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Abstract 

Plug-in electric vehicles (PEVs) are expected to balance the fluctuation of re-
newable energy sources (RES). To investigate the contribution of PEVs, the 
availability of mobile battery storage and the control mechanism for load man-
agement are crucial. This study therefore combined the following: a stochastic 
model to determine mobility behavior, an optimization model to minimize vehicle 
charging costs and an agent-based electricity market equilibrium model to esti-
mate variable electricity prices. The variable electricity prices are calculated 
based on marginal generation costs. Hence, because of the merit order effect, 
the electricity prices provide incentives to consume electricity when the supply 
of renewable generation is high. Depending on the price signals and mobility 
behavior, PEVs calculate a cost minimizing charging schedule and therefore 
balance the fluctuation of RES. The analysis shows that it is possible to limit the 
peak load using the applied control mechanism. The contribution of PEVs to 
improving the integration of intermittent renewable power generation into the 
grid depends on the characteristic of the RES generation profile. For the Ger-
man 2030 scenario used here, the negative residual load was reduced by 15 to 
22 percent and the additional consumption of negative residual load was be-
tween 34 and 52 percent. 
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Plug-in electric vehicles, demand-side management, variable prices, intermittent 
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1 Introduction 

Integrating high shares of fluctuating power generation into the electricity sys-
tem requires flexible power plants, storage, power distribution via a reliable 
power grid and greater flexibility on the demand side. In terms of demand re-
sponse [1] or the control of distributed load and generation units, we distinguish 
between direct control and indirect control. Direct control or centralized optimal 
charging implies that a service provider can shut down or reduce loads and con-
trol decentralized generation units directly. Examples include the direct load 
control of residential water heaters [2] and air conditioning loads in California, or 
of virtual power plants such as the “Dezentrales Energie Management System” 
(DEMS) of the German Siemens AG. The advantages of such direct control are 
prompt and predictable reactions to control signals. Drawbacks arise from re-
duced consumer acceptance in the case of controlling loads in private homes or 
vehicles and the communication and optimization efforts involved in controlling 
a large number of small storage or generation devices with varying consumer 
needs and providing mobility as primary purpose of use. Indirect control uses 
price signals to manage loads or generation units. In this case, the service pro-
vider sends price signals and the consumer (or an automatically controlled de-
vice programmed by the consumer) decides to either reduce or shift the load 
when the price is high, or pay the higher price. In this case, consumer accep-
tance should be higher than is the case for direct control [3]. Disadvantages 
arise from the possibility of avalanche effects and the necessity to predict the 
reaction of consumers to different price signals, which yields the possibility of 
forecasting errors. However, since consumer acceptance seems to be crucial 
for the feasibility of managing mobility-related systems, an indirect energy man-
agement system is considered the most promising option to control plug-in elec-
tric vehicles (PEVs). Hourly prices in combination with smart devices (devices 
such as thermostats or electric vehicles that optimize their demand depending 
on a control signal) are an adequate tool to involve consumers in the electricity 
markets [4]. The contribution of PEVs to improving the integration of intermittent 
renewable energy sources (RES) into the grid depends on technical issues 
such as storage capacity, grid connection power, and driving behavior, which 
together define the energy available for load shifting, as well as social and eco-
nomic aspects which influence the incentive for consumers to participate in the 
load-shifting program. In this paper, we focus on modeling technical issues and 
driving behavior (see section 2.3). Several recent studies discuss the impact of 
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PEVs on power systems but do not consider the impact of RES on load shifting 
strategies [5] [6] [7], the dynamic mobility behavior and/or load shifting mecha-
nisms [8] [9].  

For the analysis presented here, the agent-based electricity market equilibrium 
model PowerACE (see section 2) is used to determine dynamic prices for a 
German 2030 scenario with a high share of intermittent generation (for the as-
sumptions, see section 3). The intermittency of the renewable generation af-
fects the price signals (see section 4) used for the distributed optimization of 
PEVs charging schedules. Hence, PEVs preferentially consume electricity when 
the supply of intermittent RES is high. Avalanche effects that can occur be-
cause of the similar optimization results of many devices are discussed in sec-
tion 5. In a case study for Germany, the effect of demand-side management 
with PEVs on the residual electricity load is evaluated and their contribution to 
integrating intermittent RES in the grid is shown (section 6).          

The present work is closely related to the Volkswagen and E.ON1

2 Simulation Approach 

 field test 
“Flottenversuch Elektromobilität” funded by the German Federal Ministry for the 
Environment, Nature Conservation and Nuclear Safety (BMU). In the field test, 
price signals generated with the PowerACE model are sent to Volkswagen plug-
in hybrid electric vehicles (PHEVs). Further, the same algorithms applied to op-
timize the charging behavior of the vehicles in dependence on price signals are 
also used in the simulation. In this way, consumer and real-life driving aspects 
will be able to be addressed in the future.     

The effects of PEVs on the electricity system are investigated using the market 
equilibrium model PowerACE in combination with indirect energy management 
and stochastic modeling of driving behavior. On the demand side, static and 
dynamic electricity demand as well as grid losses are considered on an hourly 
basis over one year of simulation. The dynamic demand is related to distributed 
devices that are able to optimize their market behavior, such as night storage 
heaters, electric vehicles or other shiftable loads.  

                                            
1  E.ON is utility enterprise 
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On the supply side, RES, conventional power plants and storage technologies 
are considered. Details of the PowerACE model can be retrieved from [10] and 
an overview of the model is given in Figure 1.  

