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1 Introduction

Whether technology policy is needed in addition to carbon pricing to combat global
warming efficiently is still debated controversially. Some researchers have argued that
existing, technology unspecific instruments like patents and research subsidies are suffi-
cient to foster innovations in the energy sector (Nordhaus, 2009). But other researchers
maintain that policy intervention is necessary: Some identify spillovers as the cause
of suboptimal innovation in carbon-free technologies (Kverndokk and Rosendahl, 2007;
Fischer and Newell, 2008; Popp, 2006) while others see an initially high innovation rate
in the carbon-intensive sector as the reason for suboptimal green innovation (Acemoglu
et al., 2009). These papers, however, do not provide a convincing rationale why regu-
lators should focus on market failures in energy innovations rather than in innovations
in general: What is special about innovations in the energy sector to make technology-
specific policy intervention necessary? This paper addresses this question using an
intertemporal general equilibrium model with two competing low-carbon energy tech-
nologies. Our analysis draws on two strands of literature: the first discusses policy
instruments to address climate change and innovation processes, the second investigates
technological lock-ins.

Several modeling studies addressing technology policy in the context of global warm-
ing have been published. With regard to the technological structure, Kverndokk and
Rosendahl (2007) and Rivers and Jaccard (2006) are close to our model but do not
consider intertemporal resource extraction and endogenous savings dynamics. Fischer
and Newell (2008) use a partial two-period equilibrium model calibrated to the US econ-
omy for very moderate mitigation targets. Gerlagh et al. (2004) and Gerlagh and Lise
(2005) analyze the impact of constant ad-hoc carbon taxes under (perfectly internalized)
technological change within an intertemporal general equilibrium model. Finally, Popp
(2004, 2006) studies the impact of R&D expenditures on carbon prices and mitigation
costs within a social planner model. Grimaud et al. (2010) use a similar technologi-
cal structure to analyze carbon pricing and R&D policies in a decentralized economy.
We differ from these models in analyzing the intensity of technology lock-ins depend-
ing on important technological parameters (like the substitutability between energy
technologies), spillover rates and discount rate mark-ups. Furthermore, we provide an
extensive policy analysis within an intertemporal general equilibrium framework con-
sidering first-best and several welfare maximzing second-best instruments. The other
strand of literature explores how lock-ins arise due to increasing returns going back to
the seminal work by Arthur (1994). Here, lock-in is understood as market dominance
of an inferior incumbent technology at the expense of a superior contender technology.
This view is supported by micro-modeling (Arthur, 1989) and various case studies; well-
known examples include keyboard layout and video recorders (David, 1985; Cusumano
et al., 1992) but also energy technologies (Cowan and Hulten, 1996; Islas, 1997). In the
context of global warming, research has focused on lock-in into fossil fuel technologies
exacerbating the switch to carbon-free energy (Unruh, 2000, 2002; Foxon and Pearson,
2007; Schmidt and Marschinski, 2009). In contrast, this paper examines the case of two
competing low-carbon energy technologies. As the lock-in literature stresses the role of
additional market barriers such as private and public institutions, lock-ins are hard to
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overcome by common policy instruments like taxes or subsidies.
For our analysis, we develop an integrated policy assessment model which provides a

consistent and flexible framework to calculate optimal policies and to conduct a precise
welfare analysis (Sec. 2). In our intertemporal general equilibrium model, lock-ins rise
due to imperfections in the innovation process: Technological progress in the learning
backstop sector is driven by learning-by-doing with intra-sectoral knowledge spillovers.
Additionally, we consider the case of high effective discount rates in the learning tech-
nology sector. The discount rate mark-ups might evolve from risk premiums due to
uncertainty and imperfect commitment about future climate policy which effects the
profitability of early learning-by-doing. We consider three energy technologies: (i) fos-
sil energy, (ii) a learning backstop energy where significant learning-by-doing occurs
as expected for many renewable energy technologies, and (iii) a mature (non-learning)
backstop energy where technology has already experienced past learning and consider-
able up-scaling. Candidates for the mature low (or zero) carbon energy technology are
nuclear power, hydropower, combined cycle gas turbines (CCGT) or coal fired power
plants combined with carbon capture and sequestration technologies (CCS).

