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Abstract

Imagine we have two di�erent samples and are interested in doing semi- or non-

parametric regression analysis in each of them, possibly on the same econometric

model. In this article we consider the problem of testing whether a speci�c covariate

has di�erent impacts on the regression curve in these two samples. So we compare

regression curves of di�erent samples but being interested in speci�c di�erences in-

stead of testing for equality of the whole regression function. Our procedure does

not only allow for random designs and di�erent sample sizes but also for di�erent

variance functions, di�erent sets of regressors with di�erent impact functions, etc.

Actually, it is as general as the comparison of particular coeÆcients in di�erent para-

metric regression models but now on the level of (nonparametric) functionals. As

we use the marginal integration approach this method can be applied to any strong,

weak or latent separable model to compare the (lower dimensional) separable com-

ponents between the di�erent samples. Thus, in the case of separable models our

procedure includes the possibility of comparing the whole regression curves avoiding

the curse of dimensionality that otherwise would render such a task impractical. In

practice, resampling methods are necessary for applying our test to real data. How-

ever, it will be shown that for our approach bootstrap fails in practice and theory.

Instead, we propose a subsampling procedure with automatic parameter choice. We

give complete asymptotic theory, and its excellent performance is demonstrated by

an extensive simulation study.
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1 Introduction

Let us consider two di�erent samples fY

1j

; X

1j

;W

1j

g

n

1

j=1

, fY

2j

; X

2j

;W

2j

g

n

2

j=1

with Y

1j

, Y

2j

,

X

1j

, X

2j

2 IR, and W

1j

2 IR

d

1

, W

2j

2 IR

d

2

. In practice, typically one has d

1

= d

2

. For

each sample we have in mind a regression model of the form

E[Y

1j

jX

1j

;W

1j

] = F

1

(X

1j

;W

1j

) = G

1

ff

1

(X

1j

); g

1

(W

1j

)g ; j = 1; : : : ; n

1

(1)

E[Y

2j

jX

2j

;W

2j

] = F

2

(X

2j

;W

2j

) = G

2

ff

2

(X

2j

); g

2

(W

2j

)g ; j = 1; : : : ; n

2

;(2)

where we can estimate f

1

, f

2

nonparametrically, and the other functions g

1

, g

2

, G

1

, G

2

either non-, semi- or parametrically. Notice that for each particular case of speci�cation,

there exists a considerable amount of literature how these models can be estimated non-

or semiparametrically. The articles that provide estimators with its complete asymptotic

theory for the most general models are, to our knowledge, Horowitz (2001), Rodr��guez-

P�oo, Sperlich and Vieu (2003), Mammen and Nielsen (2003), H�ardle, Huet, Mammen and

Sperlich (2003), or Gozalo and Linton (2001).

In econometrics it is a common problem to know whether f

1

and f

2

are equal or whether

there exist signi�cant di�erences across populations. Typical examples are e.g. the com-

parison of labor supply o�ered by women and by men, comparisons between economic

behavior in East and West Germany after uni�cation, comparisons between races to �nd

discrimination e�ects, etc.. In multivariate linear regression this has been a relatively

easy task where possibly di�erent variance functions could cause the only diÆculty. In

contrast, for nonlinear exible regression models, especially for non- or semiparametric

models, this task becomes a rather diÆcult one.

What concerns the comparison of F

1

(�; �), F

2

(�; �) much e�ort has been devoted to the

problem of testing the equality of the whole regression curves [see H�ardle and Marron

(1990), Hall and Hart (1990), King, Hart and Wehrly (1991), Delgado (1993), Young and

Bowman (1995), Kulasekera (1995), Hall, Huber and Speckman (1997), Dette and Munk

(1998), Cabus (1998), Yatchew (1999), Kulasekera and Wang (2001), Dette and Neumeyer

(2001), Lavergne (2001), G�rgens (2002), Neumeyer and Dette (2003)]. However, to our

knowledge little (or even nothing) is known about the more sophisticated problem of

comparing only parts of the regression function, even though in practice this question is

somewhat more interesting.

Moreover, in the case of high dimensional predictors, due to the so{called curse of dimen-

sionality, a direct comparison of F

1

and F

2

is even not reasonable at all. Then, if something

is known about the structure of the regression as e.g. additivity or multiplicativity, this

can help to surrender the curse of dimensionality, see Stone (1986) for generalized additive

models, or Rodr��guez-P�oo, Sperlich and Vieu (2001, 2003) for weak or latent separable

models. When we study the literature on estimation of models like (1), (2), we will real-

ize that most of them make use of the marginal integration principle. Therefore, we will

concentrate on this method applying the version of Hengartner and Sperlich (2001). To
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make reading easier, we �rst develop the asymptotic theory for models where f

1

, respec-

tively f

2

, are strongly separable from the rest of the model and later discuss extensions.

Further simpli�cations are d

1

= d

2

= d and the assumption of having independent data.

Extensions to d

1

6= d

2

and dependent data structures are deferred to some remarks in the

text.

To be more speci�c, we consider the following two (additive) nonparametric regression

models in the general setting of heteroscedastic errors and di�erent sample sizes in the

two samples,

Y

1j

= c

1

+ f

1

(X

1j

) + g

1

(W

1j

) + �

1

(X

1j

;W

1j

)"

1j

; j = 1; : : : ; n

1

;(3)

Y

2j

= c

2

+ f

2

(X

2j

) + g

2

(W

2j

) + �

2

(X

2j

;W

2j

)"

2j

; j = 1; : : : ; n

2

:(4)

The two models are supposed to be independent of each other. The design points

(X

ij

;W

ij

), j = 1; : : : ; n

i

shall have the joint density p

i

(x; w), i = 1; 2. The marginal

densities are denoted by

r

i

(x) =

Z

p

i

(x; w) dw (of X

ij

)

and s

i

(w) =

Z

p

i

(x; w) dx (of W

ij

); i = 1; 2:

We assume that X

ij

is one dimensional and W

ij

d{dimensional. The errors "

ij

, j =

1; : : : ; n

i

, i = 1; 2, shall be independent of the covariates, independent and identically

distributed with mean zero and variance one. For identi�cation of the functions we assume

E[f

i

(X

ij

)] =

Z

f

i

(x)r

i

(x) dx =

Z

f

i

(x)p

i

(x; w) d(x; w) = 0 ;

E[g

i

(W

ij

)] =

Z

g

i

(w)s

i

(w) dw =

Z

g

i

(w)p

i

(x; w) d(x; w) = 0 (i = 1; 2) ;

compare Sperlich, Tj�stheim and Yang (2002) for more details.

Our aim is to test the equality of the marginal impact, respectively of the separable

function, i.e. the covariates X

ij

(i = 1; 2),; that is to test the following hypotheses,

H

0

: f

1

= f

2

versus H

1

: f

1

6= f

2

:(5)

To get a �rst idea, take a most simple (i.e. parametric) model

F

i

(X

ij

;W

ij

) = G



i

f�

i

X

ij

; �

T

i

W

ij

g ; 

i

2 IR

q

; q 2 IN ;

with unknown �

i

, �

i

, 

i

, i = 1; 2. Then, the synonym of our null hypothesis is simply

H

0

: �

1

= �

2

versus H

1

: �

1

6= �

2

.

In Section 4 we will discuss the extension to other models of the form (1), (2) that are not

necessarily additive or even not separable at all. However, the hypothesis and alternative

will not change; what will change is only the question where f

1

, f

2

are standing for.

3



Remark 1.1 Often one would like to test

H

0

: f

1

= S Æ f

2

Æ A ; S;A : IR �! IR ;

where S;A are linear, maybe unknown, transformations. If the transformations are

known, such an extension is straight forward. In the contrary case, we recommend to

apply the method proposed by H�ardle and Marron (1990) who considered such a case

when f

1

, f

2

are the regression functions itselves (d = 0).

A canonical test statistic for testing the equality of f

1

and f

2

could be a weighted L

2

-

distance between the estimated regression functions, that is,

T

N

=

Z

f

^

f

1

(t)�

^

f

2

(t)g

2

v(t) dt(6)

[see e. g. H�ardle and Mammen (1993)] and the null hypothesis of equality of f

1

and f

2

should be rejected for large values of this test statistic. Here v(�) is a continuous and

positive weight function. This test statistic T

N

was considered by Dette and Neumeyer

(2001) for testing the equality of regression functions in the case f

i

= F

i

(i = 1; 2), see

also the references listed there. The asymptotic distribution of this test statistic can be

hard to estimate, depending on the regression model that is considered. In any case, it

is well known that the asymptotics are little helpful in nonparametric testing to �nd the

correct critical value, see Hjellvik, Yao and Tj�stheim (1998). We therefore �rst consider

the possibility of applying wild bootstrap even though this is a discussable approach due

to the fact that we do not always want to estimate the whole regression functions F

1

,

F

2

under the null, if this is possible at all. It will be seen that bootstrap fails to work

anyway, not only in practice but also in theory. Fortunately, subsampling o�ers a viable

alternative, see Politis, Romano and Wolf (1999, 2001) and Delgado, Rodr��guez-P�oo and

Wolf (2001). We will introduce this procedure in detail because it never before has been

applied in this context nor in one that at least comes close to ours, i.e. neither in a two

sample problem, nor in nonparametric curve estimation or testing.

Notice that we have chosen the test statistic (6) only due to practical considerations. We

do not state optimality but emphasize feasibility. Other test statistics and extensions will

be discussed in Section 3. For the test statistic T

N

de�ned in (6) asymptotic normality

under the null hypothesis of equal functions f

1

= f

2

and (with a di�erent convergence

rate) under �xed alternatives is proved. The proposed tests can detect local alternatives

converging to the null hypothesis with convergence rate 1=(N

p

h

N

)

1=2

where h

N

denotes

a sequence of bandwidths tending to zero.

The rest of the paper is organized as follows. In Section 2 we introduce the estimators

that we use and the regularity assumptions that are needed for the investigation of the

asymptotic results. The main theoretical results are stated in Section 3, i.e. asymptotic

distributions of T

N

and alternative test statistics. The extension of the procedure to other

models is considered in Section 4. In Section 5 it is shown that wild bootstrap can not

4



be used for this test. Instead, we propose a subsampling procedure. We discuss practical

questions and investigate the �nite sample properties of the developed test in Section 6.

The proofs of the theoretical results of Section 3 and 5 are deferred to the appendix.

2 The Estimator and Necessary Assumptions

In this section we �rst introduce briey the estimator that is used to get the

^

f

i

, i = 1; 2.

Afterwards we give and discuss the assumptions we need to establish the asymptotics of

the test.

The so called marginal integration estimator has �rst been introduced by Newey (1994)

as an average mean estimator, and by Tj�stheim and Auestad (1994) and Linton and

Nielsen (1995) as an estimator for additive and multiplicative models. Kim, Linton and

Hengartner (1999), and Hengartner and Sperlich (2001) have modi�ed and extended this

estimator to make it computationally easier, faster and in its performance more robust

against correlation among the covariates that unfortunately worsens a lot the performance

of the classical version of the marginal integration estimator (CMIE). They call this mod-

i�cation internalized marginal integration estimator (IMIE). As mentioned in Section 1,

since its introduction this estimation method has been applied to many di�erent estima-

tion problems and turned out to be quite helpful for handling rather general and complex

models.

