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ABSTRACT 

The paper presents a detailed documentation of the underlying concepts and methods of the 
Spatial Agent-based Competition Model (SpAbCoM). For instance, SpAbCoM is used to 
study firms’ choices of spatial pricing policy (GRAUBNER et al., 2011a) or pricing and location 
under a framework of multi-firm spatial competition and two-dimensional markets (GRAUBNER et al., 
2011b). While the simulation model is briefly introduced by means of relevant examples 
within the corresponding papers, the present paper serves two objectives. First, it presents a 
detailed discussion of the computational concepts that are used, particularly with respect to 
genetic algorithms (GAs). Second, it documents SpAbCoM and provides an overview of the 
structure of the simulation model and its dynamics. 

___________________________________________________________________________ 
JEL: Y90 

Keywords: Agent-based modelling, genetic algorithms, spatial pricing, location model. 

ZUSAMMENFASSUNG 

DAS RÄUMLICHE AGENTEN-BASIERTE WETTBEWERBSMODELL  
SPABCOM 

Das vorliegende Papier dokumentiert die zugrundeliegenden Konzepte und Methoden des 
Räumlichen Agenten-basierten Wettbewerbsmodells (Spatial Agent-based Competition Model) 
SpAbCoM. Anwendungsbeispiele dieses Simulationsmodells untersuchen die Entscheidung 
bezüglich der räumlichen Preisstrategie von Unternehmen (GRAUBNER et al., 2011a) oder 
Preissetzung und Standortwahl im Rahmen eines räumlichen Wettbewerbsmodells, welches mehr 
als einen Wettbewerber und zweidimensionalen Marktgebiete berücksichtigt. Während das 
Simulationsmodell in den jeweiligen Arbeiten kurz anhand eines Beispiels eingeführt wird, dient 
das vorliegende Papier zwei Zielen. Zum Einen sollen die verwendeten computergestützten 
Konzepte, hier speziell Genetische Algorithmen (GA), detailliert vorgestellt werden. Zum 
Anderen besteht die Absicht dieser Dokumentation darin, einen Überblick über die Struktur von 
SpAbCoM und die während einer Simulation ablaufenden Prozesse zu gegeben. 

___________________________________________________________________________ 

JEL: Y90 

Schlüsselwörter: Agent-basierte Modellierung, Genetische Algorithmen, räumliche Preis-
setzung, Standortmodell. 
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1 INTRODUCTION 

To analyze spatial competition, we must consider a number of requirements regarding the 
methodology. These can be summarized in the issues of complexity and the need for flexibility. 
First, there are spatially differentiated actors. Transport costs affect the cost structure of a firm 
such that each location may feature an individual price, supply, and consequently profitability. 
Particularly, under a two-dimensional framework, the solution space may be large and 
discontinuous, and functional relations may not be tractable with common calculus-based 
methods. These features introduce a high degree of complexity to the investigation of spatial 
competition. Second, the review of spatial economic literature shows a broad variety of models 
that differ by one or more important assumptions. In this respect, we might consider the firm’s 
price strategy or competitive behaviour as well as whether transport costs are quadratic or 
linear in distance. A further important characteristic is the elasticity of the supply or demand 
functions. As heterogeneous as the assumptions of the models are, their results may also differ 
and sometimes even be contradictory. The uni-causal nature of most analytical models is a 
major reason for this variety. Of course, the approach is necessary due to the complexity 
issues named above. However, it may be desirable to have a more flexible tool that can assess 
the impact of particular conditions as well as their interdependencies on the model’s outcome. 

Agent-based modelling (ABM) is one option for investigating complex systems under flexible 
conditions. Not only can we account for heterogeneity within the model to explicitly consider 
the spatial dimension, but we can also incorporate powerful solution concepts as genetic 
algorithms (GA). GAs are particularly important for the Spatial Agent-based Competition 
Model (SpAbCoM) presented in this paper because they enable the identification of solutions 
where other methods may fail. The motivation to use an ABM approach is extensively 
discussed in literature (cf. AXELROD, 1997; TESFATSION, 2006) and shall not be repeated here. 
Instead, I present the implementation of the agent-based structure into a simulation model of 
spatial competition. While ABM enables the introduction of spatially differentiated actors into 
the model, the method also provides the possibility to consider other sources of heterogeneity. 
In this respect, the subsequent presented simulation model does not exploit the potential of 
ABM in many aspects. Some selected features, in which extensions are not only interesting 
but also easily importable, are presented in footnotes within this paper.1 The major objective 
of this paper, however, is to describe the functioning of SpAbCoM. Particular attention is 
given to GAs as optimization technique with respect to the spatial competition strategy of 
agents. 

In the next section, we reconsider the general decision problem that should be solved by 
SpAbCoM, before we introduce the computational tools that are used. The conceptual 
framework is based on a spatial input market and described in Section 3. The identification of 
optimal strategies under spatial competition is the major objective of the simulation; therefore, 
we discuss the GA optimization in more detail. In Section 4, I characterize GAs and their 
standard structure and present the adjustment to strategic interactions. In Section 5, I introduce the 
simulation software that is used, before describing the structure and finally the dynamics of 
SpAbCoM in Sections 6 and 7, respectively. The latter represents the stepwise description of 
the simulation. 

                                                 
1  In this regard, it is worth mentioning that an extension of the simulation model in such aspects might be 

easily accomplished, the interpretation or evaluation of the results, however, is most likely a rather 
demanding task. 
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2 OBJECTIVE AND METHODS 

First, we may reconsider the objective of the simulation. Under a framework of spatially 
distributed producers and processors, we assume market power on the processor’s side. 
Accordingly, we use the simulation as a technical mean to identify the optimal strategy Γ∈γ  of 
the maximization problem: 

(1) { }Γ∈Π=Π γγγ ),(max)( γ' . 

In this spatial competition framework, we denote γ  as a strategy consisting of four decision 
variables with ),,,( yxm αγ =  and γ'  is a vector of the other players’ strategies. The last two 
variables of a strategy are the location of a firm in space represented by x-y coordinates. The 
other two variables refer to a firm’s linear price strategy. Thereby, a local price )(rm  at 
distance r  from the processor’s location is defined as trmrm α−=)( . While t  is the constant 
transport rate, m  is the price at the processor’s location and ]1,0[∈α  relates to the degree of 
spatial price discrimination β , with αβ −=1 . If 0=β , there is no spatial price 
discrimination (cf. GRAUBNER et al., 2011a). 

To implement the spatial competition model, we employ the Recursive Porous Agent 
Simulation Toolkit (Repast) (COLLIER et al., 2003). Repast was originally developed by 
SALLACH (2004), NORTH et al. (2006), and others as a free open source toolkit. The software 
provides the basics for agent-based programming as a graphical user interface, sample 
models, and a comprehensive class library. Particularly, Repast J from the Repast 3 package is 
used. This component enables the model development in Java. As C++ or Smalltalk, Java is 
an object oriented programming (OOP) language. 

In basic terms, OOP follows the principle: "from the general to the specific". That is, one seeks to 
simplify complex structures and relations by breaking them down into simple parts. In OOP, objects 
are data structures of attributes and operations (methods), mostly in terms of a class. Classes are 
prototypes, whereas instances of them can be generated by assigning values to the characteristics of 
the classes. To illustrate the concept, we can think of cars. A car has, among other things, four 
wheels, a colour, one engine, and a steering wheel, and it should be drivable (accelerate and brake). 
While each car has these attributes (engine, wheels) and methods (accelerate and brake), one can 
subdivide cars. For instance, we can differentiate gas and diesel cars. Both are subclasses of cars 
featuring the same attributes and methods but additionally the type of fuel. Moreover, for each class 
it is possible to think of the different shaping of the common characteristics. One car is red; the other 
is blue. A red car is an instance of the class "cars". A blue car powered with diesel is an instance of 
the subclass "diesel cars". 

