
Bougheas, Spiros; Riezman, Raymond

Working Paper

Market entry costs, underemployment and international
trade

CESifo Working Paper, No. 3263

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Bougheas, Spiros; Riezman, Raymond (2010) : Market entry costs,
underemployment and international trade, CESifo Working Paper, No. 3263, Center for Economic
Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/46554

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/46554
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 
 
 

Market Entry Costs, Underemployment and 
International Trade 

 
 
 

Spiros Bougheas 
Raymond Riezman 

 
 

CESIFO WORKING PAPER NO. 3263 
CATEGORY 8: TRADE POLICY 

NOVEMBER 2010 
 

 
 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 



CESifo Working Paper No. 3263 
 
 
 

Market Entry Costs, Underemployment and 
International Trade 

 
 

Abstract 
 

We develop a small, open economy, two-sector model with heterogeneous agents and 
endogenous participation in a labor matching market. We analyze the implications of 
asymmetric market entry costs for the patterns of international trade and underemployment. 
Furthermore, we examine the welfare implications of trade liberalization and find that under 
certain conditions the patterns of trade are not optimal. We also examine the robustness of our 
results when we allow for complementarities in the production function and for alternative 
matching mechanisms. 

JEL-Code: F16. 

Keywords: entry costs, patterns of trade, underemployment. 
 
 
 
 

Spiros Bougheas 
University of Nottingham 

Nottingham / UK 
spiros.bougheas@nottingham.ac.uk 

Raymond Riezman 
University of Iowa 
Iowa City / USA 

raymond-riezman@uiowa.edu 
 

  
  

 
 
September, 2010 
We would like to thank participants at the Society for the Advancement of Economic Theory 
Conference, Ischia 2009, the Mid-West International Economics Meeting, Evanston 2010 and 
the GEP Annual Conference, University of Nottingham, June 2010, for helpful comments and 
suggestions. The usual disclaimer applies. 



1. Introduction

Establishing a competitive advantage in high-skilled sectors at the national level requires
that a number of conditions must be met. The Ricardian theory of international trade
emphasizes the need for technological know-how while from the Heckscher-Ohlin-Vanek
model we learn that a sufficient endowment of skilled labor is necessary. While endowments
and technologies are necessary pre-conditions they are by no means sufficient. Neoclassical
trade theory is silent about the product and labor market institutions which play an
important role in bringing the factors of production together. In particular, both the
entry of workers into skilled labor markets and the establishment of new enterprises are
costly.
When these costs are sufficiently high they discourage market participation. For ex-

ample, Brixiova, Li and Yousef (2009) and Fan, Overland and Spagat (1999) suggest that
the reluctance of workers to enter skilled labor markets can explain shortages of skilled
labor in emerging economies and the consequent slow development of their private sector.
In contrast, relatively low skill acquisition costs and small labor market frictions can po-
tentially explain the phenomenon of overeducation and mismatch observed by researchers
in many European countries and Canada.1

Looking at the other side of the labor market, Djankov, La Porta, Lopez-de-Silanes
and Shleifer (2002) provide evidence that market entry costs incurred by start-up firms are
significant and vary widely across countries. They find that "The official cost of following
required procedures for a simple firm ranges from under 0.5 percent of per capita GDP in
the United States to over 4.6 times per capita GDP in the Dominican Republic, with the
worldwide average of 47 percent of annual per capita income."
In addition to market entry costs, we also need to consider frictions arising during the

matching process of skills to firms. The decision of young people to acquire skills is going
to depend, in addition to any direct costs, on their expectations about the probability of
getting a job in the skilled sector and, given that they do find a job, on the quality of
the match. Similarly, the decision of potential entrepreneurs to establish new firms will
depend on their expectations about the future availability of skilled labor and the latter’s
level of skills. Furthermore, both parties decisions will depend on the allocation of the
surplus generated by the match.
These issues are well understood by labor economists.2 In this paper, we analyze some

of the implications for international trade. We develop a two-sector model with three
factors of production; namely, unskilled labor, skilled labor and entrepreneurial ability.3

One sector produces under a CRS technology a low-tech good that requires only unskilled
labor. The second sector is a high-tech sector. To establish a production unit in that

1See McGuiness (2006) for a review of this literature.
2For example, the need for coordination between skill acquisition and job creation in order to avoid

situations where the economy is locked in a low-skill/bad-job trap is emphasized by both Snower (1996)
and Redding (1996).

3A simplified version of the model with one-sided uncertainty has been used by Bougheas and Riezman
(2007) to examine the relationship between the distribution of endowments and the patterns of trade and
by Davidson and Matusz (2006) and Davidson, Matusz and Nelson (2006) to examine redistribution policy
issues.
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sector a skilled worker needs to be matched with an entrepreneur. There are two types
of agents: workers and entrepreneurs. Both populations are heterogeneous. Workers
are distinguished by their potential ability as skilled workers and entrepreneurs by their
potential ability to manage a firm. Initially, each type must decide whether to enter the
matching market. Workers who decide to enter incur a fixed cost related to the acquisition
of skills. Entrepreneurs who opt to enter incur a cost for establishing a new firm. To
capture the notion of decentralized labor markets we assume random matching. Those
agents on the long side of the market who cannot find a match find employment in the
unskilled sector as do those agents who decided not to attempt to enter the matching
market. The output of matched pairs is a function of the two partners’ abilities.
Not surprisingly, we find that disparities in labor institutions become a source of com-

parative advantage. The exact patterns will depend not only on the costs of entering the
skilled sector but also on the mechanism used for dividing the surplus. This suggests that
in addition to traditional sources of comparative advantage, i.e. endowments and tech-
nologies, we also need to take into account those costs related to the acquisition of skills,
those costs related to the creation of firms and the institutional structure of labor markets
(unions, minimum wages, etc.). Thus, our work is related to a group of papers suggesting
that differences in labor market rigidities across nations can be a major driving force of
comparative advantage (Krugman, 1995; Davis, 1998a; Davis, 1998d; Kreickemeier and
Nelson, 2006). Research in this area has paid particular attention to rigidities that have a
direct impact on wage formation. In contrast, our main interest is on cross-country differ-
ences in (a) the costs of establishing new firms, and (b) the costs of entering skilled labor
markets. Finally, our work is also related to some recent theoretical work that explores
the implications of trade liberalization for inequality and labor market outcomes.4

Our model generates either underemployment of skills or firm capacity that is not
utilized depending of which side of the market is long.5 We demonstrate that the effect
of trade liberalization on underemployment will depend on the pattern of trade. More
specifically, we find that trade increases underemployment when the country has a com-
parative advantage in the high-tech sector. The level of underemployment will also depend
on the sharing rule that divides the surplus between workers and entrepreneurs. Here, we
find that the likelihood that the small-open economy has a comparative advantage in the
high-tech sector is decreasing with the level of underemployment in autarky.
Most of our analytical results are derived from a benchmark version of our model that

includes a linear production technology and a one-to-one matching mechanism. In Section
2 we develop the model and examine the autarky case and then in Section 3 we open

4In Helpman, Itskhoki and Redding (2009) although both populations of firms and entrepreneurs
are heterogeneous it is only the participation of the second group that is derived endogenously. Egger
and Kreickemeier (2008) analyze a model with one heterogeous population and generalized endogenous
participation where agents in addition to their level of skills also decide in which sector to be employed.
In our model, both workers and entrepreneurs can choose whether or not to enter the matching market.