The internalized marginal integration estimators of f

1

and f

2

as we will use them for the

test statistic T

N

are de�ned as follows:

^

f

i

(x) =

1

n

i

n

i

X

j=1



ij

(x)Y

ij

� ĉ

i

(7)

for i = 1; 2, where we set



ij

(x) = K

h

(X

ij

� x)

ŝ

i

(W

ij

)

p̂

i

(X

ij

;W

ij

)

:(8)

Here, p̂

i

and ŝ

i

are estimators of the joint and marginal densities of (X

ij

;W

ij

), and W

ij

respectively:

p̂

i

(x; w) =

1

n

i

n

i

X

k=1

K

h

(X

ik

� x)L

(d)

b

(W

ik

� w)(9)

ŝ

i

(w) =

1

n

i

n

i

X

k=1

L

(d)

b

(W

ik

� w)(10)

with K

h

(�) =

1

h

K(� h

�1

) being a kernel function from IR to IR, and L

(d)

b

(�) =

1

b

d

L

d

(� b

�1

)

a kernel from IR

d

to IR. Finally, we will use

ĉ

i

=

1

n

i

n

i

X

j=1

Y

ij

5



as an estimator of the unconditional expectations E[Y

ij

] = c

i

(i = 1; 2). Since a lot is

written about the performance and extensions of this estimator (see Sperlich, 1998) we

skip further discussion and refer to the literature mentioned above and in Section 1.

We turn now to the regularity assumptions. They actually will turn out to be rather mild

in practice. Throughout the paper we assume the following conditions to be satis�ed:

[A1] When N = n

1

+ n

2

denotes the total sample size we assume the existence of

constants �

i

2 (0; 1) such that

lim

n

1

;n

2

!1

n

i

N

= �

i

; i = 1; 2 :

Obviously this assumption is purely technical to establish more easily the convergence

rates, but it has no further implication in practice.

[A2] We assume continuity of g

i

for i = 1; 2.

[A3] The regression functions f

i

and the marginal design densities r

i

shall be r{times

continuously di�erentiable (i = 1; 2) for some r � 2.

[A4] Let K be a symmetric kernel with compact support,

R

K

2

(u) du <1, and of order

r (from [A3]), that is,

Z

K(u)u

j

du =

(

1 if j = 0

0 if j = 1; : : : ; r � 1

:

Let h = h

N

denote a sequence of bandwidths and set in the following K

h

(x) = K(x=h)=h.

These last conditions are rather natural and common in kernel smoothing to guarantee

some smoothness of the regression functions, see Gasser, M�uller and Mammitzsch (1985).

[A5] The marginal densities s

i

shall be s{times continuously partially di�erentiable for

i = 1; 2 and some s � 2.

[A6] Let L denote a symmetric kernel of order s (from [A5]) with compact support, and

b = b

N

a sequence of bandwidths. Then L

(d)

denotes the product kernel L

(d)

(w

1

; : : : ; w

d

) =

L(w

1

) � � �L(w

d

) with notation L

(d)

b

(w) = L

(d)

(w=b)=b

d

.

[A7] We assume the design densities p

i

to be (r ^ s){times continuously partially

di�erentiable and bounded away from zero for i = 1; 2 (r, s from [A3] to [A6]).

These three conditions are related to the use of marginal integration but much less re-

strictive and more realistic than those necessary for the CMIE. Notice that concerning the

covariates not of interest (i.e. W

ij

) we only ask for smoothness in the densities but not in

the functions g

i

. For a detailed discussion and how these conditions can even be relaxed

further, see Hengartner, Sperlich (2001). Only for the ease of notation in the proof, we

set the support of the p

i

equal to the cube [0; 1]

d+1

.
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[A8] The variance functions �

2

i

, i = 1; 2, are continuous and bounded away from zero and

in�nity. The distributions of the errors have a �nite fourth moment, that is E["

4

ij

] < 1

8 i; j.

It is clear that this is assumed to establish consistency and convergence in distribution.

[A9] We assume the following bandwidth conditions to be satis�ed:

h! 0; b! 0; Nh

3=2

b

d

!1; Nb

2d

h!1

Nh

2r+1

= o(1); N

p

hb

2s

= o(1); Nb

s

h

r+

1

2

= o(1); h

r+

1

2

=b

d

= o(1):

To yield a consistent test, these conditions are certainly somewhat stronger as those

needed for the consistency of the IMIE only . Actually, they might look worse than they

are: e.g. in the special case where r = s, d = 1, and bandwidths h, b chosen to be of the

same convergence rate, this gives just the constraints h! 0, Nh

3

!1 and Nh

2r+

1

2

! 0.

However, we will give one example how these bandwidth conditions can already be relaxed.

For the ease of presentation, implementation and for historical reasons we have given the

de�nition of the IMIE in (7) with the typical kernel density estimates (10) and (9) for the

p

i

, s

i

. This will cause bias terms of order 1=(Nb

d

) and 1=(Nhb

d

) in the density estimators

ŝ

i

and p̂

i

, respectively. If we modify slightly the estimators used in de�nitions (7) and (8)

in the following way:

ep

i

(X

ij

;W

ij

) =

1

n

i

n

i

X

k=1

k 6=j

K

h

(X

ik

�X

ij

)L

(d)

b

(W

ik

�W

ij

) = p̂

i

(X

ij

;W

ij

)�

K(0)L

(d)

(0)

n

i

hb

d

(11)

es

i

(W

ij

) =

1

n

i

n

i

X

k=1

k 6=j

L

(d)

b

(W

ik

�W

ij

) = ŝ

i

(W

ij

)�

L

(d)

(0)

n

i

b

d

;(12)

the theoretical results remain valid under the following less restrictive bandwidth condi-

tions,

[A9'] h! 0; b! 0; Nh!1

Nh

2r+1

= o(1); N

p

hb

2s

= o(1); Nb

s

h

r+

1

2

= o(1):

Then, in the special case where r = s, d = 1, and h, b chosen to be of the same convergence

rate, this gives the constraints h! 0, Nh!1 and Nh

2r+

1

2

! 0.

Finally, recall that only for the ease of notation we restrict our presentation of the results

to the case where the dimension of covariates (d + 1) in the two models (3) and (4) is

the same. But realize that everything can be straightforwardly generalized to the case of

di�erent dimensions of covariates d

1

+1 in model (3) and d

2

+1 in model (4). For instance,

in that case it can also be reasonable to use di�erent kernels L

i

and bandwidths b

i

for

the two models i = 1; 2 (instead of using simply L, b for both samples the same).

7



3 Main Results

We now investigate the asymptotic behavior of the test statistic

T

N

=

Z

f

^

f

1

(t)�

^

f

2

(t)g

2

v(t) dt

and some alternatives to test the hypotheses

H

0

: f

1

= f

2

vs: H

1

: f

1

6= f

2

:

As mentioned above, v(t) is a weight function that has to be chosen by the empirical

researcher and will be discussed later.

If we consider models of the form (3), (4), i.e. where f

1

; f

2

are additively separable from

the remainder terms, we can state the following theorem:

Theorem 3.1 Suppose the assumptions [A1] to [A9] stated in Section 2 are satis�ed.

(i) Under the null hypothesis H

0

: f

1

= f

2

the standardized test statistic

N

p

h(T

N

� E

H

0

[T

N

])

converges in distribution to a mean zero normal distribution with variance �

2

de�ned by

�

2

= 2

Z

(K �K)

2

(u) du

Z

v

2

(z)

�

Z

H(z; w) dw

�

2

dz

where K �K denotes the convolution of the kernel K with itself and

H(z; w) = s

2

1

(w)

fc

1

+ f

1

(z) + g

1

(w)g

2

+ �

2

1

(z; w)

�

1

p

1

(z; w)

+ s

2

2

(w)

fc

2

+ f

2

(z) + g

2

(w)g

2

+ �

2

2

(z; w)

�

2

p

2

(z; w)

:

The expectation is given by

E

H

0

[T

N

] =

1

Nh

Z

K

2

(u) du

Z

v(z)H(z; w) d(z; w) + o(

1

N

p

h

):

(ii) Under the alternative H

1

: f

1

6= f

2

the standardized test statistic

p

N(T

N

� E

H

1

[T

N

])

converges in distribution to a mean zero normal distribution with variance 

2

de�ned by



2

=

4

�

1

Var(Z

(1)

) +

4

�

2

Var(Z

(2)

)

where for i = 1; 2

Z

(i)

= Y

i1

h

ff

1

(X

i1

)� f

2

(X

i1

)gv(X

i1

)

s

i

(W

i1

)

p

i

(X

i1

;W

i1

)

�

Z

ff

1

� f

2

g(x)v(x) dx

i

:

The expectation is given by

E

H

1

[T

N

] =

Z

ff

1

� f

2

g

2

(x)v(x) dx +O(h

r

) +O(b

s

) +O(

1

Nb

d

h

):

8



The proof of the theorem which is rather technical and cumbersome is deferred to the

appendix.

The �rst part of the theorem shows that an asymptotic level{�{test is obtained by re-

jecting the null hypothesis H

0

of equality of f

1

and f

2

whenever

N

p

h

�

T

N

�

1

Nh

Z

K

2

(u) du

Z

v(z)H(z; w) d(z; w)

�

> ��

�1

(1� �):

Here � denotes the distribution function of the standard normal distribution and �

2

is de�ned in Theorem 3.1. The formula of the function H(z; w) stated in the Theorem

contains unknown features of the data generating process like the design densities p

i

,

the regression functions g

i

and the variance functions �

2

i

(always for i = 1; 2). They

have to be estimated what can be rather complicated depending on the model under

consideration. Moreover, even in the cases where the estimation of the asymptotic bias and

variance would be feasible, Hjellvik, Yao and Tj�stheim (1998) showed very well that these

asymptotic expressions are little helpful to �nd the correct critical value in �nite samples.

For these reasons the proposed test does not provide a satisfactory approximation of

the nominal level when there are only small samples available. In Section 5 we consider

resampling procedures to circumvent this obstacle.

Due to the second part of the theorem we can establish the consistency of the proposed

testing procedure and moreover obtain the following approximation of the power:

P

�

test rejects H

0

�

�

�

H

1

�

� �

�

p

N



Z

ff

1

� f

2

g

2

(x)v(x) dx

�

:

Remark 3.2 A careful inspection of the proof of Theorem 3.1 shows that under local

alternatives of the form

H

1;N

: f

1

(x) = f

2

(x) +

Æ(x)

(N

p

h)

1=2

the under H

0

standardized test statistic N

p

h(T

N

�E

H

0

[T

N

]) converges in distribution to

a normal distribution with variance �

2

and mean

Z

Æ

2

(x)v(x) dx:

Here E

H

0

[T

N

] and �

2

are de�ned in Theorem 3.1.

There are several alternative test statistics that can be considered for testing the null

hypothesis (5). The maybe most obvious alternative to T

N

is to substitute the integral

by the average over the design points, i.e.

S

(1)

N

=

1

N

2

X

i=1

n

i

X

j=1

f

^

f

1

(X

ij

)�

^

f

2

(X

ij

)g

2

w(X

ij

)(13)

9



with a weight function w(�) that is directly related to v(�) . As can be seen easily, S

(1)

N

is just the empirical approximation of

Z

f

^

f

1

(x)�

^

f

2

(x)g

2

f�

1

r

1

(x) + �

2

r

2

(x)g w(x) dx

which is the original test statistic T

N

with weight function

(14) v(x) = f�

1

r

1

(x) + �

2

r

2

(x)g w(x) :

Then, under the null hypothesis H

0

: f

1

= f

2

the statistic S

(1)

N

has the same asymptotic

behavior as stated in Theorem 3.1 for T

N

. Under the alternative the asymptotic variance

changes to



2

1

=

1

�

1

Var

�

2Z

(1)

+ ff

1

(X

11

)� f

2

(X

11

)g

2

w(X

11

)�

1

�

(15)

+

1

�

1

Var

�

2Z

(2)

� ff

1

(X

21

)� f

2

(X

21

)g

2

w(X

21

)�

2

�

where Z

(1)

and Z

(2)

are de�ned in Theorem 3.1 with v(x) = f�

1

r

1

(x) + �

2

r

2

(x)gw(x).

