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Abstract

The time-continuous discrete-state Markov process is a model for rating tran-

sitions. One parameter, namely the intensity to migrate to an adjacent rating

state, implies an ordinal rating to have an intuitive metric. State-specific in-

tensities generalize the state-stationarity. Observing Markov processes from

a multiplicative intensity model, the maximum likelihood parameter estima-

tors for both models can be written as a martingale transform of the processes

that count transitions between the rating states. A Taylor expansion reveals

consistency and asymptotic normality of the parameter estimates, resulting

in a χ2-distributed likelihood ratio of state-stationarity and the state-specific

model. This extents to time-stationarity. Simulations contrast the asymp-

totic results with finite samples. An application to a sufficiently large set of

credit rating histories shows that the one-parameter model can be a good

starting point.
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1. Introduction

The homogenous Markov process, with stationary transition intensities,

remains the staring point for rating-transition modelling (Bluhm et al., 2002,

pg. 197ff). Several defects of the model, such as instationarity, non-Markovian

behavior or intra-temporal dependence have been investigated (Altman and

Kao 1992; Lando and Skødeberg 2002; Bangia et al. 2002; Frydman and

Schuerman 2008; Kiefer and Larson 2007; Koopman and Lucas 2008; Weißbach

and Walter 2010). Our general statistical objective is a parsimonious model,

and Forest et al. (1998) formulate a one-parameter model for ratings, not,

however, originating from the Markov process model. Here, we claim three

properties that enable the formulation of a one-parameter Markov process

model. First, the Merton model (Merton 1974) for an asset value suggests

that a firm can only migrate from one rating state to an adjacent rating

state, that is, up or down. All other transition intensities must be zero and

observations of multiple class transitions are attributable to discontinuous

observation and considered here as missing data. Second, a rating should

be constructed so as to be metric, and not only ordinal. If changing rating

classes does not depend on the specific state, i.e. is state-stationary, we will

see that the rating can be equipped with a simple metric. Third transition

intensities should be time-stationary.

We assume the first claim and take it into account in the data analysis.

The second restriction, namely whether rating class changes are class-specific,

is our primary research question. We study a likelihood ratio test on the null

hypothesis of metricality. The formalization of the null hypothesis is a con-

stant transition intensity for all rating classes and the alternative hypothesis,

of only ordinal ratings, is formalized by letting each rating class have its two

specific transition intensities in the directions of upgrade and downgrade.

The third property will be studied briefly.

2



Maximum likelihood (ML) estimation for the generator of the homoge-

neous Markov process dates back to Albert (1962). We study the consistency

and asymptotic normality of the estimator for the state-specific intensity and

the state-stationary intensity. The results originate from the representation

of the estimators as martingale transforms that arise for the transition count

between rating states. The martingale limit theorem by Rebolledo (1980)

suggests studying the predictable covariation process with inequalities by E.

Lenglart and R. Gill. The time-stationarity can studied by generalizing to

a piecewise stationary. Through an argument relating to the profile like-

lihood, the likelihood ratio test statistics that compare one the one hand

state-stationary versus state-specific and on the other time-stationary versus

piecewise stationary are both asymptotically χ2-distributed.

Our application is credit risk, in particular, the rating transition intensi-

ties in an internal rating system, loosely related to the expert-rating discussed

by Kiefer (2010). We show that our data may not be modeled significantly by

one parameter, even if time-stationarity is imposed by transformation of the

time. However, the model appears to be close to reality, simulation studies

foster such an impression.

2. Models

Consider the time-continuous discrete-state Markov processes X = {Xt, t ∈
[0, T ]} defined on a probability space (Ω, F, P ). The ordered states 1, . . . , k,

e.g. rating classes, end in an absorbing state k (e.g. bankruptcy). We de-

note Xt as the state of an asset at time t, after a certain origin. Denote by

mh(t) = P (Xt = h) the unconditional probability of state h at time t. The

data are transition histories Xi = {X i
t , t ∈ [0, T ]} for each of the i = 1, . . . , n

assets within a sample.
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2.1. State-Stationarity

The homogeneous, i.e. time-stationary, process is determined by the in-

finitesimal generator of the process Q = (qhj)h,j=1,...,k with transition inten-

sities

qhj = lim
u→0+

P (Xu = j|X0 = h)

u
.

Note that qhh = −∑k
j=1,j 6=h qhj and qkj = 0. If transition to any other than

the adjacent class is impossible, Q is determined by elements on the first

off-diagonals. It is useful to collect the indices for all non-zero intensities in

set I1 = {(h, j) : h = 1, . . . , k − 1; j = 1, . . . , k; |h − j| = 1} and to define

set I2 = I1 \ {(1, 2)}.
Definition 1. Let the intensities on [0, T ] be

qhj =

{
q if (h, j) = (1, 2)
q + γhj if (h, j) ∈ I2

with q > 0 and γhj ∈ (−q,∞).

In the one-parameter case of γhj = 0, the mapping (h, j) 7→ |h − j| · q is

a metric on I1, whereas the same mapping for γhj 6= 0 is not.

We have no intention to analyze on asset level so that, compared to the

analysis of all transition histories X1, . . . ,Xn, there is no loss of informa-

tion when using the vector of initial ratings X1
0 , . . . , X

n
0 together with the

processes

Nhj(t) = #{s ∈ [0, t], i = 1, . . . , n|X i
s− = h, X i

s = j}, t ∈ [0, T ], (h, j) ∈ I1

counting the number of transitions from state h to j until time t in the entire

sample. Additionally, let the processes Yh(t) denote the number of assets in

state h at time t. For large samples, this constitutes a clear reduction in the

number of random processes. We impose two additional assumptions.

(A1) For fixed t and n → ∞ in probability (
P→)

Yh(t)

n

P−→ mh(t).
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(A2) The counting processes Nhj must follow a multiplicative intensity model,

i.e. with collection of q and γhj in vectors γ := (γ21, γ23 . . . , γk−1,k)
′ ∈

R
2k−4 and θ := (q, γ ′)′ ∈ R

2k−3 they have the intensity process

λhj(t; θ) = Yh(t)qhj, (h, j) ∈ I1.

Due to the law of large numbers, assumption (A1) is fulfilled if the Markov

processes are independent. Independence is also a sufficient condition for

(A2).

As usual in the analysis of durations, only a partial likelihood can be

evaluated (see Andersen et al., 1997, equation 2.7.4’)

log(L) =

∫ T

0

log(Y1(t)) + log(q)dN12(t)

+

∫ T

0

∑

(h,j)∈I2

log(Yh(t)) + log(q + γhj)dNhj(t) (1)

−
∫ T

0

qY1(t)dt −
∫ T

0

∑

(h,j)∈I2

(q + γhj)Yh(t)dt.

We now collect some useful properties of model (A2) with the generator

of Definition 1 and the log-likelihood (1).

Lemma 1. For all (h, j) ∈ I1 and all t ∈ [0, T ] there exist first, second and
third partial derivatives of the intensity processes λhj(t; θ) defined in (A2), of
the logarithmic intensity processes log λhj(t; θ) and of the logarithmic likeli-
hood log L(θ) with respect to q and γrs, (r, s) ∈ I2. These partial derivatives
are continuous in θ.

The proof of this and the following lemmas are collected in the Appendix.

Denote by θ0 the true parameter.