5Traditionally, matching models also include a search process thus generating unemployment (see, for
example, Davidson, Martin and Matusz, 1999; Davidson, Matusz and Shevchenko, 2008; Felbermayr, Prat
and Schmerer, 2008; Felbermayr, Larch and Lechthaler, 2009). In this paper, we have implicitly set search
costs equal to zero to simplify our welfare analysis. Nevertheless, our model still generates equilibrium
underemployemnt.
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the small-economy to international trade. In Section 4 we analyze two extensions of the
benchmark version of our model. First, we allow for complementarities in the production
function and we use this extended version to explore the welfare implications of trade
liberalization. We show that trade can potentially be welfare reducing. We also identify
conditions under which the patterns of international trade are not optimal. Second, we
also examine alternative matching mechanisms and show that are results are fairly robust.
We offer some final comments in Section 5.

2. The Closed-Economy Benchmark Model

The economy is populated by two types of agents and produces two goods. The two types
of agents, workers and entrepreneurs, are each of unit mass. The first good, the numeraire,
is a high-tech product and its production requires the joint efforts of an entrepreneur and a
worker. The second good is a primary commodity and all types of agents can produce one
unit should they decide to seek employment in that sector. Let P be its price in numeraire
units. All agents are risk neutral, form expectations rationally and have identical Cobb-
Douglas preferences allocating equal shares of their income on each good which implies
that real income is equal to nominal income divided by

√
P .6

The populations of both workers and entrepreneurs are heterogeneous. Workers are
differentiated by their ability α to work in the high-tech sector and entrepreneurs by
their ability z to manage in the high-tech sector. Both α and z are randomly drawn
from uniform distributions with support [0, 1]. Both workers and entrepreneurs have to
incur a fixed cost 0 < γ < 1 and 0 < c < 1, respectively, to enter the high-tech sector.
Entrepreneurs and workers that have incurred the fixed entry costs are randomly matched.
If the two masses are not equal then unmatched agents enter the primary sector. Matched
pairs produce α+ z units of the high-tech product.
To complete the description of the model we need to specify how matched pairs divide

their joint output. The division of surplus normally depends on the outside options of
the two parties and their relative bargaining power. Given that we have assumed away
any recontracting the outside options of the two sides are the same and equal to P the
income they will receive in their alternative employment option. For the moment we
assume that all pairs divide the surplus equally. As we will see below, assuming equal
division is analytically convenient and allows for analytical derivations. We will also explore
numerically the consequences of relaxing this restriction.7

Given that an agent’s expected payoff is increasing in her own ability there exist two
cut-off ability levels α∗ and z∗ such that all workers with ability levels less than α∗ and
all entrepreneurs with ability levels less than z∗ do not incur the high-tech sector entry

6Let X denote the level of consumption of the high-tech product, Y the level of consumption of the
primary commodity and I the level of nominal income. By maximzing

√
XY subject to I = PX + Y , we

obtain the solutions X = I
4P and Y = I

4 , which after substituting them back in the utility function and
multiplying by 2 (because (a) the marginal utility of income is equal to 1, and (b) the measure of agents
is equal to 2) we obtain the solution in the text.

7Acemoglu (1996) also employs Nash bargaining in a random matching environment similar to the one
in this paper.
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costs and find employment in the primary sector. Thus, a mass of workers of 1− α∗ and
a mass of entrepreneurs of (1− z∗) will enter the matching market. The decisions to enter
the high-tech sector, and thus the cut-off levels, will depend on each agent’s belief about
their likelihood of being matched. Thus, there are three cases to consider that correspond
to three potential rational expectations equilibria, namely matching market clearing
(1 − α∗) = (1 − z∗), surplus of entrepreneurs (1 − α∗) < (1 − z∗), and surplus of
workers (1 − α∗) > (1 − z∗). The one that prevails will depend on the values of the
various model parameters. In the benchmark model, as we verify below, the equilibrium
type only depends on the relative size of the two entry costs. Thus, without any loss of
generality we assume that c < γ in which case in equilibrium, as we verify below, there
will be a mass of entrepreneurs who incur the fixed cost of entry but are not matched.
By definition an entrepreneur with ability z∗ is indifferent between investing and market

search and directly entering the primary sector. Given that the income of this threshold
agent is equal to z∗ if matched and equal to P if unmatched, the equilibrium condition for
the cut-off level is given by

1

2

µ
1− α∗

1− z∗

¶µ
z∗ +

1 + α∗

2

¶
+

µ
1− 1− α∗

1− z∗

¶
P − c = P (1)

where 1−α∗
1−z∗ is the probability the entrepreneur is matched with a worker and z∗ + 1+α∗

2
is

equal to the expected output of a matched pair where the entrepreneur has ability equal
to z∗ keeping in mind that only those workers with ability higher than α∗ are attempting
to enter the high-tech sector. The first term is multiplied by 1

2
which is equal to the share

of output received by each member of a matched pair. Similarly, α∗ is determined by

1

2

µ
α∗ +

1 + z∗

2

¶
− γ = P (2)

To close the model we need the equilibrium condition for one of the two goods markets.
Without loss of generality we focus on the market for the primary commodity

2α∗ =
2α∗P − (α∗ − z∗)c+ (1− α∗)

¡
2+α∗+z∗

2
− c− γ

¢
2P

(3)

The left-hand side is equal to the gross supply of the primary commodity. All workers
that enter the matching market are matched and thus there are α∗ unmatched workers
which means there are α∗ unmatched entrepreneurs. Therefore, in total there is a mass
of 2α∗ agents that are employed in the primary sector and each produces one unit. The
right-hand side is equal to the gross demand. The specification of preferences imply that
an agent with income y demands an amount y

2P
of the primary commodity. Furthermore,

risk-neutrality implies that the marginal utility of income is constant and thus, for the
derivation of the gross market demand it suffices to derive aggregate income and divide
it by 2P . Agents employed in the primary sector produce one unit and earn income P
and the first term of the numerator on the right-hand side shows their gross income. The
second term captures the entry costs of unmatched entrepreneurs. The final term is equal
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to the total income of matched pairs.8

In the next Proposition we verify that the solution of the above system is indeed a
rational expectations equilibrium.

Proposition 1 Under incomplete information if in the benchmark model γ > c then
z∗ < α∗.

Proof (1) and (2) imply that 1
2

¡
z∗ + 1+α∗

2

¢
− 1−z∗

1−α∗ c =
1
2

¡
1+z∗

2
+ α∗

¢
− γ. The equality

can be written as 1
4
(1 − α∗)(α∗ − z∗) = γ − 1−z∗

1−α∗ c. For γ = c the last expression
can be written as 1

4
(1 − α∗)2 = γ z∗−a∗

a∗−z∗ . Given that γ > 0 it follows that a∗ = z∗.
Next consider the case γ > c and let γ ≡ c + δ. Now we can write the equality as
1
4
(1− α∗)2 = cz

∗−a∗
a∗−z∗ +

δ
a∗−z∗ . Given that δ > 0 we have a

∗ − z∗ > 0 which completes
the proof.