In this respect, OOP is appealing for agent-based modelling. TESFATSION (2006) defines 
agents as an encapsulated piece of software that includes data together with behavioural 
methods which act on these data. In this sense, agents are objects as defined above. Agent-
based models are characterized by a set of autonomous heterogeneous agents and their 
interactions. 

The agents’ heterogeneity can be distinguished at two levels. There may be inter-or intra-class 
heterogeneity. The latter simply refers to differences in the values of the characteristics, as in 
the case of red and blue cars. Hence, these are differences among instances of the same class. 
Inter-class heterogeneity goes beyond the value differences. Instead, the type of attributes or 
methods is different, or there may be additional attributes (e.g., diesel or gas). With respect to 
our spatial competition problem, inter-class heterogeneity refers to the differences between 
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producers and processors. Intra-class heterogeneity, e.g., denotes the spatial differentiation of 
producers due to their location in the market region. 

3 CONCEPTUAL MODEL 

The core model to implement the simulation is an abstraction of a buyer-seller interaction, 
which corresponds to the discussion in GRAUBNER et al. (2011a,b). Because the focus is on 
agricultural markets and their spatial nature, there is a high number of spatially distributed 
producers, whereas processing is concentrated at few locations. Accordingly, buyers have 
local market power. Actors of that group can influence the supply over the price, whereas 
producers are price takers. Nevertheless, the role of the producers is crucial with respect to 
market interactions and the allocation of supply. Based on the highest price at a producer’s 
location, i.e., the local price, the supplier not only decides the quantity that should be 
produced but also where it will be delivered. 

The local price of a producer hinges on the price setting of the processors. Basically, there are 
internal and external factors that determine the price at a particular location of a particular 
processor. The external conditions are, e.g., the transport rate or the price on the product 
market. The first refers to the cost of transportation required for one unit of the input over one 
unit of distance. The latter is the marginal revenue product, i.e., the price received by the 
processor for one unit of the processed input. Internal factors, on the other hand, can be 
directly influenced by the processor and correspond to its decision variables. There are four 
decision variables in the most general implementation used within SpAbCoM. Two determine 
the location of the processor within the market and the two others represent its price strategy. 
The identification of the optimal internal conditions is the core of the spatial competition 
problem and also the major focus of the simulation model. 

Figure 1 summarizes the conceptual model of the simulation. Based on the combination of 
external and internal factors, the processing firm offers a price at particular locations and, thus, to 
particular producers. For instance, a supplier will not receive a price offer if the corresponding 
transport costs are too high. The general rule, however, is that the local profit of a processor 
must be non-negative. 

The input quantity of the producer is determined based on the local price and its translation 
through the producer’s supply function. Furthermore, the production is allocated to processors 
at the market level. Once the price, supply and its allocation is known, the processor’s profit is 
determined and the price decision can be updated. The selection and update (or evaluation) of 
a price strategy is implemented by a genetic algorithm, which will be discussed in Section 4. 
We separate the selection and evaluation because under competition there is a difference 
between the set of producers who receive a price offer from a particular processor and the set 
of producers who actually deliver to that processor (see also Section 7.2). While the first 
depends on the profitability to serve a location by the processor, the latter hinges on the 
processor’s price and whether there are better (price) options for the producer. 

Finally, it is worth mentioning that we investigate a static competition model. The simulation, 
however, features a dynamic process. These dynamics are internal and required for optimizing 
the processor’s decision by a GA. We may think of this process as an internal model of a 
decision maker in the framework of a classical oligopoly model such as Cournot or Bertrand 
competition. Basically, these models are static, yet we can calculate reaction functions 
determining the optimal strategy subject to the other firms’ decisions. In most of the analyzed 
cases by GRAUBNER et al. (2011a) and GRAUBNER et al. (2011b), these reaction functions are 
multivariate and discontinuous. While analytically not tractable, the simulation can work 
along such reaction function to identify equilibria (if any exists). As reaction functions are a 
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technical and illustrative device in strategic interaction of a static game (TIROLE, 2003), so is 
the GA optimization an abstraction of the internal decision rule of agents. Thus, we must be 
clear that even though there are internal dynamics of the simulation, the core problem is static 
throughout this paper. 

Figure 1: Buyer-seller interaction with market power on the buyer’s side. 

 

4 IMPLEMENTING THE PROCESSOR’S DECISION MAKING BY GENETIC 
ALGORITHMS 

In an input market framework of spatial competition, processing firms have local market 
power. The consequence is that strategic interactions must be incorporated within the simulation 
model. Hence, to determine its optimal decision, a processor must not only consider the effects on 
the decision of the producers but also on the other processing firms in the neighbourhood 
(neighbourhood interactions). While the decision of the producers can be implemented as a 
deterministic condition (see Section 6.2), this is not feasible in the case of the processors due 
to a highly complex solution space. Instead, this task, the determination of the optimal spatial 
strategy, is modelled by means of genetic algorithms. The objective of this section is to 
introduce the concept of GA, before we discuss the actual implementation within SpAbCoM. 

4.1 Genetic Algorithms: An Introduction 
Genetic algorithms are heuristic search methods for optimization or for identification of equilibria 
(REEVES AND ROWE, 2003). The major fields of application are complex problems with large, 
potentially poorly understood decision or strategy spaces. GAs are based on the mechanics of 
natural selection and natural genetics (GOLDBERG, 1989). A basic principle of the search 
algorithm is the "survival of the fittest" (DAWID, 1999). That is, strategies which are regarded 
as superior based on an evaluation criterion are more likely to be selected as the solution to a 
problem. 

The origin of the development of genetic algorithms is linked to the pioneering work of John 
Holland and colleagues (HOLLAND, 1975). However, the idea of adapting biological principles 
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such as selection and mutation as solution techniques can also be found in RECHENBERG (1973) 
and SCHWEFEL (1977) or FOGEL (1963) and FOGEL et al. (1966).  

To classify GAs, we can distinguish different groups of optimization methods. First, there are 
direct and numerical methods. The latter can be subdivided into enumerative and random 
search methods. In contrast to direct, calculus-based optimization methods, numerical 
methods do not rely on derivatives or the existence of closed form solutions. Hence, these 
methods are useful if functions are not twice continuously differentiable or if closed form 
solutions do not exist or are hardly obtainable. The disadvantage of such methods, however, is 
that a solution is always an approximation with the corresponding stochastic error. While 
enumerative methods evaluate the objective function at each point of the solution space, 
random search only works on a sample of it. The GA belongs to the group of random search 
methods. These are (intuitively) based on probability ideas as the law of large numbers and the 
central limit theorem (JUDD, 1998). Accordingly, the structural error regarding the random number 
that represents the outcome of the method can be influenced by the sample size. However, a GA 
differs from other random search methods in two important ways (GOLDBERG, 1989): the GA 
works on coded parameters and not with the parameters themselves and it evaluates a population 
of points rather than a single point at one time. These features make the GA robust and 
efficient in handling "problems of far greater complexity and size than most other methods" 
(JUDD, 1998, p.285). 