Lemma 2. For all (h, j) , (r, s) ∈ I2 it holds that

1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂

∂γhj

log λµν(t; θ0)

)(
∂

∂γrs

log λµν(t; θ0)

)

· λµν(t; θ0)dt = 0,

(2)
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if (h, j) 6= (r, s) then, under assumption (A1)

1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂

∂γhj

log λµν(t; θ0)

)2

λµν(t; θ0)dt
P−−−→

n→∞
σhj (3)

and

1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂

∂q
log λµν(t; θ0)

)(
∂

∂γhj

log λµν(t; θ0)

)

· λµν(t; θ0)dt
P−−−→

n→∞
σhj

(4)

with 0 < σhj < ∞.
Furthermore there exists a σq(> 0), such that

1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂

∂q
log λµν(t; θ0)

)2

λµν(t; θ0)dt
P−−−→

n→∞
σq. (5)

Lemma 3. For all (h, j) ∈ I2 and all ε > 0 it holds that

1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂

∂q
log λµν(t; θ0)

)2

· 1
(∣
∣
∣
∣

1√
n

∂

∂q
log λµν(t; θ0)

∣
∣
∣
∣
> ε

)

λµν(t; θ0)dt

(6)

and

1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂

∂γhj

log λµν(t; θ0)

)2

· 1
(∣
∣
∣
∣

1√
n

∂

∂γhj

log λµν(t; θ0)

∣
∣
∣
∣
> ε

)

λµν(t; θ0)dt

(7)

converge in probability to zero for n → ∞.

Lemma 4. The matrix Σ = (Σij)i,j=1,...,2k−3 ∈ R
(2k−3)×(2k−3), defined by

Σ :=












σq σ21 σ23 σ32 . . . σk−1,k

σ21 σ21 0 0 . . . 0
σ23 0 σ23 0 . . . 0
...

...
. . . . . . . . .

...
σk−1,k−2 0 . . . 0 σk−1,k−2 0
σk−1,k 0 . . . 0 0 σk−1,k












with values σhj, (h, j) ∈ I2, and σq from Lemma 2, is positive definite.
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Lemma 5. There exist neighborhoods Θq
0 and Θrs

0 , (r, s) ∈ I2, of q0 and
γrs0 so that, with Θ0 := Θq

0 × Θ21
0 × . . . × Θk−1,k

0 , for all (h, j) ∈ I1 there
is a constant Hhj, not depending on θ, such that for all t ∈ [0, T ] and all
m, r, s = 1, . . . , 2k − 3

sup
θ∈Θ0

∣
∣
∣
∣

∂3

∂θm∂θr∂θs

log λhj(t; θ)

∣
∣
∣
∣
≤ Hhj. (8)

Furthermore exists a positive constant C < ∞, such that

1

n

∫ T

0

∑

(µ,ν)∈I1

Hµν · λµν(t; θ0)dt
P−−−→

n→∞
C (9)

and for all ε > 0 the following holds

1

n

∫ T

0

∑

(µ,ν)∈I1

Hµν · 1
(

1√
n
· (Hµν)

1
2 > ε

)

λµν(t; θ0)dt
P−−−→

n→∞
0. (10)

For the subsequent results, we can denote for j = 1, . . . , 2k − 3, the score

statistic by U j
T (θ), minus the second partial derivative of the log-likelihood

(1) by J jl
T (θ) and the third derivatives by Rjlm

T (θ), for j, l, m = 1, . . . , 2k−3.

Lemma 6. For all j = 1, . . . , 2k − 3 the score statistic U j
T (θ0)/n converges

for n → ∞ towards zero in probability.

Lemma 7. With the definition of Σ from Lemma 4, the score statistic vector

UT (θ0)/
√

n converges in distribution (
d→) to a Gaussian random vector

1√
n
UT (θ0)

d−−−→
n→∞

N (0,Σ) .

Lemma 8. The matrix J T (θ0)/n converges, for n → ∞, in a stochastic
sense towards the Σ defined in Lemma 4.

Lemma 9. For C < ∞, defined in Lemma 5 , ∀j, l, m = 1, . . . , 2k − 3 and
uniformly ∀θ ∈ Θ0, it holds that |Rjlm

T (θ)/n| has asymptotically almost surely
bound C.

2.2. Time-Stationarity

When assessing the question whether transition intensities are time-statio-

nary, there is no need to restrict the model to adjacent class transitions. A

model that can distinguish a time-stationary from an in-stationary process

proposed in Weißbach and Walter (2010) defines qhj(t) as a step function,

i.e. imposes a piecewise stationary model.
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Definition 2. Let the intensities on [0, T ] with the given change-points
0 = t0 < t1 < . . . < tb−1 < tb = T be

qhj(t) = 1[0,t1)(t)qhj +
b∑

l=2

1[tl−1,tl)(t)(qhj + δhjl)

with qhj > 0 and δhjl ∈ (−qhj,∞), l = 2, . . . , b.

The counting processes of Section 2.1 now change to

Nhj(t) = #{s ∈ [0, t], i = 1, . . . , n|X i
s− = h, X i

s = j}, t ∈ [0, T ], j 6= h

with condition (A2) being extended to an index set I = {j 6= h, h 6= k}. The

likelihood alters to

log(L) =

∫ t1

0

∑

j 6=h

log(Yh(t)) + log(qhj) dNhj(t)

+
b∑

l=2

∫ tl

tl−1

∑

j 6=h

log(Yh(t)) + log(qhj + δhjl)dNhj(t)

−
∑

j 6=h

[
∫ t1

0

Yh(t)qhjdt +
b∑

l=2

∫ tl

tl−1

Yh(t)(qhj + δhjl)dt

]

Straight forward calculations yield that Lemma 1 is now equally true with

I1 replaced by I (Lemma 4.3 in Weißbach and Walter (2010)). Lemma 2

becomes the first part of Lemma 4.4, the adapted version of Lemma 3 is

Lemma 4.5, and Lemma 4 results in the second part of Lemma 4.4 together

with Lemma 4.1. Lemma 5 alters to Lemma 4.7. Lemma 6 is also true, again

with the inequality of Lenglart (1977) and the adapted version of Lemma 2.

Lemma 7 follows from the Theorem of Rebolledo (1980) and the adapted

versions of Lemmas 2 and 3. Lemma 8 and 9 are now Lemma 4.6. and

Lemma 4.8, respectively.
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3. Estimation and Testing

3.1. State-Stationarity

In order to test for equally spaced classes in Model 1, we formulate the

null hypothesis

H0 : γhj = 0 ∀h, j ∈ I2, (11)

with the alternative

H1 : ∃ γhj 6= 0. (12)

Our aim is maximum likelihood estimation in the restricted and the unre-

stricted parameter space. Finally, we construct a test for the one-parameter,

metric model with the likelihood ratio.

Theorem 1. Given
∫ T

0
Yµ(s)ds > 0 for all µ = 1, . . . , k − 1, the maxi-

mum likelihood estimators in the unrestricted parameter space for q and γhj,
(h, j) ∈ I2, are

q̂ =
N12(T )
∫ T

0
Y1(s)ds

(13)

and

γ̂hj =
Nhj(T )
∫ T

0
Yh(s)ds

− N12(T )
∫ T

0
Y1(s)ds

. (14)

If the numerators in (13) or (14) are zero, the quotient is set to zero. Define
N••(t) :=

∑

(h,j)∈I1
Nhj(t), t ∈ [0, T ]. Then, in the restricted parameter

space, i.e. under null hypothesis (11), the ML estimator of q is

ˆ̃q =
N••(T )

∑

(h,j)∈I1

∫ T

0
Yh(s)ds

. (15)

The resulting likelihood ratio is

L(ˆ̃q,0)

L(q̂, γ̂)
=

∏

t∈[0,T ]: ∃(µ,ν)∈I1,
Nµν(t−) 6=Nµν(t)





(
ˆ̃q

q̂

)∆N12(t)
∏

(h,j)∈I2

(
ˆ̃q

q̂ + γ̂hj

)∆Nhj(t)


 .
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Proof. For the unrestricted parameter space, compare the partial deriva-

tives of log L(θ) with respect to q and γhj, (h, j) ∈ I2 with zero. For
∫ T

0
Yµ(s)ds > 0, µ = 1, . . . , k − 1, this is, due to Lemma 1 (especially (A.3)),

equivalent to

N12(T )

q
+

∑

(h,j)∈I2

Nhj(T )

q + γhj

−
∑

(h,j)∈I1

∫ T

0

Yh(s)ds = 0

and
Nhj(T )

q + γhj

−
∫ T

0

Yh(s)ds = 0.

