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Interactions in DSGE Models:  
The Boltzmann–Gibbs Machine and  

Social Networks Approach 

Chia-Ling Chang and Shu-Heng Chen 
National Chengchi University, Taipei 

Abstract   While DSGE models have been widely used by central banks for policy analysis, 
they seem to have been ineffective in calibrating the models for anticipating financial crises. To 
bring DSGE models closer to real situations, some of researchers have revised the traditional 
DSGE models. One of the modified DSGE models is the adaptive belief system model. In this 
framework, changes in sentiment can be expounded by a Boltzmann–Gibbs distribution, and in 
addition to externally caused fluctuations endogenous interactions are also considered. 
Methodologically, heuristic switching models are mesoscopic. For this reason, the social 
network structure is not described in the adaptive belief system models, even though the 
network structure is an important factor of interaction. The interaction behavior should ideally 
be based on some kind of social network structures. Today, the Boltzmann–Gibbs distribution is 
widely used in economic modeling. However, the question is whether the Boltzmann–Gibbs 
distribution can be directly applied, without considering the underlying social network structure 
more seriously. To this day, it seems that few scholars have discussed the relationship between 
social networks and the Boltzmann–Gibbs distribution. Therefore, this paper proposes a 
network based ant model and tries to compare the population dynamics in the Boltzmann–Gibbs 
model with different network structure models applied to stylized DSGE models. We find that 
both the Boltzmann–Gibbs model and the network-based ant model could generate herding 
behavior. However, it is difficult to envisage the population dynamics generated by the 
Boltzmann–Gibbs model and the network-based ant model having the same distribution, 
particularly in popular empirical network structures such as small world networks and scale-free 
networks. In addition, our simulation results further suggest that the population dynamics of the 
Boltzmann–Gibbs model and the circle network ant model can be considered with the same 
distribution under specific parameters settings. This finding is consistent with the study of 
thermodynamics, on which the Boltzmann–Gibbs distribution is based, namely, the local 
interaction. 
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I. Introduction 
 

While DSGE models have been widely used by central banks for policy analysis, 

the global financial crisis has apparently challenged the credibility of DSGE models; 

it may thus be risky for governments to use DSGE models as a tool for policy making. 

In fact, it is not easy to generate a crash or a bubble in a traditional DSGE model with 

incredible assumptions such as the representative agent and rational expectations. To 

apply DSGE models to situations closer to real world situations, many researchers 

have added heterogeneity, bounded rationality, learning and interaction, in the hope of 

calibrating the modified DSGE models to match the real world economy. For 

heterogeneity, Bask (2007) introduced two different types of agents (fundamentalists 

and chartists) to a DSGE model, and similar to Bask (2007), Chang et al. (2010) and 

Wen (2010) also tried to construct DSGE models with heterogeneous agents which 

can match some stylized facts of macroeconomics.  

Besides the representative agent hypothesis, bounded rationality is another possible 

modification for improving DSGE models. Therefore, economists have started to 

model how individuals form expectations and learn and adapt their behaviors. This 

direction of research combines the adaptive learning mechanisms of Evans and 

Honkapojah (2001) with DSGE models. They have said that agents should not be 

assumed to be more clever than econometricians and, therefore, the agent should learn 

the underlying model as time passes. Recently, Orphanides and Williams (2007a,b.), 

Milani (2009), Branch and McGough (2009) and Chen and Kulthanavit (2010) 

have applied adaptive learning mechanisms to some new Keynesian DSGE models. 

However, none of the aforementioned modified models allow for an endogenous 

evolution of different rules. In other words, the proportion of different types of agents 

has to be exogenously given. Agents, therefore, keep employing the same rule and do 
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not try to learn from past history. Nonetheless, this simplification underestimates the 

uncertainty faced by each agent. In the most general sense, the behavior of the agent, 

one can never be certain about the duration of the biased trend, since the trend can last 

a few weeks, months or years. Branch and McGough (2009) have also pointed out 

that further research should focus on the stability of equilibrium and interactions of 

learning behaviors.  

In order to consider the adaptive behaviors of agents, economists have tried to 

introduce some statistical mechanics into traditional economic models. The most 

popular statistical mechanics which refers to the statistical basis of thermodynamics is 

Boltzmann-Gibbs distribution. More precisely, the Boltzmann-Gibbs distribution 

could be thought of as a tool for evolving the micro-structure of all agents in the 

economic system. In the world of thermodynamics, the system is composed of many 

interacting particles and different statistical mechanics are developed to deal with the 

relationships between the macro and micro states. Thus, through the Boltzmann-Gibbs 

distribution, the proportion of different behavioral rules can evolve over time. In other 

words, we can generate endogenous population dynamics. Brock and Hommes (1997, 

1998) can be regarded as the pioneers of this kind of research, also known as the 

adaptive belief system model. In economic research, the maximum use of the 

Boltzmann-Gibbs distribution has been to study financial markets’ anomalies. During 

the last decade, the Boltzmann-Gibbs distribution has been widely used for modeling 

financial markets. A detailed survey of the use of the Boltzmann-Gibbs approach can 

be found in Chen et al. (2010). In general, the Boltzmann-Gibbs distribution is often 

used to deal with expectation behavior; it can, therefore, be applied to models 

incorporating expectations, such as the cobweb model, asset pricing model and 

positive versus negative feedback model, etc.  

So far, the Boltzmann-Gibbs distribution has been gradually entering DSGE models 
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(Bask, 2007; De Grauwe, 2010a, 2010b; Assenza et al., 2009; and Lengnick and 

Wohltmann, 2010). Bask (2007) combined a small open economic model with a 

Boltzmann-Gibbs distribution. He imposed technical and fundamental analyses as 

different rules in currency trade and found that chaotic dynamics and long swings 

may occur in the exchange rate. Assenza et al. (2009) combined human expectations 

in a standard DSGE model. They asked the subjects to provide two-period ahead 

forecasts of inflation rate and the output gap for 50 periods. Thus, the realized 

inflation and output gap could be determined by average individual expectations. In 

this experiment, subjects have only qualitative information about the macro economy; 

they do not know the underlying law of motion. Then, they separated the 

experimental data into four different forecasting rules: ADA (Adaptive Expectations), 

WTR (Weak Trend Followers), STR (Strong Trend Followers) and LAA (Learning 

Anchoring Adjustment). They found that the heuristic switching model could 

successfully calibrate the macroeconomic variables dynamics generated by the human 

subjects experiment. Lengnick and Wohltmann (2010) combined the 

Boltzmann-Gibbs distribution and the DSGE macroeconomic model with the 

financial market. They found that stock market developments are more realistically 

described by the Boltzmann-Gibbs distribution machine than rational DSGE models, 

and that the negative impact that speculative behavior of financial market participants 

exerts on the macro economy can be reduced by the introduction of a transaction tax. 

