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Abstract 
  
Most standard statistical methods treat numerical data as if they were real (infinite-
number-of-decimal-places) observations.  The issue of quantization or digital resolution 
is recognized by engineers and metrologists, but is largely ignored by statisticians and 
can render standard statistical methods inappropriate and misleading.  This article 
discusses some of the difficulties of interpretation and corresponding difficulties of 
inference arising in even very simple measurement contexts, once the presence of 
quantization is admitted.  It then argues (using the simple case of confidence interval 
estimation based on a quantized random sample from a normal distribution as a vehicle) 
for the use of statistical methods based on “rounded data likelihood functions” as an 
effective way of dealing with the issue. 
 

I.  Introduction 
 
“Quantization” (see [1]-[3]) or “digital resolution” (see [4],[5]) of measurement is well-
recognized as a source of measurement error by engineers and metrologists.  But it is 
typically ignored by statisticians as they develop methods of statistical inference, whose 
inputs in any real application are potentially subject to quantization effects.  The matter is 
never even considered in the exposition of basic or intermediate statistical methods, and 
one is then perhaps left to wonder whether quantization is irrelevant as far as simple 
statistical analysis is concerned. 
 
Take, for example, the case in described in [5] where 10 readings taken with a digital 
gauge are 
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 1.3,1.2,1.3,1.3,1.3,1.2,1.2,1.3,1.2 and 1.3  . 
The author notes that these numbers average to 1.26 and says “By taking the mean of 
1.26, you can add another digit of resolution to your process.”  He seems to imply that 1) 
his measurement are “only good to the nearest .1” and 2) standard elementary statistical 
operations are appropriate with such values.  (Indeed, he says that a simple average of 10 
values provides insight into the underlying phenomenon that is an order of magnitude 
more revealing than the individual raw data themselves.) 
 
Our purpose here is to examine the question of when the issue of digital resolution may 
safely be ignored for purposes of elementary statistical inference, and to identify reliable 
means of dealing with it when it can not be ignored.  In the end, we will conclude that the 
author in [5] was wise to explicitly recognize that his values were only good to the 
nearest .1, but naïve in assuming that standard elementary statistical calculations are 
necessarily appropriate under such conditions, and wildly optimistic in expecting that his 
average of 10 observations was in any sense an order of magnitude better than a single 
observation. 
 

II.  Continuous Distributions and “Rounding” 
 
Most standard small sample statistical methods are built on models that say the 
mechanism generating observations can be described by a continuous probability 
distribution like, for example, the normal distribution with mean µ  and standard 
deviation σ  that has the probability density 

 ( ) ( )2
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pictured in Fig. 1.  Under such a model, the long run fraction of values falling in any 
interval ( ),a b is  
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b
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where ( )zΦ  is the standard normal cumulative distribution function, 

 ( ) ( )| 0,1
z

z f x dx
−∞

Φ = ∫  (3) 

In this framework, the model parameters and µ σ  become the objects of interest and the 
implicit assumption is then that one actually observes and works with real numbers from 
the continuous distribution.  
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Fig. 1.  A normal distribution model. 
 
 
In this kind of elementary statistical modeling, the number “4” is typically interpreted as 
“4.0000000000…” (just as is the number “4.0”).  But even when a continuous model is a 
good description of a physical phenomenon, it need not adequately describe what can be 
observed.  There is the matter of quantization of measurement. 
 
Take for example a “4.0 mm” reading from the digital gauge pictured in Fig. 2.  How 
should that value be interpreted and then used in statistical analysis?  After all, the gauge 
can read out only the numbers 
 ...,3.8,3.9,4.0,4.1,...  . 
It can not read out a number like 4.1111111111… .  It would seem that a better 
interpretation of the “4.0 mm” reading than 
 4.0000000000... mm  
is the interpretation 
 between 3.950000000000... mm and 4.050000000000... mm .  
While conceptually there might be a “real number” measurement corresponding to a 
recorded “4.0 mm” value, all we know about that number from the gauge is that it is 
within .05 mm of what is read/recorded.  Whether this distinction is important to a 
statistical analysis depends upon how variable are the real numbers that stand behind 
what is recorded.  Let us elaborate. 
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Fig. 2.  4.0 mm on a digital gauge. 
 