Hence (13) and (14) hold. For the sufficient condition of a maximum, the

Hessian of log L(θ), evaluated in θ̂, needs to be negative definite. The second

derivatives have already been calculated for Lemma 1, see (A.4), and inserting

θ̂ results in

∂2 log L(θ)

(∂q)2

∣
∣
∣
∣
θ=θ̂

= −
∑

(h,j)∈I1

(∫ T

0
Yh(s)ds

)2

Nhj(T )

and for all (h, j) ∈ I2, in

∂2 log L(θ)

(∂γhj)
2

∣
∣
∣
∣
θ=θ̂

=
∂2 log L(θ)

∂q∂γhj

∣
∣
∣
∣
θ=θ̂

= −

(∫ T

0
Yh(s)ds

)2

Nhj(T )
.

Any other second derivative is zero. Hence, the Hessian has the same form

as Σ (multiplied by −1) in Lemma 4. The latter was found to be positive

definite, so that the Hessian is negative definite. q̂ and γ̂hj, (h, j) ∈ I2, are

ML-estimators for q and γhj in the unrestricted space.

In order to calculate the ML-estimator in the restricted parameter space,

the derivative of log L(q,0) needs to be set to zero, resulting in (15). The

sufficient condition is fulfilled, because the second derivative, see again (A.4),

evaluated in ˆ̃q, is negative

−N••(T )

q2

∣
∣
∣
∣
q=ˆ̃q

= −

(
∑

(h,j)∈I1

∫ T

0
Yh(s)ds

)2

N••(T )
< 0. (16)
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Inserting q̂ and γ̂hj, (h, j) ∈ I2, as well as ˆ̃q in the likelihood, see (1),

yields

L(q̂, γ̂) =




∏

t

(q̂ · Y1(t))
∆N12(t)

∏

(h,j)∈I2

((q̂ + γ̂hj) · Yh(t))
∆Nhj(t)





· exp



−
∑

(h,j)∈I1

Nhj(T )
∫ T

0
Yh(s)ds

·
∫ T

0

Yh(s)ds





and

L(ˆ̃q, 0) =




∏

t

∏

(h,j)∈I1

(

ˆ̃q · Yh(t)
)∆Nhj(t)



 · exp (−N••(T )) ,

where ∆Nhj(t) := Nhj(t) − Nhj(t−), resulting in the requested likelihood

ratio. �

It is evident that in the estimation of qhj as q̂ + γ̂hj, in the numerator,

only transitions from rating h to j are used, whereas for ˆ̃q, transitions to any

adjacent rating class enter. Therefore, in the one-parameter model, default

probabilities are estimable, even if no default has occurred in the portfolio.

The following two theorems demonstrate good behavior of the ML-estimate.

Theorem 2. For a sample of Markov processes with an intensity as in Defi-
nition 1, let assumptions (A1) and (A2) be fulfilled. Then, in the unrestricted
parameter space, the estimator θ̂ and in the restricted space, the estimator ˆ̃q
of Theorem 1 are consistent.

Proof. Due to Lemma 1 and θ ∈ Θ0, defined in Lemma 5, the Taylor

expansion of the score statistic can now be written as

U j
T (θ) =U j

T (θ0) −
2k−3∑

l=1

(θl − θl0)J jl
T (θ0)

+
1

2

2k−3∑

l=1

2k−3∑

m=1

(θl − θl0) (θm − θm0) Rjlm
T (θj∗),

(17)

with θj∗ on the connecting line between θ and θ0. Matrix Σ of Lemma 4

is positive definite, so that there exists a constant β > 0, such that, for all

11



t ∈ R
2k−3 with |t| = 1 it holds that t′Σt ≥ β. Here and throughout | · |

denotes the Euclidean norm. For any ε > 0, one can chose some δ = δ(ε) > 0

fulfilling δ < ε, {θ : |θ − θ0| ≤ δ} ⊆ Θ0 and δ < β/(3 (2k − 3)3 (C + 1)). As

a consequence of Lemma 6 to Lemma 9, the exists a n0(ε) ∈ N, such that,

with a probability larger than 1 − ε, for all n ≥ n0(ε) hold the inequalities

for j, l, m = 1, . . . , 2k − 3 (where applicable)

∣
∣
∣
∣

1

n
U j

T (θ0)

∣
∣
∣
∣
< δ2, 0 ≤

∣
∣
∣
∣

1

n
Rjlm

T (θj∗)

∣
∣
∣
∣
< C + 1 (18)

and
∣
∣
∣
∣

1

n
J jl

T (θ0) − Σjl

∣
∣
∣
∣
< δ. (19)

Dividing (17) by n results in

1

n
U j

T (θ) +
2k−3∑

l=1

(θl − θl0)
1

n
J jl

T (θ0)

=
1

n
U j

T (θ0) +
1

2

2k−3∑

l=1

2k−3∑

m=1

(θl − θl0) (θm − θm0)
1

n
Rjlm

T (θj∗)

︸ ︷︷ ︸

(∗)

⇔ 1

n
U j

T (θ) +
2k−3∑

l=1

(θl − θl0)

(

Σjl +
1

n
J jl

T (θ0) − Σjl

)

= (∗)

⇔ 1

n
U j

T (θ) +
2k−3∑

l=1

(θl − θl0) Σjl

= (∗) +
2k−3∑

l=1

(θl − θl0)

(

Σjl −
1

n
J jl

T (θ0)

)

.

Due to |θl − θl0| ≤ |θ − θ0|, if |θ − θ0| ≤ δ than (18) and (19) yield |U j
T (θ)/n+

∑2k−3
l=1 (θl − θl0)Σjl| ≤ |(∗)| +∑2k−3

l=1 |θl − θl0||J jl
T (θ0)/n − Σjl| ≤ δ2 + δ(2k −

3)|θ−θ0|+(2k−3)2|θ−θ0|2 C+1
2

≤ 3(2k−3)2(C +1)δ2. The inequality holds

equally for any component of the vector. With the mapping h(x) = δ ·x+θ0

12



and because −1 < (θj − θj0)/δ < 1 it follows for |θ − θ0| = δ that

2k−3∑

j=1

1

n
U j

T

(

h

(
θ − θ0

δ

))
θj − θj0

δ
=

2k−3∑

j=1

1

n
U j

T (θ)
θj − θj0

δ

≤ −
2k−3∑

j=1

2k−3∑

l=1

Σjl
θj − θj0

δ

θl − θl0

δ
︸ ︷︷ ︸

=
(θ−θ0)′

|θ−θ0|
·Σ· (θ−θ0)

|θ−θ0|
≥ β

δ +
2k−3∑

j=1

3 (2k − 3)2 (C + 1) δ2

≤ − β · δ + 3 (2k − 3)3 (C + 1) δ2 =: (∗∗)

and because δ < β/(3 (2k − 3)3 (C + 1)) follows

(∗∗) = (−β + 3 (2k − 3)3 (C + 1) δ)δ < (−β + β)δ = 0

As a result of Aitchison and Silvey (1958), if, for a continuous mapping

g : Rs → R
s it holds that x′g(x) < 0 for all x where |x| = 1, than there

exists a x̃ with |x̃| < 1 and g(x̃) = 0. Mapping (UT ◦ h)/n is continuous in

(θ − θ0)/δ, so that, for |θ − θ0| = δ follows the existence of θ̃ ∈ Θ0, such

that, for all n ≥ n0(ε) and with a probability larger than 1 − ε,

1

n
UT

(

h

(

θ̃ − θ0

δ

))

=
1

n
UT (θ̃) = 0,

where |θ̃ − θ0| < δ < ε is fulfilled. Moreover ε can be arbitrarily small, so

that θ̃ is a consistent solution. On the other hand, ML-estimator θ̂ from

Theorem 1 is the unique solution of UT (θ) = 0 and, as a result, θ̂ ≡ θ̃. �

Together with the consistency, θ̂ and ˆ̃q are asymptotically Gaussian.

