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Abstract

This paper investigates the e�ects of ordinal regressors in linear regression models. Each

ordered categorical variable is interpreted as a rough measurement of an underlying con-

tinuous variable as it is often done in microeconometrics for the dependent variable. It is

shown that using ordinal indicators only leads to correct answers in a few special cases. In

most situations, the usual estimators are biased. In order to estimate the parameters of the

model consistently, the indirect estimation procedure suggested by Gourieroux et al. (1993)

is applied. To demonstrate this method, �rst a simulation study is performed and then in

a second step, two real data sets are used. In the latter case, continuous regressors are

transformed into categorical variables to study the behavior of the estimation procedure. In

general, the indirect estimators lead to adequate results.
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1 Introduction

In sample surveys on the individual level (e.g. households or �rms), it is often the case that many

questions are asked categorically. This is due to the fact that it is less time consuming to answer,

for instance, whether ones annual income falls into a speci�c income class rather than giving

the exact value. Microeconometric models are available in cases where the dependent variable

carries limited information. However, when explaining such a variable using other variables from

the same survey, it is likely that those explanatory variables also carry only limited information.

As an example, Li (1977) wants to explain the individual propensity of homeownership as a

linear function of household income, age of head, family size, and race of head. In essence, he

applies a binary logit model, since observations on the dependent variable are only available as

homeownership status. The explanatory variables income and age are also measured categorically

in this survey. Income is measured using 4 categories. Li (1977) uses a set of three dummy

variables to measure the in�uence of income on homeownership. The same applies to the age

variable where a set of 4 dummy variables is included to represent the 5 age categories. This

has become common practice (e.g. Theil, 1971 p. 633�., McIntosh et al., 1989 p. 255). In the

latter paper it is mentioned, however, that this common practice treats ordered variables on the

left�hand side and right hand�side asymmetrically.

Throughout this paper we apply K. Pearson' s (1901) idea of an underlying continuous variable

for an ordinal indicator to also explanatory variables. This idea, applied to the left�hand side

variable, is the basis, for instance, in the ordered probit/logit model. Given this assumption,

we will show that for models which are formulated linearly in the continuous variables, the

common practice of replacing an ordinal indicator by a set of dummy variables or using the

ordinal indicator itself as a regressor could lead to wrong answers with respect to whether or not

a continuous latent variable has a signi�cant in�uence.

Our approach is conceptually di�erent from non-linear regression models with discrete explana-

tory variables (e.g. Bierens and Hartog, 1988). Those models are formulated conditional on the

observed ordered variables. Therefore, the results have to be interpreted in terms of this mea-

surement level. This implies, for instance, for the above mentioned example that not whether

income has an e�ect on homeownership is tested, but instead, whether the prede�ned income

classes e�ect the outcome.

The paper is organized as follows: In Section 2, the problem is discussed in more detail. Us-
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ing a linear regression model the e�ect of regressor variables with only limited information is

demonstrated. In Section 3, the indirect estimation procedure is introduced as a possibility

of estimating the parameters of the latent model. With this method, the latent model is �rst

simulated depending on the parameter of interest. Then the loss of information due to catego-

rizing the continuous variables is imitated in order to have the same kind of observations as in

the data set at hand. An auxiliary model is estimated using both data sets. The parameters

of interest are calibrated in order to obtain close auxiliary parameter estimates. A simulation

study is performed in Section 4 to compare the indirect estimation method with the Ordinary

Least Squares (OLS) estimator in which the categorical information is used directly. In Section

5, the comparison between those two methods is continued by using real data sets. Within this

experiment, some regressors are categorized to have a �true� benchmark. The dependent variable

is also categorized to demonstrate the usefulness of the method in such a setting. Finally, in

section 6 some conclusions are made and further applications are discussed.