In addition, a closed economic DSGE model is augmented with the Boltzmann-Gibbs 

distribution in De Grauwe (2010a, 2010b). The author developed a stylized DSGE 

model in which agents use simple rules of heuristics to forecast the future inflation 

and output gap. The simulation results show that the dynamic behaviors of 

macroeconomic variables are more volatile in the Boltzmann-Gibbs distribution 

machine than in stylized DSGE models, and endogenous economic cycles can be 
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generated in the Boltzmann-Gibbs distribution machine.  

The number of applications combining the Boltzmann-Gibbs distribution machine 

and the DSGE macroeconomic model has been increasing, but the question remains 

as to whether statistical mechanisms (essentially metaphors) can be used to correlate 

conscious humans and unconscious particles in a reliable manner. Even so, 

methodologically, models connected with the Boltzmann-Gibbs distribution machine 

belong to the mesoscopic genre, i.e., individual details are considered irrelevant. Of 

course, the social network structure is also not described in those models. However, 

physicists have developed statistical mechanisms for dealing with the interaction of 

particles on the basis of existing structures within particles. Whether the 

Boltzmann-Gibbs distribution machine can be applied directly, without considering 

the underlying network structure more seriously, is still an open question. In particular, 

economists have used the Boltzmann-Gibbs distribution machine to describe 

interaction behaviors. In general, the network structure is an important factor of 

interaction, as any interaction behavior should generally be based on some kind of 

social network structure. In this case, we seem to know in-depth about the tool that we 

use. Thus, we need a deeps fundamental insight into the system’s dynamics and how it 

can be traced back to structural properties of the underlying interaction network. 

In actual fact, the impact of social networks on economic behavior has become an 

important issue recently. In order to describe a specific network structure, a social 

network is broadly understood as a collection of nodes and links between nodes. The 

extant literature can be roughly classified into three kinds. The first kind treats 

networks as endogenously determined, and studies the process of formation of 

networks. In this regard, agents add or delete their links for maximizing utility (or 

profit) according to a network formation game. In this area, the social network can be 

applied to free trade networks, market sharing agreements, labor markets and the 
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co-author model. A detailed survey can be found in Jackson (2005). The second kind 

of literature regards networks as exogenous. In this case, network structures can be 

generated with different stochastic algorithms, such as random, scale-free or small 

world networks; these network structures have been applied to real social networks, 

i.e., collaborations (Vega-Redondo, 2007) and international trade and financial 

integration (Schiavo et al., 2010). According to the empirical results, economic 

networks may also reflect similar universality. Indeed, the connections of banks in an 

interbank network (Iori et al., 2008) show that the network structure of banks 

represents a scale free system where only a few banks interact with many others. In 

this example, banks with similar investment behaviors cluster in the network. Similar 

regularities can be traced in many examples, including international trade networks 

and financial networks (Schiavo et al., 2010). In addition to the empirical approach, 

applying exogenous network structures to economic models and studying their 

economic implications is another direction of research. In the last few years, several 

macroeconomic models have combined heterogeneous expectations with social 

network structures for modifying the setting of interaction behaviors. Alarano (2007) 

provided a probabilistic herding model with different network structures for agent- 

based final markets and found structural heterogeneity to have a crucial and 

non-trivial impact on the macroscopic properties of the market. Westeroff (2010) 

proposes a simple agent based macroeconomic model with a scale-free and lattice 

network structure in which firms hold heterogeneous sales expectations. Thus, each 

firm has fixed social relations with other firms, and they are either optimistic or 

pessimistic. The probability of a firm taking an optimistic view increases not only 

during a boom, but also with the number of its optimistic neighbors. The change in 

firms’ sentiment causing change in national income has been observed for both a 

square lattice network and a scale-free network. Besides the application for studying 
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economic implications, Alarano (2009) also constructed a hierarchical network-based 

ant model to overcome the N-dependence problem (of the ant model), even though a 

network-based ant model increases system-wide volatility. Thus, network structures 

become an auxiliary source of volatility except for the behavioral heterogeneity of 

interacting agents.  

According to the above, both the Boltzmann-Gibbs distribution machine and the 

network approach have been important platforms for expressing interaction behavior, 

although to this day it seems that few scholars have discussed the relationship 

between social networks and the Boltzmann-Gibbs distribution. In order to construct a 

social interactive DSGE model with a network structure, we have to choose a model 

which can be combined with different social network structures. The ant model of 

Kirman (1991, 1993), inspired by the ants’ foraging behavior, is one of the choices. 

The ant model endogenously creates swings and herding behavior in aggregate 

expectations through interaction and has successfully replicated stylized facts of 

financial markets (Chen et al., 2010). Therefore, this paper proposes a network-based 

ant model and tries to compare the population dynamics in the Boltzmann-Gibbs 

model with different network structure models which are applied to stylized New 

Keynesian DSGE models. In order to focus on the population dynamics generated by 

the Boltzmann-Gibbs model and network structures models, we follow De Grauwe 

(2010a, 2010b) and set the DSGE model for simplicity. Nevertheless, our model leads 

to a number of interesting insights. We find that both the Boltzmann-Gibbs model and 

network-based ant model can generate herding behavior. However, it is rather difficult 

to envisage the population dynamics generated by the Boltzmann-Gibbs model and 

the network-based ant model with the same distribution, particularly in popular 

empirical network structures such as small world networks and scale-free networks. In 

addition, our simulation results further suggest that the population dynamics of the 
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Boltzmann-Gibbs model and the circle network ant model can be considered with the 

same distribution under specific parameters settings. This finding is consistent with 

the study of thermodynamics for which the Boltzmann-Gibbs distribution is based on 

the local interaction. Although the circle network structure is not the acknowledged 

social network structure, according to the relative entropy between the population 

dynamics of the Boltzmann-Gibbs distribution and network-based ant model, the 

Boltzmann-Gibbs model with intensity of choice equal to 10,000 is a good 

approximation of the herding behavior of our network based ant model with any given 

network structure. 