Figure 1:  Structure of the PowerACE model, Source: Fraunhofer ISI 

 

 

2.1 Demand-side management agent 

Electric vehicles are implemented as part of a dynamic demand agent. The dy-
namic demand agent is structured in pools, groups and devices. A pool bundles 
several or at least one group and the group bundles several or at least one de-
vice2

2.2
. In this study, a device represents a PEV. The group level is used for re-

gionalization and grid restrictions (see section ). The device level represents 
all vehicle-specific information, including driving behavior and price-dependent 
optimization (see section 2.2). Vehicle pools administer data for the groups and 
devices belonging to the specific pool. Each pool acts as an independent agent 
and can place demand and supply bids in the spot market. A pool adds up the 
expected operation od,g of all the relevant devices in the different groups G. To 
keep the model as simple as possible, the operation o of a device d in group g 
                                            
2  The structure was selected to model a general demand-side management agent which 

could not only include PEVs but also devices with thermal storage such as heat pumps and 
freezers or DSM devices without storage. Here, only PEVs are included.  
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is known at the pool level when the bid is placed in the spot market3

1 2

1 2g1 g 2

G g

gg

D D
p d,g d,gd =1 d =1

D G D
d,G d ,gd =1 g=1 d =1

O (t) = o (t) + o (t)...

...+ o (t) = o .
gn

∑ ∑
∑ ∑ ∑

. The op-
eration Op of pool p is calculated using Eq. 1: 

 (1) 

As a guidance signal for the devices participating in a pool, each pool performs 
a price forecast. The price forecast and the supply bids which result in the mar-
ket clearing price are calculated according to the marginal costs. The marginal 
electricity costs cmarginal consist of the fuel price pfuel to produce one MWh of 
electricity and the costs for the resulting CO2 emissions. The CO2 costs are 
given by the CO2 coefficient, qCO2, which defines the CO2 emitted when trans-
forming a primary energy carrier, and the CO2 price pCO2. Dividing the prices for 
fuel and CO2 by the efficiency η of a specific power plant gives the marginal 
costs: 

2 2marginal fuel co CO
1 1c = *p + *q *p .
η η

  (2) 

To calculate the supply bid (bidsupply price/capacity) of a power plant with a spe-
cific capacity, a markup factor mup is added to the marginal costs:  

supply marginal upbid = c + m / Capacity.  (3) 

The markup factor represents the margin or a markup to cover total costs. In the 
work presented here, base load power plants (on the left-hand side of the merit 
order in Figure 2) in some cases place bids below the marginal costs to avoid 
start-up operations (negative markup), and peak power plants (on the right-
hand side of the merit order in Figure 2) place bids with positive markup to 
cover the full costs of the power plant. Because of the very low costs of opera-
tion for intermittent RES, marginal electricity costs of zero are assumed. Hence, 
RES supply with priority and reduce the power required from controllable power 
plants (section 4).  

 

 

                                            
3  The pool places a price-independent bid. Hence, the bid must be always cleared. 
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Figure 2: Merit order and clearing price bids in a German 2030 scenario 

 
Simulated with the PowerACE Model; Fuel CO2 prices according to [19] Scenario A “deutlich”; installed convention 
generation capacities based on own estimations. Installed capacity: Oil 0.7 GW; Gas turbines 16.4 GW; combined gas 
and steam 10.2 (η = 45-59) and 25.6 GW (η = 60-65); coal 8.7 GW, lignite 9.2 GW; waste 0.9 GW. 

 
The 2030 market clearing prices (PowerACE) for one year (8760 h) and the 
merit order of all power plants available in the 2030 scenario (see section 3) are 
shown in Figure 2. The figure also gives a price forecast function of the mar-
ginal electricity costs over the residual load (RS) which is used to determine the 
forecast price of a pool. To calculate the residual load RS (Eq. 4), perfect fore-
sight for the inelastic electricity demand DInelastic, the exchange balance Ex and 
the generation of renewable energy sources RES are used:  

Inelastic( ) ( ) ( ) ( ) ( ).p PRS t D t Ex t O t RES t= + + −  (4) 

The expected operation of all pools OP is calculated individually for each pool 
one after the other according to Eq. 5: 

n

p-1
P,p n=1

PO (t) = O (t).
p-1∑  (5) 

The operation of the pools in which devices have already optimized their de-
mand (pool p) is known and scaled up to estimate the operation of all pools. 
Using the residual load, the pool performs a two-day forecast for the expected 
prices prforecast using Eq. 6: 

3 2
forecast,ppr (RS) = 0.0071 RS  0.4723 RS

........................  10.813 RS  10

⋅ − ⋅

+ ⋅ +
 (6) 
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for RS values greater than zero. For a RS equal zero or negative a linear corre-
lation4

The assumption that the generation of intermittent RES and the elastic demand 
is known is obviously not realistic for an actual electricity market. This method is 
used because the focus of this analysis is the indirect control of PEVs and their 
ability to integrate intermittent RES. A study discussing possible market 
organizations is presented in [11]. 

 is used.  

2.2 Vehicle-based optimization of the load profile 

The used simulation structure5

At the group level, a variable grid fee is added to the price component of the 
pool level to avoid overloading in the distributed network (see section 

 considers the superior market situation repre-
sented by the pool level and the local distribution network situation represented 
by the group level. Devices are affected by both levels due to different tariff 
components. 

5). There-
fore, a simple quadratic relation between the variable grid fee prgridfee,g and 
transformer utilization uTransformer,g is used: 

2
gridfee,g Transformer,gpr (t) = a*u + c.  (7) 

The constant parameters a and c are selected, such that the total grid fee is 
constant for one day at a transformer. Hence, the sum of the constant grid fee 
multiplied by the power at the transformer for all time steps t of a respective day 
is the same as using the variable grid fee assuming that the vehicles charge 
after their last journey of the day.  

