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Outlier Identi�cation Rules for Generalized Linear Models

Sonja Kuhnt and J�org Pawlitschko

Department of Statistics, University of Dortmund

44221 Dortmund, Germany

Abstract

Observations which seem to deviate strongly from the main part of

the data may occur in every statistical analysis. These observations,

usually labelled as outliers, may cause completely misleading results

when using standard methods and may also contain information about

special events or dependencies. Therefore it is of interest to identify

them. We discuss outliers in situations where a generalized linear

model is assumed as null-model for the regular data and introduce

rules for their identi�cation. For the special cases of a loglinear Poisson

model and a logistic regression model some one-step identi�ers based

on robust and non-robust estimators are proposed and compared.

1 Introduction

In the statistical analysis of data one often is confronted with observations

that \appear to be inconsistent with the remainder of that set of data"

(Barnett and Lewis, 1994) or, more generally, that \are far away [� � � ] from

the pattern set by the majority of the data" (Hampel et al., 1986). Such

observations are usually called \outliers". They may have a high impact

on the statistical analysis and can cause completely misleading results when
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Figure 1: 0:05-outlier region of the N (0; 1)-distribution

using standard procedures. Sometimes, however, these outliers themselves

provide the most interesting aspect of the data, for instance an unexpected

long lifetime observed in a clinical trial or a surprisingly high insurance claim.

Although the problem how to identify and to handle outliers has been subject

of numerous investigations, there is no general accepted formal de�nition of

outlyingness. Most authors, however, agree in that the notion \outlier" is

only meaningful in relation to a hypothesized statistical model for the \good"

data, the so-called null model. We treat outliers in the sense of Davies and

Gather (1993) who de�ne outliers in terms of their position relative to the

null model. E.g. for any normal distribution N (�; �

2

) and any �, 0 < � < 1,

the corresponding �-outlier region is de�ned by

out(�; �; �

2

) =

�

x : jx� �j > � z

1��=2

	

where z

1��=2

denotes the (1 � �=2)-quantile of the standard normal dis-

tribution. Any number x is called an �-outlier with respect to N (�; �

2

) if
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x 2 out(�; �; �

2

). Figure 1 shows the 0:05-outlier region of the N (0; 1) distri-

bution. Any number with an absolute value larger than 1.96 is a 0:05-outlier.

We will extend this general approach to outlyingness to null models for struc-

tured data situations such as regression models and contingency tables which

are summarized in the broad class of generalized linear models (GLM). This

unifying family of models has been introduced by Nelder and Wedderburn

(1972) and has had a major inuence on statistical modelling in a number

of modern applications. GLM essentially extend the classical linear model

in two ways: data are not necessarily assumed to be normally distributed

and the mean is not necessarily modelled as a linear combination of cer-

tain covariates but some function of the mean is. Generalized linear models

are introduced in more detail in Section 2. A formal de�nition of outliers for

GLM is given in Section 3 together with methods aiming at the identi�cation

of outliers in observed samples. Section 4 provides some examples. Possible

areas for further research are discussed in Section 5.

2 Generalized linear models

Consider the situation where it is of interest to explain a univariate response

variable by a set of p �xed or stochastic covariates. Let (Y

1

; X

1

); : : : ; (Y

n

; X

n

),

withX

i

= (X

i1

; : : : ; X

ip

)

0

, be a sample of n observations. A generalized linear

model (GLM) is characterized by two assumptions:

� Distributional Assumption: For each Y

i

, i = 1; : : : ; n, the conditional

distribution of Y

i

given X

i

= x

i

belongs to an exponential family with

expectation E(Y

i

jX

i

= x

i

) = �

i

and variance V ar(Y

i

jX

i

= x

i

) =

�V (�

i

), where V is a known variance function and � > 0 a common

dispersion parameter not depending on i.
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� Structural Assumption: There exists a so-called link function g, which

is a known one-to-one, suÆciently smooth function, and a parameter

vector � = (�

1

; : : : ; �

p

)

0

2 R

p

such that for each i, i = 1; : : : ; n, the

expectation �

i

is related to a linear predictor via

g(E(Y

i

jX

i

= x

i

)) =

p

X

j=1

x

ij

�

j

:

The distributional assumption includes for example the families of normal,

inverse Gaussian, gamma, Poisson and binomial distributions. The common

linear regression model is part of this model class; in this case the responses

have a normal distribution, g is the identity function, � = �

2

, and V (�) = 1.

3 Outliers and identi�cation rules

A key element of GLM is the fact that di�erent vectors of covariates may

give di�erent distributions for the corresponding responses. It is indeed this

assumption of non-identical distributions which causes the new problem in

identifying outliers. We look at the distributions P

i

of the responses given

the covariates, fY

i

jX

i

= x

i

; i = 1; : : : ; ng and start by de�ning �

i

-outlier

regions for the individual conditional distributions. This de�nition can be

derived from a more general de�nition of outlier regions given in Gather et

al. (2003).