This test statistic, even though quite intuitive, has some essential drawbacks. Nonpara-

metric estimates perform quite poor where data are sparse, neither they should be used

for extrapolation. Imagine, you have some areas where the sample density r̂

1

is close (or

equal) to zero but the sample density r̂

2

is large, and / or the other way around. Right

those areas you would like to weight down or even trim out in your test statistic. You

still could arrange this with a proper choice of w(�) but it would be quite cumbersome

to do it that way. Especially in the case of having pretty di�erent design densities in the

two samples it is more reasonable to evaluate

^

f

i

only in points X

ij

from the ith sample

(i = 1; 2).

These considerations lead us to the following test statistic:

S

(2)

N

=

1

n

1

n

2

n

1

X

j=1

n

2

X

k=1

f

^

f

1

(X

1j

)�

^

f

2

(X

2k

)g

2

1

a

k

�

X

1j

�X

2k

a

�

;

where a = a

N

denotes a new sequence of bandwidths converging to zero, and k is a

kernel function. This test statistic now has the asymptotic expectation

Z Z

ff

1

(x)� f

2

(y)g

2

1

a

k

�

x� y

a

�

r

1

(x)r

2

(y) dx dy �

Z

ff

1

(x)� f

2

(x)g

2

r

1

(x)r

2

(x) dx:

The asymptotic distribution of S

(2)

N

under the null hypothesis H

0

is thus similar to

the one stated for T

N

in Theorem 3.1 but with weight function v(x) = r

1

(x)r

2

(x) .

To get this asymptotic result we need some conditions to be satis�ed additional to the

assumptions made in Section 2 :

10



[B1] The densities r

1

and r

2

of the �rst covariates of each model shall be �{times

continuously di�erentiable with 1 � � � r .

[B2] The kernel k(�) shall be of order �.

[B3] The bandwidths have to satisfy the constraints

a

�

= o(

p

h); Nh

2r+

1

2

= O(1); Nh

2

!1; h

4r+1

= o(a); b

4s

h = o(a); N

p

ah 6! 0:

Under the alternative H

1

an extra bias term of order O(a

�

) appears in the expectation

and the asymptotic variance of

p

N(S

(2)

N

� E

H

1

[S

(2)

N

]) is of the form



2

2

=

1

�

1

Var

�

2Z

(1)

+ ff

1

(X

11

)� f

2

(X

11

)g

2

r

2

(X

11

)

�

(16)

+

1

�

1

Var

�

2Z

(2)

� ff

1

(X

21

)� f

2

(X

21

)g

2

r

1

(X

21

)

�

:

Again, Z

(1)

and Z

(2)

are de�ned in Theorem 3.1 with v(x) = r

1

(x)r

2

(x) .

To summarize we can state the following results:

Corollary 3.3 Assume that conditions [A1] to [A9] hold. Then

(i) the test statistic N

p

hS

(1)

N

behaves asymptotically like N

p

hT

N

with v(�) as in

equation (14), but its variance changes under the alternative H

1

to 

2

1

de�ned in

equation (15).

(ii) If further hold the assumptions [B1] to [B3], the test statistic S

(2)

N

behaves asymp-

totically like N

p

hT

N

with v(t) = r

1

(t)r

2

(t), but its variance changes under the

alternative H

1

to 

2

2

de�ned in equation (16).

Instead of considering estimators for the L

2

{distance of the functions f

1

, f

2

, testing prob-

lems of this kind have also been handled with empirical process approaches, see for exam-

ple Delgado (1993), Cabus (1998) or Neumeyer and Dette (2003). They applied this for

testing the equality of the whole regression functions F

1

, F

2

in a nonparametric context.

In our context, one could consider, for instance, the following process in t 2 [0; 1]:

S

(3)

N

(t) =

1

n

1

n

2

n

1

X

j=1

n

2

X

k=1

f

^

f

1

(X

1j

)�

^

f

2

(X

2k

)g

1

a

k

�

X

1j

�X

2k

a

�

IfX

1j

� tgIfX

2k

� tg :

This obviously is an estimator for the integral

Z

t

0

ff

1

(x)� f

2

(x)gr

1

(x)r

2

(x) dx:

11



Then, the null hypothesisH

0

: f

1

= f

2

should be rejected for large values of a Kolmogorov{

Smirnov type statistic

sup

t2[0;1]

jS

(3)

N

(t)j

or a Cramer{von{Mises type statistic

Z

t

0

fS

(3)

N

(t)g

2

dt:

The development of the asymptotic theory for this type of tests is quite di�erent from

the one we did for the test statistics mentioned above and therefore would be beyond the

scope of this paper. For more details we therefore refer to Neumeyer and Dette (2003).

Finally, coming back to the aforementioned approaches we could also make use of a

pooled sample estimator under the null hypothesis H

0

. Indeed, the observations from

both additive regression models can be used to estimate a common function f = f

1

= f

2

,

i.e. we consider a pooled sample of the form

Y

ij

= f(X

ij

) + c

i

+ g

i

(W

ij

) + �

i

(X

ij

;W

ij

)"

ij

; j = 1; : : : ; n

i

; i = 1; 2:

In generalization of de�nition (7) we then de�ne the estimator

~

f (to get f) by

~

f(x) =

1

N

2

X

`=1

n

`

X

k=1

1

N

2

X

i=1

n

i

X

j=1

K

h

(X

ij

� x)L

(d)

b

(W

ij

�W

`k

)

(Y

ij

� ĉ

i

)

p̂(X

ij

;W

ij

)

;

where we set

p̂(x; w) =

1

N

2

X

i=1

n

i

X

k=1

K

h

(X

ik

� x)L

(d)

b

(W

ik

� w) :

This is an estimator for the convex combination of densities p

1

, p

2

, in particular

p(x; w) = �

1

p

1

(x; w) + �

2

p

2

(x; w):

It can be shown that

~

f(x) is an estimator for

2

X

`=1

2

X

i=1

�

`

�

i

Z Z

K

h

(y � x)L

(d)

b

(w � v)ff(y) + g

i

(w)g

p

i

(y; w)

p(y; w)

s

`

(v) d(y; w) dv

� f(x) +

Z

fg

1

(w)p

1

(x; w) + g

2

(w)p

2

(x; w)g

1

p(x; w)

(s

1

(w) + s

2

(w)) dw:

Now an estimator

^

f for the common function f = f

1

= f

2

is obtained by centering, i.e.

^

f(x) =

~

f(x)�

1

N

2

X

i=1

n

i

X

j=1

~

f(X

ij

):(17)

12



A possible test statistic based on the pooled estimate is, for example,

S

(4)

N

=

1

N

2

X

i=1

n

i

X

j=1

f

^

f(X

ij

)�

^

f

i

(X

ij

)g

2

;

see for comparison Young and Bowman (1995) or Dette and Neumeyer (2001) who used

such a statistic to test the equality of regression functions.

4 Extensions to Other Models

As we mentioned at the very beginning, the marginal integration estimator has been used

to estimate many di�erent models apart from the one described in equation (3) and (4).

Most of them are highly interesting for applied econometrics. Therefore we think it is

worthwhile to give a brief review discussing the application of our proposed test statistic

T

N

on these di�erent models. The extensions to the alternative test statistics are straight

forward and therefore skipped here.

We start with the most general model. We can consider separable models of the form

Y

ij

= G

i

ff

i

(X

ij

); g

i

(W

ij

)g+ �

i

(X

ij

;W

ij

)"

ij

; j = 1; : : : ; n

i

; i = 1; 2;

where G

i

is not necessarily additive. Here, f

1

and f

2

can be interpreted as the marginal

impact of the �rst componentsX

1j

andX

2j

or as (the �rst) separable component functions.

Under the assumption of the existence of functions q

i

such that

Z

G

i

ff

i

(x); g

i

(w)gq

i

(w) dw = f

i

(x) for i = 1; 2 ;

the functions f

1

and f

2

can be identi�ed and estimated by the IMIEs

^

f

1

and

^

f

2

de�ned

by

^

f

i

(x) =

1

n

i

n

i

X

j=1



ij

(x)Y

ij

:

Here, the estimators for the densities s

i

in the de�nition of 

ij

(x) in equation (8) have to

be substituted by the functions q

i

(i = 1; 2). Actually, this is not surprising as already

in Sperlich, Linton and H�ardle (1999) and later in Sperlich, Tj�stheim and Yang (2002)

or Hengartner and Sperlich (2001) it was shown that all versions of the marginal inte-

gration estimate consistently the marginal impact whatever the real underlying model is.

Appropriate identi�cation conditions do the rest.

Thus, for testing the hypothesis of equality H

0

: f

1

= f

2

we can consider the same testing

procedure T

N

de�ned in (6) as we did it in the additive case. A careful inspection of the

proof of Theorem 3.1 shows that the asymptotic behavior of T

N

stated in that theorem

13



is also valid in this model. The asymptotic expectations and variances actually change

only slightly. For instance, the function H(z; w) de�ned in Theorem 3.1 has now the

form

H(z; w) = q

2

1

(w)

G

2

1

ff

1

(z); g

1

(w)g+ �

2

1

(z; w)

�

1

p

1

(z; w)

+ q

2

2

(w)

G

2

2

ff

2

(z); g

2

(w)g+ �

2

2

(z; w)

�

2

p

2

(z; w)

:

Similarly, we can consider generalized additive models

E[Y

i

jX

i

;W

i

] = G

i

ff

i

(X

i

) + g

i

(W

i

)g ; i = 1; 2 ;

see e.g. Horowitz (2001), Gozalo and Linton (2001), or even generalized additive partial

linear models where some of the covariates of W

ij

enter linearly. This can be important

if some dummy variables form part of these covariates, see H�ardle, Huet, Mammen and

Sperlich (2003).

If the link functions G

i

depend further on some parameter, this will not change our

asymptotics as long as these parameter can be estimated with the parametric rate and

consequently do not a�ect the slower nonparametric expressions, see e.g. Gozalo and

Linton (2001) or Rodr��guez-P�oo, Sperlich and Vieu (2003).

The particular case of estimating additive partial linear models with IMIE, i.e. modelling

some parts of W

i

linearly and G

i

being the identity, can also be found in Hengartner

and Sperlich (2001). From that article it can be seen that the theory worked out for

our test in Section 3 works also through for additive partial linear models without any

additional problems.

Finally, consider the interaction model (denoting now U

i

= (X

i

;W

i

))

E[Y

i

jU

i

] =

d+1

X

�=1

�

i;�

(U

i�

) +

X

�<�

�

i;��

(U

i�

; U

i�

) ; i = 1; 2;

with �

i;�

, �

i;��

being unknown smooth functions, as introduced in Sperlich, Tj�stheim

and Yang (2002). Again, all these components can be estimated by marginal integration.

If we denote f

i

= �

i;1

, then again it would be straight forward to give the asymptotics

of our test statistic as the asymptotics for the

^

f

i

do not change compared to the strong

separable models (3), (4). However, if the included interactions between X

i

and W

i

turn

out to be signi�cant the interpretation of the null hypothesis becomes harder in empirical

research. The existence of those nonparametric interactions can be tested for signi�cance

by H�ardle, Sperlich and Spokoiny (2001) or Sperlich, Tj�stheim and Yang (2002).

Finally, for the case of dependent data, Camlong-Viot (2000) has extended the main

results of IMIE to data that ful�ll ��mixing conditions. Moreover, she demonstrated

that also the typical additivity tests with IMIE can be extended to dependent data with

��mixing. From that results it is quite clear that this is also possible for our test statistic.

However, as the proofs for our theoretical results are rather technical, we have given all

theorems only for the independent case.
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5 Resampling Methods

As we mentioned above, in �nite samples it will be necessary to simulate the distribution of

the test statistic T

N

under the null hypothesis. Let us �rst consider the wild bootstrap,

afterwards the subsampling procedure. Even though there is nothing to prove for the

consistency of the subsampling procedure whereas for bootstrap it is, bootstrap always

is preferable as long as it is consistent. The reason is simply that it converges faster and

has thus a much better power. On the other hand, the subsampling method has one

interesting advantage: we are not obliged to estimate the whole regression models, i.e. F

1

and F

2

, under the null. Having at hand consistent estimators for f

1

, f

2

, respectively for

T

N

, is therefore enough.