The transformer utilization is calculated by dividing the power at the transformer 
in time step t by the nominal transformer power WTransformer. The power at the 
transformer is calculated by adding the standard load profile W(t) for Germany 
[12] and the operation od,g(t) of the PEVs already processed:  

(d-1)
d,gn=1

Transformer,g
Transformer

W(t) + o (t)
u (t) = .

W
∑  (8) 

                                            
4  pr =RS+10. 
5  Simulation structure, a pool contains groups and a group contains devices or PEVs, re-

spectively. 



Grid integration of intermittent renewable energy sources  
using price-responsive plug-in electric vehicles 7 

 
After each optimization of a device, the operation od,g(t) of the PEVs is known 
and the expected utilization of the transformer changes. As for the pool price 
forecast, this is a theoretical approach to avoid avalanche effects (see section 
5). Today, equal treatment of electricity consumers is required and therefore 
customer-specific tariffs are not allowed in Germany.  

The resolution of the grid price and the operation of PEVs at grid level are 15 
minutes blocks of time or 96 time steps per day. The devices optimize their op-
eration depending on a price signal to minimize costs. The price for a specific 
device prd comprises the pool forecast price prforecast,p (see eq. 9), the variable 
grid fee pgridfee,g and the sales tax rtax:  

d forecast,p gridfee,g taxpr (t) = (pr (t) + pr (t))×(1+ r ).  (9) 

The sales tax used do not influence the results in the simulation. This value is 
implemented because the calculated tariff is also used in a field test [13] and 
the optimization is done from a consumer point of view. In this case, the sales 
tax widens the price spread and therefore increases the consumer incentives.   

The local optimization uses a graph search algorithm to minimize the charging 
costs. The algorithm calculates a schedule for charging and discharging the 
vehicle battery in the optimization time period. The algorithm is applied when 
the vehicles are plugged into the grid after each trip. In addition to the price prd, 
the usable battery capacity, the state of charge (SOC), the beginning and end of 
the optimization, the grid connection power and battery degradation all enter the 
schedule calculation. After a new optimization, the previous schedule is invalid. 
A detailed description of the applied algorithm is given in [14].  

The optimization time period depends on the SOC when returning to the grid 
and follows the values in Table 1.  

Table 1: Optimization time to recharge the battery storage   

Optimization  State of charge 
(SOC) SOC < 0.3 SOC < 0.7 SOC >= 0.7 Unit  

(1= 15 min) 

After a trip 
Storage < 5kWh 8 32 60 time steps  

Storage >= 5kWh 16 56 60 time steps  

Every Day at  
22 o' clock - 38 38 38 time steps  
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2.3 Driving behavior 

A stochastic approach is used to estimate driving behavior. The data is taken 
from the travel survey “Mobility in Germany” [15]. In order to find user segments 
that are suitable for electric driving, the raw data is filtered [16]. Early adopters 
of PEVs can be characterized by a high annual driving mileage due to economic 
reasons. Compared to conventional vehicles the investments in PEVs are 
higher but the operating costs are lower. We consider technical aspects as well 
as economic aspects. Possible PHEV and BEV users are required to have an 
assigned parking space. Additional requirements for BEVs include the availabil-
ity of more than one vehicle per household and regular job-related trips shorter 
than 90 km.  

Modeling driving behavior can be simplified to three probability parameters 
which are defined as follows.  

The probability to travel with the vehicle on a certain day Protravel (day): 

daym
travel ii=1

day

1Pro (day) = × Travel (day).
m ∑  (10) 

Where Travelday is a Boolean value (true, false) indicating whether the respon-
dent is driving on day and mday represents the sample size on a given day of the 
week. We found distinct patterns of traveling behavior on Sun, Sat, Mo, Fr and 
other weekdays. Weekdays are defined as Tuesday, Wednesday and Thursday 
and merged into one data set because the driving behavior on these days was 
found to be very similar. 

The probability for starting a trip Prostart on a specific day and time slot is given 
by:  

dayn
start n=1

day

1Pro (day, t) = × n(day, t).
n ∑  (11) 

nday represents all samples with a trip on a specific day and n(day,t) a trip 
started at a specific time t. t is a parameter out of 0 – 95, or a 15 minute time 
resolution during a day, respectively.  

Range and duration are correlated. The different range values are classified in 
k:= { 0,…,20}. The probability Prorange at a specific day for a range class k is: 

dayn
range i=1

day

1Pro (day, range k) = × n(day,k).
n

∈ ∑ (12) 
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The class specification is given in the Table 8 in the appendix section. 

For the data used, a linear correlation was found between range r and duration 
du, which is shown in Figure 3. 

Figure 3:  Correlation between the average duration of a trip and the 
range of a trip 

 
The used data is filtered according to [16] and uses raw data from [15]. 