We find that a possible lock-in into inferior (non-learning) carbon-free energy tech-
nologies can be very costly compared to the costs of the innovation market failure alone
(Sec. 3). Incomplete appropriation of the gains of innovation generally leads to higher
prices. This is the same for all technology development that exhibits spillovers, but
given sufficient product differentiation, consumers will buy new products even at higher
prices. Impacts of spillovers will be small because the demand of variety-loving con-
sumers triggers further technological progress and cost reductions. Electricity, however,
is a very homogeneous good, and thus price competition dominates the market. The
currently cheapest technology crowds out other technologies that may be dynamically
more efficient. Hence, the very good substitutability between energy from mature and
learning generation technologies is the reason why energy markets suffer more from
spillovers than many other innovative industries.

Due to the good substitutability, seemingly small market failures have a consider-
able impact on the energy mix, welfare and carbon prices. We therefore analyze the
performance of different policies in preventing lock-ins by calculating optimal first-best
and second-best policy instruments (Sec. 4). We distinguish the following policy in-
struments: (i) subsidies for the learning backstop technology; (ii) quotas (i.e. portfolio
standards), (iii) feed-in-tariffs, (iv) taxes on the mature backstop technology, and (v)
second-best carbon pricing. We find that only the subsidy achieves the social optimum,
but feed-in-tariffs and quotas specifically targeting the learning backstop technology
only incur very small welfare losses. The other instruments exhibit larger welfare losses
up to the point of showing no improvement compared to the laissez-faire market equi-
librium with a carbon price only. Limited commitment and political-economy aspects
motivate our analysis of policy stimuli, i.e. subsidies that are only available for a certain
time (Sec. 5). It turns out, that an optimal subsidy stimulus of only a few decades
reduces consumption losses substantially. Finally, by considering small perturbations
of the optimal policies we find that the optimal feed-in-tariff and quota turn out to be
fairly robust, while a deviation from the optimal subsidy of as little as one percent may
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Figure 1: Overview of the modeling framework.

render the subsidy ineffective in preventing a lock-in (Sec. 6).

2 The model

We use an intertemporal general equilibrium model that distinguishes household, pro-
duction, fossil resource extraction and several energy sectors.1 In addition to energy
generated by combustion of fossil resources, there are two carbon-free energy sources:
a mature energy sector, and a more expensive yet learning competitor technology. A
further sector extracts fossil resources from a finite resource stock. We assume standard
constant elasticity of substitution (CES) production functions stated in detail in the ap-
pendix. The economic sectors are in a competitive market equilibrium within a closed
economy. Global warming policy is addressed by a carbon bank – an independent insti-
tution that manages a given carbon (permit) budget intertemporally. The government,
which anticipates the equilibrium response of the economy, imposes policy instruments
on the economy to maximize welfare. Fig. 1 gives an overview of the equilibrium and
the role of the government.

2.1 The decentralized economy

Here, we concentrate on the description of the agents’ optimization problem and the
interplay with government’s policies; the mathematical description of production tech-

1The model is built to deal with a large set of climate policy issues like delayed carbon pricing,
supply-side dynamics and double-dividend aspects which go beyond the research question of this paper.
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nology as well as the derivation of the first-order conditions can be found in Appendix A
and Appendix B, respectively.

The representative household

We assume a representative household with the objective to maximize the sum of dis-
counted utility U , which is a function of per-capita consumption C/L:2

max
Ct

T∑
t=0

(1 + ρ)−∆t∆LtU (Ct/Lt)

The factor ∆ denotes the length of a time period in years and ρ is the pure rate of time
preference.