The capability of GAs or similar concepts, summarized as evolutionary computation (EC), and 
their relation to evolutionary principles has caused increasing interest in these methods in recent 
years. EC is applied to a variety of problems in a broad range of disciplines including natural 
science, engineering, mathematics, and economics (FOSTER, 2001). Important contributions, 
particularly of GAs in economics, include the simulation of the repeated prisoners dilemma by 
AXELROD (1987) or the application on the cobweb model by ARIFOVIC (1994). The same model 
serves DAWID AND KOPEL (1998) in investigating different implementations of GAs. PRICE (1997) 
applied a GA on standard models of industrial organization as monopoly, Cournot, and Bertrand 
competition. VALLÉE AND BAŞAR (1999) as well as ALEMDAR AND SIRAKAYA (2003) investigate 
leader-follower competition, whereas BALMANN and HAPPE (2001) explore agricultural land 
markets with respect to oligopolistic behaviour. YANG (2006) incorporates GAs into a state depen-
dent dynamic portfolio optimization system to improve the expected return estimation and portfolio 
efficiency, while HARUVY et al. (2006) explore proposed reforms of the judge/law clerk market in 
the United States. 

Another important application of GAs is the simulation of learning as part of human behaviour 
(BIRCHENHALL, 1995; DAWID, 1999; RIECHMANN, 1999; 2001; VRIEND, 2000; ARIFOVIC AND 
LEDYARD, 2004; BRENNER, 2006). However, unlike these or most of the previous examples, we 
do not consider time within the simulation, which is an essential part of learning. Nevertheless, as 
we will see in the following sections, to find the optimal solution of a static problem, the GA 
consists of a dynamic procedure. In this regard, we can interpret the GA as iterative search for 
Nash equilibria, which can be represented as a Markov process (REEVES AND ROWE, 2003, pp. 
112). A familiar example of iterated algorithms is the Cournot model, where the repeated, 
alternate evaluation of the players’ reaction functions (given the strategy of the competitor) finally 
leads to the Nash-equilibrium outcome. 

The interpretation of learning in terms of an iterated process as search for on optimal solution of a 
(static) problem (BRENNER, 2006) provides an important link between GAs and evolutionary 
game theory. RIECHMANN (2001) shows that GA learning is a specific form of an evolutionary 
game. The simple canonical GA as presented in Section 4.2 converges towards a Nash 
equilibrium in terms of an evolutionary stable state. 
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Although we consider a static model, the method is not applied to a pure optimization problem. In 
fact, most of the applications in social science go beyond optimization because strategic 
interactions are involved. In this respect, SON AND BALDICK (2004) demonstrate that the 
canonical GA can misidentify Nash equilibria by following a local optimization path. In this case, 
the GA cannot differentiate between local optima and "real" Nash equilibria. Following PRICE 
(1997), SON AND BALDICK (2004) show that a co-evolutionary approach overcomes this problem. 
We introduce the structure and functioning of a standard GA for a traditional optimization 
problem, before we discuss the implementation of the co-evolutionary GA to determine the 
optimal strategy of processing firms within the spatial simulation and with strategic interactions 
involved. 

4.2 GAs for Optimization 
Comprehensive introductions to the method are, e.g., GOLDBERG (1989) or MITCHELL (1996). 
The more recent book of REEVES AND ROWE (2003) also entails a detailed discussion regarding 
different theoretical perspectives of GAs. For the presentation of the method based on industrial 
organization models, the paper of PRICE (1997) is recommended. 

Although there is no rigorous definition of a GA, at least three attributes are considered as 
standard: a population, genetic operators, and a fitness function. A collection of candidate solu-
tions to a particular problem is called the population. The fitness function is the representation of 
the underlying (exogenous) objective function and is used to evaluate the quality of a solution. 
Finally, genetic operators as selection, crossover, and mutation can be applied to the population to 
identify good solutions as well as incorporate and consider new (probably superior) solutions. 

We may want to apply a GA to a simple optimization problem over a search space Σ : 

(2) ℜ→Σ:h  

to maximize the objective function h  with respect to a vector of decision variables Σ∈σ . 
However, the GA does not work on the decision variables themselves. Instead, the variables 
are coded according to a certain alphabet A through a coding function Σ→lA:κ . The size of 
the coded search space is determined by l. A problem related information of σ  is called the 
phenotype, while the coded representation Aa∈  is the genotype of a solution. Because a 
solution may consist of a number of decision variables, we distinguish genes and chromosomes. 
Genes are the coded representation of one decision variable; the chaining of those forms the 
chromosome. For instance, the chromosome can be regarded as the coded strategy of a game. 
One possibility of genotype-phenotype mapping is to use binary coding. Thereby, the 
candidate solutions are represented by binary numbers as follows: 

 phenotype )(σ  κ  genotype )(a   

 5 0123 2020 +++  0 1 0 1  

 11 0123 2202 +++  1 0 1 1  

In the example, the strategy consists of one decision variable which is coded as a bitstring of 
length .4=l  Of course, it is clear that the search space must not exceed }.15,,1,0{ K=Σ  
Hence, the genotype-phenotype mapping depends on the problem at hand.  

For a larger search space, we may use 4>l  or even other coding schemes. However, 
regardless of the particular coding, the representation of a collection of candidate solutions 
builds the initial population and is the first step to initialize a GA. Commonly, the initial 
population consists of a predefined number of random candidate solutions. The size of the 



The Spatial Agent-based Competition Model (SpAbCoM) 

  

13

population depends on the problem in general and the size of the search space in particular. 
Basically, a large population size increases the probability of good solutions within the initial 
population but may decrease the speed of computation. 

The second step of the GA is to evaluate the objective function (2) at all points σ  represented 
by the chromosomes of the population. It is convenient to use monotonic transformation of 
the objective function to ensure a positive measure of the solution’s quality. For instance, 
non-negative values are required for the selection operator as described below. The 
transformation is called the fitness function and the quality of the solution is the fitness of the 
chromosome. We can determine a non-negative fitness value with: 

(3) +ℜ→lAf :  

Accordingly, if )(σh  yields a negative value for the real world problem and σκ =)(a , )(af  
is the positive fitness value of the chromosome based on the monotonic transformation (3). 

Once the fitness of all chromosomes is determined, the first genetic operator can be applied. 
Although there are different options to implement selection, the common feature is selection 
proportional to the fitness value of a chromosome. The higher the fitness of a solution, the 
higher the probability to be selected. A common approach for fitness proportional selection is 
roulette wheel selection (RWS). Thereby, the total fitness of a population is represented by a 
roulette wheel. Each chromosome has a slot on the wheel that is sized proportional to its 
fitness value. If we spin the wheel, the probability of selection is proportional to the area of a 
sector on the wheel. For instance, the sector is twice as large as a second sector on the wheel 
if the fitness of the corresponding solution is twice the fitness of the second solution. 
However, RWS is stochastic and there is no guarantee that the best solution is selected. 
Another approach is to select a particular number of the fittest chromosomes of the 
population. This is usually called best chromosome selection (BCS). The population of 
chromosomes is ordered according to the fitness value of the solutions, e.g., in ascending 
order. The selection of a predefined number of fittest chromosomes ensures that the best 
solution of the population is always selected. Additionally, the selection pressure can be 
influenced by the number of chromosomes (the share of the population) which are considered 
for selection. 