 
A way to describe the kind of “to the nearest .1 mm” interpretation we're suggesting for 
the observation “4.0 mm” is through the notion of “interval censoring” or (more simply) 
“rounding.”  (See [6] and Chapters 2 and 3 of [7] for discussions of the notion of 
censoring in the statistical literature.)  That is, suppose that conceptual real number 
measurements are read only after rounding to the nearest full unit of observation (to the 
nearest .1 mm in the case of the digital gauge pictured in Fig. 2).  Then the kind of 
continuous distribution model pictured in Fig. 1 ought to be replaced by a discrete 
distribution for what is read/recorded.  The probabilities for the discrete distribution 
should be related to continuous model as follows: If real number measurement X with 
normal distribution with meanµ and standard deviation σ  mean “rounds” to Y, where the 
finest unit of observation is ∆ , 

 [ ], ,
2 2

2 2

y y
P Y y P y X yµ σ µ σ

µ µ

σ σ

∆ ∆   + − − −   ∆ ∆ = = − < < + = Φ −Φ         
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Fig. 3 illustrates this correspondence. 
 

 
Fig. 3.  Relationship between probabilities for X and those for Y. 
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Notice that this is quantization in the sense of [1]-[3], and that much of the related 
engineering literature concerns the nature of the quantization error 
 Q Y X= −  (5) 
(particularly in signal processing contexts). 
 
Fig.s 4 and 5 show two different normal distributions and corresponding “probability 
histograms” (representing respectively the distributions of X and of Y).  In the first σ  is 
“not small” compared to ∆ , while in the second σ  is small compared to ∆ .  In the first 
case the probability histogram looks roughly like the normal curve and in the second it 
does not.  Table I records the parameters used to make the two pairs of graphs 
( ,  and µ σ∆ ) and the corresponding means ( Yµ ) and standard deviations ( Yσ ) for the 
rounded observation Y.  Notice that not only are the two graphs in Fig. 5 quite different, 
but the mean and/or standard deviation of Y ( Yµ  and Yσ ) can be substantially different 
from those of X  ( and µ σ ). 
 

 
 
Fig. 4. 1.0, 4.25 and 1.0 distributions of  and .X Yµ σ∆ = = =  
 

 

 
Fig. 5.  1.0, 4.25 and .25 distributions of  and .X Yµ σ∆ = = =  
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Table I 

Two Sets of X Distribution Parameters and Corresponding Means and Standard 
Deviations of Y  
Figure ∆  µ  σ  Yµ , Mean of Y Yσ , Standard Deviation of Y 

4 1.00 4.25 1.00 4.2500 1.0809 
5 1.00 4.25 .25 4.1573 .3678 

 
 
We should remark that although the probability histograms used in Fig.s 4 and 5 are 
common in statistical circles, it could be argued that a better representation of the discrete 
distributions of Y  might be in terms of line or spike graphs that more forcefully indicate 
that the distributions are concentrated on the integers.  We note also that a referee has 
pointed out that applying Sheppard’s correction (see [8]) to the values of Yσ  produces  

( )21.0809 1/12 1.0416− = for the case of Fig. 4 and ( )2.3678 1/12 .2279− =  for the 
case of Fig. 5.  In these cases, the correction is effective and these values provide better 
matches to σ  than do the values of Yσ  in Table I. 
 
Numerical calculation with the discrete distribution of Y establishes that as long as σ  is 
at least / 2∆ , there is good agreement between and Yµ µ .  (In fact for / 2σ > ∆ , Yµ  is 
within / 200∆  of µ .)  On the other hand, for σ  small (compared to ∆ ), Yµ  can differ 
from µ  by nearly / 2∆ .  (Take, for example, a case where µ  is almost but not quite 
exactly half way between two successive possible rounded values, and σ  is tiny.)  And 
the situation as regards standard deviations is similarly complex.  Provided .15σ > ∆ , Yσ  
exceeds σ , and for / 2σ > ∆  the fractional increase going from σ  to Yσ  is no more than 
.141 (and this decreases as σ  increases).  But when σ  is small (compared to ∆ ), Yσ  
can be many times σ  (for example in a case where µ  is exactly half way between two 
successive possible rounded values) and it can negligible in comparison to σ  (for 
example in a case where µ  is exactly equal to a possible rounded value).  (Note, by the 
way, that in this latter circumstance Sheppard’s correction will be of no help.) 
 