The remainder of this paper is organized as follows. In Section II, we describe the 

stylized DSGE model. Next, we present a version of the DSGE model with the 

Boltzmann-Gibbs distribution machine. In Section IV, we discuss the network-based 

ant model. Following that, we simulate different network structures and present the 

results. Section VI concludes. 

 

II. The stylized New Keynesian DSGE model  
 

This section describes the stylized New Keynesian DSGE model. New Keynesian 

DSGE models are widely used in macroeconomics because they are derived from 

individual optimization so that both parameters and shocks can be structural. The 

model consists of the following three equations: 

 

ttttttt ErayaEyay επ +−+−+= +−+ )()1( 121111  (1) 

tttttt ybbEb ηπππ ++−+= −+ 21111 )1(  (2) 

tttttt urcyccr +++−= −132
*

1 )( ππ  (3) 
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Equation (1) is referred to as the standard aggregate demand that describes the 

demand side of the economy. It is derived from the Euler equation which is the result 

of the dynamic utility maximization of a representative household and market clearing 

in the goods market. The notation for aggregate demand is as follows: ty  denotes the 

output gap in period t, tr  is the nominal interest rate and tπ  is the rate of inflation. 

Here, we add a logged output gap in the aggregate demand equation for describing 

habit formation. tE  is the expectations operator; we use it to describe how people 

form their expectations. In the standard New Keynesian DSGE model, the 

representative agent always has rational expectations. However, we focus on 

describing the social interaction behavior and discussing the relationship between the 

Boltzmann-Gibbs distribution machine and social network structure. For that reason, 

there are two kinds of expectations in our model, the Boltzmann-Gibbs distribution 

machine and the network-based ant approach. 

  Equation (2) is a New Keynesian Phillips curve that represents the supply side in 

the economic system. Under the assumption of nominal price rigidity and 

monopolistic competition, the New Keynesian Phillips curve can be derived from the 

profit maximization of a representative final goods producer and the profit 

maximization of intermediate goods producers which are composed of a number of 

heterogeneous households. To reflect the price rigidity, the intermediate goods 

producers can adjust their price through the Calvo pricing rule. By combining the 

first-order conditions of the final goods producer, the intermediate goods producer 

and the Calvo pricing rule, we can obtain the New Keynesian Phillips curve (Equation 

2). 

  Equation (3) represents the Taylor rule commonly used for describing the behavior 

of the central bank in the standard New Keynesian DSGE model. The central bank 
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reacts to deviations of inflation and output from targets. In Equation (3), *π  refers to 

the inflation target of the central bank. For convenience, *π  is set to be equal to 0. In 

addition, the lagged interest rate in Equation (3) represents the smoothing behavior.  

Finally, as the DSGE model is the DGE (Dynamic General Equilibrium) model 

with stochastic terms, tε , tη , and tu  are all white noise disturbance terms.  

According to the aforementioned equations, we can substitute Equation (3) into 

Equation (1) and rewrite the matrix notation. Thus, the reduced form can be written 

as: 

 

൤ 1 െbଶ
െaଶcଵ െaଶcଶ

൨ ൈ ቂ
π୲
y୲

ቃ ൌ ൤1 െ bଵ 0
െaଶ aଵ

൨ ൈ ൤E୲π୲ାଵ
E୲y୲ାଵ

൨ ൅ ൤1 െ bଵ 0
0 1 െ aଵ

൨ ൈ ቂ
π୲ିଵ
y୲ିଵ

ቃ 

൅ ൤ 0
aଶcଷ

൨ ൈ r୲ିଵ ൅ ቂ
η୲

aଶu୲ ൅ ε୲
ቃ (4) 

or 

ܜ܈ۯ  ൌ ା૚ܜ܈ܜ۰۳ ൅ ૚ିܜ܈۱ ൅ ૚ିܜܚ܊ ൅  (5) ܜ܄

 

According to the above, we can have solution ܜ܈ for the system. 

 

ܜ܈ ൌ ା૚ܜ܈ܜ૚ሾ۰۳ିۯ ൅ ૚ିܜ܈۱ ൅ ૚ିܜܚ܊ ൅  ሿ (6)ܜ܄

 

We can derive the solution only if matrix A is non-singular. In other words, matrix A 

has to satisfy ሺ1 െ aଶcଶሻ ൈ aଶbଶcଵ ് 0. After obtaining the inflation rate (π୲) and 

output gap (y୲) through Equation (6), we have to substitute the solution for Equation 

(3) and to arrive at the interest rate (r୲). 

Finally, we must emphasize that the difference between the Boltzmann-Gibbs 

distribution machine and the network-based ant model is the difference between the 

expectations of the output gap and inflation. Although agents also make forecasts of 
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inflation, we simply assume that all agents perceive the central bank’s announced 

inflation target *
tπ  to be fully credible. In other words, we set *

1E ππ =+tt =0 in all 

simulation experiments, including the Boltzmann-Gibbs distribution machine and the 

network-based ant model.  

 

III. Boltzmann-Gibbs distribution machine 
 

In discarding slick theories, to make their models more realistic, economists have 

started studying psychology, biology and physics, in order to rethink the operations of 

our economic system. The Boltzmann-Gibbs distribution machine is one example of 

economists borrowing from other disciplines. Actually, the Boltzmann-Gibbs 

distribution is developed by physicists. However, the Boltzmann-Gibbs distribution 

machine is used not only in economics and thermodynamics but also in psychology 

(Luce, 1959; Blume, 1993). The beginning of the story is that some physicists found 

the collision of particles to be similar to the interaction of people. As Boltzmann 

showed, particles are similar to many individuals, having most of the states of motion. 