5.1 The Wild Bootstrap

Again, we restrict to the following model

Y

ij

= c

i

+ f

i

(X

ij

) + g

i

(W

ij

) + �

i

(X

ij

;W

ij

)"

ij

; j = 1; : : : ; n

i

; i = 1; 2 :

Having estimated the f

i

and g

i

by IMIE and c

i

as described above in Section 2, we

de�ne the residuals by

"̂

ij

= Y

ij

� ĉ

i

�

^

f

i

(X

ij

)� ĝ

i

(W

ij

)

= �

i

(X

ij

;W

ij

)"

ij

+ c

i

� ĉ

i

+ f

i

(X

ij

)�

^

f

i

(X

ij

) + g

i

(W

ij

)� ĝ

i

(W

ij

) :

Then, the bootstrap observations are drawn from the following data generating process

under the null hypothesis H

0

:

Y

�

ij

= ĉ

i

+

^

f(X

ij

) + ĝ

i

(W

ij

) + V

ij

"̂

ij

8 i; j :

Notice that now,

^

f has to be an estimator under the null. We get this by taking the

estimator de�ned in equation (17) from the pooled sample. The V

ij

denote indepen-

dent identically distributed random variables with expectations E[V

ij

] = 0 and variances

Var(V

ij

) = 1, and are independently from from the sample

Y

N

= f(X

ij

;W

ij

; Y

ij

) j j = 1; : : : ; n

i

; i = 1; 2g:

Let E

�

N

= E[� j Y

N

] and Var

�

N

= Var(� j Y

N

) denote the conditional expectation and

variance, respectively, conditioned on the original sample Y

N

. Then we have

E

�

N

[Y

�

ij

] = ĉ

i

+

^

f(X

ij

) + ĝ

i

(W

ij

);(18)

E

�

N

[(Y

�

ij

)

2

] =

n

ĉ

i

+

^

f(X

ij

) + ĝ

i

(W

ij

)

o

2

+ "̂

2

ij

;(19)

and Var

�

N

(Y

�

ij

) = "̂

2

ij

:
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Analogous to (7) we estimate the functions f

1

, f

2

from the bootstrap samples, i.e.

^

f

�

i

(x) =

1

n

i

n

i

X

j=1

f

ij

(x)� 1gY

�

ij

;

where the weights



ij

(x) = K

h

(X

ij

� x)

ŝ

i

(W

ij

)

p̂

i

(X

ij

;W

ij

)

are de�ned in (8), Section 2. We end up with a bootstrap version of the test statistic

under the null hypothesis by de�ning

T

�

N

=

Z

f

^

f

�

1

(t)�

^

f

�

2

(t)g

2

v(t) dt:(20)

When calculating the asymptotic distribution, to simplify matters we use the same band-

widths for the bootstrap test statistic as for the original procedure. Additionally to the

assumptions made in Section 2 we need the following bandwidth conditions:

[C1] We assume that Nh

2r

! 0 , Nb

2s

! 0 , and Nh

2

b

2d

!1.

The following theorem gives the variance of the asymptotic distribution of the bootstrap

statistic (20).

Theorem 5.1 The conditional variance �

�2

N

= Var

�

N

(N

p

hT

�

N

) of the bootstrap version

N

p

hT

�

N

of the test statistic, conditioned on the sample Y

N

, converges in probability to

~

�

2

=

Z

(K �K)

2

(u) du

Z

v

2

(z)

h

Z

2

X

i=1

s

2

i

(w)

fc

i

+ f

i

(z) + g

i

(w)g

2

+ �

2

i

(z; w)

�

i

p

i

(z; w)

dw

i

2

dz

�

Z

(K �K)

2

(u) du

Z

v

2

(z)

h

Z

2

X

i=1

s

2

i

(w)

fc

i

+ f

i

(z) + g

i

(w)g

2

�

i

p

i

(z; w)

dw

i

2

dz

6= �

2

;

where �

2

is the asymptotic variance of the original test statistic N

p

hT

N

(under the null

hypothesis) de�ned in Theorem 3.1.

The proof of Theorem 5.1 is deferred to the appendix.

Corollary 5.2 Conditional on the sample Y

N

, the bootstrap test statistic N

p

hT

�

N

does

not converge in distribution to the limit distribution of the original test statistic N

p

hT

N

(under the null hypothesis H

0

), as stated in Theorem 3.1.
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Further problems arise from the observation, that the bootstrap bias N

p

h(T

�

N

�E

H

0

[T

N

])

(where E

H

0

[T

N

] is stated in Theorem 3.1) does not converge to zero in probability. In

fact, the di�erence E

�

H

0

[T

�

N

]� E

H

0

[T

N

] includes a term of the form

Z

1

n

2

1

n

1

X

j=1

n

1

X

k=1

k 6=j

n

(

1j

(x)� 1)(ĉ

1

+

^

f(X

1j

) + ĝ

1

(W

1j

))�

^

f(x)

o

n

(

1k

(x)� 1)(ĉ

1

+

^

f(X

1k

) + ĝ

1

(W

1k

))�

^

f(x)

o

v(x)dx

and it holds

Z

1

n

2

1

n

1

X

j=1

n

1

X

k=1

k 6=j

(

1j

(x)� 1)(

1k

(x)� 1)v(x)dx = O

p

(

1

N

p

h

) :

In practice this means that one has either to �nd other estimation methods or test statis-

tics that do not su�er from this defect, or one has to apply di�erent resampling methods.

In Section 6 this result is illustrated by a simulations study.

Remark 5.3 It is clear from Theorem 5.1 and con�rmed by the simulations that the

wild bootstrap procedure does not work in particular in the case where the variances are

small compared to the functionals f

i

, g

i

. For that reason it is interesting to consider

what happens in the degenerate case where

�

2

i

�! 0 (i = 1; 2):

We then have

~

�

2

= 0 for the asymptotic variance in Theorem 5.1, but still �

2

> 0 for

the asymptotic variance from Theorem 3.1. That means

Var(N

p

hT

�

N

j Y

N

)

P

�! 0

but N

p

h(T

N

�E

H

0

[T

N

]) converges (under the null hypothesis) to a nondegenerate normal

distribution.

On this account comparing N

p

hT

N

with the quantiles of the distribution of N

p

hT

�

N

(conditioned on Y

N

) leads far to often to a rejection of the null hypothesis.

As indicated above, other estimation or bootstrap procedures might work. However, to

�nd such procedure is not trivial. Let us demonstrate this by a simple example. Drawing

the bootstrap observations from the data generating process

Y

�

ij

= ĉ

i

+

^

f(X

ij

) + ĝ

i

(W

ij

) + V

ij

"̂

ij

as suggested above might not be quite appropriate in our model for the following reason:

For the aim of comparing the functions f

1

and f

2

, the impact of the covariates not of

17



interest g

i

(W

ij

) has the nature of an additional \error" variable. Hence, one could also

suggest to estimate the \total error" by

e

ij

= Y

ij

� ĉ

i

�

^

f

i

(X

ij

)

and draw bootstrap observations from

Y

�

ij

= ĉ

i

+

^

f(X

ij

) + V

ij

e

ij

:

But notice that this approach does not attain the goal neither, i.e. Var

�

N

(N

p

hT

�

N

) does

not converge to the variance of the asymptotic distribution of N

p

hT

N

under H

0

. One has

to �nd di�erent proceedings for applying a bootstrap procedure for this testing problem,

if this is possible at all.

5.2 The Subsampling Method

As mentioned before, even if one could �nd a testing method for our problem for that

bootstrap does work, it is often preferable to have a resampling method at hand that does

not require the estimation of the whole model (under the null). This is guaranteed when

we use subsampling.

We try to concentrate in the introduction of subsampling on the particular setup of our

testing problem. For more details we refer to Politis, Romano and Wolf (1999, 2001) and

Delgado, Rodr��guez-P�oo andWolf (2001). As so far this method has never been introduced

for the two-sample context, neither for the nonparametric analysis of functionals, our

notation is slightly di�erent from the traditional one.

We have given a test statistic

�

N

= N

p

h

N

t

N

(Y

N

) where t

N

(Y

N

) = T

N

� E

H

0

[T

N

] ;

and t

N

(Y

N

) converges in probability to zero under the null and to some positive constant

under the alternative. De�ne now

Q

N

(x; P ) = Prob

P

(�

N

� x) = Prob

P

(N

p

h

N

t

N

(Y

N

) � x) ;

where P is the data generating process. Note that we used here the index N for

bandwidth h to emphasize its rate-dependence on N . Why this is important will be seen

later. Let Y

1

M

; � � � ;Y

N

M

M

be equal to the N

M

subsets of Y

N

of size M < N , but

always with the same proportions �̂

1

= n

1

=m

1

, �̂

2

= n

2

=m

2

, m

1

+m

2

= M , m

i

being the

subsample size of sample i. The sampling distribution of �

N

can then be approximated

by the subsampling distribution by

b

Q

N;M

(x) =

1

N

M

N

M

X

l=1

11fM

p

h

M

t

N

(Y

l

M

) � xg :
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Obviously, the critical value for our test can be obtained as the 1 � � quantile of this

estimated sampling distribution

b

Q

N;M

by q̂

N;M

(1� �) = inffx :

b

Q

N;M

(x) � �g , and

the nominal level � test rejects the null hypothesis i� �

N

> q̂

N;M

(1��). From Theorem

3.1 and Politis, Romano and Wolf (2001) we get

Corollary 5.4 Under the assumptions of Theorem 3.1, M=N ! 0, and M ! 1 as

N !1 it holds that

(i) Under H

0

, Prob

P

0

f�

N

> q̂

N;M

(1� �)g �! � as N !1

(ii) Under H

1

, Prob

P

f�

N

> q̂

N;M

(1� �)g �! 1 as N !1.

In the work of Politis, Romano and Wolf (2001) only one sample examples are considered.

Consequently, they have N

M

=

 

N

M

!

admissible subsamples in the i.i.d. case. In the

time series case, the ordering of observations does matter and so it is necessary to do block

wise subsampling. This yields (in the one sample case) to N

M

= N�M +1 subsamples.

For the reasons of implementation and computational expense this is what usually is done

in practice in the i.i.d. case, too, see e.g. Delgado, Rodr��guez-P�oo and Wolf (2001). In

a two-sample time series problem, it is only reasonable to consider the models over time

intervals of the same length, i.e. n

1

= n

2

and you would have N

M

= n

1

� m

1

+ 1 =

n

2

�m

2

+1. If you have independent data but you want to apply blockwise subsampling,

you have N

M

= (n

1

�m

1

+1)(n

2

�m

2

+1) di�erent subsamples. In practice, actually, it

is suÆcient to draw randomly N

M

subsamples out of the admissible ones with N

M

chosen

arbitrarily by the empirical researcher. This can be seen from Politis, Romano and Wolf

(1999), Chapters 2 and 3 (stochastic approximations). For the theory certainly, N

M

has

to go to in�nity, in practice it should be chosen \large". This approach is what we have

implemented in Section 6.