2 Modeling Ordinal Regressors

Starting point for the discussion in this paper is the linear model

y� = �0 + x�1�1 + x�2�2 + " : (1)

Microeconometrics as a special �eld in econometrics evolved due to the fact that the dependent

variable y� cannot always be observed directly. For instance, if it is only known that y� is greater

or less than a �xed value c, meaning that we only observe

y =

8<
:

1 if y� � c

0 otherwise

we can apply the binary probit or binary logit model. Another example is the measurement

equation1

y = k () �k�1 � y� < �k k = 1; 2; : : : ;K : (2)

leading to the ordered probit/logit model (Ronning, 1991 Chap. 2). The latter two models di�er

in the distributional assumption on " and hence the conditional distribution of y�jx�.

1Throughout the paper the superscript � is used to indicate a continuous variable, whereas for its ordered

counterpart this superscript is omitted.
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Due to the loss of information in the observed dependent variable, not all of the model parameters

are identi�ed. Restricting �0 = 0 and �" = 1 identi�es the model. This can be interpreted as

estimating the thresholds �1; : : : ; �k�1 of equation (2) and the parameters �0i of

y�

�"
= x�1�

0
1 + x�2�

0
2 + "0 (3)

with �0i = �i=�" instead of equation (1). It should be mentioned that this restriction makes it

impossible to test a linear restriction in terms of the original parameters, i. e. �i = k; however,

testing �i = 0, which is our main concern in this paper, is not a�ected by the restricting

assumption.

Next, assume the right hand variable x�
2
in equation (1) is not observed directly whereas y� and

x�
1
are continuously measurable2. Variable x�

2
is assumed to be measured qualitatively as x2

analogous to equation (2). Hsiao and Mountain (1985), Ross (1987), and Ross and Zimmermann

(1993) suggest assuming a normal distribution3 for the latent variable x�
2
and derive the condi-

tional expected value E(x�
2
j x2) which can be interpreted as a general residual (Gourieroux et

al., 1987 p.14.):

E(x�2 j x2 = j) =
�(�j�1)� �(�j)

�(�j)� �(�j�1)
; (4)

where �(�) denotes the density and �(�) the distribution function of the standard normal distri-

bution. The unobserved residual depending on the realization of x�
2
is then4

�2 = x�2 � E(x�2 j x2) : (5)

The conditional distribution function of x�
2
jx2 = j is a truncated normal distribution with sup-

port [�j�1;�j [. Inserting (5) into equation (1) yields the well known errors�in�variables (EIV)

problem leading to biased and inconsistent OLS�estimates. Additionally, heteroscedasticity oc-

curs (Yatchew and Griliches, 1984) since the variance var(x�
2
j x2) depends on x2. Therefore,

Hsiao and Mountain (1985) suggest using (x�
1
;E(x�

2
jx2)) as instruments for (x�

1
;x�

2
) and obtain

consistent IV�estimators. However, some problems arise due to unknown covariance parameters

which can only be solved using additional assumptions. Kao and Schnell (1987) assume that

these covariances are known.

For the special case of �2 = 0 the use of E(x�
2
jx2) instead of x�

2
leads to unbiased OLS�estimates

and under this hypothesis the usual tests are applicable. In this situation, the regressor variables

2See also Ronning and Kukuk (1996).
3To be more precise, a standard normal distribution is assumed, implying that instead of �2 in (1) one estimates

�00
2 = �2 � �x�

2
. Additionally, the constant term changes to �0 � �00

2 �x�
2
.

4It should be noted that equation (5) can also be formulated using the coding scheme ~�2 = x�
2 � x2 .
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are not correlated with the error term; hence, the signi�cance level of a test H0 : �2 = 0 is

correct. This is of great importance for practical purposes since the categorical indicator x2 can

be used to test the signi�cance of �2 in the latent model (1).

Otherwise, if for both right hand side variables x�
1
and x�

2
only categorical observations are

available analogous to (2), equation (1) can be written as

y� = E(x�
1
jx1)�1 + E(x�

2
jx2)�2 + "+ �1�1 + �2�2 ; (6)

where the new error term � = "+�1�1+�2�2 will be correlated with the regressors in most cases.

The distribution of the error term � is a mixture of a normal and two truncated normal distri-

butions which aggravates the use of standard EIV models. Even for the above mentioned case of

�2 = 0, the OLS�method using the observations (y�;E(x�
1
jx1);E(x

�
2
jx2)) lead to biased estimates

and incorrect signi�cance levels. Nevertheless, Nerlove et al. (1993) and Ross and Zimmermann

(1993) apply this method by arguing that for low correlations between the regressors, the biases

will be small. Simulation studies are mentioned to support their view. However, we will show in

section 4 that the bias in the signi�cance level is not of negligible order.