Theorem 3. For the unrestricted estimator θ̂ of Theorem 1 and Σ of Lemma
4 holds √

n
(

θ̂ − θ0

)
d−−−→

n→∞
N
(
0,Σ−1

)
.

Proof. One part of proving Theorem 3 is the martingale limit theorem

of Rebolledo (1980), and Lemma 3 is the respective Lindeberg condition.

Lemma 4 ensures that the covariance matrix Σ−1 is positive definite. Looking

at this in more detail, analogous to (17) we may, for any j = 1, . . . , 2k −

13



3, expand the score statistic U j
T , divided by

√
n, in θ0 due to Lemma 1.

Evaluation in the ML-estimator θ̂ yields

0 =
1√
n

U j
T (θ̂) =

1√
n

U j
T (θ0) −

2k−3∑

l=1

√
n
(

θ̂l − θl0

) 1

n
J jl

T (θ0)

+
1

2

2k−3∑

l=1

2k−3∑

m=1

√
n
(

θ̂l − θl0

)(

θ̂m − θm0

) 1

n
Rjlm

T (θj∗).

As θ̂ is a consistent estimator and θj∗ is on the line between θ̂ and θ0, θ̂

and finally θj∗ will be in Θ0 with a probability approaching one. Taking the

absolute value, using the triangular inequality and Lemma 9, we have the

stochastic upper limit
∣
∣
∣
∣
∣
− 1√

n
U j

T (θ0) +
2k−3∑

l=1

√
n
(

θ̂l − θl0

) 1

n
J jl

T (θ0)

∣
∣
∣
∣
∣

≤ 1

2
C

2k−3∑

l=1

√
n
∣
∣
∣θ̂l − θl0

∣
∣
∣

2k−3∑

m=1

∣
∣
∣θ̂m − θm0

∣
∣
∣ .

In matrix notation
∣
∣
∣
∣

√
n · 1

n
J T (θ0) ·

(

θ̂ − θ0

)

− 1√
n
UT (θ0)

∣
∣
∣
∣

≤ C(2k − 3)

2

2k−3∑

l=1

√
n
∣
∣
∣θ̂l − θl0

∣
∣
∣

2k−3∑

m=1

∣
∣
∣θ̂m − θm0

∣
∣
∣

≤
(

C (2k − 3)2

2

2k−3∑

l=1

∣
∣
∣θ̂l − θl0

∣
∣
∣

)

·
∣
∣
∣
√

n
(

θ̂ − θ0

)∣
∣
∣

=

(

C (2k − 3)2

2

2k−3∑

l=1

∣
∣
∣θ̂l − θl0

∣
∣
∣

)

·
∣
∣
∣Σ

−1Σ
√

n
(

θ̂ − θ0

)∣
∣
∣

≤
(

C (2k − 3)2

2

2k−3∑

l=1

∣
∣
∣θ̂l − θl0

∣
∣
∣

)

·
∥
∥Σ−1

∥
∥

2
·
∣
∣
∣Σ

√
n
(

θ̂ − θ0

)∣
∣
∣ .

The second inequality follows from |θ̂m−θm0| ≤ |θ̂−θ0|. The spectral norm,

denoted by ‖ · ‖2, is the consistent matrix norm of the Euclidean norm. Due

to the consistency of θ̂, the leading term converges to zero and, together with

Lemma 8, we obtain
∣
∣
∣
∣

1√
n
UT (θ0) − Σ

√
n
(

θ̂ − θ0

)
∣
∣
∣
∣
≤ εn ·

∣
∣
∣Σ

√
n
(

θ̂ − θ0

)∣
∣
∣ .

14



Theorem 10.1 from Billingsley (1961) ensures Σ
√

n
(

θ̂ − θ0

)
d−−−→

n→∞
N (0,Σ).

And with the Continuous Mapping Theorem, we finally obtain

√
n
(

θ̂ − θ0

)
d−−−→

n→∞
N
(

Σ−10,Σ−1Σ
(
Σ−1

)′
)

= N
(
0,Σ−1

)
. �

Clearly, the asymptotic normality of the estimate vector may be used

to construct confidence ellipsoids for the parameter vector, resulting in con-

fidence sets for the rating transition probabilities comparable to those in

Christensen et al. (2004). For instance, confidence sets for the γhj can be

used for inclusion rules, in order to confirm or reject both the equality hy-

pothesis (3) and the equivalence hypothesis (see Munk and Weißbach, 1999).

For the unrestricted parameter space of Definition 1 the asymptotic variance-

covariance matrix of θ̂/
√

n as given in Theorem 3 is the inverse of Σ defined

in Lemma 4. Let us extend the notation θ′ = (q, γ ′) by

Σ−1 :=




Σq Σqγ

Σγq Σγ



 ,

where Σq ∈ R and Σγ ∈ R
(2k−4)×(2k−4). By results on the inverse of a

partitioned matrix it is Σq = σq −
∑

(h,j)∈I2
σhj, Σqγ = −Σq11×(2k−4) and

Σγ = diag(σ−1
21 , σ−1

23 , σ−1
32 , . . . , σ−1

k−1,k) + Σq1(2k−4)×(2k−4). As usual, diag de-

notes a diagonal matrix and 1 a matrix which contains 1 in every element.

By standard arguments, the elements of Σ are consistently estimated by the

Fisher information, i.e. minus the second derivatives of the log-Likelihood

given in (A.4), with inserting the estimates θ̂ of Theorem 1 and dividing by

n.

For the restricted parameter space, the second derivative of the likelihood

(1) yields as variance of (15) (see (16))

V ar(ˆ̃q) =
N••(T )

n
(
∑

(h,j)∈I1

∫ T

0
Yh(s)ds

)2 . (20)

Additionally, Wald and score tests can be derived from the asymptotic

15



normality. However, we restrict our analysis to the likelihood ratio test as

an example.

Corollary 4. Under hypothesis (11), the profile partial likelihood ratio has
an asymptotic distribution

−2 log
L(ˆ̃q,0)

L(q̂, γ̂)

n→∞∼ χ2
2k−4. (21)

Proof. Note first that, evaluated in θ̂ from Theorem 1, J T /n is a consis-

tent estimator for Σ. The reason is that for all j, l = 1, . . . , 2k − 3, a Taylor

expansion of J jl
T /n around the true θ0 is

1

n
J jl

T (θ̂) =
1

n
J jl

T (θ0) −
2k−3∑

m=1

(

θ̂m − θm0

) 1

n
Rjlm

T (θj⋆).

The second term on the right hand side converges, due to Theorem 2 and

Lemma 9, for n → ∞, to zero in a stochastic sense, so that Lemma 8 yields

the consistency.

Noting UT (θ̂) = 0, consider the Taylor expansion of log L at θ̂, evaluated

in θ0,

log L(θ0) = log L(θ̂) − 1

2

2k−3∑

j=1

2k−3∑

l=1

(

θj0 − θ̂j

)(

θl0 − θ̂l

)

J jl
T (θ̂)

+
1

6

2k−3∑

j=1

2k−3∑

l=1

2k−3∑

m=1

(

θj0 − θ̂j

)(

θl0 − θ̂l

)(

θm0 − θ̂m

)

Rjlm
T (θ†).

The last summand converges as a consequence of Theorems 2 and 3, together

with Lemma 9 and Slutsky’s lemma, for n → ∞, towards zero in a stochastic

sense. We can replace JT (θ̂)/n by Σ, because the resulting error can be

absorbed in the last summand, due to Lemma 8 and Slutsky’s lemma. For

convergence in distribution, the last summand can be ignored, again due to

Slutsky’s lemma, so that

−2 log
L(θ0)

L(θ̂)
≈ √

n
(

θ̂ − θ0

)′
Σ
√

n
(

θ̂ − θ0

)

.
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Let diagonal matrix Λ contain the (positive) eigenvalues of Σγ and let Γ

be the matrix of the respective eigenvectors, such that Σ1/2
γ := ΓΛ1/2Γ′.