To be more precise, the collision of constituent particles under specific structures is 

analogous to the interaction of people under specific social networks. For example, an 

individual’s behavior is influenced by her/his family and friends. If one’s friends use 

the iPhone, one has a greater willingness to buy an iPhone. In addition, although each 

particle (agent) is affected only by a few closed particles (agents/friends), the 

aggregate outcome could be a huge change. This holds in both the world of particles 

and human society. Since physicists have been dealing with the systems of many 

interacting particles for more than a century, they have developed many mature 

theories by using statistical mechanics (such as the Boltzmann-Gibbs distribution) to 

deal with these phenomena. Their focus has not been on the details of individual 
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particles, but on the relationships and dynamics between particles. In other words, the 

Boltzmann-Gibbs distribution was developed for investigating the relationship 

between macroscopic and microscopic phenomena in the physical sciences.  

In terms of methodology, the modeling concept is called mesoscopic1 which 

means that individuals’ details are considered irrelevant, i.e., interaction is what 

matters. Based on this, the setting of heterogeneity is relatively simple. Each cluster 

represents a behavioral rule. In other words, agents have the same behavior in the 

same cluster and the evolution of the Boltzmann-Gibbs distribution machine 

represents the microscopic structural changes. In this framework, fluctuations are not 

only from outside as a “given” but also from endogenous interactions. In other words, 

fluctuations in a macroeconomic variable due to the activities of thousands of agents 

need not be simply a scaled-up version of the random noise which each individual 

agent is subjected to. They treat the economy as a complex adaptive system and the 

emergence of aggregate patterns as a result of individual interactions among 

participants at the micro-level. Since the physical system is composed of many 

interacting particles, the Boltzmann-Gibbs distribution is developed to deal with 

relationships between the macro state and microstate. Through the Boltzmann-Gibbs 

distribution, the proportion of specific microstates (population dynamics) can evolve 

over time. In other words, the Boltzmann-Gibbs distribution can be thought of as a 

tool for evolving the micro structure of market participants. It can give the proportion 

of a particular rule of the system.  

For describing the different behavioral rules of output gap expectations, we assume 

                                                       
1  In this type of study, how individual agents decide what to do may not matter very much. What 
happens as a result of their actions may depend much more on the interaction structure through which 
they act—who interacts with whom, according to what rules. Therefore, they ignore the decision details 
of human beings and only assume that agents follow some simple rules and care about how individual 
forecasting rules interact at the micro level and which aggregate outcome they co-create at the macro 
level. 
. 
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the agents do not fully understand how the output gap is determined, and so the agents 

use simple rules, say, the optimistic rule and the pessimistic rule, to forecast the future 

output gap. Actually, assuming that some agents in the society are optimistic and 

some are pessimistic is a reasonable setting in the real economy. Therefore, in our 

Boltzmann-Gibbs distribution machine DSGE model, forecasts of optimistic agents 

systematically bias the output upwards and forecasts of pessimistic agents 

systematically bias the output downwards. In other words, the optimists’ rule is 

defined by E୭,୲y୲ାଵ ൌ g and the pessimists’ rule is defined by E୮,୲y୲ାଵ ൌ െg, where 

0>g  denotes the degree of bias in the estimation of the output gap. 

Furthermore, the population dynamics is not static. It evolves over time in most 

cases. For instance, the Consumer Confidence Index (CCI) reflects the consumer 

sentiment of the market. After the government announces the CCI, the view of the 

consumer sentiment (optimistic/ pessimistic) is changed and thus the overall 

economic situation also changes because the optimistic/ pessimistic sentiment 

reflected in the index impacts the consumers’ view. For this reason, the population 

dynamics, and the proportions of optimist and pessimist agents, can be derived from 

the following equations:  

 

 probሺxሺtሻ ൌ oሻ ൌ α୭,୲ ൌ ୣ୶୮൫஛V౥,౪൯
ୣ୶୮൫஛V౥,౪൯ାୣ୶୮൫஛V౦,౪൯

 (7) 

 

probሺxሺtሻ ൌ pሻ ൌ 1 െ α୭,୲ ൌ ୣ୶୮൫஛V౦,౪൯
ୣ୶୮൫஛V౥,౪൯ାୣ୶୮൫஛V౦,౪൯

 (8) 

 

In this case, we can consider two alternatives o (optimist) and p (pessimist) in the 

Boltzmann-Gibbs distribution machine with a DSGE framework. Each will produce 

some gains to the agent. However, since the gain is random, the choice made by the 
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agent is random as well. The Boltzmann-Gibbs distribution machine DSGE model 

assumes that the probability of the agent choosing optimism is the probability that the 

profits or utilities gained from choosing optimism are greater than those gained from 

choosing pessimism where Vo,t and Vp,t are the deterministic components of gains 

from alternatives optimist and pessimist at time t. In other words, Vo ,t is the temporal 

realized utility from being an optimist, and Vp,t is the temporal realized utility from 

being a pessimist. Equations (9) and (10) show how the agents compute the utility, 

Vo,t and Vp,t, for optimists’ and pessimists’ rules. The parameters  govern the 

geometrically declining weights. 

 

V୭,୲ ൌ െ ∑ ρ୩
ஶ
୩ୀଵ ൫y୲ି୩ െ E୭,୲ି୩ିଵy୲ି୩൯ଶ

 (9) 

V୮,୲ ൌ െ ∑ ρ୩
ஶ
୩ୀଵ ൫y୲ି୩ െ E୮,୲ି୩ିଵy୲ି୩൯ଶ

 (10) 

 

Parameter λ is carried over from the assumed random component. In addition, there is 

a new interpretation for parameter λ, namely, the intensity of choice, because it 

basically measures the extent to which agents are sensitive to additional profits gained 

from choosing optimism instead of pessimistm. According to the above, we can 

obtain the aggregate expected output gap of period t+1 through Equation (11). 