The usual way of estimating the parameter vector � correctly is to assume a multivariate distri-

bution for y�; x�
1
; x�

2
. For instance, if we assume a trivariate (standard�)normal distribution the

ML�estimates for � can be derived from the ML�estimates of the covariance parameters of the

normal distribution5. This is due to the fact that the regression parameters are a function of the

covariance parameters of the joint distribution. Within this procedure it is also possible to only

have qualitative observations y instead of y�. However, problems arise if dummy variables should

be included on the right side of equation (1). It is hard to imagine a mixed continuous�discrete

joint distribution for all the variables involved and then derive a linear regression from it. A

possible estimation strategy could be a reformulation of equation (1) into a system of linear

equations and estimating it using e.g. MECOSA (Schepers and Arminger, 1992). However, this

strategy requires slightly di�erent distributional assumptions.

3 Indirect Estimation

In this paper we want to follow another procedure to estimate the parameters of equation (1)

which allows the use of nominal scaled dummy variables on the right hand side. This method is

based on the idea of indirect estimation proposed by Gourieroux et al. (1993) and Gallant and

5See Browne and Arminger (1994), Jöreskog (1990), or Kukuk (1991)

4



Tauchen (1996). This procedure uses simulation techniques which have become more and more

attractive for practical purposes due to increases in computing power in recent years.

In the last section it was mentioned that, since x�
1
and x�

2
are not observable, a distributional

assumption is necessary to derive conditional moments which are essential for the estimation of

the model. For instance, if we assume that x�
1
and x�

2
follow a bivariate normal distribution, then

realizations of these variables can be simulated. Together with simulated realizations for the

residual " and given values for the �i's, simulated values for y� are determined. The simulated

values for x�i can be transformed into values of xi for some given values of �j according to the

measurement equation (2). At this point we have simulated observations for (y�; x1; x2) which

of course depend on model parameters such as �i and �j . The measurement levels of these

simulated data correspond to the realized observations from the survey. If the model is true and

all the parameters are known, then realized observations at hand (y�; x1; x2) follow the same

distribution as the simulated data.

The basic idea of the indirect estimation method is to use an auxiliary model. In our context,

such an auxiliary model could be a regression of y� on the categorical indicators x1; x2:

y� = �0 + x1�1 + x2�2 + � :

The resulting OLS�estimator �̂ is a biased estimator for the parameter vector � as shown above.

The auxiliary parameter vector �, which, in our context, has no meaningful interpretation, is

estimated using the real data (denoted by �̂) and also using the simulated data (denoted by ~�).

Again, if the latent model is true and all the parameters known, the distribution of the �̂ is the

same as the distribution of ~�.

However, the model parameters are usually unknown. The estimates ~� from the simulated data6

are a function of the model parameters. Therefore, the next step of the indirect estimation

consists of a calibration of model parameters so that ~� is close to �̂. This is done by a Minimum�

Distance step which in our model could be

min
�

(~�(�)� �̂)0(~�(�)� �̂) :

In our case, this minimization is performed using the GAUSS application module OPTMUM.

Gourieroux et al. (1993) show the consistency and asymptotic normality of the indirect estimator.

In a couple of simulation studies they show for models in which exact ML-estimators are available

6For a given set of model parameters, more than one simulated data set can be simulated and for each of them

we can estimate the auxiliary model. As a result, ~� could be taken as the mean of these estimates.
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that the indirect estimator performs just as well as the ML-procedures in terms of standard

deviations and root�mean�squared�errors.

In the next section we perform a simulation study to show the advantages of the indirect estima-

tion over the crude way of using �̂ as an estimator for � which is often encountered in practical

applications.