Standard arguments of the profile likelihood ratio yield, with notation I as

the identity matrix:

−2 log
L(ˆ̃q,0)

L(q̂, γ̂)
≈
(√

nγ̂
)′

Σ−1
γ

(√
nγ̂
)

=
(

Σ−1/2
γ

√
nγ̂
)′ (

Σ−1/2
γ

√
nγ̂
)

.

Theorem 3 and the continuous mapping theorem result in Σ−1/2
γ

√
nγ̂

H0∼
N (0, I), for n → ∞. �

3.2. Time-Stationarity

The null hypothesis for time-stationarity in Definition 2 is

H0 : δhj2 = . . . = δhjb = 0 ∀j 6= h, h 6= k.

Theorem 1 becomes Theorem 3 of Weißbach and Walter (2010). The

restricted estimator obviously is q̂hj = Nhj(T )/
∫ T

0
Yh(t)dt. The unrestricted

is for l = 2, . . . , b

˜̂qhj =
Nhj(t

−
1 )

∫ t1
0

Yh(t)dt
and δ̂hjl =

Nhj(t
−
l ) − Nhj(t

−
l−1)

∫ tl
tl−1

Yh(t)dt
− ˜̂qhj.

For Theorem 2 there is no analogue in Weißbach and Walter (2010), it

is an assumption there. However, as in the analysis of state-stationaritythe

proof follows from Aitchison and Silvey (1958), the uniqueness of the estima-

tor from the adapted version of Theorem 1, and adapted versions of Lemmas

1 and 5 to 9. Theorem 3 and Corollary 4 are the alteration of Theorem 1 in

Weißbach and Walter (2010) and Corollary 2, respectively.

4. Simulations

The finite sample properties of the likelihood ratio test on state-stationarity

developed in Corollary 4 are now studied in a Monte Carlo simulations. Size
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and power are studied under conditions that will be realistic for the applica-

tion Section 5. Furthermore, the approximation of the parameter estimate

with the Gaussian distribution in Theorem 3 is assessed.

The path t 7→ X(t, ω), ω ∈ Ω of a Markov process from Definition 1

has transition times J0 := 0, Jn+1 := inf {t ≥ Jn : Xt 6= XJn
} , n ∈ N0, with

inf ∅ = ∞. Define according durations (see also Figure 1)

Dn :=







Jn − Jn−1, falls Jn−1 < ∞

∞, sonst

, n ∈ N. (22)

-

-� -� -� -� -� �

D1 D2 D3 D4 D5 D6

J0 = 0 J1 J2 J3 J4 J5
t

Xt(ω)

5

4

3

2

1 b

r b

r b

r b

r b

r

Figure 1: Transition times Ji and durations Di′ of Markov process X with k = 5 states

and intensities of Definition 1

The embedded discrete-time Markov chain Z := (Zi, i ∈ N0) with Zi :=

XJi
, i ∈ N0 allows for an alternative representation of the markov process

X. A matrix Q ∈ R
k×k is the generator of X if and only if the durations

D1, . . . , Di, conditional on Z0, . . . , Zi−1 are independent exponentially dis-

tributed random variables with parameters −qY0Y0 , . . . ,−qYi−1Yi−1
and the
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embedded markov chain Z has transition matrix Π = (πhj)h,j=1,...k with en-

tries

πhj :=







− qhj

qhh
, if h 6= j and qhh 6= 0

0, if h 6= j and qhh = 0

and πhh is zero if qhh 6= 0 or one otherwise. Hence for a Markov process

starting in h0 6= k a path can be simulated on [0, T ] as follows.

1. Set i := 1.

2. Draw the duration in state hi−1 as exponentially distributed Di with

parameter

−qhi−1hi−1
=







q12, if hi−1 = 1

qhi−1,hi−1−1 + qhi−1,hi−1+1, if hi−1 ∈ {1, . . . , k − 1}
.

3. If
∑i

i′=1 Di′ ≤ T , draw Bernoulli-distributed random variable that as-

sumes value 1 with probability −qhi−1,hi−1+1/qhi−1hi−1
. If the value be-

comes 1, the process migrates in time
∑n

i′=1 Di′ to state hi := hi−1 + 1,

and otherwise to state hi := hi−1 − 1. If
∑i

i′=1 Di′ > T stop.

4. If hi 6= k, set i := i+1 and go to 2. If hi = k stop, state k is absorbing.

Repeating the algorithm results in n sample paths {X1, . . . ,Xn}, where

sample of n = 100, n = 1, 000 and n = 10, 000 observations are studied. The

number of processes starting in the the k − 1 states are equal. The follow-

up period is T = 5 and T = 10 years. Size and power are calculated as

percentage of likelihood ratio tests rejecting among nsim = 10, 000 simulated

samples. Consider now a simulation for a one-parameter generator Q0 with

five state and q0
hj ≡ 0.076 for all (h, j) ∈ I1. The magnitude of the generator

entries are taken from an empirical study on rating transitions of Weißbach

et al. (2009). The processes follow Definition 1 and have γ0
hj = 0. In view of
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Figure 2: Quantile-Quantile plots for unrestricted estimator q̂0 of q0 for sample sizes of

n = 100 observed over T = 10 years (left) and n = 1, 000 observed over T = 5 years

(middle) and quantile-quantile plot for restricted estimator ˆ̃q0 for sample size n = 1, 000

observed over T = 5 years (right)

Theorems and 2 and 3, consistency and normality of the estimator need finite-

sample assessment. When estimating in the unrestricted parameter space

the components of
√

n
(

θ̂ − θ0

)

are compared with the Gaussian quantiles

in a quantile-quantile plot. Figure 2 displays a small sample and a medium

sample size scenario for θ̂1 = q̂0. The sample size of n = 1, 000 observed over

T = 5 years will resemble our application later on. Especially the fit of the

normal approximation for n = 1, 000 is already good. The consistency of

the estimator follows from the decrease in deviation visible from the y-axis

label. The increase in efficiency for information that the γ0
hj are zero is also

documented. The left panel of Figure 2 the quantile-quantile plot for the

restricted estimation ˆ̃q0 for n = 1, 000 observations is displayed. Again the

normal approximation is good, and compared the unrestricted estimation

for 1, 000 observations (middle panel of Figure 2) the decrease in deviation

is visible. The comparison is extended to Table 1 where the mean of the

estimates is derived from the simulation. The restricted results for ˆ̃q0 are

compared to q̂0 and q̂0 + γ̂0
21, results for q̂0 + γ̂0

23, q̂0 + γ̂0
32, q̂0 + γ̂0

34, q̂0 + γ̂0
43

and q̂0 + γ̂0
45 are very similar to those for q̂0 + γ̂0

21. The decrease in standard

error is perceptible, because, of course more transitions contribute to the

estimation of ˆ̃q0 as compared to q̂0 or q̂0 + γ̂0
hj.
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Table 1: Simulation average of estimates for generator Q̂0 in restricted and unrestricted

parameter space (with simulated standard errors)