 

E୲y୲ାଵ ൌ α୭,୲E୭,୲y୲ାଵ ൅ α୮,୲E୮,୲y୲ାଵ (11) 

 

IV. The network-based ant model  
  

According to the above, the structure of networks is hidden in our social and 

economic lives and a vast amount of research has been carried out during the last few 
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decades. For example, network analysis is not only applied to examine the 

transmission of information regarding about job opportunities, trade relationships, 

how diseases spread, how people vote and which languages they speak, but is also 

used in empirical works, such as the World Trade Web, the Internet, ecological 

networks and co-authorship networks. There is no doubt that a network structure is 

quite important for social interaction. Thus, we would like to introduce a 

network-based ant model for the New Keynesian DSGE framework. Inspired by 

observing the behavior of ants, “Ants, faced with two identical food sources, were 

observed to concentrate more on one of these, but after a period they would turn their 

attention to the other.” (Kirman, 1993, p. 137), Kirman characterized the switching 

potential of each individual by two parameters, namely, a probability of 

self-conversion and a probability of imitation. The self-conversion probability 

represents the probability that the agent changes rule for personal reasons, whereas 

the probability of imitation refers to the agent changing the rule because of the 

influence of friends. Thus, the probability of agent i switching from the optimistic rule 

to the pessimistic rule could be represented by Equation (12): 

 

probሺp ՜ oሻ ൌ s୧ ൅ m୧ω୧୨ ∑ D୭୨ஷ୧ ሺi, jሻ (12) 

 

where s୧  denotes the self-conversion (due to idiosyncratic factors) rate, and m୧ 

refers to the imitation rate. To simplify our model, we let both the self-conversion rate 

and imitation rate be constant. In other words, s୧ ൌ s୨ and m୧ ൌ m୨ for each i ് j, 

and ω୧୨  denotes the interaction strength between i and friend j. Equation (13), 

D୭ሺi, jሻ, is an indicator function that counts the number of i’s friends who are 

optimists. 
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D୭ሺi, jሻ ൌ ൜   1, ݅ ݂݋ ݎ݋ܾ݄݃݅݁݊ ܿ݅ݐݏ݅݉݅ݐ݌݋ ݊ܽ ݏ݅ ݆ ݂݅ 
 0, ݁ݏ݅ݓݎ݄݁ݐ݋  (13) 

 

Symmetrically, if the agent uses the optimistic rule in period t, the probability of agent 

i converting to a pessimist person could be represented by Equation (14): 

 

probሺo ՜ pሻ ൌ s୧ ൅ m୧ω୧୨ ∑ D୮୨ஷ୧ ሺi, jሻ (14) 

 

D୮ሺi, jሻ ൌ ൜   1, ݅ ݂݋ ݎ݋ܾ݄݃݅݁݊ ܿ݅ݐݏ݅݉݅ݏݏ݁݌ ܽ ݏ݅ ݆ ݂݅ 
 0, ݁ݏ݅ݓݎ݄݁ݐ݋  (15) 

Finally, variable ω୧,୨ is used to describe the interaction strength between i and friend 

j under specific network structures such as a fully connected network, circle network, 

regular network, small world network and scale-free network. In order to depict the 

social network formation and its structure, we apply the concept of graph theory. Thus, 

a network G (V,E) is defined by a set of agents N and a set of links E. More 

specifically, V = {1, . . . , n} denotes all agents connected in some network 

relationship, and the number n refers to the size of the network. E denotes which pairs 

of agents are linked to each other so that E ൌ ൛b୧୨: i, j א Vൟ encodes the relationship 

between any two agents in the network. Customarily, we use b୧୨ ൌ 1 to indicate that 

there exists an edge (connection, relation) between i and j; otherwise it is zero. For 

this reason, we can use an NൈN matrix to describe the network structure. However, 

we set b୧୨ ൌ b୨୧, which is known as a non-directed network in our model. Therefore, 

we can have a symmetric network matrix and the network formation algorithm for 

each specific social network structure, as follows:  

 

(1) Fully-connected network structure 

The fully-connected network has the feature that agents are completely connected 
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with each other. In other words, each agent has (n-1) links.  

(2) Circle and regular network structures 

In a regular network structure, all agents are connected to their respective k-nearest 

neighbors and k is a constant number. Thus, each agent connects with k neighbors on 

both the left and the right. The simplest case, k=1, would be a circle network structure. 

In our model, the regular network structure refers to k=2, i.e., each agent makes 

friends with the 2-nearest neighbors from the left and the 2-nearest neighbors from the 

right. 

 

(3) Small world and random network structures 

Watts and Strogatz (1998) first proposed a model of small-world networks. Watts and 

Strogatz started with random and regular graphs. They looked at two properties of 

these graphs, namely, clustering and path length. Clustering is a measurement of the 

set of friends who all know each other. Thus they develop a clustering coefficient 

which provides the number of pairs of two nodes that are connected to the same node, 

and are also connected to each other. Path length is used to measure the average 

distance between two nodes, which corresponds to the degrees of separation in a 

social network. Their initial results showed that regular graphs have high clustering 

and high path lengths; random graphs of the same size tend to have low clustering and 

low path lengths. However, neither of these was considered to be a good model of 

social networks which seem to combine high clustering with short path lengths. 

Therefore, Watts and Strogatz tried to create a network generating algorithm to create 

a network which has the same property as a social network in the real world. First, 

they started with a regular graph with n nodes and k neighbors. Then, each agent had 

a rewiring probability, p, to cut off the link with each neighbor and build up a new 

link with one of the strangers. The probability, p, controls how random the graph is. 
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With p=0, the network structure is regular; with p=1 it is random. In our simulations, 

we consider the regular network structure and set the rewiring rate, p, equal to 0.1, 0.3, 

0.5, 0.7, 0.9 and 1 to generate different random network structures. 

 

(4) Scale-free network structure 

A scale free network is a network with the power law property. Thus, the number of 

links originating from a given node denotes a power law distribution represented by 

pሺkሻ ൌ kିஓ where k denotes the number of links. The idea of a scale-free network 

comes from observations of many social contexts, e.g., the citation network among 

scientific papers (Redner, 1998), the World Wide Web and the Internet (see, e.g., 

Albert et al., 1999; Faloutsos et al., 1999), telephone call and e-mail graphs (Aiello et 

al., 2002; Ebel et al., 2002), or the network of human sexual contacts (Liljeros et al., 

2001). All of them show that only a few agents have many friends; most agents in the 

network have only a few friends. The most popular method to construct a scale-free 

network is the preferential attachment of Barabási and Albert (1999), which starts 

with m଴ agents and then progressively adds one new agent, i, to an existing network 

and builds links to existing agents with preferential attachment, according to Equation 

(16). That describes the rich getting richer; the probability of linking to a given agent 

is proportional to the number of existing links that a node has. 