In either case, selection creates a new population consisting of chromosomes from the initial 
population but in a different composition. Due to its nature, selection decreases the variability 
of the population. The initial population consists of random candidate solutions, so it is 
unlikely that a good or even close to optimal solution is contained. In this respect, the 
concepts of mutation and crossover are important. Mutation is a random manipulation of a 
solution, while crossover recombines the information of two parent chromosomes which 
yields two offspring. To illustrate both, we use the previous example. Mutation randomly 
alters the genetic information of a chromosome. For instance, one bit at position three of the 
string (the genotype) is flipped, which also causes a change in the phenotype. 

 σ  a  'a  'σ  

mutation: 5 0 1 0 1 0 1 1 1 7 

crossover: 
13 

11 

1 1 0 1 

1 0 1 1 

1 1 1 1 

1 0 0 1 

15 

9 
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Crossover refers to an exchange of information between two parent chromosomes to create 
two offspring. Thereby, the genetic subsequences before and after a randomly chosen locus 
are traded. The example above shows that the trade of the first and last two bits of the 
chromosomes changes the phenotype from 13 to 15 and from 11 to 9, respectively. 

While each of the presented parts of a GA fulfils important tasks, the power of the method 
rests in the interaction of the single components. By following MITCHELL (1996, p.10), we 
summarise a simple GA by the following steps: 

1. Generate the initial population of x random candidate solution.  

2. Calculate the fitness of all chromosomes of the current population.  

3. Repeat the following steps x times to create a new population:  

i Select two chromosomes from the current population. The probability of selection 
is an increasing function of the chromosome’s fitness.  

ii Execute crossover with given probability, the crossover rate, at the random locus 
(crossover point) of the two chromosomes. The crossover point is determined 
according a uniform probability distribution. The result of the crossover are two 
offspring. If no crossover takes place, the offspring are exact copies of the parents.  

iii Mutate the offspring at each locus with a given probability, the mutation rate, and 
place the chromosomes in the new population.  

4. Replace the current population with the new population.  

5. Go to step 2. 

The succession of fitness evaluation and application of genetic operators (selection, mutation, 
and crossover) is called a generation. The set of all generations is a run. Within a run, the 
number of generations is limited by a termination criterion. Common approaches are, e.g., a 
predefined number of generations or a certain threshold with respect to the population’s 
diversity. While the first criterion ensures that the optimization always stops at the same 
iteration, the latter terminates the run if, e.g., some share of the population consists of the 
same chromosomes or the variance of the chromosomes’ phenotypes is low and constant over 
a particular number of generations. 

During the run, i.e., the succession of generations, selection tends to cause good solutions to 
survive. In this respect, we can refer to selection as the decision to keep a particular 
chromosome in the GA’s population and thus in the process of optimization. However, the 
variability of the population decreases. In this respect, selection is the operator that drives the 
population’s convergence toward the best solution of the population. 

The importance of mutation and crossover rests in two tasks. First, they enable the algorithm 
to increase the precision of the method (over generations) by approaching (local) optima. New 
solutions, created by mutation or crossover, are favoured over the fittest chromosome of the 
population if they are closer to an optima. Consequently, such new solutions are established in 
the population through selection. Second, the more important feature is that mutation and 
crossover avoid the lock-in of the optimization in local optima. Because both operators create 
new solutions, the GA is able to cover the search space effectively during a run. Based on the 
chosen coding scheme, these operators can introduce solutions which are significantly different 
from previous solutions. In this way, the search space is extended during the optimization 
process, which also decreases the dependence regarding the initial population, i.e., the initial 
conditions of the optimization. 
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4.3 Co-evolutionary GAs 
The previous structure of a GA is only applicable if the fitness of a chromosome exclusively 
depends on its bit values. This is, e.g., not the case in most economic systems in general or in 
a normal form, multi-player game in particular. Instead, the payoff of a player’s strategy depends 
on the strategies of the other players. This is particularly true under spatial competition due to 
neighbourhood interactions. Therefore, we use a so called co-evolutionary (or parallel) GA 
model. Each player exhibits an individual population of strategies, i.e., in the simplest case of 
two players there are two populations as well. 

The basic features of the GA from the previous section, such as coding and the genetic operators, 
are not affected. The major difference is the fitness evaluation. In Section 4.2, we simply translated 
the genetic information of a chromosome into the phenotype and used this information to 
evaluate the (one-dimensional) objective function. While the chromosome in Section 4.2 
could also be a multi-dimensional vector of decision variables, we must deal with a n-
dimensional objective function in a co-evolutionary framework. Thus, we can rewrite (2) to: 

(4) .: nh ℜ→Σ  

A common approach to consider (strategic) interactions within the players’ fitness evaluation 
is to implement a tournament (PRICE, 1997; BALMANN AND HAPPE, 2001). Random strategies 
are chosen from each player’s population and the vectors of these strategies are evaluated. The 
outcome is an individual fitness value for each player, which is assigned to the corresponding 
strategy of a player. The process is repeated until a sufficient number of observations are 
available to assign values to all strategies of all players. The number of iterations or rounds 
within the tournament depends on the search space as well as on the number of players and is 
increasing in both. However, the outcome of the tournament is an average fitness value for 
each of the players’ strategies. Accordingly, we can alter the previously described 
implementation of the GA only by including the tournament in step 2 of the GA’s schedule: 

1. Start with a number of initial populations equating the number of players.  

2. Repeat the following steps over a sufficient number of iterations:  

i Randomly select a single strategy of each player’s population. 

ii Play the strategies against each other and determine the individual fitness value 
subject to the other players’ strategies. 

iii Assign the fitness value to the corresponding strategy. 

iv Go to 2i. 

3. Determine the average fitness of each strategy based on the values realized in 2iii and 
apply the genetic operators: selection, crossover and mutation (similar to step 3 in the 
previous GA example on page 14) to create the new population.  

4. Replace the current population with the new population.  

5. Go to step 2. 

The above scheme is the core of the GA implementation within SpAbCoM as described in 
Section 6.2. Two particular examples, which illustrate how a co-evolutionary (two-
population) GA works are also presented in GRAUBNER et al. (2011a) and GRAUBNER et al. 
(2011b). 
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5 THE REPAST MODEL 

Based on the conceptual considerations we implement the simulation with the ABM software 
Repast. Particularly, Repast’s "Simple Model" serves as the point of departure. This model is a 
single class, and simplified it consists of: the simulation schedule, the space, and the agents 
therein. To illustrate the structure of an application based on OOP, one can use a standardized 
tool as the unified modelling language (UML) (BOOCH et al., 2005). For instance, UML class 
diagrams highlight the (class) structure of a software program, how parts of it are related, and 
the components of the different classes. Figure 2 shows a UML representation of Repast’s 
SimpleModel class. The first (upper) part of any UML class is the class name (bold). The 
second part represents the attributes (starting with capital letter), while the third part contains 
operations or methods (lowercase letter). Accordingly, the implementation shown in Figure 2 
features four attributes and three methods. 

The attribute Model provides the graphical user interface of the Repast model. Space 
characterizes the artificial region and Agents is a list of objects that can be located in that 
region. Predefined parameters as the number of agents, the size of the region, or others are 
stored in Parameter. 

The methods of the class are setup, buildmodel, and run. The first method initializes 
the Repast model with the defined parameters and opens the Repast interface. The 
buildmodel method is required to locate agents into the space and visualize the artificial 
region. While the previous methods are commonly used only once at the beginning of a 
simulation, run is responsible for the dynamics of the simulation. The agents interact within 
this method, i.e., actions are executed by agents who may change their and other agents’ 
attributes. A simple example is the location of agents within the region and the distance 
between them. Location and distance to other agents may be the agents’ attributes and there is 
a method move specified in run. If agents change their location while run, this clearly 
affects their location coordinates. Hence, their attributes are changed. Additionally, this may 
affect the distance among agents and thus influences the attributes of other agents. 