A referee has commented that (for a given lower bound on σ ) if it is important enough 
that the distribution of Y (and, for example, its moments) approximate that of X, 
engineering resources can almost always be brought to bear to improve measurement by 
appropriately reducing ∆ .  That is, the quality of the match between  and X Y  is subject 
to engineering cost/benefit considerations.  We don’t disagree, but our emphasis here is 
really a different one.  For a reliable statistical analysis, it is not necessary that Y match X.  
But it is necessary that 1) the issue of quantization and the kind of effects it produces be 
recognized and 2) that relevant allowance be made for its presence in the statistical 
methodology employed. 
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III.  Statistical Inference From “Rounded” Data 
 
Fig.s 4 and 5, Table I, and the forgoing discussion represent a serious and very real 
problem for elementary data analysis.  What are typically of most interest are the 
characteristics of the “real number” (X) distribution, like and µ σ .  But if treated as itself 
a “real number,” what is observed (Y) can have characteristics quite unlike those of 
interest when σ  is small (compared to ∆ ).  And this possibility can not simply be 
ignored as if it never matters. 
 
If one knew exactly the Y (rounded observation) distribution or even  and Y Yµ σ , it would 
be possible to determine  and µ σ  (that is, the distribution of X) from that information.  
But the further problem of statistics is that one has only empirical observations 

1 2, , , ny y y…  from the Y distribution, and these give only a noisy or approximate view of 
the rounded data distribution. 
 
Elementary statistical summaries (made treating the rounded data as real numbers) like 
the sample mean 

 
1

1 n

i
i

y y
n =

= ∑  (6) 

and the sample standard deviation 

 ( )2

1

1
1

n

i
i

s y y
n =

= −
− ∑  (7) 

are at best approximations for and Y Yµ σ , not for and µ σ .  And contrary to naïve 
intuition (that perhaps assumes that all problems are solved by large samples), this 
phenomenon doesn't “go away” as n gets larger.  (Indeed it shouldn’t, as large samples 
will only let one see clearly  and Y Yµ σ !)  For example, the standard elementary 
confidence limits for a mean applied to the rounded data 

 sy t
n

±  (8) 

will for large samples “zero in” on Yµ , not on µ , giving real coverage probability 
approaching 0, not the nominal confidence level. 
 
So there is a real question as to how one might develop reasonably elementary statistical 
methods that take account of the fact that Y is not X and of the fact that in any case one 
has only a noisy view of the Y distribution.  One kind of answer to this question has been 
developed in [9] and [10] using the notion of a rounded data “likelihood function.” 
 
If one models what is observed as independent realizations from a normal distribution 
with mean µ  and standard deviation σ  rounded to the nearest ∆ , the probability 
associated with a possible sample 1 2, , , ny y y…  is (from equation (4)) 
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The (data-dependent) function of and µ σ  in display (9) is called the “likelihood 
function” and its logarithm 
 ( ) ( ), log ,l Lµ σ µ σ=  (10) 
is (not surprisingly) called the “log-likelihood function.”  These can be used to reliably 
guide inference about the parameters of the “real number” (X) distribution based on 
rounded observations 1 2, , , ny y y… .  These are large for values of the parameters that are 
in some sense compatible with the data in hand, and small for values that are 
incompatible with what has been observed.  (Incompatible here means that observations 
in hand could essentially never be generated by a model with such parameters.)  Basing 
inference for  and µ σ  on the rounded data likelihood function (or its logarithm) is a way 
of explicitly accounting for the fact that we know that what is observed are not real 
numbers and that they do not even definitively identify the Y distribution. 
 