2.1. Entry Costs and the Autarky Price

Comparative advantage is completely determined by comparing the autarky price with
the foreign price and in the benchmark model the autarky price depends only on the two
entry costs. With that in mind, in this section, we examine how changes in these costs
affect the autarky price. Notice that by setting both entry costs equal to 0 we can derive
a lower bound for the two cut-off levels α∗ and z∗. From (2) it is clear that in this limiting
case the two cut-off levels will be equal to 4P−1

3
and using (3) we find out that they will

be greater than 1
2
. This lower bound for the two cut-off levels will proved to be useful for

the derivation of the following proposition.

Proposition 2 In the incomplete information case for γ > c we have (a)dα
∗

dγ
> 0 , (b)

dz∗

dc
> 0 , and (c)dα

∗

dc
< 0 .

Proof See the Appendix

Changes in entry costs affect the two thresholds through a number of distinct channels.
First, consider the effect of worker entry cost on the entry of workers. It is not surprising
that an increase in γ discourages workers from participating in the matching market and
thus the overall effect is to increase α∗. However, there is a second, smaller effect due
to the choice of numeraire and works in the opposite direction. Other things equal, an
increase in any of the two entry costs decreases the amount available of the high-tech
product available for consumption and thus decreases P thus encouraging participation in

8For the derivation of the last term, given that the output of a matched pair is equal to the sum of the
abilities of its members, it suffices to add individual abilities and subtract fixed costs. Thus, we have that
aggregate income of matched pairs equalsZ 1

α∗
αdα+

1− α∗

1− z∗

Z 1

z∗
zdz − (1− α)(c+ γ)

Notice that second term follows from random matching and z∗ < α∗.
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the labour market. For similar reasons the overall effect of an increase in c is to discourage
the entry of entrepreneurs in the matching market, i.e. z∗ increases.
Next, consider the effect of an increase in any of the two entry costs on the entry

decisions in the other side of the market. Payoffs depend on the abilities of both agents so
any increase in the threshold level of either workers’ or entrepreneurs’ entry costs increases
the expected payoff of the other type of agent and thus their incentive to participate. In
the case of an increase in c on workers, the numeraire effect mentioned above discourages
entry of entrepreneurs and thus increases the average ability of entrepreneurs in the market.
This has a positive effect on workers’ payoffs thus providing even stronger incentives for
workers to participate, so an increase in the entrepreneur’s cost (c) will encourage entry
of workers (α∗ falls.)
Finally, the effect of an increase in γ on the entrepreneurs’ entry decision is ambiguous

and the reason is the existence of a third indirect effect. Given that an increase in γ
discourages the entry of workers the likelihood of potential entrepreneurs being matched
declines which discourages this entry. Thus, the mass of high-tech firms will decline. It is
clear that this effect is larger the wider the gap between the two entry costs. As Table 1
reveals, when the gap is small an increase in γ has a negative effect on z∗ but the effect
becomes positive when the gap is large.

Table 1: Entry Costs, Matching Market Participation and the Autarky Price
c γ α∗ z∗ P
0.1 0.2 0.57 0.36 0.42
0.1 0.4 0.65 0.08 0.19
0.1 0.6 0.78 0.07 0.06
0.1 0.8 0.91 0.41 0.01
0.3 0.4 0.59 0.49 0.27
0.3 0.6 0.68 0.43 0.10
0.3 0.8 0.83 0.60 0.02
0.5 0.6 0.64 0.58 0.12
0.5 0.8 0.80 0.69 0.02
0.7 0.8 0.78 0.85 0.00

Next, we examine how entry costs affect autarky prices.

Proposition 3 Let γ > c. Then, (a) dP
dc

> 0 and (b) dP
dγ

< 0.

Proof See the Appendix

The effect of a change in c on the autarky price is positive. This is because the decline in
the participation rate by entrepreneurs increases the worker’s expected payoff thus further
increasing their participation rate. Thus, since there is a surplus of entrepreneurs, the
supply of the high-tech product increases and this results in an increase in the autarky
price. An increase in γ discourages the participation of workers in the matching market
and as a consequence both the production of the high-tech product and the autarky price
decline.

7



3. International Trade

We now consider international trade. Let P T denote the international price. It is clear
that if P T > P the economy will export the primary commodity and if P T < P the
economy will export the high-tech product. The following Proposition follows directly
from Proposition 3.

Proposition 4 Suppose that γ > c. Then, other things equal, economies with higher labor
entry costs will export the primary commodity and economies with higher entrepreneur
entry costs will export the high-tech product.

Remark 1 In the statement of the Proposition the qualifier ‘other things equal’ is there
to remind us that the pattern of international trade will depend not only on cross country
differences in the gap between the two costs but also on the levels. The prediction will be
reversed if we set entrepreneur entry costs higher than labor entry costs.

3.1. Underemployment and Trade

We know from the autarky case that when entry costs are asymmetric in equilibrium
there are some agents who entered the matching market but were not matched. The
total expenditure of unmatched agents on entry costs (α∗ − z∗)c provides a measure of
inefficiency. As the following proposition demonstrates the effect of international trade on
inefficiency depends on the pattern of trade.9

Proposition 5 As the economy moves from autarky to free trade the measure of ineffi-
ciency declines when the economy exports the primary commodity and increases when the
economy exports the high-tech product.

Proof Setting P = P T , rearranging and totally differentiating equations (1) and (2) we
get the new system of equations

1

2
dα+

1

4
dz = dP T

µ
1

4
− 1− z

(1− α)2
c

¶
dα+

µ
1

2
+

c

1− α

¶
dz = dP T

The determinant of the new system is equal to

∆ =
3

16
+
1

4

1− z

(1− α)2
c+

1

4

c

1− α
> 0

Then,
dα

dP T
=

¡
1
4
+ c

1−α
¢

∆
> 0

9The * have been suppressed.
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dz

dP T
=

³
1
4
+ 1−z

(1−α)2 c
´

∆
> 0

Lastly,
dα

dP T
− dz

dP T
=

c
1−α

¡
z−α
1−α
¢

∆
< 0

Suppose that P < P T . In this case the world price is higher than the autarky price
so that the economy exports the primary product. The increase in the price will
reduce inefficiency.

The intuition for this result is that if the economy exports the primary product when
liberalized then trade will draw resources into that sector and out of the high-tech sector.
The high-tech sector is where the matching inefficiencies occur and hence that is why
efficiency increases as trade increases.