Figure 2: An abstraction of the "Simple Model" class in Repast 

 
 

The simple example already shows how Repast’s SimpleModel is extended. Basically, the 
attributes and methods in this model are empty. To run a simulation, we must fill them. 
Therefore, we implement characteristics and behaviour rules derived from theoretical 
considerations regarding spatial competition. 

6 THE STATIC STRUCTURE OF SPABCOM 

The aim of this section is to present the structure of the simulation model. We introduce the 
most important parts as the agents’ hierarchy followed by the behaviour rules on which the 
agents’ decisions are based. In the third part, additional components of the simulation are 
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presented to give a simplified overview of the whole structure. We use UML class diagrams 
as a technical device to visualize the structure of the simulation based on the OOP approach. 

6.1 Agents 
OOP was introduced at the beginning of this paper as a central concept regarding the 
implementation of the spatial competition model. The classification of the agents is a good 
example to illustrate this. Not surprisingly agents are the core component of an agent-based 
model. According to our conceptual framework we can distinguish two types of agents: 
producers and processors. Since both types feature common characteristics and there may be a 
large number of, e.g., producers, OOP provides an efficient way of modelling. Figure 3 shows 
the simplified agents’ class hierarchy of the simulation model. For clarity reasons, the picture 
shows only selected attributes and methods of the corresponding classes. In addition to the 
representation of classes and their components, UML provides the possibility to illustrate and 
specify the relationship among classes. For instance, associations are depicted by lines. The 
type of an association is specified, e.g., by different arrowheads. In Figure 3, the empty arrow 
from the two lower classes to the upper class denotes inheritance. That is, AgentProducer 
and AgentProcessor are subclasses of Agent. Particularly, the two derived classes 
feature the same characteristics as the base class plus specific attributes or methods. 

Figure 3: Class structure of the agents 

 
Common features of all agents are a unique identification key (ID), the location in space (as x-y 
coordinates), and a list of other agents (Partner). Methods derived from the Agent-class 
control, e.g., the location (set or change) within the region or a generator for (pseudo) random 
numbers. The field Partner, e.g., allows assignment of suppliers to a particular processor or a 
purchaser to a particular producer. Most of the features of an object of type Agent are model 
intern rather than specific for the spatial competition problem. For instance, the agent is required 
to be placed into the artificial region or the clear identification of an object within the simulation 
must be enabled. Only instances of the two derived classes AgentProducer and 
AgentProcessor are actually generated during a run of SpAbCoM. 
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Both types of agents have specific characteristics. Besides the attributes and methods from 
Agent, an instance of the class AgentProducer particularly features four attributes and two 
methods. The received price (Price) represents the highest price at the producer’s location. 
Because producers are price takers and there is potentially more than one processor that sets a 
price at this location, the supplier needs to determine the optimal (highest) available price. This is 
implemented by selectBestPrice, which also can set or change Price and Processor, 
depending on the supplier’s decision. The latter attribute identifies the destination of the 
producer’s supply. The quantity to produce, in turn, is determined by Price and the producer’s 
individual supply function (SupplyFunction).2 In fact, the supply of the producers is an 
important piece of information for the processor’s decision making, particularly regarding the 
evaluation of their strategies. 

Processors face strategic interactions caused by local market power, so the identification of 
optimal strategies is a nontrivial problem. Therefore, an object of AgentProcessor exhibits a 
powerful optimization tool in the form of a genetic algorithm (OwnGA). The concept of the 
underlying GA is discussed in detail in Section 4.3 and its implementation is presented in the next 
section. However, the major task of the field OwnGA is to provide the methods to identify optimal 
strategies in terms of the spatial competition game. One feature of the GA is that there is one best 
strategy in each generation and this current (optimal) strategy is represented by Price-
Strategy. 

In addition to the attribute Partner of the base class, there is the class specific field Suppliers. 
Both are used to determine and distinguish the desirable and actual market allocation from the 
processor’s point of view. The differentiation between the two lists of producers rests in the 
fact that the set of addressees of a price offer (Partner) and the set of actual suppliers 
(Suppliers) do not have be equal.3 

ProfitFunction is used to evaluate a price strategy. It represents the fitness function of 
the GA and is explained in more detail in the corresponding subsection of Section 6.2. A 
further attribute of the processors consists of external conditions as the price on the output 
market (for the processed good) or the transport rate, which are summarized in the field 
ExternalParameters.4 

6.2 Behaviour Rules 
While the agent’s class hierarchy is one important part of the simulation’s structure, the 
agents’ behaviour rules are another crucial component of SpAbCoM. In our framework, a 
behaviour rule is the implementation of the agents’ objective functions. On the one hand, 
selecting the optimal (highest available) price is the behaviour rule of the producers. On the 
other hand, the behaviour rule of the processors is to maximize profit by optimizing the 
spatial competition strategy as written in (1). A GA is integrated into the simulation to fulfil 
this complex task. 

                                                 
2  At this stage, ABM also provides the opportunity to differentiate producers with respect to their production 

functions. Although there might be interesting applications for this framework, we assume a uniform supply 
function over the set of producers. 

3 This differentiation of actual and potential suppliers is also depicted in 
Figure 6 and discussed in Section 7.2. 

4 In the case of the processor, it would be feasible to extend the simulation with respect to different marketing 
possibilities or transport technologies. In this way, further research could differentiate, e.g., processing firms 
with respect to the received output prices or their cost structure. However, throughout this work we assume 
that these factors are identical for all processors. 
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Although the price maximization rule of the producers is rather simple, there are cases in 
which we must consider the spatial nature of the problem. In particular, the decision of the 
producers may not only consist of the selection of the highest price from a list. Instead, we 
may want to incorporate the possibility of arbitrage. In this respect, an agent of the type 
AgentProducer may find it profitable to sell its product at a point different from the own 
location. Arbitrage is feasible if the price at that point less transport costs, is higher than the 
price at the location of the producer. The components, required for their decision, in terms of 
the class structure, are presented in the following section before we discuss the 
implementation of the processor’s decision making via a GA. 

Price maximization of the AgentProducer’s class  

Figure 4 illustrates the relation of the three crucial classes that are used to determine the 
optimal price for the producers. Associations with an empty diamond as from PriceOffer 
to AgentProducer and from AgentProducer to DistanceMatrix denote aggre-
gations. For instance, an object of the type DistanceMatrix contains a set of objects of 
the class AgentProducer. 