4 Simulation study

For our example, equation (1) is extended by two continuous and one dummy variable. The

latter is constructed to have a positive correlation with the other explanatory variables. Now,

the model is:

y� = �0 + x�1�1 + x�2�2 + x�3�3 + x�4�4 +D�5 + " ; (7)

where the variables x�
3
and x�

4
will be treated as unobservable variables for which only categorical

information is available. D is a dummy variable coded as 0 and 1. The vector of the contin-

uous variables x�i is assumed to follow a multivariate standard normal distribution7 with zero

expectation and correlation matrix R:

R =

0
BBBBBB@

1 :4 :5 :3

1 :4 :35

1 :4

1

1
CCCCCCA

The values of the correlations are chosen to have magnitudes which can be observed in real

data situations. Setting the parameter vector � = (�0; : : : ; �5)
0 = (0; :4; :4; 0; :4; :3)0 and using

normally distributed residuals we obtain y�. It should be noted that x�
3
, for which later on only

the categorical information will be used, has no e�ect on y� in this setting8. The variables x�
3

and x�
4
are categorized analogous to equation (2) in x3 and x4, respectively, each having three

categories. Di�erent values for the thresholds are used. The setting is as follows: we perform

1.000 simulation runs. In each run 1.000 observations9 for all right hand variables of model (7)

are simulated. For each data set 3 simulated data sets are used for the indirect estimation.

7This assumption is replaced at the end of this section by a multivariate t-distribution to assess the robustness

of the estimation procedure.
8However, the correlation between y� and x�

3 is approximately 0.53.
9Simulations with 500 observations were run as well leading to similar results.
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In table 1 arithmetic means and standard deviations of the estimated parameters are recorded

for di�erent sets of thresholds. Results for three common practice procedures applying OLS are

recorded as well as those for the indirect estimation procedure. OLS1 denotes a regression of

y� on x�
1
, x�

2
, x3, x4, and D; OLS2 is the same except x3 and x4 are replaced by E(x�

3
jx3) and

E(x�
4
jx4), respectively; OLS3 is the procedure described in the �rst section using a set of two

dummies for each ordered indicator each having 3 categories. In the latter case signi�cance of

x�
3
is usually tested by an F-test for both regression parameters. The results for all the OLS

methods show more or less biased estimates for the parameter vector � which is due to the

correlations between the regressors and the error term as shown above. The size of those biases

depends on the values of the correlation between the regressors which are chosen as not too large

in this example. The biases also depend on the threshold values which can be drastically seen in

the last threshold setting.

Since the OLS�estimates for �3 show biases it is not surprising that the empirical signi�cance

level is well above the true value of 5%. This means that by using the categorical indicators or a

set of dummy variables, the null hypothesis that x�
3
has no in�uence on the dependent variable

is rejected too often. In other words, it is stated too often that variable x�
3
has a signi�cant

in�uence on y�.

No systematic bias can be observed for the indirect estimation method. On average, the true

structure of the model is obtained so that the extra computational e�ort seems to be justi�ed.

The standard deviations of the parameters are larger than those resulting from OLS�estimation.

However, this does not support the use of OLS since it produces large biases. To obtain a valid

benchmark, those results should be compared to full information ML�estimates which are not

available for our general model allowing the inclusion of dummy variables (Hsiao and Mountain,

1985). However, if we modify our model under consideration (7) by dropping the dummy variable

D, leading to

y� = �0 + x�1�1 + x�2�2 + x�3�3 + x�4�4 + " ; (70)

a Full�Information ML estimator is available (Kukuk, 1991). The same Monte�Carlo design as

above is used for this modi�ed model with the exception that we only consider the �rst set of

thresholds. Additionally, the number of latent data sets used in the indirect estimation procedure

is varied to demonstrate its e�ect on e�ciency.

The results in table 2 show that the number of simulated data sets used in each indirect estimation

has a considerable e�ect. The relative e�ciency suggested by Krämer (1980), which is de�ned
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Table 1: Simulation results for x� following a multivariate normal distribution N(0; R).