Let P be an exponential family such that P

i

2 P has density f

i

with respect

to a dominating measure and has (known) support supp(P

i

). Given �

i

2

(0; 1) the �

i

-outlier region of P

i

2 P is then de�ned as

out(�

i

; P

i

) = fx 2 supp(P

i

) : f

i

(x) < K(�

i

)g (1)

where

K(�

i

) = sup

�

K > 0: P

i

�

fx : f

i

(x) < Kg

�

� �

i

	

:
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With inl(�

i

; P

i

) = supp(P

i

)nout(�

i

; P

i

) we de�ne the corresponding �

i

-inlier

region of P

i

. Each point x 2 out(�

i

; P

i

) is called an �

i

-outlier relative to P

i

and each x 2 inl(�

i

; P

i

) an �

i

-inlier. This de�nition formalizes the element

of \unlikeliness" that is associated with the more informal de�nitions of an

outlier cited in the introduction. Furthermore, this de�nition requires no

further properties of a point x to be classi�ed as outlier with respect to P

i

than being contained in out(�

i

; P

i

). Especially outliers need not to come

from a special outlier-generating mechanism as it is usually assumed in the

literature.

Let now fy

i

jx

i

; i = 1; : : : ; ng be a sample that under the null model is assumed

to come i.i.d. from a certain GLM. An observed response y

i

is then identi�ed

as �

i

-outlier if it lies in the �

i

-outlier region of the corresponding conditional

distribution. The levels �

i

should be chosen such that under the null model

the probability of the occurrence of any outlier in the whole sample does not

exceed a given ~�. If equal values of the �

i

; i = 1; : : : ; n; are desired, a natural

choice depending on the sample size is given by

�

i

= 1� (1� ~�)

1=n

: (2)

The task of identifying all outliers in a sample (y

n

jx

n

) = fy

i

jx

i

; i = 1; : : : ; ng

can now be described as the task to �nd all those y

i

which are located in the

corresponding outlier region out(�

i

; P

i

).

Roughly spoken, there are two important types of outlier identi�cation rules,

namely rules that proceed in one step and rules that operate stepwise. In the

following we focus on the �rst type of rules. For a GLM, a so-called simul-

taneous or one-step outlier identi�er essentially consists in a set of empirical

versions OI

i

(�

i

;y

n

jx

n

); i = 1; : : : ; n; of the �-outlier regions out(�

i

; P

i

); i =

1; : : : ; n. Each point located in OI

i

(�

i

;y

n

jx

n

) then is classi�ed as �

i

-outlier
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with respect to the corresponding P

i

. The main problem is that the P

i

are

only partially known. Since the di�erent distributions of the responses are

only caused by the di�erent values of the covariates, the P

i

share the same

unknown characteristics, namely the parameter vector � and the dispersion

parameter �.

To make the performance of di�erent outlier identi�ers comparable it is useful

to standardize them in an appropriate way. Davies and Gather (1993) sug-

gest two approaches in the i.i.d. case which can be transferred to the more

complex setting of a GLM as well. In this case, the �rst standardization

consists in the requirement that under the null model H

0

one has

P

H

0

�

Y

i

=2 OI

i

(�

i

;Y

n

jX

n

); i = 1; : : : ; n

�

� 1�  (3)

for some  > 0 which is often chosen equal to ~�. Their second suggestion

leads to the requirement that under the null model one has

P

H

0

�

OI

i

(�

i

;Y

n

jX

n

) � out(�

i

; P

i

); i = 1; : : : ; n

�

� 1�  (4)

with  chosen as in (3). Since both approaches inevitably lead to the labori-

ous task of deriving (or simulating) a large number of normalizing constants

we suggest to work without such a type of standardization and to estimate

the regions out(�

i

; P

i

) directly. If ~� is chosen reasonably small this approach

leads to identi�cation rules which are not susceptible to identify too much

regular observations as outliers. For estimating the true outlier regions one

needs estimators of P

i

; i = 1; : : : ; n; and these are obtained by plugging esti-

mators

^

� of � and

^

� of � into the corresponding densities f

i

. The classical

estimator in GLM is the Maximum Likelihood (ML) estimator which, how-

ever, has the disadvantage of being not robust in most cases. For other data

situations (see e.g. Davies and Gather, 1993, Becker and Gather, 1999) it has
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been shown that reliable outlier identi�cation rules should be based on robust

estimators of the model parameters. Especially, outlier identi�ers that are

constructed with non-robust estimators are prone to the e�ects of masking

and swamping. Masking occurs if an identi�cation rule fails to identify some

outlier although the sample contains two or more apparently outlying obser-

vations (which then \mask" themselves). Swamping occurs if some apparent

outlier(s) in the sample cause the identi�cation rule to classify a regular ob-

servation as outlier as well. These �ndings lead us to recommend the use of

robust estimators for the construction of outlier identi�ers in GLM as well.