Figure 4: Classes associated to AgentProducer to determine the optimal price 

 
The producer collects the price offers from processors in a list, OfferCollector, to 
determine the supply by its supply function. The general form of this function is εwq =  with q  
being the supply, w  the received price, and ε  the supply elasticity. Basically, a price offer 
contains three pieces of information: the price at the location of the producer (Price), who set 
that price (Processor), and what is the processor’s local profit per unit supply at this location 
(LocalProfit). Based on the price information, a producer can sort OfferCollector to 
select the highest offer by selectBestPrice.5 

The DistanceMatrix class is required to incorporate the possibility of arbitrage by 
suppliers. Note in this framework arbitrage denotes a positive price difference between two 
locations that is larger than the transport costs between these locations. In this case, it is 
profitable for the producer to sell the input at the location with the higher price. For each 
instance of the class AgentProducer, DistanceMatrix provides data and methods to 
determine whether or not this is true. In particular, there are two lists, Producers and 
Processors, that comprise the agents of the region. Distances and TCostMatrix are 
fields in form of matrices consisting of the distances between all producers as well as the 
                                                 
5 At this point it is easily feasible to incorporate some degree of bounded rationality. For instance, suppliers 

may be not able to distinguish marginally different prices. In this case, we could assume that w1 = w2 if |w1 -
 w2|≤ω and ω is a certain threshold so that the producer is indifferent between the corresponding processors. 
Even though we do not consider bounded rationality in any part of this work, the possibility to do so is a 
further advantage of agent-based modelling. 
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producers and processors of the region and the corresponding transport costs. The methods of 
DistanceMatrix allow setting and changing of the values of the matrices or, as in the 
case of sorting, comparing these values. In this way, each producer can access the distance 
and transport costs to all other producers to compare their own price with the prices at other 
locations, considering the transport costs. We can summarize the decision rule or objective 
function of each producer by: 

(5) { }.',max TCwwq −=  

Accordingly, a producer selects the maximum price at its location or any other location 
subject to the transport costs TC to that location.  

Strategy optimization of the AgentProcessor’s class  

This section presents the particular implementation of the GA within the structure of the 
simulation. The Repast distribution that was used, contains the Java Genetic Algorithm 
Package (JGAP) which provides the basics of a simple GA for optimization (MEFFERT et al.). 
In the following section, the adaptation of the GA to strategic interactions under spatial 
competition is presented. Similar to the producer’s decision making process, processors, i.e., 
objects of AgentProcessor, use instances of different classes to determine the optimal 
strategy. Important classes, their features, and relations are illustrated in Figure 5. 

The structure is derived from the concept of a co-evolutionary GA as discussed in Section 4.3. 
Accordingly, each processor exhibits an individual GA. In Figure 5, a line with the diamond 
at its end, an aggregation, illustrates this relation. For instance, the aggregation from GenomP to 
AgentProcessor denotes that the first is a part of the latter. Furthermore, ProfitFunct 
represents the fitness function of the processor, and is also part of AgentProcessor. The 
two methods of this class allow decoding of the genetic information of a chromosome through 
the genotype-phenotype mapping (decode) and evaluation of the fitness of the 
corresponding strategy (evaluate). 

The major parts of the individual GA are summarized by an instance of the GenomP, which 
class exhibits a collection of chromosomes (Population) and defines crucial parameters of 
the GA optimization as the population size (Popsize) and the number of generations 
(Generations). Other parameters are represented by the object OwnConfiguration, 
which is stored in the field Configuration of GenomP. Here, the type of selection 
(NaturalSelector), the collection of genetic operators (GeneticOperators), and an 
algorithm to generate (pseudo) random numbers (RandomGenerator) are set.6 Even 
though it is feasible to define the different parameters of the GA within the individual 
configuration of each agent, we use global values. That is, these parameters as the mutation or 
crossover rate are uniform over the set of producers.7 Table 1 summarizes the parameter 
setting of a processor’s GA. 

                                                 
6 The latter is necessary because a number of processes require stochastic initialization as the selection of the 

initial population or the determination of the chromosome’s loci for crossover or mutation. 
7 Nevertheless, the individual GA of each processor may represent one of the most interesting options to 

extend the simulation. For instance, consider the German raw milk market. Here, we find a mixed market 
structure where processors are organized either as cooperatives or investor-owned firms. This may have an 
impact on the behaviour rule. Due to the individualized decision making of the agents within the simulation, 
it would be feasible to incorporate such heterogeneity. 
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Table 1: Specification of the GA parameters 

Parameter Value 

Population size 25 

Number of generations 2,500 

Genes/chromosome 4 

Type of selection BCS* 

Mutation rate 0.02-0.10 

Crossover rate 0.05-0.20 
* BCS = best chromosome selector 

The values of the parameters are earned by test simulations and from common values in literature. 
The selection scheme of best chromosome selection (BCS) is chosen based on three considerations. 
The first is the observation that BCS yields a higher adjustment to the optimal value of spatial 
optimization problems during test simulations compared to RWS. The second point considers the 
extension of the search space. RWS does not guarantee the selection of the best strategy due to its 
stochastic nature. Otherwise, it is feasible to use BCS to select a certain share of the original 
population and add random strategies to yield the original size of the population. This extends the 
search space at a higher rate than only mutation or crossover during simulation. At the same time, 
the best strategies remain in the population. The third point considers the fitness differential of 
strategies and its impact on selection. 

Because we base our analysis mostly on the fittest chromosome and not on the average fitness of the 
population, the disadvantage of BCS, neglecting the fitness differential among the best strategies, is 
not effective. Basically, in test simulations we observe a higher volatility of the fittest solution under 
RWS, while the variety of the population is higher under BCS. If we assume that a higher variability 
in the population decreases the probability of look-in of the GA, this may be an advantage of the 
BCS.8 

The central component of the GenomP class is the population of candidate solutions. Such a 
processor’s individual strategy pool, Population, is a list of randomly initialized chromosomes. 
Solutions of the spatial competition game can consist of four decision variables (regarding the 
location and price policy). In this case, a strategy is represented by chromosomes of four genes. The 
JGAP library provides a model chromosome class which we use for the implementation of a 
processor’s strategy (Chromosome). The genes of a chromosome code the four decision variables: 
mill price (m), price discrimination (in terms of α), and location coordinates (x and y). The two 
methods of the Chromosome class are used for genotype-phenotype mapping. Additionally, each 
chromosome exhibits a ChromID object. In Figure 5, the filled diamond between Chromosome 
and ChromID denotes a stronger form of aggregation, namely a composition. This specifies that 
the whole, the chromosome, and its part (ChromID) cannot be separated in terms of their lifetimes, 
i.e., the part must be initiated at the moment the chromosome is created. 

                                                 
8 In general, the choice of the selection operator is always arbitrary to some degree. Advantages or dis-

advantages can be compensated for by specific adjustments to the underlying problems. For example, under 
RWS it is feasible to always keep the fittest chromosome in the population. However, based on the 
programming of the selection operators within the JGAP package, BCS yields superior results for the spatial 
competition model. 
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Figure 5: The class structure of the processors decision making 

 
 

The ChromID object does not only identify the particular strategy (with the field ID) but also 
the corresponding processor (ProcID) holding the strategy in its population. In addition to 
the identification, an instance of ChromID performs important tasks in the framework of the 
co-evolutionary GA concept. As presented in Section 4.3, the core of the parallel GA is a 
tournament. A ChromID object collects the information during the test rounds. The method 
addProfit assigns the outcome of a test, the current fitness value, to a list (Perform) 
whose number of entries equals the number of tests (NoT). Based on this list, the average 
fitness value of the strategy is determined by the method evaluate of ProfitFunct. 
Because there is a certain probability to test a worse strategy against an even worse strategy of 
the competitor, we use the median instead of the mean. In this way, we avoid overestimating 
the influence of outsiders. 

The interplay of the single parts of the processors’ decision making are controlled by the 
methods of the AgentProcessor class. In Section 6.1, we briefly introduced the two 
methods selectStrat and evalStrat. The latter is not depicted in Figure 5 because we 
can decompose the method in applyGO and testStrat. If we reconsider the schedule of a 
co-evolutionary GA (as described on page 15) we can classify the task of the methods. Based 
on a selected strategy by selectStrat, testStrat is responsible for executing the 
tournament within the GA. During this and potentially other test rounds fitness values are 
assigned to the strategy and yield an average fitness. Finally, applyGO is responsible for 
applying the genetic operators: selection, crossover, and mutation. 