Method �0 �1 �2 �3 �4 �5 Reject �3 = 0

Thresholds True Values 0 0.4 0.4 0 0.4 0.3 in %

-1 1.2 OLS1 -.529 .412 .421 .037 .509 .310 19.1
-0.7 0.8 (.041) (.017) (.017) (.034) (.024) (.086)

OLS2 .000 .412 .422 .023 .381 .310 18.8
(.018) (.017) (.017) (.021) (.019) (.086)

OLS3 15.7
Ind. Est. -.001 .401 .400 -.000 .399 .314 5.1

(.019) (.031) (.028) (.033) (.024) (.134)

-0.9 0.4 OLS1 -.467 .410 .420 .026 .451 .313 17.6
-0.5 0.6 (.037) (.017) (.017) (.025) (.023) (.056)

OLS2 -.001 .410 .421 .020 .380 .318 17.6
(.019) (.017) (.017) (.020) (.020) (.056)

OLS3 13.7
Ind. Est. -.001 .399 .400 .001 .398 .317 4.5

(.021) (.030) (.028) (.028) (.026) (.087)

-0.5 0.5 OLS1 -.456 .411 .420 .022 .451 .315 16.5
-0.5 0.6 (.032) (.017) (.017) (.023) (.022) (.058)

OLS2 -.001 .410 .421 .019 .380 .317 16.4
(.019) (.017) (.017) (.020) (.020) (.058)

OLS3 11.4
Ind. Est. -.001 .400 .399 -.001 .398 .318 6.0

(.020) (.030) (.028) (.027) (.025) (.091)

-1.6 1.9 OLS1 -.769 .422 .436 .072 .612 .272 21.2
-1.5 0.8 (.067) (.017) (.017) (.059) (.029) (.157)

OLS2. .001 .423 .436 .034 .376 .274 20.5
(.018) (.017) (.017) (.028) (.019) (.158)

OLS3 15.7
Ind. Est. -.001 .399 .398 .004 .400 .275 4.3

(.018) (.035) (.032) (.053) (.028) (.244)

-1.5 0.8 OLS1 -.855 .433 .462 .108 .752 .271 82.9
-1.6 1.9 (.068) (.019) (.019) (.038) (.056) (.150)

OLS2 .002 .433 .462 .067 .356 .228 83.0
(.018) (.019) (.019) (.023) (.028) (.151)

OLS3 76.5
Ind. Est. -.001 .399 .398 .004 .400 .275 4.3

(.018) (.035) (.032) (.053) (.028) (.244)
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Table 2: Estimated Standard Errors of FIML and Indirect Estimation of model (70)

Method S.E. of Parameter E�ciency
�1 �2 �3 �4

ML .0188 .0166 .0212 .0167
Ind3 .0258 .0266 .0288 .0215 .510
Ind6 .0238 .0209 .0250 .0203 .665
Ind12 .0213 .0190 .0228 .0183 .812
Ind18 .0206 .0192 .0218 .0188 .837
Ind24 .0196 .0190 .0219 .0186 .863

Note: Ind3 stands for Indirect Estimation using
3 simulated data sets. E�ciency is de�ned in (8).

by

e�. =
tr
�
Cov(�̂ML)

�

tr
�
Cov(�̂Ind:Est:)

� ; (8)

increases form 51%, using 3 simulated data sets, to 86.3% using 24 simulated data sets. In all

situations, the means of the estimated parameters do not show any systematic deviation from

their true values. Therefore, they are not reported in the table. The reported standard errors

for the indirect estimation procedure in table 2 as well as table 1 are obtained by using the same

random numbers in the indirect estimation procedure in all simulation runs. If we used a new

set of random numbers in the indirect estimation for each simulation run, additional variation

would come into play resulting in slightly higher standard errors of the parameters.

In order to simulate the latent model (7) with the indirect estimation procedure, the correlation

structure between the continuous variables x�i must be estimated. In our procedure we assume

a multivariate normal distribution to estimate the polychoric correlation (Olsson, 1979, and

Kukuk, 1991 and 1994) between two latent variables and an estimator suggested by Brillinger

(1982) for the correlation between a continuous and a latent variable. This corresponds to the

design of our simulation study. In a next step, model (7) is simulated using a multivariate t-

distribution (Fang et al., 1990 p. 85�., and Lee and Lam, 1988) for the continuous variables x�i .

The correlation structure, the model parameters, and the distribution for " are kept unchanged.