A data driven choice of subsample size M , respectively m

1

and m

2

can be found in

Delgado, Rodr��guez-P�oo and Wolf (2001) and its mathematical justi�cation in Politis,

Romano and Wolf (2001). We therefore give just the idea and algorithm here. The idea

is that in practice, the actual rejection level �̂ is a function of M . With some pseudo

sequences Y

�;k

N

, k = 1; : : : ; K for Y

N

(in the i.i.d. case take e.g. the naive bootstrap to

generate them), calculate �

�;k

N

and compute �̂(M) =

1

K

P

K

k=1

11f�

�;k

N

rejects g. You will

take that subsample size M that minimizes j�̂(M) � �j for the wanted level �. The

algorithm is then

1. Fix a grid of reasonable subsample sizes M and the wanted rejection level �.

2. Generate pseudo sequences Y

�;k

N

, k = 1; : : : ; K, i.i.d. (according to the sample

distribution)

3. For each Y

�;k

N

construct its test �

�;k

N

and calculate �̂(M) =

1

K

P

K

k=1

11f�

�;k

N

rejects H

0

g
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4. Find susample size M that minimizes j�̂(M)� �j

Remark 5.5 This method does not maximize power but guarantees that we hold the

�rst error level without getting too conservative. Notice that Politis, Romano and Wolf

(2001) even doubt that a power maximizing method can be found. In any case, this

discussion is clearly beyond the scope of this paper.

When we apply now this subsampling procedure to our test, note that we have t

N

=

T

N

� E

H

0

[T

N

], where E

H

0

[T

N

] = O

p

(

1

Nh

N

). There are two possibilities to proceed:

Either estimate E

H

0

[T

N

],

^

t

N

by

\

E

H

0

[T

N

] =

1

Nh

N

Z

K

2

(u)du

 

1

n

1

n

1

X

j=1

Y

2

1j

ŝ

2

1

(W

1j

)v(X

1j

)

�

1

p̂

2

1

(X

1j

;W

1j

)

+

1

n

2

n

2

X

j=1

Y

2

2j

ŝ

2

2

(W

2j

)v(X

2j

)

�

2

p̂

2

2

(X

2j

;W

2j

)

!

^

T

N

= T

N

�

\

E

H

0

[T

N

] :(21)

This obviously is consistent with all necessary assumptions for the subsampling hypothesis

testing.

Note that N

p

h

N

E

H

0

[T

N

] alone does unfortunately not go to zero. On the other hand, a

careful study of the results of Politis, Romano and Wolf (1999, 2001) give some hope that

also in �nite samples this bias term E

H

0

[T

N

] is replicated reasonable well by the subsam-

pling procedure and could therefore be neglected. Then we compare directly N

p

h

N

T

N

with the K subsample statistics M

p

h

M

T

M

. It sometimes can be rather cumbersome to

estimate the bias term, so in practice it would be nice if the test would work without this

\bias correction". Therefore our simulkation study in Section 6 mainly focuses on this

approach. However, we come back to this discussion in that section.

Finally, note that Politis, Romano and Wolf (1999, 2001) derived the results we need to

apply subsampling on our testing problem also for dependent (e.g. time series) data. They

only had to assume stationarity and �-mixing. As the stronger �- mixing was already

assumed by Camlong-Viot (2000) to derive its results on the IMIE, subsampling would

thus not require additional assumptions here.

6 The Procedure in Practice

In this section we mainly focus on two points: feasibility and small samples performance

of the proposed methods including the choice of smoothing parameter and illustration

of the break down of the bootstrap. We will concentrate here only on the original test

statistic T

N

with a particular weight function v(�) . On the one hand, the weight

function should be chosen along the objectives of the empirical researcher, on the other

hand it is well known that in non- and semiparametric testing for small samples trimming

20



is recommended. From a mathematical point of view one even could calculate from

the asymptotics stated in Theorem 3.1 a weight function that minimizes variances and

maximizes E

H

1

[T

N

]. This would maximize power, however, only asymptotically. Further,

such an expression consists mainly of unknown expressions and it can be doubted whether

an estimated optimal weight bv

opt

(�) is really optimal in practice. Due to the discussion

in Section 3, and to the conclusions of Dette and von Lieres und Wilkau (2001) we have

decided for

(22) v(t) =

p

r̂

1

(t) � r̂

2

(t)

R

p

r̂

1

(u) � r̂

2

(u)du

;

where r̂

i

(t) , i = 1; 2, are kernel estimates of the marginal densities of the X

i

. In our sim-

ulation study, the chosen weight works pretty well. We tried also other weight functions,

e.g. as in (22) but without taking the root so that at least under the null, the asymptotics

are equivalent to those of S

(2)

N

. We could not �nd major di�erences and will therefore

only present the results obtained for weight function (22).

Further, we did simulations comparing the results based on estimators p̂

i

, ŝ

i

from (9),

(10) with those based on ep

i

, es

i

from (11), (12). The power seems to be slightly better

when using ep

i

, es

i

but this can be just by chance. In any case, the results given in the

tables and graphs refer to the use of these estimators.

The following models are considered: Variables (X

0

i

;W

0

i

) are drawn from a bivariate stan-

dard normal distribution with correlation Cov(X

0

i

;W

0

i

) = �0:1. Then, to facilitate the

bandwidths selection, we set X

i

= arctan(X

0

i

)2:5�

�1

, W

i

= arctan(W

0

i

)2:5�

�1

so that for

i = 1; 2 we get (X

i

;W

i

) 2 [�1:1; 1:1]

(d+1)

. For " � N(0; 1) and � = 0:5, respectively 0:1,

we generated

Y

1j

= 0:5 sin (�X

1j

) + 0:5 sin (�W

1j

) + �"

1j

(23)

and Y

2j

= 0:5 sin (f1:0 + Æg�X

2j

) + 0:5 sin (�W

2j

) + �"

2j

:(24)

Obviously, with Æ increasing we can see the power performance of our test. The marginal

density of X

1

, functional f

1

and its (IMIE) estimate are shown in Figure 1.

A main problem in the practice of non- and semiparametric testing is the choice of

smoothing parameters. Recently there can be found an increasing amount of literature

on \adaptive" testing (for kernel methods see e.g. Horowitz and Spokoiny, 2001). But

they commonly consider problems of parametric null hypothesis so that they only need to

choose a smoothing parameter for the alternative. They choose the smoothing parameter

in a way that it maximizes the test statistic value. Computationally this becomes rather

expensive when a multivariate regression is considered. Further, to our knowledge only

H�ardle, Sperlich and Spokoiny (2001) consider nonparametric nuisance directions as we

have them given by the functions g

1

(�), g

2

(�). All in all, the existing procedures to select

the smoothing parameters adaptively can not straight forwardly be applied to our context.

Moreover, we need several bandwidths: a) for the test statistic h

1

, b

1

for the estimates
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Figure 1: On the left side, marginal density of X

1

. On the right side, function f

1

(�) of

model (23) (solid) with an estimate (dashed) for n

1

= 200, using bandwidths h

1

= 0:4,

b

1

= 3h

1

.

of the �rst sample, respectively h

2

and b

2

for the second sample. When doing bootstrap

we need: b) h

f

, b

f

for the estimation of f(�) from the pooled data, and some bandwidths

to estimate the functions g

1

(�), g

2

(�). When doing subsampling we need instead of b): c)

h

ib

, b

ib

for the estimation in the subsamples. They should have the sizes corresponding to

the subsample size, i.e. h

ib

= h

i

� (n

i

=(m

i

))

1=4

(compare [A9'] needed when using ep

i

, es

i

)

and so on.

We tried out several methods, e.g. for the bootstrap following the recommendations of

H�ardle and Marron (1991) for the estimation of the null model to generate the bootstrap

samples. Among all data-driven methods the following turned out to work best: calculate

cross validation (cv) bandwidths to estimate f

1

, f

2

, g

1

, g

2

. In the case of models (3), (4)

this can be done by leave-one-out cross validation. The cross validation bandwidth for

^

f

i

,

i = 1; 2, should be of order n

�1=5

. For testing, when d = 1, we can take bandwidths of order

n

�1=4

(condition [A9']), so we set h

i

= h

i;cv

n

1=5�1=4

1

, where h

i;cv

stands for the optimal

cross validation bandwidths. The same way we proceed for all the other bandwidths of

a). For the estimators to generate the bootstrap samples we take

h

f

= fh

1;cv

n

1=5

1

+ h

2;cv

n

1=5

2

g=f2 (n

1

+ n

2

)

1=5

g

and analogue for b

f

.

We are certainly aware that not for all models discussed in Section 4 cross validation or

similar data driven bandwidths selection rules are available. But to develop them here is

clearly beyond the scope of this paper. For the kernels K, L we always take the second

order quartic kernel according to conditions [A4], [A6].

6.1 Applying Wild Bootstrap

In this part of the section we resample with the bootstrap procedure presented in Section

5 drawing always 500 bootstrap samples to get the critical value. We restrict here to
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consider the sample sizes n

1

= 200, n

2

= 250 and n

1

= 400, n

2

= 500.

From Theorem 5.1 it can be seen that for small �

2

the error the bootstrap commits will

be strong whereas for large �

2

one might not even see it in simulations. In Table 1 we

have given the error of the �rst kind after 500 replications. Clearly, for � = 0:5 we can

not detect any problem with the bootstrap, whereas for � = 0:1 it fails to work. When

we increase the sample sizes, this impression does hardly change, only that for � = 0:1

we reject even much more.

wanted �rst error level (�)

n

1

,n

2

� p-value 0:01 0:05 0:10 0:15

200,250 0:5 0.481 0.010 0.056 0.118 0.182

0:1 0.330 0.052 0.168 0.274 0.354

400,500 0:5 0.446 0.012 0.048 0.126 0.20

0:1 0.301 0.036 0.154 0.294 0.396

Table 1: First error probabilities after 500 simulation runs when applying wild bootstrap

for di�erent models.

6.2 Applying Subsampling

The bandwidth selection could be handled as before. However, it is no longer a crucial

point here as we do not need to estimate the null hypothesis to generate new samples.

In particular, it will not depend on the quality of estimation whether we hold the �rst

error probability level or not. Instead, this now depends on the choice of the subsample

size. Therefore we �x the bandwidth over all simulation runs to the following: h

1

= 0:4,

b

1

= 1:2 when n

1

= 200, n

2

= 250, all the remaining bandwidth the same but adjusting

for the particular (sub-)sample size, i.e. h

2

= 0:4 � (n

1

=n

2

)

1=4

. In order to underpin that

this procedure seems to work quite well for any sample size, we have added results for

sample sizes n

1

= 100, n

2

= 150 with h

1

= 0:45, b

1

= 1:35 and n

1

= 400, n

2

= 500 with

h

1

= 0:35, b

1

= 1:4. These bandwidths come close to the average value we got for the

bandwidths determined with the aid of cross validation and adjusted for the convergence

rates required by [A9'].

As discussed in Section 5 a question to clarify is whether it makes some qualitative

di�erence to apply the subsampling with or without the bias correction (21) and if yes

of what type. In our simulation comparison we found that both procedures work very

well but could not �nd one to be de�nitely superior to the other. Therefore we limit the

future discussion on the method without bias correction as this, at least in our simulations,

performed always somewhat better. To facilitate the simulation we further restricted to

continuous block wise subsampling, see Section 5.
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In Section 5 it has been introduced how to determine the subsample sizes m

i

that guar-

antee the correct �rst error level. So we �rst do a simulation study to �nd block sizes for

which the test will hold the �rst error level. In a second step we will focus on whether

determining the block size as described in Section 5 does work in our context. We inves-

tigate this only for n

1

= 200, n

2

= 250, N

M

= 400 subsamples, K = 100 naive bootstrap

samples and 100 simulation runs. This has been done for the case when the null hypoth-

esis is true (Æ = 0:0), and if it is completely false (Æ = 1:0), see model (24). We have

summarized some results of the �rst step in Table 2 where we have restricted on the case

� = 0:5. It can be seen clearly, that our procedure suggests, depending on the chosen

�rst error level �, to take block sizes between m

i

� n

i

=2 and m

i

� n

i

=3 . Whether this

suggestion is a good one we will see in the next step.

wanted �rst error level (�)

Æ m

i

0:01 0:05 0:10 0:15

0:0 [n

i

=2] 0.039 0.069 0.101 0.138

[n

i

=2:5] 0.024 0.047 0.078 0.113

[n

i

=3] 0.018 0.041 0.070 0.104

1:0 [n

i

=2] 0.043 0.077 0.112 0.143

[n

i

=2:5] 0.030 0.056 0.088 0.121

[n

i

=3] 0.023 0.046 0.078 0.110

Table 2: For n

1

= 200, n

2

= 250, the estimated �rst error levels �̂(m

i

) as a function of

block size m

i

.