We present two examples in the next section.

4 Examples

4.1 Loglinear Poisson models

As a �rst illustration of outlier identi�cation in GLM, we look at the problem

of identifying outlying cells in contingency tables. We concentrate on a 7� 8

table from Yick and Lee (1998) containing student enrolment �gures from

seven community schools in Australia for eight di�erent periods of the year,

see Table 1.

93 96 99 99 147 144 87 87

138 141 141 201 189 153 135 114

42 45 42 48 54 48 45 45

63 63 72 66 78 78 82 63

60 60 54 51 51 45 39 36

174 165 156 156 153 150 156 159

78 69 84 78 54 66 78 78

Table 1: Student enrolments data (Yick and Lee, 1998)

The assumed model is that of independence between the row and column

classi�cation. The 56 cell counts y

i

, i 2 f1; : : : ; 56g, are taken to be out-

7



comes of independent Poisson distributed random variables with individual

expectations E(Y

i

) = �

i

= exp(x

0

i

�), where we have the logarithm as link

function. The x

i

, i 2 f1; : : : ; 56g, are de�ned by the independence assump-

tion and consist only of entries �1; 0; 1 if e�ect coding is used (Fahrmeir

and Tutz, 2001). In case of the Poisson distribution it is not possible to

give a simple expression for the outlier region, which is always an upper tail

region or the union of an upper and a lower tail region. However, it can

easily be derived using the de�nition. Every �

i

-outlier region of a Poisson

distribution Poi(b�

i

) based on an estimate b�

i

can be seen as an \empiri-

cal version" of the outlier region out(�

i

; P oi(�

i

)), as discussed in Section 3.

A one-step outlier identi�cation rule can then be de�ned by identifying all

cell counts lying in the corresponding region out(�

i

; P oi(b�

i

)) as �

i

-outliers.

With ~� = 0:1 the choice of the individual levels according to (2) leads to

�

i

= 1� (1� 0:1)

1

56

= 0:00188.

The classical estimator for contingency tables is the ML-estimator. Some

robust alternatives have been proposed in the last years, including esti-

mates based on the median polish method (Mosteller and Parunak, 1985),

L

1

-estimates (Hubert, 1997), minimum Hellinger distances (Kuhnt, 2000),

least median of chi-squares residuals and least median of weighted squared

residuals (Shane and Simono�, 2001).

105.20 103.74 105.20 113.48 117.86 111.05 100.98 94.49

149.65 147.57 149.65 161.43 167.67 157.97 143.65 134.41

45.56 44.93 45.56 49.15 51.05 48.09 43.73 40.92

69.76 68.79 69.76 75.25 78.16 73.64 66.96 62.66

48.90 48.22 48.90 52.74 54.78 51.61 46.93 43.92

156.69 154.51 156.69 169.02 175.55 165.40 150.40 140.73

72.23 71.23 72.23 77.92 80.93 76.25 69.33 64.88

Table 2: Maximum likelihood estimates
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In case of ML-estimates (Table 2) only observation y

53

= 54 lies in the

0.00118-outlier region of the distribution given by the estimate, out(0:00118;

P oi(80:93)) = N n f55; : : : ; 110g, and is thereby identi�ed as outlier.

94.34 95.42 99.53 98.47 109.55 101.67 95.32 88.48

138.70 140.26 146.33 144.77 161.06 149.47 140.13 130.09

44.54 45.05 46.99 46.49 51.72 48.00 45.00 41.77

67.17 67.94 70.87 70.11 78.00 72.39 67.86 63.00

46.59 47.13 49.16 48.63 54.10 50.21 47.07 43.70

152.80 154.54 161.20 159.48 177.43 164.66 154.37 143.31

76.38 77.25 80.58 79.72 88.69 82.31 77.17 71.63

Table 3: Median polish estimates

We also use median polish estimates, which are the means of the results of

two sweeps of median polish on the logarithm of the cell counts once starting

with the rows and once with the columns. Using these estimates, see Table

3, the four observations y

5

, y

6

, y

12

and y

53

are identi�ed as 0:00188-outliers.

Yick and Lee (1998) obtain the same set of outliers or, depending on the

outlier identi�cation procedure used, the set fy

5

; y

6

; y

12

; y

13

g, which they can

explain from subject knowledge. Observations y

5

and y

6

are collected during

a period in which a group of transient seasonal fruit picker families have

moved near to this school, thus inating the school's enrolments. y

12

might

show an unexpected high value due to a signi�cant number of people moving

into the area for an aboriginal funeral procession, which lasted around three

month. Yick and Lee suggest that due to this funeral actually y

13

might be

the outlying observation and y

53

is judged discordant due to swamping.