 

          probሺlinking to agent iሻ ൌ ୩౟
∑ ୩ౠ

Nషభ
ౠ

  (16) 

 

For considering the utility of different rules for each agent, we connect the interaction 

strength between i and friend j, ω୧୨, and the performance of each agent. Therefore, 

according to Equations (9) and (10), we can assign different scores for each agent and 
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then have the score matrix S, with dimensions NൈN. In this case, if the agent is an 

optimist, it gets the score of the optimistic rule, and vice versa. By using the score 

matrix and the specific social network structure recorded by N, we can have ω୧୨ 

through Equation (17). 

 

ω୧୨ ൌ N.ൈS
∑ ሺN.ൈSሻN

౟సభ
 (17) 

 

N. ൈS means that the element of S is multiplied by the corresponding element of N 

and, therefore, we can have a new matrix which contains only friends’ scores. Then, 

each agent assigns a weight to all its friends. Thus, the agent has to sum up the scores 

of all friends, i.e., we have to compute ∑ ሺN.ൈ SሻN
୧ୀଵ  for each row. Finally, the friends’ 

score matrix should be divided by ∑ ሺN.ൈ SሻN
୧ୀଵ , and after that, ω୧୨ can be generated. 

 

V. Collaborations and simulation results 
 

In simulations, we follow the parameters setting of De Grauwe (2010a) for the 

stylized New Keynesian DSGE model. Details of parameters in the stylized New 

Keynesian DSGE model, Boltzmann-Gibbs machine and network-based ant model 

and parameters values of different network structures can be found in Table 1. In 

order to find out the distribution of population dynamics, we run 100 experiments for 

a given collaboration. For each experiment of a specific collaboration, we set the 

number of agents equal to 100 (1,000) and run 300 periods. 
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Table 1: Parameters setting of calibrated models 

Parameters setting of stylized New Keynesian DSGE model 

*π  0 the central bank’s inflation target 

1a  0.5 coefficient of expected output in output equation 

2a  -0.2 the interest elasticity of output demand 

1b  0.5 coefficient of expected inflation in inflation equation 

2b  0.05 coefficient of output in inflation equation 

1c  1.5 coefficient of inflation in Taylor equation 

2c  0.5 coefficient of output in Taylor equation 

3c  0.5 interest smoothing parameter in Taylor equation 

g 0.01 output forecasts optimists 

ρ୩ 0.5 the speed of declining weights omega in mean squared errors 

ε୲, η୲, u୲ 0.005 standard deviation shocks of output gap, inflation and Taylors’ rule  

Parameters setting of Boltzmann-Gibbs machine 

λ 100 

500 

1000 

5000 

10000 

50000 

intensity of choice 

 

 

 

 

 

 

Parameters setting of network-based ant model 

s 0.15 self-conversion rate 

m 0.7 imitation rate 
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Parameters setting of different network structure 

k 1 number of neighbors from the left (right) in circle network structure 

k 2 number of neighbors from the left (right) in regular network structure 

m଴ 20 initial nodes of scale free network structure 

p 0.1 

0.3 

0.5 

0.7 

0.9 

1 

 

 

 

cutting (rewriting) probability of small world network structure 

Others 

N 100 number of agents 

T 300 number of simulation periods for each experiment of calibrations 

R 100 number of experiments for each calibration 

 

For the Boltzmann-Gibbs machine design, we try different values of intensity of 

choice. In this case, if we increase the intensity of choice (λ), then the strength of 

social interaction is increased. Figure 1 shows the probability density function of the 

optimistic ratio in the Boltzmann-Gibbs machine. The first row refers to the 

probability density function of the optimistic ratio in the 100th period, the second row 

represents the probability density function of the optimistic ratio in the 200th period 
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and the third row denotes the probability density function of the optimistic ratio in the 

300th period. According to Figure 1, we can observe that if λ is low enough, say 

λ ൌ 100, the fraction of optimists is very close to 0.5. As λ gets larger, the states of 

the probability density function of the optimistic ratio in the Boltzmann-Gibbs 

machine become divergent. Therefore, we can obtain bell-shaped probability density 

functions if λ is between 500 and 1,000. In such cases, herding behavior (animal 

spirit) cannot be generated. However, if the value of λ is larger than 5,000, the 

probability density functions of the optimistic ratio are U-shaped. In other words, to 

generate the herding behavior (or animal spirits),2 the value of λ has to be set 

above 5,000. Then, we one can easily have a boom or bust situation easily.  

  One of the purposes in combining the Boltzmann-Gibbs machine and the stylized 

New Keynesian DSGE model is to generate booms and busts. For this reason, the 

focus is on self-conversion and imitation rates which can produce the herding 

behavior in the network-based ant model. In this case, the self-conversion rate equals 

0.15 and the imitation rate equals 0.7, which meet the requirements. Figures 2 and 3 

depict the probability density function of the optimistic ratio in the network-based ant 

model with 100 agents and 1,000 agents, respectively.  

The similarity of the two population dynamics generated by the Boltzmann-Gibbs 

machine and the network-based ant model can be explained in three different ways. 

Firstly, the probability density function of the optimistic ratio for different models is 

sketched in order to observe the shape of the different probability density functions. 

Secondly, the Kolmogorov-Smirnov test is applied for all models. Finally, the relative 

entropy is introduced to measure the similarity between two population dynamics 

distributions.  

                                                       
2  It means that all agents adopt the same behavior, and the phenomenon is referred to as ‘animal 
spirits’ in De Grauwe (2010a, 2010b). 
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A comparison of Figures 1 and 2 shows the difference between the probability 

density functions of optimistic ratios for the Boltzmann-Gibbs machine and the 

network-based ant model. Figure 1 shows the herding behavior when the value of 

intensity of choice is large enough, say, larger than 5,000. However, Figure 2 shows 

that if the values of the self-conversion rate and imitation rate are, say, 0.15 and 0.7, 

respectively, it is not difficult to produce herding behavior (animal spirits) in the 

network-based ant model. Figure 3 (which results from a large sample) shows the 

same property as Figure 2. In other words, the proposed network-based ant model can 

generate U-shaped probability density functions of the optimistic ratio with any given 

network structure.  