We continue our simulation study based on the above recommended block sizes m

i

. In

Tables 3 and 4 are given the �rst error levels (i.e. the rejection levels for data generated

from the null hypothesis model) when n

1

= 100, n

2

= 125, for n

1

= 200, n

2

= 250, and

for n

1

= 400, n

2

= 500, always for models with noise level � = 0:5 and for those with

� = 0:1. Depending on the sample size we draw (from the smallest to the biggest n

i

,

i = 1; 2) N

M

= 300, 400, respectively 500 subsamples, compare Section 5. The rejection

levels given in Table 3 (when � = 0:5) and Table 4 (when � = 0:1) are always calculated

from 500 simulation runs. It can be seen clearly that the block size search as well as the

subsampling test seem to work well even for extremely small sample sizes, e.g. for only

m

1

= [100=3] = 33.

Finally, we have studied the power performance of the subsampling test when Æ from

model (24) runs from zero to one. In Figure 2 are given the power functions for the

di�erent sample sizes when the noise level is � = 0:5 and the rejection level � = 0:05, 0:1

respectively. In Figure 3 is given the analoge when � = 0:1. The shown power functions

are calculated on 100 simulation runs for all Æ 2 [0; 1]. We always used m

i

= n

i

=3, i = 1; 2,

except for n = 100, � = 0:1 where we set m

i

= n

i

=2, i = 1; 2. The �gures illustrate that
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wanted �rst error level (�)

m

i

n

1

p-value 0:01 0:05 0:10 0:15

[n

i

=2] 100 0.540 0.020 0.042 0.080 0.124

200 0.518 0.030 0.048 0.078 0.120

400 0.502 0.036 0.062 0.098 0.156

[n

i

=2:5] 100 0.528 0.008 0.030 0.070 0.100

200 0.522 0.016 0.022 0.044 0.090

400 0.514 0.024 0.044 0.078 0.128

[n

i

=3] 100 0.525 0.006 0.024 0.052 0.084

200 0.547 0.006 0.018 0.050 0.076

400 0.521 0.014 0.042 0.062 0.104

Table 3: First error probabilities when data are generated with � = 0:5, using subsam-

pling. Numbers are calculated from 500 simulation runs.

wanted �rst error level (�)

m

i

n

1

p-value 0:01 0:05 0:10 0:15

[n

i

=2] 100 0.534 0.032 0.050 0.086 0.126

200 0.544 0.028 0.056 0.096 0.114

400 0.548 0.030 0.058 0.084 0.122

[n

i

=2:5] 100 0.530 0.024 0.044 0.074 0.110

200 0.547 0.020 0.038 0.066 0.102

400 0.555 0.020 0.044 0.066 0.108

[n

i

=3] 100 0.524 0.012 0.030 0.062 0.106

200 0.557 0.010 0.034 0.064 0.086

400 0.560 0.016 0.030 0.060 0.084

Table 4: First error probabilities when data are generated with � = 0:1, using subsam-

pling. Numbers are calculated from 500 simulation runs.

obviously the proposed procedure works well even for small samples sizes (n

1

= 100),

strong disturbance (� = 0:5), and functions diÆcult to estimate, i.e. f

i

(t) and nuisance

terms g

i

(t) are sine functions equal to sin(�t) on t 2 [�1:1; 1:1]. For small disturbance

(� = 0:1) or more reasonable sample sizes (n

1

= 400) the power improves a lot.
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Figure 2: Power performance when data are generated with � = 0:5 for rejection level

� = 0:05 on the left, � = 0:10 on the right. Power function for sample sizes n

1

= 100,

n

2

= 125 is dashed, for n

1

= 200, n

2

= 250 solid, and dotted for n

1

= 400, n

2

= 500.
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Figure 3: Power performance when data are generated with � = 0:1 for rejection level

� = 0:05 on the left, � = 0:10 on the right. Power function for sample sizes n

1

= 100,

n

2

= 125 is dashed, for n

1

= 200, n

2

= 250 solid, and dotted for n

1

= 400, n

2

= 500.

7 Appendix

7.1 Proof of Theorem 3.1

The proof is similar to the proof of Theorem 2.1 of Dette and Neumeyer (2001) (where

testing the equality of the whole regression functions F

1

; F

2

was considered) with certain

discrepancies arising from the di�erent model considered in this paper.

For the ease of presentation we restrict the proof to the case d = 1. The general case can
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be treated exactly the same way. We start with a decomposition of the test statistic,

T

N

=

Z

(

^

f

1

(x)�

^

f

2

(x))

2

v(x) dx = T

(1)

N

+ T

(2)

N

+ 2T

(3)

N

(25)

with the following de�nitions,

T

(1)

N

=

Z

(

^

f

1

(x)� f

1

(x)�

^

f

2

(x) + f

2

(x))

2

v(x) dx(26)

T

(2)

N

=

Z

(f

1

(x)� f

2

(x))

2

v(x) dx(27)

T

(3)

N

=

Z

(f

1

(x)� f

2

(x))(

^

f

1

(x)� f

1

(x)�

^

f

2

(x) + f

2

(x))v(x) dx:(28)

Note that T

(2)

N

is deterministic, and under H

0

: f

1

= f

2

we have T

N

= T

(1)

N

.

7.1.1 Expectations

We will make use of the following

Lemma 7.1 Under the null hypothesis H

0

we have for the expectation of the test statistic

E[T

N

] = E[T

(1)

N

] =

1

Nh

Z

K

2

(u) du

Z

H(z; w)v(z) d(z; w) + o(

1

N

p

h

);

where H(z; w) is de�ned in Theorem 3.1.

Proof. By using the de�nition (7) of the IMIEs

^

f

1

and

^

f

2

we derive a decomposition of

T

(1)

N

as follows.

T

(1)

N

=

Z

�

1

n

1

n

1

X

j=1



1j

(x)Y

1j

� ĉ

1

� f

1

(x)�

1

n

2

n

2

X

j=1



2j

(x)Y

2j

+ ĉ

2

+ f

2

(x)

�

2

v(x) dx

= T

(1;1)

N

� 2T

(1;2)

N

+ T

(2;2)

N

(29)

where T

(i;`)

N

denote the following quadratic forms,

T

(i;`)

N

=

1

n

i

n

`

n

i

X

j=1

n

`

X

k=1

Z

�

(

ij

(x)� 1)Y

ij

� f

i

(x)

��

(

`k

(x)� 1)Y

`k

� f

`

(x)

�

v(x) dx;(30)

where i; ` 2 f1; 2g and T

(1;2)

N

= T

(2;1)

N

. We start with a straightforward calculation of the

expectation E[T

(1;1)

N

] and use the de�nition (8) of the functions 

ij

(x).

E[T

(1;1)

N

] =

n

1

(n

1

� 1)

n

2

1

Z

E

h�

(

11

(x)� 1)Y

11

� f

1

(x)

��

(

12

(x)� 1)Y

12

� f

1

(x)

�i

v(x) dx

+

1

n

1

Z

E

h�

(

11

(x)� 1)Y

11

� f

1

(x)

�

2

i

v(x) dx
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=

(n

1

� 1)

n

1

Z

E

h�n

K

h

(X

11

� x)

h

1

n

1

n

1

X

`=2

L

b

(W

11

�W

1`

) +

L(0)

n

1

b

i

1

p̂

1

(X

11

;W

11

)

� 1

o

� fc

1

+ f

1

(X

11

) + g

1

(W

11

) + �

1

(X

11

;W

11

)"

11

g � f

1

(x)

�

�

�n

K

h

(X

12

� x)

h

1

n

1

n

1

X

k=1

k 6=2

L

b

(W

12

�W

1k

) +

L(0)

n

1

b

i

1

p̂

1

(X

12

;W

12

)

� 1

o

� fc

1

+ f

1

(X

12

) + g

1

(W

12

) + �

1

(X

12

;W

12

)"

12

g � f

1

(x)

�i

v(x) dx

+

1

n

1

Z

E

h�n

K

h

(X

11

� x)

h

1

n

1

n

1

X

`=2

L

b

(W

11

�W

1`

) +

L(0)

n

1

b

i

1

p̂

1

(X

11

;W

11

)

� 1

o

� fc

1

+ f

1

(X

11

) + g

1

(W

11

) + �

1

(X

11

;W

11

)"

11

g � f

1

(x)

�

2

i

v(x) dx

= (1 +O(

1

N

))

Z

�

Z Z

n

K

h

(y � x)

h

L

b

(w � v) +

L(0)

n

1

b

i

1

p

1

(y; w)

� 1

o

p

1

(y; w)

(c

1

+ f

1

(y) + g

1

(w))s

1

(v) d(y; w) dv � f

1

(x)

�

2

v(x) dx

�

1 +O(h

r

) +O(b

s

) +O(

1

n

1

hb

)

�

+ (

1

n

1

+O(

1

N

2

))

Z Z Z Z

�n

K

h

(y � x)

h

L

b

(w � v) +

L(0)

n

1

b

i

1

p

1

(y; w)

� 1

o

(c

1

+ f

1

(y) + g

1

(w))� f

1

(x)

�

p

1

(y; w)

�

1 +O(h

r

) +O(b

s

) +O(

1

n

1

hb

)

��n

K

h

(z � x)

h

L

b

(u� v) +

L(0)

n

1

b

i

1

p

1

(z; u)

� 1

o

(c

1

+ f

1

(z) + g

1

(u))� f

1

(x)

�

p

1

(z; u)s

1

(v) dv d(y; w) d(z; u) v(x) dx

+O(

1

N

2

)

Z

�

Z Z

K

2

h

(y � x)

h

L

b

(w � v) +

L(0)

n

1

b

i

2

1

p

1

(y; w)

�

1 +O(h

r

) +O(b

s

) +O(

1

n

1

hb

)

�

f(c

1

+ f

1

(y) + g

1

(w))

2

+ �

2

1

(y; w)g d(y; w) s

1

(v) dv +O(1)

�

v(x) dx

+ (

1

n

1

+O(

1

N

2

))

Z

�

Z Z Z

K

2

h

(y � x)

h

L

b

(w � v) +

L(0)

n

1

b

ih

L

b

(w � u) +

L(0)

n

1

b

i

1

p

1

(y; w)

�

1 +O(h

r

) +O(b

s

) +O(

1

n

1

hb

)

�

f(c

1

+ f

1

(y) + g

1

(w))

2

+ �

2

1

(y; w)g

s

1

(v)s

1

(u) d(y; w) dv du+O(1)

�

v(x) dx:

The replacement of the reciprocal of the density estimate 1=p̂

1

by the true 1=p

1

can be

explained in detail in the manner of the proof of Theorem 1 of Kim, Linton and Hengartner

(1999) [note, that the variance of the estimator ̂

pi

1

in section 2 of the cited paper in
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principle matches the bias calculated in this proof]. The remainder p̂

1

(y; w)� p

1

(y; w) is

of order O(h

r

) +O(b

s

) +O(1=(n

1

hb)). Further we obtain for the expectation

E[T

(1;1)

N

] = (1 +O(

1

N

))

Z

�

c

1

+

Z

K

h

(y � x)f

1

(y) dy +

Z Z

L

b

(w � v)g

1

(w)s

1

(v) dv dw

+O(

1

n

1

b

)� c

1

� f

1

(x)