The assumptions in the indirect estimation procedure now deviate from the true model in which

the latent variables have an excess kurtosis of 0.96, 2.7, and 29.4 for the parameters m=10,

m=6, and m=3, respectively. The results of this simulation setup are given in table 3. They

still indicate that the indirect estimation procedure yields satisfying answers. First attempts to

extend this robustness result to other members of the class of elliptically symmetric distributions

are promising. These distributions can be found quite often in other circumstances (Stoker, 1986,
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Table 3: Simulation results for x� following a multivariate t-distribution Mt(m; 0; R)

Method �0 �1 �2 �3 �4 �5 Reject �3 = 0

Thresholds True Values 0 0.4 0.4 0 0.4 0.3 in %

-1 1.2 OLS1 -.536 .413 .426 .040 .511 .330 16.1
-0.7 0.8 (.047) (.019) (.020) (.040) (.028) (.102)

Ind. Est. -.002 .399 .403 -.001 .391 .329 3.6
m= 10 (.021) (.031) (.031) (.035) (.025) (.149)

OLS1 -.536 .415 .429 .037 .514 .364 13.4
(.050) (.022) (.021) (.043) (.030) (.120)

Ind. Est. -.002 .404 .406 -.004 .382 .360 3.9
m= 6 (.021) (.032) (.031) (.038) (.026) (.158)

OLS1 -.561 .416 .444 .049 .521 .440 26.0
(.083) (.040) (.043) (.076) (.038) (.158)

Ind. Est. -.004 .397 .409 .0010 .370 .446 4.0
m= 3 (.021) (.049) (.041) (.058) (.032) (.196)

and Ruud, 1986).

5 Experiments with two Real Data Sets

The simulation study obtained satisfying results for the indirect estimation procedure even in

those situations where the distributional assumption in the estimation procedure deviates from

the true distribution. To study the performance of this method more carefully we apply it to

two real data sets. The aim is to show how robust it is if some of the required assumptions are

violated.

5.1 Analysing Real Estate Values

In the textbook of Berenson and Levine (1992), data of a real estate survey of 322 homes

in two suburban New York counties in 1990 is given. Besides the value of the estates, other

characteristics are surveyed. We consider a regression of the real estate value (Y � in 1000 US$)

on the variables annual taxes X�
1
, number of bathrooms X�

2
, age of the house X�

3
, and lot size

X�
4
. The following OLS-estimates are obtained:

Ŷ � = 135:1 +0:004 �X�
1

+30:64 �X�
2

�0:2413 �X�
3

�1:41 �X�
4

R2 = 0:298

(13:4) (1:89) (9:1) (�1:28) (�4:18)

The variables X�
1
to X�

4
are all continuously measured although the variable number of bathrooms

(X�
2
) only takes on the values 1, 1.5, : : : 3.5. Nevertheless, this variable is considered to be
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continuous but the assumed normal distribution is obviously violated. Also variable lot size does

not follow a normal distribution; it shows a left�skewed distribution with an excess kurtosis of 6.3.

The following experiment is conducted: the variables age of the house and lot size are categorized

into binary variables X3 and X4, respectively. For this we use di�erent values for the thresholds

starting at the 10% percentile of the according distributions and successively increase them until

the 90% percentiles are reached. For each data set, the OLS-estimates of the regression of Y �

on X�
1
, X�

2
, X3, and X4 as well as the indirect estimators are calculated and the signi�cance of

X�
3
and X�

4
are recorded on the 5% level. For the OLS method this means that the signi�cance

of X3 and X4 is taken as a proxy for the corresponding latent variable. It should be mentioned

that the correlation between the continuous observations on age of the house and lot size is -0.21,

which is not very large.