The structure as illustrated in Figure 5 shows the components required for the processor’s 
decision making. The outcome of this process is a price offer that in turn is available to 
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suppliers. However, neither the process nor the outcome is pictured. Basically, the interaction 
of both, the producers’ and processors’ decisions, yields the market allocation and finally the 
optimal strategy of the processors. Before we present this process we summarize the static 
structure of SpAbCoM by uniting the introduced parts and add some additional important 
components. 

6.3 Summarizing Overview 
We can summarize the structure of the model with a simplified UML class diagram. For 
clarity reasons, Figure 6 shows only the class names and the most important relations between 
the objects. We recognize the agents’ hierarchy (although in slightly different order) in the 
centre of the picture as well as the structure of the decision making of both the processors on 
the right side and the producers on the lower left side, respectively. Additional classes are 
required to manage the run of a simulation. For instance, the object LocateAgents is 
responsible for the initial location of the agents at the start of a simulation. Throughout this 
work we use a uniform distribution of suppliers, i.e., exactly one producer occupies a cell of 
the grid representing the artificial region. Processors, however, might relocate during the 
simulation. The location of the processors at the beginning of the simulation is either 
predefined or randomly initialized.9 

With respect to additional relations between classes we recognize the labelled aggregations 
between AgentProducer and AgentProcessor. The two relations take into account the 
decisive differentiation of potential and actual suppliers. The difference within the simulation 
model is implemented by two lists containing the actual and potential suppliers of each 
processor. 

The major component of the simulation model not yet discussed is the Market class. One 
instance of this class is created for each simulation. MainSim, which only contains the main 
method as required to start any computer program, is responsible for that. All of the 
parameters that are necessary for the simulation as well as the sequence of actions are defined 
in Market. In fact, Market is the major object to control the execution of the simulation. 
Important variables that are set and can be changed between simulations are listed in Table 2. 

The table highlights the parameters directly related to a spatial competition problem. Because 
the individual variables are introduced and defined in the single applications (cf. 
GRAUBNER et al., 2011a,b) we do not explain them again here. Except for the price of the 
finished good (the marginal revenue product of the processors), different values of the 
variables (within the listed domains or states) are used to conduct simulations. For instance, in 
GRAUBNER et al. (2011a) a line market of size (x, y) = (300, 1) serves to identify the optimal 
spatial price strategy in a duopsonistic framework. While the number of processors as well as 
the number of suppliers was constant (2 and 300, respectively), we conducted simulations 
over the relevant range of transport costs, namely a transport rate of 0 ≤ t ≤ 2. 

Once these parameters are defined and initialized by the Market object, the actual 
simulation process starts. The dynamics of this procedure are described in the following 
section. 

 

                                                 
9 In fact, in the case of a game including the location decision of firms, the initial location is just a illustrative 

device at the start of each simulation. The location variables are immediately overwritten once the processor 
selects a strategy. 
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Figure 6:  The static class structure of SpAbCoM 

 
 

Table 2: Selected parameters of the simulation model 

Parameter Value 

Size of the region (x, y)= ({300, 20}, {1, 20}) 

Number of suppliers {300, 400} 

Number of suppliers {2, … , 6} 

Transport rate [0, 5] 

Supply elasticity [0, 1] 

Arbitrage of suppliers {true, false} 

Relocation of processors {true, false} 

Two-dimensional space  {true, false} 

Border effects {true, false} 
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7 DYNAMICS OF THE SIMULATION 

The sequences of actions within the simulation can be decomposed in an initialization and 
running phase. The first is responsible for creating the simulation’s environment: the space, 
agents, and some control objects. The running phase consists of three steps which can be 
further subdivided. Figure 7 shows a simplified scheme of the simulation in terms of a UML 
activity diagram. A single run of the simulation starts at the black point in the upper left 
corner of the picture. The upper part of it represents the initialization of the simulation. The 
running phase of a simulation starts with the PreStep activity. The difference between the 
two levels is that each simulation has only one initialization but multiple running phases. The 
number of loops, composed of PreStep, Step, and PostStep, corresponds to the number 
of generations of the GA. 

Figure 7: Activity diagram of the simulation’s schedule 

 

7.1 Initialization of the Simulation 

We describe the dynamics of the simulation in more detail, starting from the upper left corner 
of Figure 7. First, three objects are initialized by the main method of MainSim: the control 
panel of the simulation, the market, and the artificial region. The first is provided by Repast 
and allows control of the simulation via a graphical interface. In this respect, a good comparison 
is, e.g., the Windows Media Player. As such, the control panel of Repast provides the option 
to load a file, start and run the program, or stop or pause it. Additionally, it is feasible to 
directly set the parameters from Table 2 through the interface. For an illustration, Figure 8 
shows a screenshot of Repast’s graphical interface while SpAbCoM is active. An important 
option of the control panel is to load an input file. In this way, values of one or several 
parameters can be defined, and a number of simulations can be performed over these values. 
In particular, the input file specifies the start and stop value of a particular parameter. For 
example, we can specify that the number of processors should vary between two and four, and 
the number of repetitions should be 50. Hence, there are 50 runs of the simulations for two, 
three, and four processors and 150 simulations in total. 
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As mentioned in the previous section, most of the environmental variables of the simulation 
are defined in the Market class. Either the values of the parameters depicted in Table 2 are 
directly defined within an instance of this class or they are set via the Repast interface. Once 
the parameters are set, the agents can be initialized. The number of processors is predefined 
by the corresponding parameter, whereas the number of producers depends on the market 
size. Two integers (the x and y coordinates) measure the extent of the market, and the 
multiplication of both yields the number of producers. 

Figure 8: Screenshot of the Repast interface during an active simulation of SpAbCoM 

 
Note: A = control panel, B = parameter settings, C = live output, D = market region of the processor with ID = 
0, E = other processors, F = unserved locations. The artificial region is constructed as torus and the location of 
the first processor (ID = 0) is fixed at L0 = (x0, ymax) = (0, 20). 

Values are assigned to the individual features of processors and producers by initializing the 
agents. For instance, each producer gets a unique location, or each processor’s GA is set. As 
one result, the processor’s individual chromosome population is created. 

At this stage of the initialization phase, there are two lists of agents, producers and processors. 
The next step is to locate the agents into the artificial region. Therefore, the already 
introduced LocateAgent class is deployed. The region is a grid of cells. The corresponding 
object is provided by Repast and initialized at the start of the simulation. After the agents are 
located, the distances and transport costs between them are calculated. The object 
DistanceMatrix provides the corresponding functions. Predefined parameters, such as 
the transport rate or whether the region features border effects or not, are considered. To 
model space without border effects, we use a torus, i.e., cells at the edges are direct 
neighbours of cells which are at the opposite edge. This is the case in Figure 8. To calculate 
the distance between two locations LA and LB of agents A and B, we use: 
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A distance vector is assigned to each cell and can be assessed by the processor after a 
potential relocation. Once the distance matrix is built, the initialization phase is finished, and 
the core simulation of the spatial competition starts. 

7.2 Running Phase of the Simulation 

The running phase of the simulation can be subdivided into three steps: PreStep, Step, 
and PostStep. A passage through these steps corresponds to a single generation of a GA. 
The first step sets parameters, which were potentially changed during previous generations, 
back to the default values. The activities of Step, in turn, can be subdivided into PreTest, 
Test, and PostTest. The differentiation is caused by the co-evolutionary concept of the 
GA. 