3.2. Division of surplus and Trade

To this point we have assumed that workers and entrepreneurs share firm output equally.
However, it is clear that any change in the division rule will affect the two entry decisions
and the autarky price. When the two parties share output equally but worker entry costs
are higher than those of entrepreneurs it is not surprising that in equilibrium there is a
surplus of entrepreneurs. Below we demonstrate that there always exists a sharing rule
such that the two equilibrium cut-off levels are equal, i.e. a∗ = z∗ = x. Denote by β the
share of output allocated to entrepreneurs and by β∗ the value that sets a∗ = z∗ = x.
Substituting these expressions in the equilibrium conditions (1) and (2) and (3) we get

β∗
µ
1 + 3x

2

¶
− c = P

(1− β∗)

µ
1 + 3x

2

¶
− γ = P

and
2P = (1− x)(1 + x− c− γ)

Eliminating the autarky price from the first two conditions and rearranging we obtain

β∗ =
1

2
− γ − c

1 + 3x

The solution is very intuitive. When the two entry costs are equal we also need to set the
shares allocated to each side equal so that the entry masses of workers and entrepreneurs
are also equal. If entrepreneur entry costs are higher then we need to increase the share
of output allocated to entrepreneurs. The exact amount will depend on the gap between
the two costs and their level.
Two countries that differ in their sharing rules but otherwise identical will have different

autarky prices and thus both can benefit by opening to trade. Then we would like to know
how a change in the sharing rule, keeping other things equal, might affect a small open
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economy’s patterns of trade. More specifically, suppose that we increase the share of
output allocated to entrepreneurs, i.e. β increases. As Table 2 indicates the effect on the
autarky price will depend on the relationship between β and β∗.10

Table 2: Sharing Rule and the Autarky Price
c = 0.5 γ = 0.6

β α z P
0.3 0.72 0.85 0.015
0.4 0.60 0.69 0.096

0.46489 0.61 0.61 0.161
0.5 0.64 0.58 0.118
0.6 0.78 0.61 0.033

c = 0.5 γ = 0.7
β a z P
0.3 0.74 0.84 0.015
0.4 0.63 0.67 0.095

0.43107 0.63 0.63 0.125
0.5 0.71 0.61 0.058
0.6 0.88 0.77 0.007

When β < β∗, an increase in the share of output allocated to entrepreneurs results in a
higher autarky price and when β > β∗ the autarky price falls as β increases . Therefore, the
autarky price reaches its maximum when β = β∗. This means that it is more likely there is
comparative advantage in the high-tech product when the two masses of entrants are equal.
This is intuitive given that when the two masses of entrants are equal underemployment
and hence, inefficiency in the high-tech sector is minimized.
It is also interesting to note that with a variable sharing rule entrepreneurs are not

necessarily on the long-side of the market as a relatively high proportion of output allocated
to them can compensate for higher entry costs. The results in Table 2 suggest that there
is a monotonic effect of a change in the sharing rule on the cut-off corresponding to the
short-side of the market. So, for example in the case of c = 0.5 and γ = 0.6 as β goes from
0.3 to 0.464899 (increasing the share going to the short side of the market), the cutoff, z
decreases monotonically meaning that more entrepreneurs are entering. When β is greater
than 0.464899 workers are now on the short side of the market. So now as β decreases
from 0.6 to 0.464899 (increasing the share going to the short side of the market) then the
cut-off for workers, α decreases monotonically meaning that more workers are entering the
market. Hence, this example shows that allocating more output to the short side of the
market increases incentives to enter the matching market. In contrast, the effect on the

10In order to provide a formal proof of the result we need to introduce the general sharing rule β in
the model. Performing comparative statics on the extended model proves to be a very daunting task.
However, we have calibrated the model on the whole parameter space finding that the conclusions drawn
from Table 2 are robust.
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long-side is ambiguous as we have an additional effect. If the short side of the market has
a declining share then there is less entry on the short side leading to a decrease in the
likelihood a long side agent is matched.

4. Beyond the Benchmark Model

4.1. Skill Complementarity

In this section, we extend the benchmark model by allowing for a more general production
function. More specifically, we consider the case where the skills of workers and entre-
preneurs are complementary. Now, matched pairs produce (α+ z)2 units of the high-tech
product. Without any loss of generality, we are going to restrict our attention to the case
where γ > c. To keep the analysis tractable we are also setting β = 1

2
. Given these

restrictions, once more in equilibrium we must have z∗ < a∗.
In this case all workers that invest in skills will be matched but only a proportion 1−α∗

1−z∗
of entrepreneurs will find employment in the high-tech sector. The equilibrium condition
for z∗ is given by

1

2

µ
1− α∗

1− z∗

¶ Z 1

α∗
(α+ z∗)2dα

1− α∗
+

µ
1− 1− α∗

1− z∗

¶
P − c = P (4)

where 1
2

Z 1

α∗
(α+z∗)θdα

1−α∗ is equal to the expected payoff of a matched entrepreneur with ability
equal to the equilibrium cut-off level. The corresponding condition for α∗ is given by

1

2

Z 1

z∗
(α∗ + z)2dα

1− z∗
− γ = P (5)

Now, we turn our attention to the goods market equilibrium concentrating again on
the market for the primary commodity. As before, the gross supply is equal to 2α∗. Next,
we derive the gross demand of the primary commodity. As before, the specification of
preferences imply that an agent with income y demands an amount y

2P
of the primary

commodity. Agents employed in the primary sector produce one unit and earn income P .
What remains is to derive the demand for the primary commodity by those agents who
are matched.
The combined income of a matched pair comprising of an entrepreneur with ability z

and a worker with ability α is equal to (α + z)2. In order to find the expected income
of a matched pair we need to derive the distribution of α + z which is the sum of two
independent, non-identically distributed uniform random variables.11 More specifically, α
is uniformly distributed on [α∗, 1] and z is uniformly distributed on [z∗, 1].

11This of course requires that this distribution is the same as the realized distribution resulting from
random matching. Alós-Ferrer (2002) has show that this is indeed the case.
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Lemma 1 The distribution density function of α+ z for α∗ > z∗ is given by

α+ z − α∗ − z∗

(1− α∗)(1− z∗)
for α∗ + z∗ < α+ z 6 1 + z∗

1

(1− z∗)
for 1 + z∗ < α+ z 6 1 + α∗ (6)

2− α− z

(1− α∗)(1− z∗)
for 1 + α∗ < α+ z 6 2

Proof Lusk and Wright (1982) provide the derivation when the two random variables are
non-identically but independently uniformly distributed on intervals with a lower
bound equal to 0. For our more general case we apply the following transformation.
Let Z = z − z∗ and A = α− α∗. Then Z is uniformly distributed on [0, 1− z∗] and
A is uniformly distributed on [0, (1 − α∗)]. Also α + z = A + Z + α∗ + z∗. So it is
sufficient to find the distribution of A+ Z.

Using the above density functions we can calculate the expected output of a matched
pair (E{(α+z)2 | α∗ 6 α 6 1, z∗ 6 z 6 1}. It follows that the primary market equilibrium
condition is given by

2a∗ =
2α∗P − (a∗ − z∗)c+ (1− α∗)(E{(α+ z)2 | α∗ 6 α 6 1, z∗ 6 z 6 1}− c− γ)

2P
(7)

The first term, on the right-hand side, is equal to the income of all workers employed in the
primary sector. The second term is equal to the total entry costs of those entrepreneurs
who failed to match and the last term is equal to the aggregate income of matched pairs
net of entry costs.
As in the benchmark case, the system of equations (4), (5) and (7) solves for the

three endogenous variables a∗, z∗ and P . This new system is too complex to be analyzed
analytically but numerical calibration of the model shows that the results in Propositions
2 - 5 derived for the benchmark case are also valid when complementarities are present.12

Notice that the qualitative results on the pattern of trade do not depend on the exact
form of the production function. This is because here we are concentrating on cross-
country differences in market entry costs. As Bougheas and Riezman (2007), Costinot and
Fogel (2009), Grossman and Maggi (2000), Ohnsorge and Trefler (2007) and Sly (2010)
have shown, this is not the case anymore when countries also differ in the distribution of
endowments.