�

2

v(x) dx

�

1 +O(h

r

) +O(b

s

) +O(

1

n

1

hb

)

�

+O(

1

N

) +O(

1

N

2

hb

)

+ (

1

n

1

+O(

1

N

2

))

Z

�

Z

K

2

h

(y � x)

h

Z

L

b

(w � v)s

1

(v) dv

i

2

� f(c

1

+ f

1

(y) + g

1

(w))

2

+ �

2

1

(y; w)g

1

p

1

(y; w)

d(y; w) +O(

1

n

1

h

2

b

)

�

v(x) dx:

The �rst summand now can be simpli�ed by a substitution in the integrals and a Taylor

expansion of the functions f

1

(y) and s

1

(v). Using the order of the kernels [A4], [A6], the

assumption

R

g

1

(w)s

1

(w) dw = 0, and the bandwidth conditions [A9] we obtain:

E[T

(1;1)

N

] =

Z

�

Z

K

h

(y � x)f

1

(y) dy � f

1

(x)

�

2

v(x) dx(31)

+O(h

2r

)

�

1 +O(h

r

) +O(b

s

) +O(

1

n

1

hb

)

�

+

�

O(b

s

) +O(

1

Nb

)

�

2

+

�

O(b

s

) +O(

1

Nb

)

�

O(h

r

) +O(

1

N

2

h

2

b

)

+

1

Nh

Z

K

2

(u) du

Z

(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)

�

1

p

1

(y; w)

s

2

1

(w)v(z) d(z; w):

An analogous calculation shows for the last term in the decomposition (29):

E[T

(2;2)

N

] =

Z

�

Z

K

h

(y � x)f

2

(y) dy � f

2

(x)

�

2

v(x) dx+ o(

1

N

p

h

)(32)

+

1

Nh

Z

K

2

(u) du

Z

(c

2

+ f

2

(z) + g

2

(w))

2

+ �

2

2

(z; w)

�

2

p

2

(y; w)

s

2

2

(w)v(z) d(z; w)

and with similar calculations we obtain:

E[T

(1;2)

N

] =

Z

�

Z

K

h

(y � x)f

1

(y) dy � f

1

(x)

�

(33)

�

�

Z

K

h

(y � x)f

2

(y) dy� f

2

(x)

�

v(x) dx+ o(

1

N

p

h

):
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Under the null hypothesis H

0

: f

1

= f

2

we then get the desired results from the above

extensions (31), (32) and (33) :

E[T

(1)

N

] = E[T

(1;1)

N

] + E[T

(2;2)

N

]� 2E[T

(1;2)

N

]

=

1

Nh

Z

K

2

(u) du

Z

(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)

�

1

p

1

(y; w)

s

2

1

(w)v(z) d(z; w)

+

1

Nh

Z

K

2

(u) du

Z

(c

2

+ f

2

(z) + g

2

(w))

2

+ �

2

2

(z; w)

�

2

p

2

(y; w)

s

2

2

(w)v(z) d(z; w)

+ o(

1

N

p

h

)

=

1

Nh

Z

K

2

(u) du

Z

H(z; w)v(z) d(z; w) + o(

1

N

p

h

):

2

Under the alternative H

1

: f

1

6= f

2

we directly obtain from the above calculations (31),

(32) and (33) and the fact that

R

K

h

(y � x)f

i

(y)dy � f

i

(x) = O(h

r

),

E[T

(1)

N

] = O(h

2r

) +O(

1

Nh

) + o(

1

N

p

h

):

which is the �rst statement of the next lemma.

Lemma 7.2 Under the �xed alternative H

1

: f

1

6= f

2

we have for the expectation of the

statistics T

(1)

N

, T

(2)

N

, T

(3)

N

de�ned in (26){(28),

E[T

(1)

N

] = O(h

2r

) +O(

1

Nh

)

E[T

(2)

N

] = T

(2)

N

=

Z

(f

1

(x)� f

2

(x))

2

v(x) dx

E[T

(3)

N

] = O(h

r

) +O(b

s

) +O(

1

Nbh

):

Proof. The �rst statement is shown above, and the second is just the de�nition of T

(2)

N

.

The last result is obtained from the following calculation of the expectation E[

^

f

1

(x)] and

the analogous considerations for E[

^

f

2

(x)]. From the de�nitions (7) und (8) we have
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E[

^

f

1

(x)] =

= E

h

1

n

1

n

1

X

j=1

(

1j

(x)� 1)Y

1j

i

= E[(

11

(x)� 1)(c

1

+ f

1

(X

11

) + g

1

(W

11

))]

=

n

1

� 1

n

1

E

hn

K

h

(X

11

� x)L

b

(W

11

�W

12

)

1

p̂

1

(X

11

;W

11

)

� 1

o

(c

1

+ f

1

(X

11

) + g

1

(W

11

))

i

+O(

1

n

1

b

)

= (1�

1

n

1

)

Z Z

K

h

(y � x)L

b

(w � v)(c

1

+ f

1

(y) + g

1

(w))s

1

(v) d(y; w) dv

�

1 +O(h

r

) +O(b

s

) +O(

1

Nbh

)

�

� (1�

1

n

1

)

Z

(c

1

+ f

1

(y) + g

1

(w))p

1

(y; w) d(y; w) +O(

1

n

1

b

)

=

Z

K

h

(y � x)f

1

(y) dy +

Z

�

Z

L

b

(w � v)s

1

(v) dv

�

g

1

(w) dw +O(h

r

) +O(b

s

) +O(

1

n

1

bh

)

= f

1

(x) +O(h

r

) +O(b

s

) +O(

1

Nbh

)

where we have applied Taylor expansions of the functions f

1

(y) and s

1

(v) and have used as-

sumptions [A4] and [A6] about the order of the kernels and the fact that

R
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of T
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N

gives the third statement of this lemma. 2

7.1.2 Variances

Lemma 7.3 Under the null hypothesis H

0

: f

1

= f

2

we have for the variance of the test

statistic
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where �

2

is de�ned in Theorem 3.1.

Proof. We use the decomposition (29) of T

(1)

N

and �rst consider the variance of T

(1;1)

N

de�ned in (30). The calculation is straightforward, but rather technical and cumbersome,
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:
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where we have used the bandwidth conditions [A9] and similar transformations as in the

proofs of the Lemmata 7.1 und 7.2. The analogous calculation for T

(2;2)
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de�ned in (30)
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and the covariances
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Now from the above calculations and the decomposition (29) follows the result of Lemma

7.3,

34



Var(T

(1)

N

) = Var(T

(1;1)

N

) + 4Var(T

(1;2)

N

) + Var(T

(2;2)

N

) + o(

1

N

2

h

)

=

2

N

2

h

Z

(K �K)

2

(u) du

Z

�

Z

s

2

1

(w)

�

1

p

1

(z; w)

f(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)g dw

+

Z

s

2

2

(w)

�

2

p

2

(z; w)

f(c

2

+ f

2

(z) + g

2

(w))

2

+ �

2

2

(z; w)g dw

�

2

v

2

(z) dz

=

1

N

2

h

�

2

+ o(

1

N

2

h

):

2

From the proof of Lemma 7.3 follows the �rst statement of the next Lemma.

Lemma 7.4 Under the �xed alternative H

1

: f

1

6= f

2

we have for the variances and
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For the �rst term on the right hand side (34) we have
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h

(z � y)

s

1

(w)

p

1

(z; w)

� 1

�

f(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)gp

1

(z; w) d(z; w) dx dy + o(1)

=

Z

�

Z

K

h

(z � x)(f

1

� f

2

)(x)v(x) dx

�

2

s

2

1

(w)

p

2

1

(z; w)

f(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)g

p

1

(z; w) d(z; w)

� 2

Z

�

Z

(f

1

� f

2

)(x)v(x) dx

��

Z

K

h

(z � y)(f

1

� f

2

)(y)v(y) dy

�

�

s

1

(w)

p

1

(z; w)

f(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)gp

1

(z; w) d(z; w)

+

Z

�

Z

(f

1

� f

2

)(x)v(x) dx

�

2

f(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)gp

1

(z; w) d(z; w) + o(1)

=

Z

�

(f

1

� f

2

)(z)v(z)

s

1

(w)

p

1

(z; w)

�

Z

(f

1

� f

2

)(x)v(x) dx

�

2

�f(c

1

+ f

1

(z) + g

1

(w))

2

+ �

2

1

(z; w)gp

1

(z; w) d(z; w) + o(1)

= E[(Z

(1)

)

2

] + o(1)

where we have used

R

K

h

(z � x)(f

1

� f

2

)(x)v(x) dx = (f

1

� f

2

)(z)v(z) + o(1) and Z

(1)

is

de�ned in Theorem 3.1. For the calculation of (35) we observe:

Z

(f

1

� f

2

)(x)E

h

(

11

(x)� 1)Y

11

i

v(x) dx

=

Z

(f

1

� f

2

)(x)v(x)

Z

�

K

h

(z � x)

s

1

(w)

p

1

(z; w)

� 1

�

(c

1

+ f

1

(z) + g

1

(w))p

1

(z; w) d(z; w) dx+ o(1)

=

Z

(f

1

� f

2

)(x)v(x)f

1

(x) dx+ o(1):

Further we have for the expectation of Z

(1)

:

E[Z

(1)

]

=

Z

�

(f

1

� f

2

)(z)v(z)

s

1

(w)

p

1

(z; w)

�

Z

(f

1

� f

2

)(x)v(x) dx

�

fc

1

+ f

1

(z) + g

1

(w)gp

1

(z; w) d(z; w)

=

Z

(f

1

� f

2

)(z)v(z)s

1

(w)fc

1

+ f

1

(z) + g

1

(w)g d(z; w)�

Z

(f

1

� f

2

)(x)v(x) dx c

1

=

Z

(f

1

� f

2

)(z)v(z)f

1

(z) dz + o(1):
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From this and the analogous calculations for (36) and (37) we obtain for the variance

Var(T

(3)

N

) =

1

n

1

Var(Z

(1)

) +

1

n

2

Var(Z

(2)

) + o(

1

N

) =

1

N



2

+ o(

1

N

):

2

7.1.3 Asymptotic normality under the �xed alternative.

From the decomposition (25) of the test statistic and the Lemmata 7.2 and 7.4 we have

under H

1

: f

1

6= f

2

:

p

N(T

N

� E[T

N

]) = 2

p

N(T

(3)

N

� E[T

(3)

N

]) + o

p

(1):

Further, analogous considerations as in the proofs of the Lemmata 7.2 and 7.4 show

p

N(T

(3)

N

� E[T

(3)

N

]) =

p

N(

~

T

(3)

N

� E[

~

T

(3)

N

]) + o

p

(1)

where

~

T

(3)

N

is de�ned by

~

T

(3)

N

=

1

N

2

X

i=1

n

i

X

j=1

(�1)

i�1

1

�

i

Z

(f

1

� f

2

)(x)v(x)f(~

ij

(x)� 1)Y

ij

� f

i

(x)g dx

and

~

ij

(x) = K

h

(X

ij

� x)

s

i

(W

ij

)

p

i

(X

ij

;W

ij

)

;(38)

see the de�nition of T

(3)

N

in (28),

^

f

i

(x) in (7) and 

ij

(x) = ~

ij

(x) + O(h

r

) + O(b

s

) +

O(1=(Nbh)) in (8).