As noted in Section 4.3, the important feature is a tournament of strategies among agents. 
Step represents this tournament of co-evolutionary GAs. As PreStep, PreTest sets 
parameters potentially changed during previous test rounds back to the default values. Test 
and PostTest correspond to the strategy selection and evaluation, respectively. The basic 
concept of the tournament is to test random strategies of all the processors against each other. 
Each processor selects the first chromosome of its strategy list in Test. This chromosome 
represents the active strategy, and the processor’s decision variables are set according to its 
values. The active strategy is replaced from the first to the last position of the list such that the 
second place chromosome is selected in the next round. Suppose there are n strategies 
available to each firm; in order to test all n strategies a minimum number of times, say five, 
we impose a total of 5n test rounds. To avoid testing strategies (five times) in the same 
combination, we randomize the order of chromosomes of a player’s strategy list after n test 
rounds. 

Besides the randomized pairing of the strategies, the major activity of Test is the 
determination of the set of potential suppliers, i.e., suppliers at locations where the processor 
earns positive local profits subject to the selected strategy. Due to the uniform distribution of 
the suppliers within the region, we can represent the set of potential suppliers over the market 
radius R̂ as derived in GRAUBNER et al. (2011a): 
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This market radius depends on the individual strategy of the processor: the mill price m, the 
degree of transport cost transfer α, and the distance to the suppliers dependent on the 
processor’s location (x, y) as well as on the transport costs t. Accordingly, if the distance 

BALL  between processor A and producer B, as calculated by (6), is smaller than R̂ , B is an 
element of the set of potential suppliers. 10 Based on the selected strategy, the processor sets a 
local price at the locations of the potential suppliers. Hence, these producers are addressees of 
the processor’s price offer. Whether an offer is answered with the producer’s supply hinges on 
the decision making of the suppliers, particularly whether the offered price represents the 
highest price at the producer’s location. The producers’ decision takes place in PostTest. 

Because it is most likely that more than one processor sets a price at a particular location, 
each producer exhibits an offer collection (see Figure 4). The producer first sorts its list of 
price offers in ascending order to determine the highest price at its location. If we allow the 
suppliers to take advantage of arbitrage, as described in Section 6.2, each producer compares 

                                                 
10 For a more technical definition of potential suppliers see also GRAUBNER et al. (2011b). 
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this price with the price of other locations. If there is a positive difference from another local 
price considering the transport costs to this location, the supplier identifies the location with 
the highest difference and the corresponding price as optimal choice. Otherwise, the highest 
price at the own location is selected. The producer determines the local supply based on the 
local price and its supply function. 

From Section 6.2 we know that the object PriceOffer has a field LocalProfit. If the 
producer selects the price from a price offer at its location, the value of LocalProfit is 
determined by this price and the local supply. However, the value of LocalProfit is zero 
if it is profitable for the producer to deliver the input to another location due to sufficiently 
positive price differences. In this case, it is feasible to show that the destination of the delivery 
is always a market border of a processor’s potential market area. According to (7), this 
location is characterized by zero profits for the processing firm. Although the location of a 
price offer and the location of an accepting producer do not necessarily have to coincide, we 
can identify the relation between a producer and processor over PriceOffer if the former 
delivers the input to the latter without being a potential supplier. 

Based on the decision of the suppliers, the processor can evaluate the performance of the 
chromosome, which is determined by the sum of the local profits realized by this strategy. 
Unlike potential suppliers, only actual suppliers contribute positive local profits. In this 
respect, the set of actual suppliers is an outcome of the spatial interaction among the 
processors driven by their price strategies. Because a producer can deliver only to one 
processor, the set of actual suppliers represents the market allocation. 

The calculation of the profit is the last step of each test round. A new round starts with Step if 
the number of desired test rounds is not reached. Otherwise, there is a predefined number of 
profit values assigned to each processor’s strategy. The median of the values represents the 
average performance of a strategy. Once this is determined, the GA optimization continues 
with the PreTest. The activities of this step are the application of the genetic operators as 
described in Section 4.3. After the selection of successful strategies but before mutation and 
crossover, the best strategy of each player, i.e., the chromosome with the highest average 
profit during the test rounds, is used to determine the market allocation. The outcome is 
reported through an output file. The last step of the loop is to check whether the termination 
rule of the GA is fulfilled, i.e., if the desired number of generations is reached. If not, the next 
generation of the co-evolutionary GA simulation starts with PreStep, or the simulation is 
terminated. 

8 SUMMARY AND POSSIBLE EXTENSIONS 

The aim of this paper is to provide a detailed description of the Spatial Agent-based 
Competition Model (SpAbCoM). SpAbCoM was developed to analyse spatial competition 
because even restrictive assumptions in theoretical models or often analytically intractable. 
The advantage of the presented computational framework is its flexibility to introduce relaxed 
conditions regarding pricing, location, and market structure. For instance, SpAbCoM is used 
to study firms’ choices of spatial pricing policy by GRAUBNER et al. (2011a), who showed that 
price discrimination but no FOB pricing emerges as equilibrium strategy in the spatially 
differentiated duopsony. GRAUBNER et al. (2011b) extended the theoretical framework and 
analysed pricing and location within a two-dimensional, oligopsony model. The authors 
highlight that the relation of price discrimination and (spatial) differentiation among firms 
hinges on specific model assumptions as the number of competitors or the nature of supply or 
demand functions. Both studies helped to deepen our understanding of driving forces and 
mechanisms behind pricing and competition in spatial markets. 
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However, the presented simulation model does not exploit the potential of agent-based 
modelling in many aspects. We may extend SpAbCoM, e.g., regarding differentiated 
producers or processors. Producers, i.e., suppliers of the agricultural input, may feature 
individual production functions that differ from production functions of other producers in the 
market, e.g., in terms of the produced quantity or quality of the agricultural good. Conversely, 
processors could differ with respect to marketing possibilities or transport technologies and 
thus there is a heterogeneous output price or cost structure across processing firms. 

It would also be feasible to incorporate some degree of bounded rationality. For instance, if 
suppliers are not able to distinguish marginally different local prices or processing firms are 
unable to determine the exact location of the marginal supplier and thus set a too large/small 
market area. However, the potentially most interesting option to extend the simulation rests in 
the co-evolutionary Genetic Algorithm. Because each processing firm exhibits an individual 
GA, we could differentiate the decision rule of these agents. This may be interesting in the 
case of mixed markets as the German raw milk market, where processors are organized either 
as cooperatives or investor-owned firms. This may have an impact on the (profit-maximizing) 
strategy used by these firms and most likely will influence the market allocation. 

Further possible applications for SpAbCoM are consumer markets. We can readily relate 
spatial competition to a more general framework of horizontal product differentiation. While 
price discrimination may play a crucial role in such settings, again the analysis is hampered 
by a number of analytical difficulties, particularly in the case oligopoly and multi-
characteristic space. The input market framework showed that SpAbCoM is able to deal with 
these complex market situations and thus it seems promising for the investigation of a number 
of research questions regarding consumer markets. 

In general, all these extensions seek to introduce more realistic assumptions into a spatial 
competition model to relate the model to real world observations (on particular markets). 
Therefore, a consequent research agenda could consist of the incorporation of statistical data 
and/or empirical tests of hypotheses derived from the simulation model. In both cases, the 
presented simulation framework SpAbCoM can serve as point of departure. 
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