4.1.1. Welfare with Skill Complementarity

When the technology is linear what matters for efficiency is who gets matched however,
it does not matter with whom they are matched. The reason is that as long as we know
who is matched on each side of the matching market we can find aggregate production

12The numerical results are provided in a separate Appendix.
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in that sector by adding their respective ability levels. However, this is not the case
when complementarities are present. Our function is a particular case of a super-modular
function. As Grossman and Maggi (2000) have demonstrated efficiency requires that
we match workers and entrepreneurs with identical abilities. Thus, we are going to use
this more general framework to make some observations on the gains from trade and the
pattern of trade. More specifically, using an example we are going to demonstrate that
(a) trade can lead to welfare losses, and (b) that the pattern of trade may be sub-optimal.
What drives these results is that the competitive equilibrium under autarky is inefficient.
Consider the example: c = 0.5 and γ = 0.6. We measure aggregate welfare by aggregat-

ing individual utilities yielding W = 2
√
XY , where X denotes the level of consumption

of the high-tech product and Y the level of consumption of the primary commodity.13

Aggregate welfare derived in autarky equilibrium, WC
A , is given by

14

WC
A =

2α∗P − (a∗ − z∗)c+ (1− α∗)(E{(α+ z)2 | α∗ 6 α 6 1, z∗ 6 z 6 1}− c− γ)

2
√
P

(8)

Substituting the above values of entry costs in (4), (5) and (7) we find that α∗ = 0.63,
z∗ = 0.5843 and P = 0.42. Finally, substituting these values in the welfare function we
find that WC

A = 0.82.
Next, we compare the above solution with aggregate welfare in autarky under a social

planner, WS
A . We begin with the observation that a social planner would set the mass of

workers participating in the matching market equal to the corresponding mass of entre-
preneurs. Let x∗ denote the proportion of agents who decide not to enter the matching
market and let XS

A and Y S
A denote the representative agent’s consumption levels of the

high-tech product and the primary commodity correspondingly. These consumption levels
are equal to the aggregate quantities produced in the economy divided by 2 (given that
the measure of agents is equal to 2) and given by

XS
A =

µZ 1

x∗
(2x)2 dx− (c+ γ) (1− x∗)

¶
/2 (9)

and
Y S
A = 2x

∗ (10)

Given that the social planer matches agents of equal ability the first term in the brackets
in (9) captures the level of aggregate production of the high-tech product. The second
term is equal to the aggregate cost of entry in the matching market. Equation (10) follows
from the fact that each agent employed in the primary sector produces one unit. After
we substitute (9) and (10) in the welfare function we maximize the latter by choosing the
proportion of agents who will find employment in the primary sector to obtain x∗ = 0.69.
Substituting the solution in (9) and (10) and then those solutions in the welfare function
we get XS

A = 0.277, Y
S
A = 0.69 and WS

A = 0.8746 > 0.82 =WC
A .

13Keep in mind that the size of the population has measure 2.
14See footnote 6
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The above results show that in autarky the market equilibrium is inefficient which
is not surprising given that the social planner eliminates underemployment (every agent
who incurs the entry cost finds employment in the high-tech sector) and matches agents
efficiently. Furthermore, given that the high-tech sector operates more efficiently, optimal
participation in that sector is below the corresponding market equilibrium level.
Next, we consider the corresponding welfare levels under international trade when P T =

0.38 < P = 0.42. Given that the international price is below the autarky price the small
open economy has a comparative advantage in the high-tech product. By substituting
the international price in (1) and (2) and solving the system we find the equilibrium
cut-off participation rates for the open economy are equal to α∗ = 0.61 and z∗ = 0.56.
Substituting these values and the international price in the right hand side we find that
WC

A = 0.81 < 0.82 = WC
A ; thus, in this particular case, welfare under international trade

is lower than welfare in autarky. The intuition for this result is that when the economy
opens to trade it expands the sector in which the inefficiencies arise and in this particular
case, the costs due to these inefficiencies exceed the gains from trading at a price that
differs from the autarky one.
We need to be very careful about interpreting the last result. To see why, let us see what

a national social planner would have done when facing the same exogenous international
price. The social planner, in addition to allocating agents to sectors, decides which goods
and what quantities will be traded with the rest of the world. Let τX ≷ 0 and τY ≷ 0
denote the units traded of each good, where positive numbers indicate imports and negative
exports. These quantities must satisfy the trade balance condition

P T τY = −τX
The representative agent’s consumption levels of the two goods are given by

XS
T = XS

A + τX

and
Y S
T = Y S

A + τY

Substituting the above three conditions in the welfare function and choosing the partici-
pation rate to maximize welfare we obtain τY = 0.024, x∗ = 0.68, XS

T = 0.27, Y
S
T = 0.70

and W S
T = 0.875 > 0.8746 = WS

A .
15 This demonstrates that if the inefficiencies arising in

the matching market are eliminated, trade always improves welfare.
Thus, if matching inefficiencies exist our results suggest that imposing trade restrictions

might be welfare improving. However, the results also suggest that a better policy might be
to improve labor and product market institutions thus facilitating more efficient matches.
Once this is done, free trade is the preferred policy. So, it is not international trade that
lowers welfare, rather it is labor market inefficiencies that cause welfare to fall in moving
from autarky to free trade.
In the above example the social planner chooses to export the high-tech product and

thus the equilibrium patterns of trade are optimal. But in the absence of a social planner

15Due to the choice of functional forms and parameter values the differences are small, however, they
are robust in the sence that the qualitative results are obtained for a wide set of parameter values.
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this is not always the case. Consider the following question: what must be the international
price so that the social planner would choose not to trade; i.e. τX = τY = 0? It is clear
that this would be the price that would induce the social planner to choose the same ability
cut-off level as the one chosen in the case for autarky, i.e. x∗ = 0.69.16 We denote this
price by P S. This price solves

2x∗ =

2P Sx∗ +

Z 1

x∗
(2x)2 dx− (c+ γ) (1− x∗)

2P S

This is similar to (7) but now we have substituted the corresponding demand for and supply
of the primary commodity given that production is determined by the social planner’s
allocation. Substituting the values for c, γ and x∗ we obtain P S = 0.402. The implication
for trade patterns is that if P T > P S then the social planner would choose to export the
primary commodity and if P T < P S the social planner would choose to export the high-tech
product. If the world price, P T lies between the autarky price without a social planner
(P = 0.42) and the social planner’s autarky price (P S = 0.402) then the equilibrium
pattern of trade will not be optimal. So, the interpretation is that matching inefficiencies
cause the autarky price to be different than if no inefficiencies exist. If the world price lies
between these two autarky prices then the pattern of trade is not optimal.

