �(t)

� 0

!

= tr

 

T

�1

T

X

j=1

d

(T )

�

(�

j

) d

(T )

�

(�

j

)

� 0

!

= tr

 

T

�1

T

X

j=1

(I�A(�

j

)) d

(T )

x

(�

j

) d

(T )

x

(�

j

)

� 0

(I�A(�

j

))

� 0

!

;

where A(�) = C(�)B(�), B(�) =

P

s

b(s) exp(�i�s); and C(�) analogous to B(�).

Inserting (7) in the result above, we get the minimization problem

min

fb(s)g; fc(s)g

tr

 

2�

T

X

j=1

(I�A(�

j

)) I

(T )

xx

(�

j

) (I�A(�

j

))

� 0

!

;

which can be solved by minimizing

tr

�

(I�A(�

j

)) I

(T )

xx

(�

j

) (I�A(�

j

))

� 0

�

separately for each �

j

with rk (A(�)) � r. Similar to the proof of Theorem 9:3:2 in

Brillinger (1975), we see that a minimum is attained at

A(�

j

) =

r

X

i=1

l

i

(�

j

)l

i

(�

j

)

0 �

;

where l

i

(�

j

) is the eigenvector corresponding to the i{th eigenvalue of I

(T )

xx

(�

j

), and

thus

B(�

j

) =

2

6

6

4

l

1

(�

j

)

� 0

.

.

.

l

r

(�

j

)

� 0

3

7

7

5

; C(�

j

) = [l

1

(�

j

); : : : ; l

r

(�

j

)] = B(�

j

)

� 0

:

The above minimization problem yields a purely geometrical justi�cation if it is

the objective to �nd a best lower dimensional approximation of an observed time

series x(t). It can be understood as a �nite sample version of the population result

(Theorem 9:3:2) in Brillinger (1975). We did not make use of stochastic properties

of the periodogram. Therefore stationarity of the underlying stochastic process is

not required.
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