Q̂0 Period Sample size

n = 100 n = 1, 000 n = 10, 000

restricted parameter space

ˆ̃q0 T = 5 0.0759±0.0096 0.0760±0.0030 0.0760±0.0010

T = 10 0.0760±0.0069 0.0760±0.0022 0.0760±0.0007

unrestricted parameter space

q̂0 T = 5 0.0769±0.0248 0.0762±0.0078 0.0760±0.0024

T = 10 0.0767±0.0178 0.0760±0.0056 0.0760±0.0017

q̂0 + γ̂0
21 T = 5 0.0772±0.0255 0.0761±0.0078 0.0760±0.0025

T = 10 0.0769±0.0180 0.0762±0.0055 0.0760±0.0018

The generator maybe also be used to assess the size of the likelihood

ratio test of Corollary 4. However, to assess also power and other aspect like

what happens when the parameter in the alternative becomes close to the

hypothesis we consider twelve generators. For instance the generator with

five states

Q1 :=














0.019 0 0 0

0.01 0.072 0 0

0 0.015 0.11 0

0 0 0.106 0.2

0 0 0 0














follows Definition 1 and has γ1
hj 6= 0, hence allows to assess the power of the

test. The first six generators describe processes with k = 5 states, the second

six generators belong to a three-states model. The intensities of generators

Q0∗ and Q6 up to Q10 derive from the generators Q0 to Q5 each by coarsen-

21



ing, states 1 and 2 as well as 3 and 4 are combined. Generators Q0, Q5, Q0/2

and Q10 determine a one-parameter model, in the generators Q1 to Q4 and

Q6 to Q9 at least two entries are different. The intensities in the generators

Q3, Q4, Q5, Q8, Q9 and Q10 result from dividing the entries of the generators

Q1, Q2, Q0, Q6, Q7 and Q0/2 by two. The entries of the generators Q2, Q4,

Q7 and Q9 are chosen such that all transitions intensities qhj, (h, j) ∈ I1,

but one coincide. These processes are ‘closer´ to the one-parameter model

than the others. For completeness it suffices to report the generators Q3 and

Q0. There is q3
hj = 0.076, (h, j) ∈ I1 \ {(3, 2)} and q3

32 = 0.038 whereas

q0
hj = 0.076 for all (h, j) ∈ I1. The nominal level for all tests is α = 5%. For

Table 2: Size of likelihood ratio test for one-parameter generators, sample sizes n = 100,

n = 1.000 and n = 10.000 and observation periods T = 5 and T = 10 years

Generator Period Sample size

n = 100 n = 1, 000 n = 10, 000

k = 5

Q0 T = 5 0.054 0.054 0.050

T = 10 0.053 0.053 0.050

Q5 T = 5 0.069 0.049 0.050

T = 10 0.058 0.049 0.047

k = 3

Q0/2 T = 5 0.053 0.052 0.053

T = 10 0.053 0.054 0.049

Q10 T = 5 0.066 0.048 0.046

T = 10 0.055 0.048 0.048

virtually all situations depicted in Table 2 the actual size is close to the nom-

inal level of 5%. The exception for generator Q5 where 100 entities observed
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over 5 years result in a size of 6.9% can be explained by the fact that in this

scenario only 4.6 transitions per sample occur on average over the 10,000

simulations. Table 3 shows that the test is consistent, with increasing sam-

Table 3: Power of LR test for different alternatives, sample sizes n = 100, n = 1, 000 and

n = 10, 000 and observation periods T = 5 and T = 10 years

Generator Period Sample size

n = 100 n = 1, 000 n = 10, 000

k = 5

Q1 T = 5 1.000 1.000 1.000

T = 10 1.000 1.000 1.000

Q2 T = 5 0.191 0.990 1.000

T = 10 0.361 1.000 1.000

Q3 T = 5 0.979 1.000 1.000

T = 10 1.000 1.000 1.000

Q4 T = 5 0.134 0.808 1.000

T = 10 0.190 0.992 1.000

k = 3

Q6 T = 5 0.995 1.000 1.000

T = 10 1.000 1.000 1.000

Q7 T = 5 0.231 0.988 1.000

T = 10 0.395 1.000 1.000

Q8 T = 5 0.903 1.000 1.000

T = 10 0.996 1.000 1.000

Q9 T = 5 0.153 0.836 1.000

T = 10 0.227 0.983 1.000

ple size, longer observation period and increasing intensities urge the power

towards one. Furthermore, generators Q2, Q4, Q7 and Q9 as compared Q1,
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Q3, Q6 and Q8 show that power decreases when the alternative approaches

the hypothesis. The comparison for the state numbers k = 3 and k = 5

suggests that number of states has no impact on the test. Combining states

1 and 2 as well as 3 and 4 increases the number of entities at risk in the

new two states, which should, ceteris paribus, increase the power because

the number of transitions should increase. However, the coarser states are

associated with intensities which are only half as large. This compensates

the increase in power completely. On average the results from the simulation

are satisfactory with respect to power.

Simulations for testing time-stationarity in the model of Section 3.2 are

presented in Weißbach and Walter (2010).

5. Analyzing Credit Ratings

In banks, transition probabilities, especially for the transition to default,

should be estimated with internal default data (see Basel Committee on

Banking Supervision, 2004, paragraph 461ff). WestLB AG granted access to

an internal system of credit ratings with 20 non-default rating classes and one

default class, so that k = 21. The rating histories of 3, 699 counterparts have

been observed over ten years from 1997 until 2006. Internal bank ratings

are particularly necessary for counterparts without an external rating (see

Kiefer, 2010). An early analysis revealed that the internal credit ratings are

inhomogeneous, mainly attributable to the first-year behavior (see Weißbach

and Walter, 2010). Hence, shifting the time origin to the beginning of the

second year yields a homogeneous process. Transitions in the data set that

cross several rating classes are classified as missing information, any rating

history with such a defect is deleted from the data. In the end, 1,220 rating

histories remain, migrating 957 times in total to an adjacent rating class. The

average observation time per obligo is 1.6 years. By (20) the standard error is

given as 0,016. The internal rating process starts at the credit origination, so
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Table 4: LR test for the one-parameter model (11) from Corollary 4.

k 2k − 4 −2 log LR χ2
2k−4,0.95 p-value

21 38 56.26 53.38 0.028

that the intra-temporal dependence for rating changes, counted in quarters,

found for instance in Koopman and Lucas (2008), is avoided. The random

entry to the portfolio samples histories, independently of the credit cycle.

Assumptions (A1) and (A2) are fulfilled.

The LR test of Corollary 4 is performed in Table 4. The p-value of 0.028

reveals that the rating process should not be considered as one-parametric.

However, given the large data set and the well-known finding that any econo-

metric model must be rejected if there is a sufficiently large data set, we find

the goodness of the one-parameter model remarkable. Their is one additional

aspect. The LR-test statistic −2 log LR is only asymptotical. In a Monte

Carlo simulation, we assess its finite sample properties, subject to the condi-

tions of the data. We study the Type I error, using the generator estimated

with ˜̂q. We simulate 1,220 rating histories in each of 10,000 simulation loops.

Each data set has the same average observation time of 1.6 years and is

distributed over the rating classes at credit origination with the empirical

distribution of the portfolio. The bootstrapped distribution of −2 log LR, as

both a histogram and as a kernel estimate, is given in Figure 3 and compared

to the χ2
38-density.

The comparison with the χ2-distribution reveals a good fit in general.

However, the simulated 95%-quantile of 55.6 is slightly larger than the χ2
2k−4

quantile of 53.4 and is now even closer to the test statistic of 56.26. Further

simulations of the power for various generators did not reveal much new. As

expected for a one-parameter model, the power of 1 is reached quickly, once
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Figure 3: The asymptotic (dashed line) and the bootstrapped distribution of LR test

statistic (histogram with solid line as kernel smoothing)

the sample size n exceeds 100. Changing the length of the study T and the

number of rating classes k, does not result in a new assessment.

6. Discussion

For the description of rating transitions by means of a Markov process,

we assume that rating state have similar widths. With the economic under-

standing that ratings should change state by one (and only one) grade at a

time, we propose a one-parametric structure for the process generator. This

implies a metric on the set of rating classes. A likelihood ratio test for the

one-parametric distribution relies on the theory of counting processes. The
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analysis of credit ratings reveals infrequent rating activity to be an obsta-

cle to the continuous-time model. Rating transitions not to the neighboring

rating class, for instance defaults, yield a large share of missing data. Even

though we rule them out, it must be admitted that they are not strictly

uninformative; rating transitions to remote classes imply that the transition

to the adjacent class have already occurred. However, the magnitude of the

bias must still be quantified.