Fig. 6 is a contour plot (a topographic map) of a function very closely related to the log-
likelihood function for the 10n =  data points of [5] used as an example in the 
introduction, namely 
 ( ) ( )( )* , 1.25 .25 ,l t l tσ σ σ σ= + +   . (11) 
(In making the plot we've used base 10 logarithms.  We would actually have preferred to 
plot ( ),l µ σ  directly, but matters of scaling make it far easier to obtain and interpret the 
present plot.)  Fig. 6 indicates that what these 4 values 1.2 and 6 values 1.3 really suggest 
is 1) σ  is small (compared to .1∆ = ) and 2) 0t ≈ . 
 

 
Fig. 6.  Contour plot of ( ) ( )( )* , 1.25 .25 ,l t l tσ σ σ σ= + +  for the data of [5]. 
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This is in complete agreement with informed intuition.  The condition 0t ≈  can be 
written as 
 1.25 .25µ σ≈ +  (12) 
and under this condition parameters and µ σ  are such that about 40% of the X 
distribution is to the left of 1.25x =  and about 60% is to the right, just as is the case with 
the rounded values.  (That is, 1.25 appears in the expressions above because it is half way 
between the rounded values that are observed, and .25 appears because ( )1.25 .6−= Φ .)  
Notice also that the result (12) is not necessarily compatible with Stein’s suggestion that 
to two decimal places the data indicate that some true value is 1.26. 
 
One important quantitative use of a likelihood function is in producing single number 
(point) estimates of parameters.  It is common to adopt parameter values that make it as 
large as possible as estimates of the unknown parameters.  These are “maximum 
likelihood estimates.”  There are no simple formulas for these estimates, but finding them 
numerically is not hard, at least after one knows what to expect in terms of the behavior 
of ( ),l µ σ . 
 
Strictly speaking, ( ),l µ σ  has no maximum unless the range of rounded values 
 

1,...,1,...,
max mini ii ni n

R y y
==

= −  (13) 

is larger than ∆ .  But when 0R =  (all observed rounded values are the same), for any µ  
within / 2∆  of the common observed value, provided σ  is small the limiting value 
( ), 0l µ σ =  ( ( ), 1L µ σ = ) is very nearly achieved.  (All one has learned from the data in 

hand is that the standard deviation is small and the mean is within a half unit of the 
recorded value.)  When R = ∆  (there are only two different observed rounded values, 
separated by one unit of observation), the limiting value is very nearly achieved for σ  
small and µ  nearly half way between the two rounded values and linearly related to σ  
so that the underlying normal distribution of X puts appropriate fractions of its probability 

to the left and right of ( )1,...,1,...,

1 max min
2 i ii ni n

y y
==

+ .  (This is the case illustrated by the example 

of [5].)  Finally, when R > ∆  the likelihood (or log-likelihood) is mound-shaped and 
simple numerical analysis will easily find maximum likelihood estimates. 
 
For the sake of illustrating the discussion of the forgoing paragraph, Fig.s 7 and 8 are 
contour plots complementing Fig. 6.  Fig. 7 is a plot of ( ),l µ σ  for a 0R =  case where 

10n =  rounded values 1 2 10, , ,y y y…  are all 1.2.  Fig. 8 is a plot of ( ),l µ σ  for a R > ∆  
case where among 10 rounded values 1 2 10, , ,y y y…  there is a single value 1.1, seven 
values 1.2 and two values 1.3.  Notice that in this last case 1.2100 and .0568y s= = , 
while maximum likelihood estimates are ˆ 1.2102µ =  and ˆ .0465σ =  respectively. 
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Fig. 7.  Contour plot of ( ),l µ σ  when  10n =  rounded values 1 2 10, , ,y y y…  are all 1.2. 
 

 
Fig. 8.  Contour plot of ( ),l µ σ  where among 10 rounded values 1 2 10, , ,y y y…  there is a 
single value 1.1, seven values 1.2 and two values 1.3. 
 