4.2 Logistic regression

Consider the case that the responses are binomially distributed according

to Y

i

jX

i

= x

i

� Bin(m

i

; p

i

); i = 1; : : : ; n: We suppose that p

i

= 1=(1 +

exp(�x

0

i

�)) for some parameter vector � that is, we have a logistic regression

9



x

i

m

i

y

i

Concentration number of number of

(g / 100 cc) exposed insects killed insects

0.10 47 8

0.15 53 14

0.20 55 24

0.30 52 32

0.50 46 38

0.70 54 50

0.95 52 50

Table 4: Data for the toxicity example

model with grouped data: the link function from the structural assumption

of the GLM is chosen as the logit function. The corresponding outlier regions

can essentially be derived as in the Poisson case. Again, for the construc-

tion of a reliable one-step outlier identi�er we need a robust estimator of

�. For this purpose we may e.g. use the Least Median of Weighted Squares

(LMWS) or Least Trimmed Weighted Squares (LTWS) estimators as pro-

posed in Christmann (2001). As an example look at the data in Table 4

which are taken from Myers et al. (2002). These data report the result from

a toxicity experiment which has been conducted to investigate the e�ect of

di�erent doses of nicotine on the common fruit y.

A reasonable model for this set of data is a logistic regression model with

p

i

=

1

1 + exp(�(�

0

+ �

1

lnx

i

))

: (5)

For the data in Table 4 the ML- and LMWS-estimators of the model pa-

rameters are

^

�

ML

0

= 3:1236;

^

�

ML

1

= 2:1279; and

^

�

LMWS

0

= 3:3478;

^

�

LMWS

1

=

2:3047, respectively. Suppose now that the number of killed insects for the

concentration of 0.70 g / 100 cc has been wrongly reported as 5 instead of 50.

Then the parameter estimators are given by

^

�

ML

0

= 0:9278;

^

�

ML

1

= 0:8964,

and

^

�

LMWS

0

= 3:3368;

^

�

LMWS

1

= 2:2989, respectively. For ~� = 0:01 we now

10



x

i

Concentration inl(�

i

; Bin(m

i

; p̂

ML

i

)) inl(�

i

; Bin(m

i

; p̂

LMWS

i

))

(g / 100 cc)

0.10 f3; : : : ; 21g f0; : : : ; 14g

0.15 f7; : : : ; 28g f5; : : : ; 25g

0.20 f10; : : : ; 32g f12; : : : ; 34g

0.30 f13; : : : ; 35g f22; : : : ; 43g

0.50 f16; : : : ; 37g f31; : : : ; 45g

0.70 f24; : : : ; 46g f43; : : : ; 54g

0.95 f26; : : : ; 46g f45; : : : ; 52g

Table 5: Estimated inlier regions for the toxicity example

estimate the �

i

-inlier regions for the distributions of the number of killed

insects, where �

i

= 0:00143; i = 1; : : : ; 7; is determined according to condi-

tion (2). These estimated inlier regions are contained in Table 5. Here p̂

ML

i

(p̂

LMWS

i

) denotes the plug-in estimator of p

i

when inserting the ML- (the

LMWS-) estimator of �

0

and �

1

into the right hand side of (5). Again, an

observation is identi�ed as �

i

-outlier if it is not contained in the correspond-

ing estimated �

i

-inlier region.

Note that in this example both rules detect the wrongly reported number

of killed insects at 0.70 g / 100 cc correctly as 0:0143-outlier. However, the

rule based on the ML-estimator also identi�es the numbers at 0.50 and 0.95

g / 100 cc as outlying. This is an example of the swamping e�ect that

clearly demonstrates the unreliability of outlier identi�cation rules based on

non-robust methods.

5 Outlook

In this paper we have only discussed outliers with respect to the conditional

distribution of the responses given the covariates which are treated as if they

are �xed. This is the appropriate approach e.g. for the loglinear Poisson

11



model of Section 4.1 where the x

i

reect the structure of a certain contingency

table. However, in many cases the covariates are actually random. Hence it

makes sense to consider outlier regions for the distribution of the covariates

and the joint distribution of responses and covariates as well. For a GLM

with normal distribution of the responses and the identity as link function

(i.e. a linear regression model with normal errors) the distribution of the

covariates is often assumed to be multivariate normal. In this case the joint

distribution of responses and covariates is a multivariate normal distribution

as well. Hence the outlier identi�ers discussed e.g. in Becker and Gather

(1999) can be applied for this setting. For other distributions of the responses,

especially in the discrete case, it will be more complicated to model the joint

distribution of responses and covariates and hence to derive the corresponding

outlier regions. This should be the task of further research.
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