~

T

(3)

N

is a sum of independent random variables and we can apply the

central limit theorem for triangular arrays to prove asymptotic normality. Writing

p

N(

~

T

(3)

N

� E[

~

T

(3)

N

]) =

1

p

N

2

X

i=1

n

i

X

j=1

Z

ij

the asymptotic normal distribution follows from Lyapunov's condition:

1

N

2

2

X

i=1

n

i

X

j=1

E[jZ

ij

j

4

] = O(

1

N

) = o(1)

which can be deduced in a similar manner as the proof of Lemma 7.4. 2
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7.1.4 Asymptotic normality under the null hypothesis

Under H

0

: f

1

= f

2

we have T

N

= T

(1)

N

de�ned in (26). With the decomposition (29), the

de�nition of the terms T

(i;`)

N

in (30) and an inspection of the proofs of the Lemmata 7.1

and 7.3 we obtain

T

(1)

N

� E[T

(1)

N

] =

~

T

(1;1)

N

� 2

~

T

(1;2)

N

+

~

T

(2;2)

N

+ o

p

(

1

N

p

h

)

where (i; ` 2 f1; 2g)

~

T

(i;`)

N

=

1

n

i

n

`

n

i

X

j=1

n

`

X

k=1

(i;j)6=(`;k)

�

(i;`)

jk

with

�

(i;`)

jk

=

Z

�

(~

ij

(x)� 1)Y

ij

�

Z

K

h

(z � x)f

i

(z) dz

�

�

(~

`k

(x)� 1)Y

`k

�

Z

K

h

(z � x)f

`

(z) dz

�

v(x) dx

and ~

ij

is de�ned in (38). Note that E[�

(i;`)

jk

] = 0 for (i; j) 6= (`; k).

We de�ne random variables Z

1

; : : : ; Z

N

by

Z

1

= (X

11

;W

11

; "

11

); : : : ; Z

n

1

= (X

1n

1

;W

1n

1

; "

1n

1

);

Z

n

1

+1

= (X

21

;W

21

; "

21

); : : : ; Z

N

= (X

2n

2

;W

2n

2

; "

2n

2

):

Then the standardized test statistic N

p

h(T

N

� E[T

N

]) is asymptotically equivalent to a

quadratic form with vanishing diagonal elements, that is,

W (N) =

N

X

i=1

N

X

j=1

i6=j

w

ij;N

(Z

i

; Z

j

) =

X

1�i<j�N

V

ij

where V

ij

= (w

ij;N

(Z

i

; Z

j

) + w

ji;N

(Z

j

; Z

i

))=2 and

w

ij;N

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

N

p

h

n

2

1

�

(1;1)

ij

: i; j = 1; : : : ; n

1

N

p

h

n

2

2

�

(2;2)

i�n

1

;j�n

1

: i; j = n

1

+ 1; : : : ; N

�

N

p

h

n

1

n

2

�

(1;2)

i;j�n

1

: i = 1; : : : ; n

1

; j = n

1

+ 1; : : : ; N

�

N

p

h

n

1

n

2

�

(1;2)

i�n

1

;j

: i = n

1

+ 1; : : : ; N; j = 1; : : : ; n

1

:

BecauseW (N) is clean, that is E[V

ij

jZ

i

] = 0, we can apply Theorem 2.1 of de Jong (1987)

and have to show
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(a) lim

N!1

1

�

2

(N)

max

1�i�N

N

X

j=1

E[V

2

ij

] = 0

where �

2

(N) = Var(W (N)) = Var(N

p

h(T

N

� E[T

N

])) + o(1) = O(1)

(b) E[(W (N))

4

] = 3(Var(W (N)))

2

+ o(1) for N !1.

To deduce condition (a) we consider only the case i; j = 1; : : : ; n

1

(the other cases are

treated in the same way) and obtain

E[V

2

ij

] = O(

h

N

2

)E[(�

(1;1)

12

)

2

]

= O(

h

N

2

)

Z Z

v(x)v(y)

n

E

h�

(~

11

(x)� 1)Y

11

�

R

K

h

(z � x)f

1

(z) dz

�

�

�

(~

12

(y)� 1)Y

12

�

R

K

h

(z � y)f

1

(z) dz

�io

2

dx dy

= O(

h

N

2

)

�

Z Z Z Z

K

h

(z � x)K

h

(z � y)K

h

(z

0

� x)K

h

(z

0

� y) : : : dx dy dz dz

0

+O(1)

�

= O(

1

N

2

)

uniformly in i; j. We obtain 1=�

2

(N)max

i

P

j

E[V

2

ij

] = O(1=N) = o(1) which proves

condition (a).

To verify condition (b) we have

E[(W (N))

4

] = 12

N

X

i=1

N

X

j=1

N

X

k=1

N

X

`=1

6=

E[V

2

ij

]E[V

2

k`

] + c

1

N

X

i=1

N

X

j=1

6=

E[V

4

ij

]

+ c

2

N

X

i=1

N

X

j=1

N

X

k=1

N

X

`=1

6=

E[V

ij

V

jk

V

k`

V

`i

] + c

3

N

X

i=1

N

X

j=1

N

X

k=1

6=

E[V

ij

V

2

ik

V

jk

]

(Var(W (N)))

2

= 4

N

X

i=1

N

X

j=1

N

X

k=1

N

X

`=1

6=

E[V

2

ij

]E[V

2

k`

] + c

4

N

X

i=1

N

X

j=1

N

X

k=1

E[V

2

ij

]E[V

2

ik

]

+ c

5

N

X

i=1

N

X

j=1

(E[V

2

ij

])

2

where c

1

; : : : ; c

5

denote some constants and the notation

P

6=

means summation over

disjoint indices. Now condition (b) follows from some straightforward calculations estab-
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lishing:

N

X

i=1

N

X

j=1

6=

E[V

4

ij

] = o(1);

N

X

i=1

N

X

j=1

N

X

k=1

N

X

`=1

6=

E[V

ij

V

jk

V

k`

V

`i

] = o(1);

N

X

i=1

N

X

j=1

N

X

k=1

6=

E[V

ij

V

2

ik

V

jk

] = o(1);

N

X

i=1

N

X

j=1

N

X

k=1

E[V

2

ij

]E[V

2

ik

] = o(1);

N

X

i=1

N

X

j=1

(E[V

2

ij

])

2

= o(1):

Asymptotic normality of W (N) is deduced from Theorem 2.1 of de Jong (1987). 2

7.2 Proof of Theorem 5.1

We use a decomposition of the bootstrap test statistic T

�

N

de�ned in (20) analogous to

the decomposition (29) stated in the proof of Lemma 7.1,

T

�

N

= T

(1;1)�

N

� 2T

(1;2)�

N

+ T

(2;2)�

N

;

where

T

(i;`)�

N

=

1

n

i

n

`

n

i

X

j=1

n

`

X

k=1

Z

�

(

ij

(x)� 1)Y

�

ij

�

^

f(x)

��

(

`k

(x)� 1)Y

�

`k

�

^

f(x)

�

v(x) dx ;

where i; ` 2 f1; 2g and T

(1;2)�

N

= T

(2;1)�

N

.

We obtain the conditional variance of N

p

hT

(1;1)�

N

similar to the proof of Lemma 7.3:

Var

�

N

(N

p

hT

(1;1)�

N

) = N

2

hE

�

�

T

(1;1)�

N

� E[T

(1;1)�

N

j Y

N

]

�

2

�

�

�

Y

N

�

=

=

N

2

h

n

4

1

n

1

X

j=1

n

1

X

k=1

n

1

X

j

0

=1

n

1

X

k

0

=1

n

E

�

N

h

Z

�

(

1j

(x)� 1)Y

�

1j

�

^

f(x)

��

(

1k

(x)� 1)Y

�

1k

�

^

f(x)

�

v(x) dx

�

Z

�

(

1j

0

(y)� 1)Y

�

1j

0

�

^

f(y)

��

(

1k

0

(y)� 1)Y

�

1k

0

�

^

f(y)

�

v(y) dy

i

� E

�

N

h

Z

�

(

1j

(x)� 1)Y

�

1j

�

^

f(x)

��

(

1k

(x)� 1)Y

�

1k

�

^

f(x)

�

v(x) dx

i

�E

�

N

h

Z

�

(

1j

0

(y)� 1)Y

�

1j

0

�

^

f(y)

��

(

1k

0

(y)� 1)Y

�

1k

0

�

^

f(y)

�

v(y) dy

io

:

The addends of the sum vanish if fj; kg \ fj

0

; k

0

g = ;. Via a rather technical calculation,

that is omitted, we can show that the dominating part of the sum is obtained in the cases
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j = j

0

6= k = k

0

or j = k

0

6= j

0

= k , compare the proof of Lemma 7.3. Therefore we

have

Var

�

N

(N

p

hT

(1;1)�

N

) =

=

2N

2

h

n

4

1

n

1

X

j=1

n

1

X

k=1

j 6=k

Z Z

E

�

N

h

(

1j

(x)� 1)(

1j

(y)� 1)(Y

�

1j

)

2

�

^

f(y)(

1j

(x)� 1)Y

�

1j

�

^

f(x)(

1j

(y)� 1)Y

�

1j

+

^

f(x)

^

f(y)

i

E

�

N

h

(

1k

(x)� 1)(

1k

(y)� 1)(Y

�

1k

)

2

�

^

f(y)(

1k

(x)� 1)Y

�

1k

�

^

f(x)(

1k

(y)� 1)Y

�

1k

+

^

f(x)

^

f(y)

i

v(x)v(y) dx dy

�

�

Z

n

(

1j

(x)� 1)E

�

N

[Y

�

1j

]�

^

f(x)
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(

1k

(x)� 1)E

�

N

[Y

�

1k

]�

^

f(x)

o

v(x) dx

�

2

+ o

p

(1):

Now using the notation

^

h

1j

= ĉ

1

+

^

f(X

1j

) + ĝ

1

(W

1j

) and observing (18) and (19) from

Section 5.1 follows
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�

N

(N

p

hT

(1;1)�

N

) =
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2N

2

h

n

4

1

n

1

X
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n

1

X

k=1

j 6=k

Z Z

n

(

1j
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1j
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1k
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1k

(y)� 1)(

^

h

2

1j
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2

1j

)(

^

h

2

1k

+ "̂

2

1k

)

� f

^

f(y)(

1j

(x)� 1) +

^

f(x)(

1j

(y)� 1)g(

1k

(x)� 1)(

1k

(y)� 1)

^

h

1j
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2

1k

� f

^

f(y)(

1k

(x)� 1) +

^

f(x)(

1k

(y)� 1)g(

1j

(x)� 1)(

1j

(y)� 1)

^

h

1k

"̂

2

1j

+

^

f(x)

^

f(y)(

1k

(x)� 1)(

1k

(y)� 1)"̂

2

1k

+

^

f(x)

^

f(y)(

1j

(x)� 1)(

1j

(y)� 1)"̂

2

1j

� (

1j

(x)� 1)(

1j

(y)� 1)(

1k

(x)� 1)(

1k

(y)� 1)

^

h

2

1j

^

h

2

1k

o
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+ o

p

(1)

=

2N

2

h

n

2

1

Z Z

�

1

n

1

n

1

X

j=1



1j

(x)

1j

(y)(

^

h

2

1j

+ "̂

2

1j

)

�

2

v(x)v(y) dx dy

�

2N

2

h

n

2

1

Z Z

�

1

n

1

n

1

X
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1j

(x)

1j

(y)

^

h

2

1j

�

2

v(x)v(y) dx dy

+ o

p

(1):

Taking into account the de�nition of the weights 

1j

and the convergence of the regression

42



estimators in probability we obtain for the limit of the conditional variance
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�

N

(N

p

hT

(1;1)�

N

)

=

2N

2

h

n

2

1

Z Z

�

Z

K

h

(z � x)K

h

(z � y)

s

2

1

(w)

p

1
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f(c

1
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1
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1
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2

+ �

2

1
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where the last equality follows analogously to the corresponding calculations of Var(T

(1;1)

N

)

in the proof of Lemma 7.3. The statement of Theorem 5.1 follows with similar calculations

for Var

�

N

(N

p

hT
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N

) and Var

�

N

(N

p

hT

(2;2)�

N

). 2
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