 

IV.  Confidence Intervals Based on the Likelihood Function 
 
It is not only possible to use the likelihood function (9) to guide qualitative statements 
about the parameters  and µ σ  and to find maximum likelihood estimates, but it can be 
used to decide how much it is appropriate to “hedge” the estimates in light of sampling 
variability.  That is, it can be the basis of confidence interval estimation of the 
parameters. 
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Let M stand for the maximum value of the log-likelihood function (or its limiting value in 
the 0R =  and R = ∆  cases).  An intuitively reasonable way to identify values of µ  
consistent with data in hand is to look for ones which when paired with some appropriate 
standard deviation produce a log-likelihood value not too much smaller than M.  That is, 
one might look for means µ  with 
 ( )

0
max ,M l c
σ

µ σ
>

− <  (14) 

for some appropriate value c.  Standard large sample theory implies that for large n, the 
set of means satisfying (14) for c an upper percentage point of a 2

1χ  distribution can serve 
as a confidence interval for µ .  It is the main technical contribution of [9] to identify 
positive constants c (that depend upon n and a desired confidence level) so that the set of 
means satisfying relationship (14) can serve as a confidence interval for µ  for any n, 
small or large.  When this idea is applied to the data set in the introduction, a 95% 
confidence interval for µ  is seen to be 
 ( )1.226,1.294    . 
In light of this interval, if one were to interpret the author’s statement about 1.26 as a 
statement about µ , he is clearly overly optimistic about the precision of his empirical 
information. 
 
Note, by the way, that the potentially quite inappropriate “t” confidence limits for Yµ  
here are (1.223,1.297), which in this case are not radically different from the limits for µ  
prescribed in [9].  However, it is not at all hard to find cases where the limits are radically 
different (for example, when 0R = ) and it is equally easy to give examples where 
nominally 95% “t” limits have actual confidence level for estimating µ  near 0 (for 
example, when σ  is very small and µ  is about / 4∆  from a possible rounded value).  
The virtue of using (14) is that the confidence intervals from [9] hold their nominal 
confidence level for estimating µ  no matter what be and µ σ .  We have further found 
empirically, that when R is many times ∆  (the data suggest that σ  is not small compared 
to ∆  and that the rounding doesn't seem important), the intervals produced reasoning 
from (14) agree numerically with the “t” confidence limits.  The likelihood approach thus 
protects one from the blunder of ignoring rounding when it is important, while reducing 
to a standard analysis when it is not. 
 
A similar story can be told for estimating σ .  “Plausible” values of σ  are those with 
 ( )max ,M l c

µ
µ σ− <  (15) 

for some appropriate c.  It is the main technical contribution of [10] to identify positive 
constants c (that depend upon n, a desired confidence level and whether 0R = , R = ∆  or 
R > ∆ ) so that the set of standard deviations satisfying relationship (15) serve as a 
confidence interval for σ .  When this idea is applied to the data  of [5], a 95% 
confidence interval for σ  is seen to be 
 ( )0,0.0851  (16) 
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As it turns out, ( )max ,M l
µ

µ σ−  appearing in (15) is decreasing in σ  for  0R =  and 

R = ∆  cases.  So the one-sided nature of the interval in (16) is completely typical and in 
agreement with intuition.  In contrast, the usual “ 2χ ” 95% confidence limits for Yσ  can 
be made to produce two-sided intervals in such cases.  For R > ∆  the intervals of [10] are 
two-sided, and for large R they empirically seem to agree numerically with “shortest-
length” two-sided “ 2χ ” confidence intervals for σ .  Thus, as in the case of the mean, the 
likelihood approach protects one from the blunder of ignoring rounding when it is 
important, while reducing to a standard analysis when it is not. 
 
 

V.  Conclusion 
 
We have hopefully demonstrated to the reader’s satisfaction that for purposes of 
statistical analysis, data read to some nearest unit of observation can not always be 
treated as if they were real numbers.  As a theoretical matter, σ  must be several times ∆  
before there is no important difference between the properties of X and those of Y and 
elementary inference methods applied treating observations 1 2, , , ny y y…  as real numbers 
are reliable guides to the properties of X.  As a practical matter, one should be 
comfortable applying those methods to 1 2, , , ny y y…  only when R is an order of 
magnitude larger than ∆ .  For data less variable than this, the situation is potentially 
subtle, and use of data analysis methods that explicitly treat observations as the rounded 
values that they really are is one's only insurance against falling unaware into errors of 
logic and inference. 
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