In table 4 the relative frequencies are shown where the �true� in�uence is denoted by �0 �� mean-

ing that variable X�
3
has no e�ect and X�

4
has a negative e�ect on the dependent variable. Even

in this case where the distributional assumptions are obviously violated, the indirect estimation

outperforms the usual practice using the OLS�method. If the parameter space is reduced more,

the dominance of the indirect procedure gets even stronger. In this restricted analysis, the corre-

lation for instance between the variables X3 and X
�
3
becomes su�ciently large and, consequently,

the indirect method almost always yields the �true� constellation 0� whereas OLS only obtains

this constellation in 35% of the cases and in all other cases estimates signi�cant negative e�ects

of both variables X3 and X4. From this example we can infer that the indirect procedure is quite

robust against violations of the distributional assumptions. Another result is, that the indirect

estimation method is more precise the higher the correlation between the latent variable and the

corresponding categorical indicator which solely depends on the threshold parameters. Of course,

in practical applications these parameters cannot be chosen. Unless some prior information ex-

ists, as would be the case for the income distribution. By designing a survey questionnaire, this

prior information can be used to determine income classes so that the resulting distribution of

the qualitative variable has the desired shape.

5.2 Innovation Activities

As a second example a data set on innovations in the service sector is used which was conducted

by the Centre for European Economic Research together with Fraunhofer�Institute ISI and infas

Sozialforschung in 1995 (Licht et al., 1997). In this survey, approximately 3.000 enterprises
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Table 4: Relative frequencies of signi�cant parameters �3 and �4 in %

OLS
�3 �4 �3 �4
0 � � �

Indirect 0 � 22.9 30.5 53.4
Estim. � � 2.6 8.2 10.8

0 0 9.2 12.4 27.6

34.7 55.8

Note: Marginal frequencies di�er due to
some minor cases not shown.

participated. Most questions in the questionnaire were designed to obtain qualitative answers

since objective measuring scales are lacking. The empirical example to be shown in this section

just serves demonstrative purposes and should not be interpreted as a meaningful speci�cation.

First, we regress the continuous variable turnover (standardized) on number of employees, which

for computational reasons is also standardized, the categorical variable size class and the binary

indicator innovator taking on 1 if the company introduced an innovation in the last three years.

The size class variable is coded 1, 2, 3, and 4 if the company has less than 20 employees, 20 �

50, 50 � 250, and more than 250 employees, respectively. This ordinal indicator has the same

content as the continuous variable number of employees and yet both variables are used jointly

in practical applications. Usually it is argued that the categorical indicator could pick-up some

non�linearities between turnover and number of employees10.

The estimation results are summarized in table 5. The OLS�estimates indicate that both vari-

ables number of employees and size class are signi�cant. The dummy variable innovator is not

signi�cant. However, the indirect method obtains that the number of employees is not signi�cant

on a 5% signi�cance level. The latent variable underlying the categorical indicator picks-up the

probably non-linear relationship between employees and turnover. That means that a transfor-

mation of the variable number of employees enters the linear regression but there is no indication

about the type of transformation (Kukuk, 1994). The coe�cient of determination is small,

indicating that the speci�cation used does not describe the data well.

In a next step, we consider the transformed variables log(number of employees) and log(turnover)

in the otherwise unchanged linear regression. The estimation results of this speci�cation are given

10The usual approach would be to include 3 dummy variables for the di�erent size classes. As argued above,

the biases that occur this way are at least qualitatively comparable to just using one indicator. The results are

also not a�ected whether we use the integer coding scheme or the conditional expectations discussed in section 2.
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Table 5: Regression estimates for Turnover (standardized)

OLS Indirect Estim.
Regressor Parameter t�value Parameter t�value

C -0.105 -2.215 0.045 2.146
Employees (stand.) 0.234 12.580 0.243 1.607

Size class 0.058 3.431 0.085 3.549
Innovator 0.030 0.690 0.010 0.480

Obs. 2748 2748
R2 0.063 0.062

in table 6, clearly indicating an increased coe�cient of determination. The ordinal variable does

not indicate an e�ect anymore, but the dummy variable innovator is almost signi�cant. This

in�uence is reduced in the indirect procedure where the binary variable is interpreted to be

ordinal with an underlying latent variable. In this transformed speci�cation, a high correlation

between the latent variable associated with size class and log(number of employees) is encountered

being close to 1, whereas in the �rst speci�cation this correlation is of magnitude 0.2. This can

be interpreted as employment no longer having a non-linear relationship on the log(turnover)

variable.