 

The duration du(r) is given in Eq. 13: 

du(r) = 0.6837 r + 5. R2=0.92  (13) 

Including aspects related to the infrastructure in the simulation model requires 
an additional probability value:  

dayn
loc n=1

day

1Pro (day, t, location k) = × n(day, t, k).
n

∈ ∑     (14) 

Prolocation represents the probability trip ending at k out of 0…4 locations. In the 
work presented here, infrastructure is not considered. We assume that PEVs 
are plugged-in after each travel trip and that the necessary infrastructure is 
available.    
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3 Assumptions  

In order to analyze the effect of fluctuating renewable energy generation from 
wind power and photovoltaic, as well as the contribution of PEVs towards bal-
ancing this RES, we constructed a scenario for 2030. The hourly characteristic 
of the demand in Germany is taken from [17]. For 2030, a yearly demand of 
502.1 TWh is assumed [18]. To indicate the supply side, the merit order of 
power plants is generated using primary energy and CO2 prices from [19, Sce-
nario A “deutlich”]. Based on the current German power plant mix, all power 
plants reaching the end of their life cycle life by 2030 are assumed to be re-
placed by gas turbine power stations and combined-cycle plants. The capacity 
of intermittent renewable energy sources (RES) for the 2030 scenario is taken 
from [19, Scenario A]. The installed capacity of onshore wind, offshore wind and 
photovoltaic is 37.8 GW, 25 GW and 63 GW, respectively. The hourly charac-
teristic of intermittent renewable energy sources for electricity production is 
taken from [17] for wind onshore and [20] for wind offshore and photovoltaic. 
The imports and exports of electricity and storage technologies like hydro pump 
storage are not taken into account. 

The demand of BEVs and PHEVs is modeled (see section 2) using the prob-
abilities describing the driving behavior of the mobility survey MiD 2002, which 
was aggregated according to [16]. The probabilities used are available in the 
Appendix.  

The penetration of PEVs is taken from [21]. In the 2030 scenario, 12 million 
PEVs will be on the roads in Germany. Table 2 shows the allocation of the 
PEVs in vehicle pools. The pools 1 to 9 are composed of two groups and pools 
10 to 15 are composed of one group which results in a different transformer ca-
pacity available per vehicle. In this model, the operation of the vehicles is 
scaled-up by a factor of 1,000. In total, 12 thousand PEVs are modeled, repre-
senting 12 million PEVs.  
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Table 2:  Used structure of pools, groups and devices6

Pool 

 

Group 
Dev1 

PHEV2
7            

Dev2            
PHEH5

7  

Dev3            
City- 
BEV 

Dev4            
BEV Sum  Grid 

power  
Total 

storage 
Transformer 

capacity  

  
[1000 units] [GW] [GWh] [kVA] 

1 1 129 220 41 10 400 1.80 4.14 
4 kVA/ Dev+ 
Household 

1 2 130 219 41 10 400 1.80 4.13 
4 kVA/ Dev+ 
Household 

… 
         

1-9 Sum 2331 3951 738 180 7200 32.47 74.37 - 

10 1 259 439 82 20 800 3.61 8.26 4 kVA /2x 
Dev+Houshold 

… 
         

10-15 Sum 1554 2634 492 132 4812 21.74 49.94 - 

1-15 Sum 3885 6585 1230 300 12000 54.12 123.95 - 

The different PEV types used are shown in Table 3. The values represent an 
average of the specific vehicles. 

Table 3:  Assumptions for the different types of plug-in electric vehicles 
(PEVs) 

Dev Type Storage usable energy 
[kWh] 

Grid connection power 
[kW] 

Equivalent energy use 
[kWh/km] 

1 PHEV25 4.5 4 0.18 

2 PHEV57 12 4 0.21 

3 City-BEV 15 8 0.15 

4 BEV 30 8 0.18 

PHEV: Plug-in hybrid electric vehicle, BEV: Battery electric vehicle.  

In the quadratic equation to estimate the grid-related price component (see sec-
tion 2.2), a is assumed to be 30 and c is 0.5.  

                                            
6  Source: Dominanz-Szenario [16] 
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4 Characterization of the merit order effect 

An important aim of the work currently being conducted is to investigate how 
PEVs can be used to improve the integration of intermittent RES and balance 
the fluctuation of these power sources, mainly wind power and photovoltaic. 
The effect of intermittent RES on electricity prices, known as the merit order 
effect, plays an important part in the applied approach [22]. The indirect control 
of PEVs uses a tariff that depends on marginal electricity costs and therefore on 
the residual load. 

Figure 4 shows the merit order of the power plants available in Germany in 
2008 (left curve in Figure 4). Taking the same marginal costs and power plants, 
but including the installed capacity of wind power and photovoltaic shifts the 
merit order to the right (right curve in Figure 4). It is unlikely that the total in-
stalled capacity of intermittent RES is available simultaneously, but it can be 
concluded that these intermittent RES do reduce the marginal costs and there-
fore the clearing prices in the electricity market at least to some extent. 

Figure 4:  Merit order of the power plants in Germany 2008 with and 
without the installed capacity of wind and photovoltaic 

 
Source: own calculation using data from [19] for the installed capacity of wind and photovoltaic 

 
For the 2030 scenario (see section 3), the effect on the merit order due to 
photovoltaic and wind generation increases (see Figure 5). We assume a situa-
tion in which energy generated from photovoltaic and wind makes up 50% of 
the installed capacity. This situation will result in marginal costs of zero for 60 
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GWh demand7

Figure 5:  Merit order of the power plants in a 2030 scenario for Ger-
many with and without 50% of the installed capacity of wind 
and photovoltaic 

. If no intermittent RES supply is available in this demand situa-
tion, the marginal costs would be 120 € per MWh.  

 
Source: own calculation using data from [19] for the installed capacity of wind and photovoltaic  

This example shows how intermittent RES affect the marginal costs of electricity 
and that future electricity markets will have more volatile prices. It is very likely 
that higher shares of intermittent RES will also increase the base peak spread 
of electricity prices. This is because of an expected increase in fuel and CO2 
prices and a tendency for bids to include a higher markup factor to cover the full 
costs of conventional power plants.  