Of course, many generalizations to multi-parameter models are conceiv-

able. The case of a piecewise time-stationary model is one example studied

here shortly. Additionally, it is possible that downgrades and upgrades do

not behave equivalently so that their intensities should not be forced to be

equal. However, considerable care must be exercised, because any new pa-

rameters will decrease the precision of established parameters. Additionally,

it is not clear whether a better model would need to be Markovian, given

the empirical evidence in favor of non-Markovian behavior. Dependence and

covariates are additional sources for new parameters. Even if one wants to re-

strict the analysis to metric rating-state models, the proposed one-parameter

model is not unique, and other metric models are easily constructed. The

search for the next parameter is hence not an obvious process.
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Appendix A. Proof of Lemmas

Appendix A.1. Lemma 1

For the first partial derivatives of λhj(t; θ), we have

∂λhj(t; θ)

∂q
= Yh(t), (h, j) ∈ I1,

∂λhj(t; θ)

∂γhj

= Yh(t), (h, j) ∈ I2,

∂λhj(t; θ)

∂γrs

= 0, (h, j) ∈ I1, (r, s) ∈ I2, (h, j) 6= (r, s) .

All second and third derivatives of λhj(t; θ) with respect to q and γrs, (r, s) ∈
I2, exist and are zero. The partial derivatives of

log λhj(t; θ) =







log q + log Y1(t), if (h, j) = (1, 2)

log (q + γhj) + log Yh(t), if (h, j) ∈ I2

are

∂ log λhj(t; θ)

∂q
=







1
q
, if (h, j) = (1, 2)

1
q+γhj

, if (h, j) ∈ I2

,

∂ log λhj(t; θ)

∂γhj

=
1

q + γhj

, (h, j) ∈ I2,

∂ log λhj(t; θ)

∂γrs

= 0, (h, j) ∈ I1, (r, s) ∈ I2, (h, j) 6= (r, s) ,

(A.1)

∂2 log λhj(t; θ)

(∂q)2 =







− 1
q2 , if (h, j) = (1, 2)

− 1

(q+γhj)
2 , if (h, j) ∈ I2

,

∂2 log λhj(t; θ)

(∂γhj)
2 =

∂2 log λhj(t; θ)

∂q∂γhj

= − 1

(q + γhj)
2 , (h, j) ∈ I2,
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∂3 log λhj(t; θ)

(∂q)3 =







2
q3 , if (h, j) = (1, 2)

2

(q+γhj)
3 , if (h, j) ∈ I2

,

∂3 log λhj(t; θ)

(∂γhj)
3 =

∂3 log λhj(t; θ)

(∂q)2 ∂γhj

=
∂3 log λhj(t; θ)

∂q (∂γhj)
2

=
2

(q + γhj)
3 , (h, j) ∈ I2.

(A.2)

All other second and third derivatives of log λhj(t; θ), with respect to q and

γrs, exist and are zero. Finally, for the partial derivatives of log L(θ)

∂ log L(θ)

∂q
=

N12(T )

q
+

∑

(h,j)∈I2

Nhj(T )

q + γhj

−
∑

(h,j)∈I1

∫ T

0

Yh(s)ds,

∂ log L(θ)

∂γhj

=
Nhj(T )

q + γhj

−
∫ T

0

Yh(s)ds, (A.3)

∂2 log L(θ)

(∂q)2 = −




N12(T )

q2
+

∑

(h,j)∈I2

Nhj(T )

(q + γhj)
2



 ,

∂2 log L(θ)

(∂γhj)
2 =

∂2 log L(θ)

∂q∂γhj

= − Nhj(T )

(q + γhj)
2 ,

(A.4)

∂3 log L(θ)

(∂q)3 =
2N12(T )

q3
+

∑

(h,j)∈I2

2Nhj(T )

(q + γhj)
3 and

∂3 log L(θ)

(∂γhj)
3 =

∂3 log L(θ)

∂q (∂γhj)
2 =

∂3 log L(θ)

(∂q)2 ∂γhj

=
2Nhj(T )

(q + γhj)
3 .

All other second and third partial derivatives of log L(θ) with respect to q

and γrs, exist and are zero. �

Appendix A.2. Lemma 2

Together with (A.1) it holds for all (h, j) , (r, s) ∈ I2

∑

(µ,ν)∈I1

(
∂

∂γhj

log λµν(t; θ0)

)(
∂

∂γrs

log λµν(t; θ0)

)

λµν(t; θ0)

=







0, if (h, j) 6= (r, s)

Yh(t)
q0+γhj0

, if (h, j) = (r, s)

,
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proving (2). In order to prove (3)-(5), we apply the theorem of Gill (1983).

The four conditions that are required for the theorem to hold require that

(A1) holds and that Yn(t) ≤ n. The remaining details for the proof of Lemma

2 are omitted here for the reason of space. �

Appendix A.3. Lemma 3

Inserting (A.1) for all ε > 0, (6) results in

1

n

∫ T

0

1

q2
0

· 1
(

1√
n · q0

> ε

)

· q0 · Y1(t)dt

+
1

n

∫ T

0

∑

(µ,ν)∈I2

1

(q0 + γµν0)
2 · 1

(
1√

n · (q0 + γµν0)
> ε

)

· (q0 + γµν0) · Yµ(t)dt

=

∫ T

0

Y1(t)

n · q0

· 1
(

1√
n · q0

> ε

)

dt

+
∑

(µ,ν)∈I2

∫ T

0

Yµ(t)

n · (q0 + γµν0)
· 1
(

1√
n · (q0 + γµν0)

> ε

)

dt =: (∗)

and for all (h, j) ∈ I2, (7) becomes

1

n

∫ T

0

1

(q0 + γhj0)
2 · 1

(
1√

n · (q0 + γhj0)
> ε

)

· (q0 + γhj0) · Yh(t)dt

=

∫ T

0

Yh(t)

n · (q0 + γhj0)
· 1
(

1√
n · (q0 + γhj0)

> ε

)

dt =: (∗∗)

Because of Yh ≤ n

0 ≤ (∗) ≤
T · 1

(
1√
n·q0

> ε
)

q0

+
∑

(µ,ν)∈I2

T · 1
(

1√
n·(q0+γµν0)

> ε
)

q0 + γµν0

n→∞−−−→ 0

and 0 ≤ (∗∗) ≤ T/(q0 + γhj0) ·1(1/(
√

n · (q0 + γhj0) > ε)
n→∞−−−→ 0. Especially,

∫ T

0

Y1(t)

n · q0

· 1
(

1√
n · q0

> ε

)

dt

+
∑

(µ,ν)∈I2

∫ T

0

Yµ(t)

n · (q0 + γµν0)
· 1
(

1√
n · (q0 + γµν0)

> ε

)

dt
P−−−→

n→∞
0
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and
∫ T

0

Yh(t)

n · (q0 + γhj0)
· 1
(

1√
n · (q0 + γhj0)

> ε

)

dt
P−−−→

n→∞
0.

�

Appendix A.4. Lemma 4

With n = 2k−4, define positive, real-valued constants a1 := σ21, . . . , an =

σk−1,k and b := σq −
∑n

i=1 ai. By induction, we can show that for all dimen-

sions l ∈ N with l ≤ n that |Σl| = b ·∏l
j=1 aj +

∑n
i=l+1

(
∏l

j=1 aj

)

ai > 0,

and that Σ is hence positive definite because the subdeterminants are posi-

tive. The induction step uses the fact that |Σl| is expanded in the last row.

The two resulting summands contain a determinant of a somewhat peculiar

matrix that can easily be expanded by its last column. �

Appendix A.5. Lemma 5

The proof is similar to that of Lemma 4.7 in Weißbach and Walter (2010).

Appendix A.6. Lemma 6

Proof. In order to prove that the score statistic, divided by n, approaches

zero, let us consider the gradient of the log-likelihood (1) for information

only up to time in 0 ≤ t ≤ T . By using the explicit representations of

∂λµν(t; θ)/∂θj and ∂ log λµν(t; θ)/∂θj, given in the proof of Lemma 1, and

∂ log λµν(s; θ)/∂θj = 1
λµν(s;θ)

· ∂
∂θj

λµν(s; θ) one can exchange the order of

differentiation and integration, so that

U j
t (θ0) =

∫ t

0

∑

(µ,ν)∈I1

∂

∂θj

log λµν(s; θ0) (dNµν(s) − λµν(s; θ0)ds) .