Figure 1. Probability density function of the optimistic ratio in the 
Boltzmann-Gibbs machine. 

λ ൌ 100

λ ൌ 500 
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λ ൌ 1000 

 

λ ൌ 5000 

 

λ ൌ 10000 
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λ ൌ 50000 

 
Figure 2. Probability density function of the optimistic ratio of the 
network-based ant model (N=100). 
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4



27 
 

Regular network 

 

Small world network with cutting (rewriting) rate equal to 0.1 

 

Small world network with cutting (rewriting) rate equal to 0.3 
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Small world network with cutting (rewriting) rate equal to 0.5 

 

Small world network with cutting (rewriting) rate equal to 0.7 

 

Small world network with cutting (rewriting) rate equal to 0.9 
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Random network 

 

Scale-free network 

 
Figure 3. Probability density function of the optimistic ratio of the 
network-based ant model (N=1000). 
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Circle network structure 

 

Regular network 

 

Small world network with cutting (rewriting) rate equal to 0.1 
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Small world network with cutting (rewriting) rate equal to 0.3 

 

Small world network with cutting (rewriting) rate equal to 0.5 

 

Small world network with cutting (rewriting) rate equal to 0.7 
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Small world network with cutting (rewriting) rate equal to 0.9 

 

Random network 

 

Scale-free network 
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However, we wonder which network structure can generate population dynamics 

closest to the Boltzmann-Gibbs machine. Then, we can reconsider whether the 

Boltzmann-Gibbs machine is a reliable tool for describing social interaction. In order 

to answer this question, we compare the optimists’ ratios asymptotic distribution of  

the Boltzmann-Gibbs machine with the network-based ant model, by conducting the 

Kolmogorov-Smirnov test. The statistical Kolmogorov-Smirnov test can be used to 

compare distributions of the values in the two data vectors x1 and x2.  

Here, x1 could be regarded as the 100 optimist ratios of the 300th period in the 

Boltzmann-Gibbs machine and x2 is base on the network based ant model. By the 

definition of the Kolmogorov-Smirnov test, the null hypothesis is that x1 and x2 are 

from the same distribution. The alternative hypothesis is that they are from different 

distributions. Therefore, if the p-value of Kolmogorov-Smirnov test is larger than 0.05, 

x1 and x2 coming from the same distribution cannot be rejected. The results of the 

Kolmogorov-Smirnov test are presented in Tables 2 and 3. The simulation results 

show that the circle network can produce population dynamics most similar to the 

Kolmogorov-Smirnov test. This finding is consistent with the study of 

thermodynamics for which the Boltzmann-Gibbs distribution is based on the local 

interaction. However, it is difficult to treat the population dynamics generated by the 

Boltzmann-Gibbs model and network-based ant model as being from the same 

distribution, particularly in the popular empirical network structures such as the small 

world network and scale-free network. Thus, maybe we have to ponder whether the 

Boltzmann-Gibbs machine is the proper tool for describing social interaction under 

the New Keynesian DSGE framework.  

According to the probability density function analysis, it seems that the 

Boltzmann-Gibbs machine is a robust approximation of herding behavior in a 

network-based ant model. However, none of the population dynamics produced by the 
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network-based ant model with different network structures could pass the 

Kolmogorov-Smirnov test, besides the circle network structure. Therefore, we have to 

check whether the Boltzmann-Gibbs machine is a good approximation for the herding 

behavior for any given network structure. In order to do so, we use the relative 

entropy, a similar measure. Before we mention the relative entropy for measuring the 

similarity between two population dynamics distributions, we have to introduce the 

concept of Shannon entropy (Shannon, 1948), used to describe the uncertainty in the 

information theory represented by Equation (18). 

Hሺpଵ, pଶ, ڮ , p୬ሻ ൌ െ ∑ p୧
୬
୧ୀଵ logଶp୧ (18) 

 

Table 2: Kolmogorov-Smirnov test results (N=1000) 

  Fully Circle Regular SW01 SW03 

λ=100 3.70E-12 2.95E-11 4.41E-15 3.70E-12 1.06E-11 

λ=500 3.70E-12 8.08E-11 1.43E-14 1.06E-11 1.06E-11 

λ=1000 2.95E-11 3.70E-09 1.40E-13 2.95E-11 2.17E-10 

λ=5000 0.013112 0.193042 0.000322 0.008216 0.008216 

λ=10000 2.75E-07 2.21E-08 1.33E-06 6.12E-07 5.22E-08 

λ=50000 4.52E-14 4.41E-15 4.52E-14 4.52E-14 4.52E-14 

  SW05 SW07 SW09 Random Scale-free 

λ=100 1.40E-13 3.70E-12 4.41E-15 3.96E-16 1.40E-13 

λ=500 4.26E-13 3.70E-12 4.41E-15 3.96E-16 1.40E-13 

λ=1000 2.95E-11 1.06E-11 4.52E-14 3.96E-16 1.40E-13 

λ=5000 0.193042 0.003031 0.001029 0.000174 0.001785 

λ=10000 2.85E-06 5.22E-08 1.21E-07 2.45E-05 5.96E-06 

λ=50000 1.40E-13 1.34E-15 1.43E-14 1.40E-13 3.96E-16 
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Table 3: Kolmogorov-Smirnov test results (N=1,000) 