5 Avalanche effects  

Indirect control of distributed generation and flexible loads with variable tariffs 
has one major drawback. If an automated optimization of devices is used, a 
price signal which is valid for all devices can cause demand or generation 
peaks, known as avalanche effects [23]. These effects are induced by an opti-
mum to consume or feed-back electricity in one specific time period which has 
the lowest or highest prices for electricity. Assuming that all devices have the 
same degree of freedom (actual and favored state of charge at the end of the 

                                            
7  The German simultaneous hourly annual peak load in 2008 was 86 GWh.  
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optimization time, grid connection time, and so on) in a specific time period for 
load-shifting or generation will reinforce this effect. In the case of electric vehi-
cles, however, the degree of freedom is affected by driving behavior and the 
willingness of the users to shift loads and to plug-in the vehicle8

Figure 6

.  

 shows the optimization result of PEVs for three PEV pools using the 
same price forecast (no grid fee is assumed). Driving behavior affects the 
amount of energy required to recharge the battery and the time steps in which 
the PEVs are connected to the grid. The demand of all PEVs collected in the 
pools 1, 2 and 3 is very similar. Only pool 1 shows slightly different results. The 
diffusion of the demand results from the limited grid connection power9

Figure 6:  Demand of three PEV pools with the same price signal 

 and dif-
ferences in driving behavior.  

 

Using individual price forecasts for the different pools results in a greater diffu-
sion of the PEV pool demand.10

 

  

                                            
8  The willingness of the consumer to react to incentives is not part of this paper. We ex-

cluded this aspect in order to examine the effects of PEVs without the necessary assump-
tions about consumer incentives. 

9 If it is not possible to completely recharge the battery in the time step with the lowest price, 
the next time step is used. 

10  Perfect forecast is assumed. Hence the reaction of other pools is known (feedback) and/or 
estimated (see section 2).  
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Figure 7: Demand of three PEV pools with different price forecast   

 

The avalanche effects are reduced and PEV demand is better distributed to fill 
load valleys (see Figure 9 in Section 6). In real electricity markets better alloca-
tion is achieved using price elastic demand bids.11

Avoiding peaks in the total system load can still result in load peaks in distrib-
uted electricity networks. A strong increase in wind generation, for example, can 
necessitate the concentration of additional demand within a short time period. 
At the group or distributed network level, therefore, a variable grid fee is used 
(see section 

  

2.2) to guarantee that the transformer is not overloaded. This vari-
able grid fee is specific to each device (see section 2). Due to the assumed per-
fect demand forecast of other devices and electricity users within the distributed 
network, the grid fee increases after each demand optimization of a device 
(feedback loop). Hence, the optimal loading time period shifts and the utilization 
of the transformer is evened out. Depending on the situation at the system level 
and in the local network, price components at the pool and the group level can 
provide incentives for the same time periods or counteract each other. 

Figure 8 shows transformer utilization with and without PEVs for one group (we 
assume that a 400 kVA transformer hosts 100 households and 100 PEVs). The 
function of the dynamic grid fee over the transformer utilization is also shown.  

                                            
11  [7] shows that a Nash equilibrium in case of PEVs is possible. 
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Figure 8: Transformer utilization with and without plug-in electric vehi-
cles (PEVs) and the function between the dynamic grid fee 
and transformer utilization 

 
Transformer utilization is not critical with the variable grid fee used for the 2030 
scenario. An increase from about 25% to 35% on 15 minute basis can be ob-
served.  

6 Results 

The model results based on the assumptions outlined in section 3 are pre-
sented in the following section. Unlike other publications (e.g. [5] and [6]), the 
PEVs' load follows the residual system load and does not simply shift demand 
to the night-time hours (see Figure 9). The intermittency of renewable energies 
makes it necessary to take this advanced view of base and peak load. Further, 
the load shifting follows a dynamic pricing approach with a distributed vehicle-
based optimization which considers mobility behavior, local grid restrictions and 
consumer incentives.  

Comparing the demand-side management (DSM) with simple charging after the 
last trip in Figure 9 shows a reduced peak load. PEVs preferentially consume 
energy when the residual load is low or even negative.    
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Figure 9 Load of plug-in electric vehicles (PEVs) charging after the last 

trip and using demand-side management (DSM).  

First three weeks of the year 2030 scenario. Renewable energy fluctuation based on the weather year 2008 [20]. 

In the assumed scenario, the installed capacity of wind and photovoltaic rises 
from 46 GW in 2010 to 125 GW in 2030 (see [19] p.186-187). Comparing the 
residual load in 2010 with the residual load in the 2030 scenario (see Figure 10) 
illustrates the switch to electricity systems with higher shares of intermittent 
generation from renewable energy sources12

 

. For 2030, we expect 635 hours 
with a negative residual load (in total 5.36 TWh), which means that the genera-
tion of intermittent photovoltaic and wind power plants is higher than the as-
sumed demand. The minimum of the residual load drops from 10.4 GW in 2010 
to – 43.7 GW in 2030.  

 

 

 

 

                                            
12  In the simulation presented here we did not consider pumped storage or transborder flows. 
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Figure 10 Sorted total system load and sorted residual load 2010 as well 
as sorted residual load 2030 (see section 3 for the assump-
tions) 

 

In order to analyze the PEVs’ contribution towards improving the integration of 
intermittent RES, we focus on three key values: the change in the minimum re-
sidual load, the percentage of negative residual load that can be consumed us-
ing load shifting, and the residual load change (RS(t)-RS(t-1)). The characteris-
tic of the RES intermittency and the energy produced influences the PEVs' abil-
ity to balance RES. To account for this we analyze different weather years with 
specific wind on- and offshore as well as photovoltaic data for 2006, 2007 and 
2008 [17] [20]. To compare the different RES characteristics, we additionally 
scale the 2006 and 2007 data to the RES energy production (325 TWh) in 2008 
(see Table 4 and Table 5 “scaling”).    