Due to a generalization of the Doob-Meyer decomposition (see Andersen

et al., 1997, pg. 67), Nhj(t) can be formulated as the sum of a compen-

sator Λhj(t) :=
∫ t

0
λhj(s)ds and a local martingale Mhj(t) and we can write
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U j
t (θ0)/n for any 0 ≤ t ≤ T as







∫ t

0
1

n·q0
dM12(s) +

∑

(µ,ν)∈I2

∫ t

0
1

n·(q0+γµν0)
dMµν(s), if θj = q,

∫ t

0
1

n·(q0+γuv0)
dMuv(s), if θj = γuv.

(A.5)

The integrands are, for a fixed n, deterministic and constant in t, thus consti-

tuting particularly predictable processes. As a result of multivariate counting

process theory, the martingale transform U j
t (θ0)/n is, for each 0 ≤ t ≤ T , a

local martingale with the predicable variation process 〈U j(θ0)/n〉(t) that is







∫ t

0
1

(n·q0)2
λ12(s; θ0)ds +

∑

(µ,ν)∈I2

∫ t

0
1

(n·(q0+γµν0))2
λµν(s; θ0)ds, if θj = q

∫ t

0
1

(n·(q0+γuv0))2
λuv(s; θ0)ds, if θj = γuv.

This is (
∫ t

0

∑

(µ,ν)∈I1

(
∂

∂θj
log λµν(s; θ0)

)2

λµν(s; θ0)ds)/n2, which, multiplied

by n, is known from Lemma 2 to converge. Hence, the predicable variation

process itself converges to zero for large n. Applied to the inequality of

Lenglart (1977), namely that for all η > 0 and all ε > 0, it holds that

P

(

sup
t∈[0,T ]

∣
∣
∣
∣

1

n
U j

t (θ0)

∣
∣
∣
∣
> η

)

≤ ε

η2
+ P

(〈
1

n
U j(θ0)

〉

(T ) > ε

)

,

the last summand is asymptotically negligible. The result follows, because

ε/η2 may be arbitrarily small. �

Appendix A.7. Lemma 7

Multiplying (A.5) by
√

n yields, for all j = 1, . . . , 2k−3, that U j
t (θ0)/

√
n

is
∫ t

0
dM12(s)/(

√
n ·q0)+

∑

(µ,ν)∈I2

∫ t

0
dMµν(s)/(

√
n · (q0 + γµν0)) if θj = q and

equals
∫ t

0
dMuv(s)/(

√
n · (q0 + γuv0)) if θj = γuv. As above, U j

t (θ0)/
√

n is a local
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martingale, and has, because of (A.1), the predicable covariation process
〈

1√
n

U j(θ0),
1√
n

U l(θ0)

〉

(t)

=
1

n

〈
∑

(µ,ν)∈I1

∫ ·

0

∂

∂θj

log λµν(u; θ0)dMµν(u),

∑

(η,ρ)∈I1

∫ ·

0

∂

∂θl

log ληρ(u; θ0)dMηρ(u)

〉

(t)

=
1

n

∑

(µ,ν)∈I1

∫ t

0

(
∂

∂θj

log λµν(u; θ0)

)

·
(

∂

∂θl

log λµν(u; θ0)

)

· λµν(u; θ0)du.

The rule 〈
∫ ·

0
HdM〉(t) =

∫ t

0
H(s)diag(λ(s))H′(s)ds yields the last equality.

For t = 0, this is 0 and for t = T , one has, due to Lemma 2






= 0, if θj = γmr, θl = γuv, (m, r) 6= (u, v)

P−−−→
n→∞

σuv, if θj = θl = γuv or θj = q, θl = γuv

P−−−→
n→∞

σq, if θj = θl = q

.

Hence
〈

1√
n
U(θ0)

〉

(0)
P−−−→

n→∞
0 and

〈
1√
n
U(θ0)

〉

(T )
P−−−→

n→∞
Σ,

in a stochastic sense and component-wise. Together with Lemma 3, (A.1)

and Rebolledo’s theorem with t ∈ {0, T} Lemma 7 follows. �

Appendix A.8. Lemma 8

As in the proof of Lemma 6, integration and second differentiation can be

interchanged, so that ∂2 log L(θ0)/(∂θj∂θl), divided by −n, can be formulated

as

1

n

∫ T

0

∑

(µ,ν)∈I1

∂2

∂θj∂θl

λµν(s; θ0)ds − 1

n

∫ T

0

∑

(µ,ν)∈I1

∂2

∂θj∂θl

log λµν(s; θ0)dMµν(s)

− 1

n

∫ T

0

∑

(µ,ν)∈I1

(
∂2

∂θj∂θl

log λµν(s; θ0)

)

· λµν(s; θ0)ds.
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Omitting the second summand results in






0, if θj = γmr, θl = γuv, (m, r) 6= (u, v) ,

∫ T

0
Yu(s)

n·(q0+γuv0)
ds, if θj = θl = γuv or θj = q, θl = γuv,

∫ T

0
Y1(s)
n·q0

+
∑

(µ,ν)∈I2

Yµ(s)

n·(q0+γµν0)
ds, if θj = θl = q.

Here, as in Lemma 2, the second case
P→ σuv and the third case

P→ σq. For

the second summand, we have






0, if θj = γmr, θl = γuv, (m, r) 6= (u, v) ,

∫ T

0
−1

n·(q0+γuv0)2
dMuv(s), if θj = θl = γuv oder θj = q, θl = γuv,

∫ T

0
−1
n·q2

0
dM12(s)

+
∑

(µ,ν)∈I2

∫ T

0
−1

n·(q0+γµν0)2
dMµν(s), if θj = θl = q.

The same arguments as in the proof of Lemma 6 complete the proof

1

n

∫ T

0

∑

(µ,ν)∈I1

∂2

∂θj∂θl

log λµν(s; θ0)dMµν(s)
P−−−→

n→∞
0.

�

Appendix A.9. Lemma 9

As in the last-but-one proof, integration and third differentiation can be

interchanged by using Lemma 1. For all j, l, m = 1, . . . , 2k − 3 holds

∂3 log L(θ)

∂θj∂θl∂θm

=

∫ T

0

∑

(µ,ν)∈I1

∂3

∂θj∂θl∂θm

log λµν(t; θ)dNµν(t)

−
∫ T

0

∑

(µ,ν)∈I1

∂3

∂θj∂θl∂θm

λµν(t; θ)dt.

Together with (8) and ∂3λµν(t; θ)/(∂θj∂θl∂θm) ≡ 0 from the proof of Lemma

1, one has, for all n ∈ N, all j, l, m = 1, . . . , 2k − 3, and θ ∈ Θ0 by means of

Lemma 5
∣
∣
∣
∣

1

n
Rjlm

T (θ)

∣
∣
∣
∣
=

∣
∣
∣
∣

1

n
· ∂ log L(θ)

∂θj∂θl∂θm

∣
∣
∣
∣
≤
∫ T

0

∑

(µ,ν)∈I1

1

n
HµνdNµν(t).
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Along the arguments of Lemma 6,
∫ T

0

∑

(µ,ν)∈I1
Hµν/ndNµν(t) is the optional

variation process of the local martingale
∫ ·

0

∑

(µ,ν)∈I1

√

Hµν/ndMµν(t), eval-

uated in T . The martingale has a predictable variation process
∫ ·

0

∑

(µ,ν)∈I1
Hµνλµν(t; θ0)/ndt. Evaluated in T , the predicable variation con-

verges by (9) in Lemma 5 towards C and, see (10), the assumptions of Re-

bolledo’s theorem are thus fulfilled. The optional variation converges towards

C. �
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