  Fully Circle Regular SW01 SW03 

λ=100 1.43E-14 3.70E-12 1.06E-11 1.06E-11 1.06E-11 

λ=500 1.43E-14 2.95E-11 1.06E-11 1.06E-11 1.06E-11 

λ=1000 1.43E-14 1.47E-09 1.06E-11 1.06E-11 1.06E-11 

λ=5000 4.81E-05 0.099376 0.008216 0.005043 0.008216 

λ=10000 9.12E-09 2.21E-08 9.12E-09 9.12E-09 9.12E-09 

λ=50000 3.96E-16 3.96E-16 3.96E-16 3.96E-16 3.96E-16 

  SW05 SW07 SW09 Random Scale-free 

λ=100 1.06E-11 1.06E-11 1.06E-11 1.06E-11 1.40E-13 

λ=500 1.06E-11 1.06E-11 1.06E-11 1.06E-11 1.40E-13 

λ=1000 1.06E-11 1.06E-11 1.06E-11 1.06E-11 1.40E-13 

λ=5000 0.008216 0.003031 0.001785 0.005043 0.008216 

λ=10000 9.12E-09 9.12E-09 9.12E-09 9.12E-09 2.21E-08 

λ=50000 3.96E-16 3.96E-16 3.96E-16 3.96E-16 1.15E-16 

 

where Hሺpଵ, pଶ, ڮ , p୬ሻ  is a continuous function, and p୧  is the frequency 

(probability) of state i. If pଵ ൌ pଶ ൌ ڮ ൌ p୬ ൌ ଵ
୬
 , we obtain the maximum H. It 

means the highest uncertainty exists in the system. However, if p୧=1 and p୨ஷ୧=0, H 

will equal zero, and in this case, state i always occurs and the degree of uncertainty in 

the system is 0. In our population dynamics case, we group the optimistic ratio into 10 

groups and calculate the frequency for each group. The 1st group represents an 

optimistic ratio larger than 0 and less than 0.1, the 2nd group includes an optimistic 

ratio between 0.1 and 0.2,…, and so on. Therefore, we can obtain the Shannon 

entropy of our model through Equation (18), where n=10. 

Based on the definition of Shannon entropy, Kullback and Leibler (1951) proposed 

relative entropy, which is also known as cross entropy or Kullback-Leibler 

divergence. Relative entropy is a measure of similarity, assuming that the baseline 



36 
 

distribution is G and the alternative distribution is S. However, we wonder if S is a 

good approximation of the distribution of G. Thus, the relative entropy can be used to 

measure the similarity between two population dynamics distributions. The more 

dissimilar G and S are, the larger the relative entropy is.  

Therefore, if we have two density vectors G ൌ ሺgଵ, gଶ, gଷ, ڮ , g୬ሻ  (G is the 

frequency of the optimistic ratio derived by 100 experiments with the 

Boltzmann-Gibbs machine) and S ൌ ሺsଵ, sଶ, sଷ, ڮ , s୬ሻ (S is the frequency of the 

optimistic ratio derived by the network-based ant model of a given social network 

structure), the definition of relative entropy is given as Equation (19). In this case, 

H(G|S) will always be larger than or equal to zero; if G and S are identical, H(G|S) 

equals zero. 

 

 HሺG|Sሻ ൌ ∑ g୧logଶ
୬
୧ୀଵ ቀ୥౟

ୱ౟
ቁ ൌ ∑ g୧

୬
୧ୀଵ logଶg୧ െ ∑ g୧

୬
୧ୀଵ logଶs୧ (19) 

where g୧ ൒ 0, s୧ ൒ 0 and ∑ g୧
୬
୧ୀଵ ൌ ∑ s୧

୬
୧ୀଵ ൌ 1 

 

However, relative entropy is asymmetric. In other words, H(G|S)≠H(S|G). This is 

why it is the Kullback-Leibler divergence rather than the Kullback-Leibler distance. 

  Table 4 shows the results of the relative entropy procedure. Absolute values of 

relative entropy are all less than 0.5 for all different social network structures if the 

intensity of choice equals 10,000. Therefore, the result indicates that the 

Boltzmann-Gibbs machine (with an intensity of choice equal to 10,000) offers a good 

approximation of herding behavior of our network-based ant model with any given 

network structure. 
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Table 4: Relative entropy 

Intensity 
of choice 

λ=100 λ=500 λ=1000 λ=5000 λ=10000 λ=50000

fully 0.810  0.597  -0.267  -1.160  -0.318  0.501  

circle 1.448  1.235  0.372  -0.522  0.320  1.139  

regular 1.066  0.852  -0.011  -0.905  -0.062  0.757  

SW01 0.977  0.763  -0.100  -0.993  -0.151  0.668  

SW03 1.000  0.787  -0.076  -0.970  -0.128  0.692  

SW05 1.082  0.869  0.006  -0.888  -0.046  0.773  

SW07 1.088  0.875  0.012  -0.882  -0.040  0.780  

SW09 0.974  0.761  -0.102  -0.996  -0.154  0.666  

SW10 0.985  0.772  -0.091  -0.985  -0.143  0.677  

Scale free 0.797  0.583  -0.280  -1.174  -0.331  0.488  

 

VI. Conclusion 
 

This paper compares the population dynamics between the Boltzmann-Gibbs 

machine and network-based ant model under a stylized New Keynesian DSGE 

framework. We find that both the Boltzmann-Gibbs model and network-based ant 

model can generate herding behavior. However, as stated earlier, it is hard to envisage 

population dynamics generated by the Boltzmann-Gibbs model and the 

network-based ant model being from the same distribution, particularly in the popular 

empirical network structures such as a small world network and scale-free network. In 

addition, our simulation results further suggest that the population dynamics of the 

Boltzmann-Gibbs model and circle network ant model can be considered to be from 
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the same distribution under specific parameter settings. The finding is consistent with 

the study of thermodynamics for which the Boltzmann-Gibbs distribution is based on 

the local interaction. Although the circle network is not the acknowledged social 

network structure, according to the relative entropy between the population dynamics 

of the Boltzmann-Gibbs distribution and the network-based ant model, the 

Boltzmann-Gibbs model with an intensity of choice equal to 10,000 is a good 

approximation of the herding behavior of our network-based ant model with any 

given network structure. In addition to the population dynamics, there are some other 

questions regarding the use of the Boltzmann-Gibbs machine to describe social 

interaction in the stylized New Keynesian DSGE model. For example, the frequency 

of herding behavior in financial markets and macroeconomic systems may be 

different. The opinion change could occur very rapidly in financial markets but could 

be slower in the macroeconomic system. In this case, we have to consider if an 

intensity of choice being equal to 10,000 produces too heavy an opinion change. Thus, 

maybe we have to further confirm if the Boltzmann-Gibbs machine is a suitable tool 

for calibrating social interaction under a stylized New Keynesian DSGE framework. 
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