Figure 11: Effect of plug-in hybrid electric vehicles (PHEVs) on the resid-
ual load when charging after the last trip and using demand-
side management (DSM). For the assumptions see section 3 
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Figure 11 shows the effect of PEVs on the residual load for the two charging 
scenarios with weather characteristics for 2008. Compared to uncontrolled 
charging after the last trip, demand-side management (DSM) can prevent an 
increase in the peak load (for all the weather years analyzed).  

The minimum of the negative residual load is reduced by 8.0 GW to -35.7 GW 
in the case of DSM (see Figure 12). 2.82 TWh or 52.6% of the negative residual 
load can be consumed using load shifting.  

Figure 12: Detail screen of the negative residual load when charging af-
ter the last trip and using demand-side management (DSM)  

  

Considering the different weather years in Table 5 shows a peak reduction in 
the negative residual load of between 15 and 22% or about 6 to 8 GW. The 
negative residual load usable with DSM (= neg. RS – neg. RS DSM/ neg. RS) 
varies between 34 and 52%. This corresponds to 14.3% (2.56 TWh) and 20.4% 
(3.66 TWh), respectively, of the 17.9 TWh consumed in total by the PEV fleet.  
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Table 4: Results of the negative residual load (RS) peak reduction and 
usable negative residual load with different renewable energy 
intermittency  

 

Unit 2006 
2006 

scaling 2007 
2007 

scaling 2008 

RES generation  TWh 306.97 325.20 336.87 325.20 325.10 

Min. RS power  GW -37.19 -43.99 -40.75 -37.35 -43.74 

Min. RS power  
DSM GW -30.72 -37.05 -32.01 -28.90 -35.74 

Min. RS reduction  
DSM   17.42% 15.78% 21.45% 22.61% 18.29% 

Negativ RS TWh -6.16 -9.87 -9.25 -6.83 -5.36 

Negativ RS DSM  TWh -3.60 -6.44 -5.59 -3.89 -2.54 

Negative RS 
usable DSM   

41.55% 34.77% 39.61% 43.09% 52.58% 

This shows that the characteristic of intermittent RES strongly influences mini-
mum peak reduction and negative RS able to be used by DSM. A more bal-
anced RES generation with a higher availability on each day of the year (e.g. 
offshore wind) or short recurring photovoltaic generation peaks are better able 
to be used than extreme weather conditions with particularly strong or no wind 
periods. That is because, in the case of DSM, only the electricity used for driv-
ing (on average 49 GWh per day) can be used for load shifting. In general, mo-
bility behavior restricts load shifting capability, so PEVs are suitable for short-
time storage (1-2 days).   

The hourly load change of the residual load with and without price-controlled 
PEVs is shown in Figure 13. The effect of different weather years on the resid-
ual load change is relatively small (represented by the width of the lines in Fig-
ure 13). Further, for the RES generation and load curve considered, the aver-
age positive delta (RS(t)>RS(t-1) on the right side of Figure 13) is higher than the 
average negative delta (RS(t)<RS(t-1) on the left side of Figure 13). As a result, a 
rapid generation increase is required more often to balance the system. Price-
controlled PEVs can reduce the load change from one hour to the next in both 
cases. For the extreme values, the variation between different weather years is 
high (see Table 5).  



Grid integration of intermittent renewable energy sources  
using price-responsive plug-in electric vehicles 21 

 
Figure 13: Sorted hourly load change of the residual load versus the re-

sidual load change using demand-side management (DSM) 
with plug-in electric vehicles 

 

For the 2008 weather data, the highest ramp down is -14.41 GW versus -14.45 
GW using controlled PEVs and the highest ramp up is 22.13 GW versus 17.90 
GW. For the extreme ramp down value the used load management mechanism 
does not necessarily result in system benefits (see Table 5).    

Table 5: Results of the residual load (RS) change versus RS change in-
cluding plug-in electric vehcles (PEVs) using demand-side man-
agement (DSM) with different renewable energy intermittency  

Residual load (RS)  Unit 2006 
2006 

scaling 2007 
2007 

scaling 2008 

Load change Min. GW -15.39 -16.16 -14.64 -14.15 -14.41 

Load change Max. GW 18.88 19.77 16.33 15.82 22.13 

RS + PEVs (DSM)             

Load change Min. GW -15.71 -16.76 -12.88 -11.98 -14.45 

Load change Max. GW 18.73 19.60 16.05 15.77 17.90 
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7 Conclusions 

In the presented paper, we investigated the capability of plug-in electric vehicles 
(PEVs) to balance intermittent renewable energy sources (RES) in a 2030 case 
study for Germany. The conclusions in detail are: 

PEVs provide a very high power/energy ratio: Compared with other storage de-
vices, PEVs are able to offer a high total connection power. A fleet of PEVs pro-
vide power totalling 54.12 GW (2030 scenario with 12 million PEVs) with a rela-
tively low usable amount of battery storage of 123.95 GWh (ratio 0.44). By 
comparison, German pumped-storage plants provide 7.76 GW with a rated vol-
ume of 224.31 GWh (ratio 0.035).  

Driving behavior restricts the use of mobile storage: The main purpose of PEVs 
is to fulfill mobility needs at equivalent costs to those of conventional vehicles. A 
cost-sensitive consumer will maximize the distance driven electrically in order to 
recoup the higher initial investment. This implies high utilization of the battery 
and therefore reduces the time period available for load shifting and/or vehicle-
to-grid services. PEVs are therefore utilizable as a short-time storage option (1-
2 days) with limitations (e.g. infrastructure or consumer needs) on the load 
management time during the day. 