4.2. Alternative Matching Mechanisms

In this section, we examine the robustness of our comparative static results to alternative
matching mechanisms. Up to this point we have assumed that exactly one entrepreneur
(long-side of the market) is matched with one worker leaving the rest of the entrepreneurs to
seek employment in the primary sector. Given our supposition that there is no possibility
of recontracting (infinite search costs) we have assumed matched agents share the surplus
equally. Before we consider any alternative mechanisms we will show that our benchmark
set-up is equivalent to one in which all unmatched entrepreneurs are matched with one
single worker while each one of the rest of the entrepreneurs are matched again with one
worker. The worker who is matched with multiple entrepreneurs is in a strong bargaining
position. Given that the production technology requires a single entrepreneur, bargaining
will push the share of that entrepreneur down to the outside option which in this case is
equal to the price of the primary commodity. Thus, in this new set up, with the exception
of one pair, all other workers and entrepreneurs receive the same payoffs as those in the
original set-up. Now there is one entrepreneur who receives the low payoff and a worker
who receives a payoff that is equal to the total surplus generated by the pair minus the
price of the primary commodity. Given that we have assumed that both populations are
very large the two versions only differ in a set of measure 0.

16This is an application of the second welfare theorem. Suppose that the agents in the economy are
allocated to sectors by the social palnner (this step follows from the fact that the equilibrium allocation
is inefficient) and then exchange goods in competitive markets. The equilibrium price would be the one
that decentralizes the the social planner’s optimal allocation under autarky.

15



Now consider the other extreme.17 Suppose that all workers (short-side of the market)
are again matched but now some of them are matched with one entrepreneur and some
of them are matched with two entrepreneurs.18 Thus, we now consider the case where
underemployment is more evenly distributed in the economy. To keep this simple, we will
ignore complementarities and focus on the linear technology case. Once more, under the
supposition that c < γ the mass of entrepreneurs who enter the matching market, 1− z∗,
will be higher than the corresponding mass of workers, 1−α∗. The proportion of workers
matched with two entrepreneurs is equal to α∗−z∗

1−α∗ and the proportion of entrepreneurs
matched with workers who are also matched with another entrepreneur is equal to 2α

∗−z∗
1−z∗ .

The equilibrium condition that determines z∗ is given by

2
α∗ − z∗

1− z∗
P +

µ
1− 2α

∗ − z∗

1− z∗

¶
1

2

µ
z∗ +

1 + α∗

2

¶
− c = P (11)

where the left-hand side is equal to the marginal entrepreneur’s expected payoff from
entering the market. The equilibrium condition for α∗ is given by

α∗ − z∗

1− α∗

µ
α∗ +

1 + z∗

2
− P

¶
+

µ
1− α∗ − z∗

1− α∗

¶
1

2

µ
α∗ +

1 + z∗

2

¶
− γ = P (12)

where if the marginal worker is matched with more than one entrepreneur they receive a
payoff equal to the total surplus minus the price of the primary commodity (the entre-
preneur’s outside option) and if matched with a single entrepreneur they receive half the
surplus. Once more, we need the market equilibrium condition (3) to close the model.
Numerical calibration shows that with one exception the comparative static results

under this alternative mechanism are the same as those derived from the benchmark case.19

The only exception relates to the effect of a change in the entry cost of entrepreneurs on
α∗ that determines the mass of workers who enter the matching market. In the benchmark
case we found that an increase in the entry cost has a negative effect on α∗ thus encouraging
the entry of entrepreneurs. This result could be reversed with the alternative matching
mechanism because there is an additional effect. Namely, as the mass of entrepreneurs
entering the matching market declines the likelihood that a worker will be matched with
more than one entrepreneur, and thus receiving the higher payoff, also declines. For less
extreme suppositions about the distribution of underemployment in the economy we would
expect that the outcome would also depend on the level of the two entry costs.

5. Conclusions

Both workers and potential entrepreneurs who want to enter sectors that use advanced
technologies must incur entry costs. For workers these costs might capture time and

17We are indebted to Carl Davidson for suggesting this alternative mechanism.
18Of course, if the measure of entrepreneurs who enter the matching market is more than twice the

measure of corresponding workers then all workers will be matched with multiple entrepreneurs. However,
given our parameter restrictions, this cannot happen in the linear technology case.
19The numerical results are provided in a separate Appendix.
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money spent on skill acquisition while for entrepreneurs these costs might be related to
the establishment of new technologies or more directly to costly procedures related to the
start-up of new enterprises. The decision to incur these costs will depend on expectations
about future benefits from participating in these markets. In turn, these benefits will
depend on the likelihood of finding a match and thus employment in these markets and
on the productivity of that match. Competitive markets can ensure that ex ante all entry
decisions are optimal but ex post it is very likely that some agents will fail to match
and thus their new skills or know-how will be underemployed. Having argued that such
imbalances are common we have built a simple two-sector model with heterogeneous agents
in order to explore their implications for international trade.
Our first task has been to explore the impact of a change in market entry costs on

competitiveness and the patterns of international trade. We have found that the results
will depend on three factors. First, on the side of the market that faces the change in
entry costs, second, on the distribution of underemployment in the economy, and third,
on the sharing rule for dividing the surplus generated by a match. More specifically, we
have found that an increase in the entry costs of the agents on the short-side of the market
will not decrease the competitiveness of that sector. However, the effect of an increase
in the entry costs of the long-side of the market would depend on the distribution of
underemployment in the economy. Furthermore, we have shown that the lower the level
of underemployment, where the latter directly depends on the sharing rule, the higher
the likelihood that the sector’s competitiveness is strong. In order to keep the analysis
simple we have derived these results under the supposition that the matching technology
is such that everyone on the short-side of the market is matched. It seems intuitive that
our results would hold if we also introduce probabilistic matching also on the short-side of
the market.
Calibration has shown that our results also hold when we introduce complementarities

in the production function. However, now in addition to inefficiencies arising because of
social sub-optimal entry decisions we also have matching inefficiencies. Given that the
autarkic equilibrium is not Pareto optimal it is not surprising that when the economy has
a comparative advantage in the sector affected by those inefficiencies, international trade
can be welfare reducing. In fact, we have also demonstrated that even the patterns of trade
can be inefficient. We have also argued that the best policy response is to initiate measures
that improve the functioning of the labor market rather than imposing restrictions on the
cross-border movement of goods.