Our experiment is extended once more to demonstrate how estimation with a limited dependent

variable could be performed. For a given vector of �, the data generating process is simulated.

Assume that our dependent variable is for instance binary, then this would be simulated as well.

In the second step of the indirect method, an optimization is performed relating changes in the

estimates to in�nitesimal changes in �. However, in this context a observational equivalence is

likely to occur since for very small changes in � in �nite samples, it is very likely that there is

no change in the binary variable, implying that there is no change in the minimizing criterion.

In the case of a continuous dependent variable, this problem does not occur since changes in

the parameter vector result in changes in the simulated dependent variable and hence in the

Table 6: Regression estimates for Log(Turnover)

OLS Indirect Estim.
Regressor Parameter t�value Parameter t�value

C 5.525 75.272 5.626 3.842
log(Employees) 0.988 26.399 0.980 2.683

Size class -0.006 -0.0967 -0.034 -0.049
Innovator 0.124 1.908 0.105 1.502

Obs. 2748 2748
R2 0.623 0.970
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Table 7: Estimates for dichotomous turnover indicator

Probit Indirect Estim.
Regressor Parameter t�value Parameter t�value

C -2.440 -25.992 -0.0353 -8.093
Employees (stand.) 2.864 3.360 2.808 1.512

Size class 0.849 23.860 1.091 18.204
Innovator 0.173 2.487 0.0116 0.225

minimizing criterion.

One possibility to solve this problem is to use the latent interpretation of the probit model.

The conditional expectation of the latent variable is modeled as a linear function of the re-

gressor variables. The parameters of this linear function are estimated consistently using ML.

Those parameters have up to a scalar factor the same interpretation as in the OLS case with

the continuous dependent variable. This implies that replacing continuous regressors by their

corresponding categorical indicators should lead qualitatively to the same biases. We exploit this

fact in the indirect procedure, by comparing the probit estimates for the data at hand with OLS

estimates as the auxiliary model for the simulated data. To be precise, not the whole assumed

data generating process is simulated, since the dependent variable is not categorized. Instead,

the continuously simulated values for the dependent variable are used in the auxiliary model

which is a linear regression model. Therefore, usual optimization algorithms can be applied in

the second step of the indirect procedure. To demonstrate this, the �rst speci�cation using the

levels of turnover and number of employees is used again, but this time turnover is transformed

into a binary variable. The estimation results in table 5 now serve as the �true� model. The

results of the probit estimation in table 7 indicate that the variable innovator has a signi�cant

e�ect which is not the case in the �true� model. The indirect method uncovers that innovator

has no e�ect on latent turnover and also that number of employees has to be transformed to

enter linearly in the conditional expectation of the latent dependent variable.

6 Discussion and Outlook

The experiments performed in this paper show that the indirect estimation procedure is a useful

tool to test the in�uence of a latent variable in a linear regression approach although only

categorical observations for that variable are available. Usually, it is the latent variable that is of

main interest as shown in the last section. The size class indicator is used as a regressor but the
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results are usually interpreted as if observations for number of employees were used. The latent

variable as a regressor variable is a natural extension of the concepts used in limited dependent

variable models.

The additional assumptions necessary to apply the indirect estimation seem quite robust against

violations as shown with the real data experiments. It is obvious that the data used violate the

model assumptions. However, the results are satisfying in the sense that signs and signi�cances

of the �true model� are estimated correctly.

Another important result is that the method can be used even if the dependent variable is not

measured directly. In this case, it is suggested not to simulate the whole data generating process,

but instead to leave the simulated data of the dependent variable in its metric form. This implies

that we apply two di�erent auxiliary models, one for the data at hand and the other one for the

simulated data. However, it is required that both auxiliary models estimate the same parameters

consistently. This experiment shows that the indirect estimation procedure could be a promising

way of also handling more complex models like probit models for panel data or simultaneous

probit/logit models. In those models, the biases discussed in this paper are also likely to occur if

only ordered observations are available for latent regressor variables. However, the latent models

can be simulated as shown. The proper choice of an auxiliary model will be a crucial factor to

estimating the parameters of interest e�ciently.
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