Price-based load shifting mechanisms require a feedback loop: The load man-
agement mechanism presented uses dynamic prices as a control signal for 
PEVs and takes the effect of intermittent renewable energy sources, mobility 
behavior as well as local grid restrictions into account. To avoid avalanche ef-
fects of automated control a feedback of transformer utilization is included. This 
implies that PEVs have access to information about the reaction of other PEVs 
in the same distribution network. In practice, this could be realized in the form of 
distributed grid monitoring carried out by PEVs and/or the presented dynamic 
grid fee. Such a system does not yet exist but seems to be technically feasible.   

The consumer reaction on price signals is unclear: The economic incentives 
from electricity markets are low. The current base peak spread at the EEX is 
only about 3 ct./kWh. In the presented approach, we assumed an infinite price 
elasticity of the consumer. Consequently, the PEVs’ load is able to be shifted to 
different time periods even in the case of very low incentives. Real consumer 
reaction in the case of the used load management mechanism is unclear.  

PEVs can contribute to balancing intermittent RES: To analyze PEVs’ contribu-
tion to balancing intermittent RES, three evaluation parameters were defined: 
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the change in the minimum residual load, the percentage of negative residual 
load that can be consumed using load shifting, and the residual load change. 
For all three aspects, PEVs make a positive contribution to improving the inte-
gration of intermittent RES into the electricity system. 

The characteristic of RES intermittency greatly influences the results: The re-
sults are influenced by the generation share and the profile of intermittent RES, 
e.g. wind or photovoltaic. Especially for the percentage of negative residual load 
that can be consumed we found high variation depending on the RES charac-
teristic. The expected higher utilization of power from German offshore wind 
parks during night-time hours supports the positive contribution of PEVs to inte-
grating intermittent RES. The amount of power generated by wind turbines ob-
viously depends on local climatic conditions and varies from country to country. 
Therefore, the presented results are only valid for a German 2030 case study 
and the calculated values cannot be universally applied.  
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10 Appendix 

Table 6:  Probability of travel 

Mo Weekdays Fr Sat Sun 

62.73% 65.86% 64.94% 54.99% 40.66% 

 

Table 7: Probability for starting a trip (sliding average) 

Time Mo Weekdays Fr Sat Sun 
0 0.04% 0.06% 0.09% 0.17% 0.08% 
1 0.03% 0.04% 0.07% 0.14% 0.05% 
2 0.03% 0.05% 0.13% 0.17% 0.07% 
3 0.02% 0.04% 0.12% 0.12% 0.04% 
4 0.02% 0.03% 0.12% 0.12% 0.04% 
5 0.00% 0.04% 0.09% 0.07% 0.03% 
6 0.00% 0.03% 0.09% 0.06% 0.03% 
7 0.00% 0.02% 0.03% 0.04% 0.02% 
8 0.03% 0.02% 0.04% 0.08% 0.02% 
9 0.03% 0.02% 0.03% 0.08% 0.01% 

10 0.03% 0.02% 0.05% 0.07% 0.05% 
11 0.03% 0.02% 0.03% 0.06% 0.05% 
12 0.03% 0.02% 0.05% 0.07% 0.11% 
13 0.01% 0.02% 0.03% 0.03% 0.10% 
14 0.02% 0.05% 0.09% 0.05% 0.12% 
15 0.02% 0.05% 0.12% 0.05% 0.08% 
16 0.02% 0.05% 0.13% 0.05% 0.08% 
17 0.04% 0.06% 0.12% 0.03% 0.03% 
18 0.10% 0.23% 0.17% 0.02% 0.09% 
19 0.14% 0.25% 0.18% 0.04% 0.10% 
20 0.28% 0.27% 0.28% 0.08% 0.14% 
21 0.33% 0.34% 0.35% 0.11% 0.14% 
22 0.56% 0.86% 0.50% 0.19% 0.15% 
23 0.64% 0.78% 0.58% 0.21% 0.14% 
24 0.91% 0.81% 0.76% 0.25% 0.13% 
25 1.11% 0.98% 0.95% 0.30% 0.13% 
26 1.39% 1.82% 1.21% 0.39% 0.18% 
27 1.53% 1.53% 1.29% 0.37% 0.19% 
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Time Mo Weekdays Fr Sat Sun 