Appendix
Proof of Proposition 2
The system of equations (1), (2) and (3) can be rewritten as

1

2

µ
1 + z

2
+ α

¶
− γ = P (A1)

1

2

µ
z +

1 + α

2

¶
− 1− z

1− α
c = P (A2)
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P =
(1− α)

¡
2+α+z
2
− c− γ

¢
− (α− z)c

2α
(A3)

By substituting (A3) into (A1) and (A2) we can reduce the above system into two equations
in the two unknowns α and z. Totally differentiating the new system we getµ

1

2
− ∂P

∂α

¶
dα+

µ
1

4
− ∂P

∂z

¶
dz =

∂P

∂c
dc+

µ
∂P

∂γ
+ 1

¶
dγ (A4)

µ
1

4
− 1− z

(1− α)2
c− ∂P

∂α

¶
dα+

µ
1

2
+

1

1− α
c− ∂P

∂z

¶
dz

=

µ
1− z

1− α
+

∂P

∂c

¶
dc+

∂P

∂γ
dγ (A5)

where

∂P

∂α
=
−
¡
2+α+z
2
− c− γ

¢
+ α(1−α)

2
− αz

2α2

=
1

4α2
¡
−2− z + 2c+ 2γ − α2 − 2zc

¢
<

1

4α2
(−2 + z + 2α− α2 − 2z2)

=
1

4α2
(−2 + z(1− 2z) + α(2− α)) < 0

[The first inequality follows from the inequalities z > c and α > γ and the fact that
2c(1 − z) is increasing in c. The second inequality follows from the fact that the lower
bound on α and z implies that the second term cannot exceed 1 while the last term is less
than 1.]

∂P

∂z
=
1

2α

µ
1− α

2
+ c

¶
> 0

∂P

∂c
= −1− z

2α
< 0

∂P

∂γ
= −1− α

2α
< 0

Next, we proceed to show that the determinant ∆ is positive.

∆ =

µ
1

2
− ∂P

∂α

¶µ
1

2
+

1

1− α
c− ∂P

∂z

¶
−
µ
1

4
− ∂P

∂z

¶µ
1

4
− 1− z

(1− α)2
c− ∂P

∂α

¶
=

∙
3

16
− 1
4

∂P

∂z
− 1
4

∂P

∂α

¸
+

∙
1

2

1

1− α
c− 1

1− α
c
∂P

∂α
+
1

4

1− z

(1− α)2
c− 1− z

(1− α)2
c
∂P

∂z

¸
First, after substituting the partial derivatives of P given above in the the reduced system
comprised of equations (A4) and (A5), we consider the sign of the first bracket.
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3

16
− 1

8α

µ
1− α

2
+ c

¶
+

1

16α2
(−2 + z(1− 2z) + α(2− α))

=
1

16α2
¡
5α2 + 2− (α− z)(1 + 2c)− 2(c+ γ)

¢
Given that γ > c and given that (A1) implies that 2γ <

¡
1+z
2
+ α

¢
the above expression

is larger than
1

16α2
¡
5α2 + 1− 3α− 2c(α− z)

¢
Given that α > z > c the above expression is larger than

1

16α2
(−3α(1− α) + 1) > 0

where the last inequality follows from 0 < α < 1.
Next consider the sign of the second bracket which given that ∂P

∂α
< 0 it is larger than

c

4(1− α)2α2
¡
2α2(1− α) + α2(1− z)α− α2(1− z)2c

¢
Given that (A2) implies that c < 1−α

1−z
1
2

¡
z + 1+α

2

¢
the above expression is larger than

c

4(1− α)2

µ
2(1− α) + (1− z)α− (1− α)

µ
z +

1 + α

2

¶¶
>

c

4(1− α)
(3− α+ 2(α− z)) > 0

(a) ∆ > 0 implies that

sign

½
dα∗

dc

¾
= sign

½
∂P

∂c

µ
1

2
+

1

1− α
c− ∂P

∂z

¶
−
µ
1− z

1− α
+

∂P

∂c

¶µ
1

4
− ∂P

∂z

¶¾
= sign

½
1− z

8α(1− α)
(1− 3α)

¾
where given that α > 1

2
is negative.

(b) ∆ > 0 implies that

sign

½
dα∗

dγ

¾
= sign

½µ
∂P

∂γ
+ 1

¶µ
1

2
+

1

1− α
c− ∂P

∂z

¶
− ∂P

∂γ

µ
1

4
− ∂P

∂z

¶¾
= sign

½ ¡
−1−α

2α
+ 1
¢ ¡

1
2
+ 1

1−αc−
1
2α
1−α+2c

2

¢
+1−α

2α

¡
1
4
− 1

2α
1−α+2c

2

¢ ¾
= sign

½
1

8α(1− α)
((1− α)(7α− 3− 8c) + 8αc)

¾
Notice that if (7α − 3 − 8c) > 0 then the whole expression is positive and the proof is
completed. But even if (7α − 3− 8c) < 0 then given that α > 1

2
the whole expression is

still positive.
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(c) ∆ > 0 implies that

sign

½
dz∗

dc

¾
= sign

½µ
1

2
− ∂P

∂α

¶µ
1− z

1− α
+

∂P

∂c

¶
− ∂P

∂c

µ
1

4
− 1− z

(1− α)2
c− ∂P

∂α

¶¾
= sign

½
1− z

8α(1− α)2
¡
4α(1− α) + (1− α)2 − 4(1− z)c

¢¾
Given that (A2) implies that c < 1−α

1−z
1
2

¡
z + 1+α

2

¢
the expression in the brackets is larger

than
1− z

4α(1− α)
(α− z) > 0

where the last inequality follows from 0 < z < 1.
Proof of Proposition 3
(a) Totally differentiating (A1) we get

dP

dc
=
1

4

dz

dc
+
1

2

dα

dc

Given that ∆ > 0 the sign of the above expression is the same as the sign of

1

4

∙µ
1

2
− ∂P

∂α

¶µ
1− z

1− α
+

∂P

∂c

¶
−
µ
1

4
− 1− z

(1− α)2
c− ∂P

∂α

¶
∂P

∂c

¸
+

1

2

∙
∂P

∂c

µ
1

2
+

1

1− α
c− ∂P

∂z

¶
−
µ
1− z

1− α
+

∂P

∂c

¶µ
1

4
− ∂P

∂z

¶¸
=

3

16

∂P

∂c
− 1
4

∂P

∂α

1− z

1− α
+
1

4

1− z

(1− α)2
c
∂P

∂c
+
1

2

1

1− α
c
∂P

∂c
+
1

2

1− z

1− α

∂P

∂z

Using results from the proof of Proposition 2 we can write the last expression as

−1− z

2α

µ
3

16
+
1

4

1− z

(1− α)2
c+

1

2

1

1− α
c

¶
+

1

8α

(1− z)(1− α+ 2c)

1− α
+

1

16α2
1− z

1− α

¡
2 + z − 2c− 2γ + α2 + 2zc

¢
=

1− z

32(1− α)α2

µ
4 + 4α+ 2z + 4cz − 2α2 − 4c− 4γ − 3α(1− α)− 4α 1− z

1− α
c

¶
The term in the brackets is equal to

4 + α+ 2z + α2 − 4γ − 4c 1− z

1− α

Given that (A2) implies that c < 1−α
1−z

1
2

¡
z + 1+α

2

¢
the above expression is larger than

3 + α2 − 4γ > 3 + α2 − 4α = (3− α)(1− α) > 0

(b) Totally differentiating (A1) we get

dP

dγ
=
1

4

dz

dγ
+
1

2

dα

dγ
− 1
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The first two terms are equal to⎧⎨⎩
1
4

h¡
1
2
− ∂P

∂α

¢
∂P
∂γ
−
³
∂P
∂γ
+ 1
´³

1
4
− 1−z

(1−α)2 c−
∂P
∂α

´i
+

1
2

h³
∂P
∂γ
+ 1
´ ¡

1
2
+ 1

1−αc−
∂P
∂z

¢
−
¡
1
4
− ∂P

∂z

¢
∂P
∂γ

i ⎫⎬⎭ /∆

Given that ∆ > 0 to complete the proof it suffices to show that that the difference of
∆ minus the numerator is positive. This difference could be positive either because the
numerator is negative or because the numerator is less than ∆. Using the expression for
∆ derived in the proof of Proposition 2 we can write the difference as