28 1.79% 1.61% 1.63% 0.49% 0.28% 
29 1.77% 1.84% 1.67% 0.57% 0.37% 
30 1.80% 2.29% 1.70% 0.78% 0.54% 
31 1.65% 1.57% 1.57% 0.90% 0.63% 
32 1.55% 1.44% 1.71% 1.31% 0.83% 
33 1.42% 1.44% 1.50% 1.42% 0.94% 
34 1.60% 1.74% 1.59% 2.07% 1.25% 
35 1.46% 1.34% 1.39% 2.10% 1.32% 
36 1.70% 1.25% 1.59% 2.69% 1.60% 
37 1.59% 1.31% 1.41% 2.54% 1.64% 
38 1.76% 1.74% 1.57% 3.27% 1.88% 
39 1.52% 1.35% 1.48% 2.93% 1.68% 
40 1.64% 1.22% 1.66% 3.24% 1.75% 
41 1.37% 1.28% 1.47% 2.81% 1.52% 
42 1.65% 1.75% 1.63% 3.25% 1.90% 
43 1.38% 1.37% 1.43% 2.70% 1.69% 
44 1.49% 1.25% 1.50% 2.76% 2.09% 
45 1.29% 1.32% 1.31% 2.43% 2.08% 
46 1.57% 1.90% 1.49% 2.76% 2.61% 
47 1.33% 1.55% 1.41% 2.34% 2.19% 
48 1.57% 1.46% 1.64% 2.51% 2.15% 
49 1.43% 1.56% 1.45% 2.20% 1.78% 
50 1.65% 2.01% 1.79% 2.46% 2.20% 
51 1.43% 1.49% 1.68% 1.93% 1.68% 
52 1.58% 1.33% 1.71% 2.07% 1.90% 
53 1.37% 1.35% 1.52% 1.63% 2.08% 
54 1.56% 1.82% 1.99% 1.91% 2.57% 
55 1.35% 1.48% 1.64% 1.46% 2.12% 
56 1.46% 1.34% 1.87% 1.77% 2.50% 
57 1.29% 1.39% 1.79% 1.49% 2.24% 
58 1.65% 1.97% 2.19% 1.96% 2.54% 
59 1.54% 1.55% 1.85% 1.61% 1.98% 
60 1.77% 1.38% 2.16% 1.78% 2.04% 
61 1.81% 1.52% 1.92% 1.50% 1.68% 
62 2.33% 2.37% 2.32% 1.68% 2.07% 
63 2.06% 1.99% 1.95% 1.17% 1.56% 
64 2.30% 1.90% 2.15% 1.26% 1.78% 
65 2.11% 2.14% 1.99% 1.05% 1.68% 
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Time Mo Weekdays Fr Sat Sun 
66 2.38% 2.90% 2.30% 1.11% 2.19% 
67 2.05% 2.32% 1.94% 0.87% 1.86% 
68 2.23% 2.09% 2.00% 1.06% 2.07% 
69 2.08% 2.16% 1.76% 0.94% 1.81% 
70 2.43% 2.58% 1.99% 1.25% 2.34% 
71 2.01% 1.90% 1.64% 1.15% 1.77% 
72 1.92% 1.58% 1.61% 1.36% 2.07% 
73 1.61% 1.62% 1.40% 1.13% 1.78% 
74 1.69% 1.88% 1.47% 1.41% 2.04% 
75 1.35% 1.30% 1.12% 1.06% 1.32% 
76 1.29% 1.08% 1.13% 1.19% 1.31% 
77 1.17% 1.07% 1.03% 1.01% 1.00% 
78 1.18% 1.17% 1.14% 1.10% 1.19% 
79 0.83% 0.79% 0.89% 0.76% 0.81% 
80 0.75% 0.66% 0.83% 0.77% 0.92% 
81 0.64% 0.62% 0.64% 0.52% 0.82% 
82 0.63% 0.72% 0.55% 0.46% 0.88% 
83 0.57% 0.55% 0.37% 0.32% 0.64% 
84 0.61% 0.46% 0.43% 0.34% 0.76% 
85 0.56% 0.47% 0.38% 0.34% 0.62% 
86 0.67% 0.58% 0.52% 0.40% 0.75% 
87 0.52% 0.45% 0.46% 0.32% 0.58% 
88 0.45% 0.38% 0.47% 0.41% 0.66% 
89 0.35% 0.38% 0.39% 0.45% 0.54% 
90 0.35% 0.38% 0.43% 0.51% 0.54% 
91 0.19% 0.24% 0.27% 0.42% 0.36% 
92 0.18% 0.16% 0.29% 0.43% 0.30% 
93 0.13% 0.15% 0.22% 0.33% 0.12% 
94 0.12% 0.12% 0.18% 0.24% 0.11% 
95 0.04% 0.08% 0.08% 0.12% 0.08% 
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Table 8:  Probability of travel (cumulative) 

k 

 

Mo Weekdays Fr Sat Sun 

0 < 2 0.22917949 0.21110176 0.224643 0.21110176 0.20020176 

1 < 4 0.40713438 0.38936243 0.39172674 0.38936243 0.35961713 

2 < 6 0.50709795 0.51071555 0.50926986 0.51071555 0.47829158 

3 < 8 0.59882024 0.59218287 0.60156551 0.59218287 0.55480705 

4 < 10 0.65561197 0.65367563 0.66401779 0.65367563 0.61194712 

5 < 12.5 0.69032293 0.70196422 0.71391008 0.70196422 0.66313738 

6 < 15 0.75472976 0.7635326 0.76389908 0.7635326 0.7251566 

7 < 18.5 0.80461588 0.80302923 0.81311949 0.80302923 0.771473 

8 < 20 0.83900508 0.83542293 0.84329914 0.83542293 0.81502836 

9 < 25 0.88860334 0.88616926 0.90470785 0.88616926 0.86084511 

10 < 30 0.92303152 0.92040934 0.92839391 0.92040934 0.90145597 

11 < 35 0.94932388 0.94556082 0.94298257 0.94556082 0.91585863 

12 < 40 0.96128432 0.9583068 0.96231069 0.9583068 0.92247889 

13 < 45 0.96467203 0.96685348 0.96801052 0.96685348 0.92717667 

14 < 50 0.9763209 0.97537706 0.972619 0.97537706 0.93510342 

15 < 60 0.97966632 0.98305397 0.98302076 0.98305397 0.94832225 

16 < 70 0.98367105 0.98741263 0.9866826 0.98741263 0.95747725 

17 < 100 0.9908388 0.992556 0.99166396 0.992556 0.97390813 

18 < 150 0.99442675 0.99554262 0.99609742 0.99554262 0.98236626 

19 < 300 0.99876699 0.99794414 0.99809345 0.99794414 0.99491783 

20 > 300 1 1 1 1 1 
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