1

4

∂P

∂z
− 3

16

∂P

∂γ
− 1
2

∂P

∂α
− c

1− α

µ
∂P

∂α
+
1

2

∂P

∂γ
+
1− z

1− α

∂P

∂z
+
1

4

1− z

1− α

∂P

∂γ

¶
Given that the first three terms are positive to complete the proof we need to show that
the expression in the brackets is positive. Once more, using results from the proof of
Proposition 2 we can write that expression as

1

4α2
¡
2 + z − 2c− 2γ + α2 + 2zc

¢
− 1− z

1− α

1− α+ 2c

4α
+
1− z

8α
+
1− α

4α

=
1

8α2(1− α)

µ
(1− α)2 (2 + z − 2c− 2γ + α2 + 2zc)− 2α(1− z)(1− α+ 2c)+

α(1− α)(1− z) + 2α(1− α)2

¶
=

1

8α2(1− α)

¡
4− 3α− α2 + 2z − 4c− 4γ + 4αγ + 4zc− αz − α2z

¢
=

1

8α2(1− α)

¡
4− 4γ(1− α)− α(3 + α) + z(2 + 2c− α− α2

¢
> 0

where the last inequality follows from 1 > α > γ > 0.
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Appendix (Not intended for publication)
Numerical Calculations (Complementarities)
The tables below show the equilibrium values of a∗, z∗ and P for γ < α where 0 < γ ≤ 1

and 0 < α ≤ 1.

c γ α z P
0.1 0.2 0.60 0.49 0.71
0.1 0.3 0.62 0.40 0.58
0.1 0.4 0.64 0.32 0.46
0.1 0.5 0.67 0.24 0.36
0.1 0.6 0.70 0.19 0.27
0.1 0.7 0.74 0.15 0.20
0.1 0.8 0.78 0.14 0.14
0.1 0.9 0.82 0.15 0.10
0.1 1.0 0.85 0.19 0.07

c γ α z P
0.2 0.3 0.60 0.52 0.63
0.2 0.4 0.62 0.46 0.52
0.2 0.5 0.64 0.40 0.42
0.2 0.6 0.67 0.36 0.33
0.2 0.7 0.70 0.33 0.25
0.2 0.8 0.74 0.32 0.19
0.2 0.9 0.77 0.32 0.14
0.2 1.0 0.80 0.34 0.10

c γ α z P
0.3 0.4 0.61 0.54 0.56
0.3 0.5 0.63 0.50 0.46
0.3 0.6 0.65 0.46 0.37
0.3 0.7 0.68 0.44 0.29
0.3 0.8 0.71 0.42 0.22
0.3 0.9 0.74 0.42 0.17
0.3 1 0.77 0.43 0.12

c γ α z P
0.4 0.5 0.62 0.56 0.49
0.4 0.6 0.64 0.53 0.40
0.4 0.7 0.66 0.51 0.32
0.4 0.8 0.69 0.50 0.25
0.4 0.9 0.72 0.49 0.19
0.4 1.0 0.75 0.50 0.14

c γ α z P
0.5 0.6 0.63 0.58 0.42
0.5 0.7 0.65 0.56 0.34
0.5 0.8 0.68 0.55 0.27
0.5 0.9 0.71 0.55 0.20
0.5 1.0 0.73 0.55 0.15

c γ α z P
0.6 0.7 0.65 0.60 0.36
0.6 0.8 0.67 0.59 0.28
0.6 0.9 0.70 0.59 0.22
0.6 1.0 0.73 0.59 0.17

c γ α z P
0.7 0.8 0.66 0.63 0.29
0.7 0.9 0.69 0.62 0.23
0.7 1.0 0.72 0.62 0.17

c γ α z P
0.8 0.9 0.68 0.65 0.24
0.8 1.0 0.71 0.65 0.18

c γ α z P
0.9 1.0 0.70 0.68 0.19
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Numerical Calculations (Alternative Matching Mechanism)
The tables below show the equilibrium values of a∗, z∗ and P for γ < α where 0 < γ ≤ 1

and 0 < α ≤ 1.

c γ α z P
0.1 0.2 0.56 0.47 0.48
0.1 0.3 0.56 0.43 0.41
0.1 0.4 0.57 0.40 0.35
0.1 0.5 0.58 0.38 0.30
0.1 0.6 0.59 0.37 0.25
0.1 0.7 0.61 0.37 0.21
0.1 0.8 0.62 0.38 0.16
0.1 0.9 0.64 0.40 0.13
0.1 1.0 0.66 0.43 0.10

c γ α z P
0.2 0.3 0.56 0.51 0.39
0.2 0.4 0.57 0.48 0.32
0.2 0.5 0.59 0.47 0.29
0.2 0.6 0.60 0.46 0.22
0.2 0.7 0.62 0.47 0.17
0.2 0.8 0.64 0.48 0.13
0.2 0.9 0.66 0.50 0.10
0.2 1.0 0.69 0.53 0.07

c γ α z P
0.3 0.4 0.58 0.54 0.31
0.3 0.5 0.59 0.53 0.25
0.3 0.6 0.61 0.52 0.19
0.3 0.7 0.63 0.53 0.15
0.3 0.8 0.65 0.55 0.11
0.3 0.9 0.69 0.57 0.07
0.3 1 0.72 0.61 0.05

c γ α z P
0.4 0.5 0.60 0.57 0.22
0.4 0.6 0.62 0.57 0.17
0.4 0.7 0.64 0.58 0.12
0.4 0.8 0.67 0.60 0.08
0.4 0.9 0.71 0.63 0.05
0.4 1.0 0.76 0.68 0.03

c γ α z P
0.5 0.6 0.62 0.60 0.15
0.5 0.7 0.66 0.62 0.10
0.5 0.8 0.69 0.65 0.06
0.5 0.9 0.74 0.69 0.04
0.5 1.0 0.79 0.75 0.02

c γ α z P
0.6 0.7 0.67 0.65 0.08
0.6 0.8 0.72 0.69 0.05
0.6 0.9 0.77 0.74 0.03
0.6 1.0 0.83 0.80 0.01

c γ α z P
0.7 0.8 0.74 0.73 0.04
0.7 0.9 0.80 0.79 0.02
0.7 1.0 0.87 0.86 0.01

c γ α z P
0.8 0.9 0.84 0.83 0.01
0.8 1.0 0.91 0.91 0.00

c γ α z P
0.9 1.0 0.96 0.95 0.00
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