The household owns labor L, capital stocks Kj, and the firms, and therefore re-
ceives the factor incomes wL and rKj, as well as the profits of all firms πj, where
j ∈ {Y, F,R,N, L} enumerates the sectors (consumption good sector Y , fossil energy
sector F , resource extraction sector R, mature (non-learning) backstop energy sector
N , learning backstop energy sector L). Wage rate w, interest rate r, profits πj and
lump-sum transfers from the government Γ are taken as given from the household’s
perspective. The household is assumed to take the depreciation of capital at rate δ
into account in its investment decision.3 The household therefore faces the following
constraints:

Ct = wtLt + rtKt − It + πt + Γt (1)

Kt =
∑
j

Kj,t, It =
∑
j

Ij,t, πt =
∑
j

πj,t (2)

Kj,t+1 = Kj,t + ∆(Ij,t − δKj,t), K0 given (3)

The production sector

The representative firm in the consumption good sector maximizes its profit πY by
choosing how much capital KY and labor L to rent, and how much energy to purchase
from the various sources: fossil fuels sector, mature and learning backstop energy sectors
(EF , EN , and EL, respectively).4 It has to consider the production technology Y(·) and
the given factor prices for capital (r), labor (w), fossil (pF ), mature backstop (pN)
and learning backstop (pL) energy (the price of consumption goods are set to one).
Furthermore, the production sector may need to consider government intervention in
form of a subsidy on the learning backstop energy τL or a feed-in tariff ςF . The latter

2In the following, we often omit the time-index variables t in the main text to improve readability.
3Imposing the depreciation dynamics on the saving-side (households) instead of the investment-side

(firms) is done for technical reasons. It does not change investment behavior but simplifies the capital
dynamics within the economic model.

4The intertemporal profit maximization problem of the production, fossil energy and mature back-
stop energy sector boils down to a static problem.
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takes the form of a subsidy but is cross-financed by a tax τF on energy from the fossil
and the mature backstop technology energy sectors.

πY,t = Y(KY,t, Lt, EF,t, EL,t, EN,t)− rtKY,t − wtLt − (pF,t + τF,t)EF,t

− (pL,t − ςF,t − τL,t)EL,t − (pN,t + τF,t)EN,t (4)

The nested CES production function Y(Z(KY , AYL),E(EF ,EB(EL, EN))) combines a
capital-labor intermediate with energy, assuming an elasticity of substitution of σ1.
Capital and labor are combined to an intermediate input Z using the elasticity of sub-
stitution σ2; similarly, fossil energy and backstop energy are combined to final energy
with the elasticity of substitution σ3. Finally learning and mature backstop energy
are combined to aggregate backstop energy EB using the elasticity of substitution σ4.5

Population L and productivity level AY grow at an exogenously given rate.
Additionally, the government may impose quotas to influence the energy portfolio.

Three quotas are included, differing with respect to how specifically they can foster en-
ergy from the learning backstop technology: Quotas of the first kind, ψTL , set a minimum
share of energy from the learning backstop (EL) relative to total energy use. The sec-
ond type ψBL requires a minimum share of EL relative to all carbon free energy. Finally,
the quota ψTB determines the minimum share of energy from either backstop technology
relative to total energy use.

EL,t ≥ ψTL,t(EF,t + EN,t + EL,t) (5)

EL,t ≥ ψBL,t(EN,t + EL,t) (6)

EL,t + EN,t ≥ ψTB,t(EF,t + EN,t + EL,t) (7)

The fossil energy sector

The fossil energy sector maximizes profits πF with respect to capital KF and fossil
resource use R, subject to the CES production technology EF and given factor prices
for fossil energy, capital and resources (pR). Additionally, it may consider a carbon tax
τR or carbon permit price pC :

πF,t = pF,tEF(KF,t, Rt)− rtKF,t − (pR,t + τR,t + pC,t)Rt (8)

The fossil resource sector

The fossil resource sector extracts resources from an exhaustible stock S using capital
KR. Its objective is to maximize the sum of profits over time, discounted at the rate

5We do not integrate fossil, learning and non-leaning energy on the same CES-level because we
assume that substitutability between the two backstop energies EL and EN should be higher than
between a backstop and a fossil energy EF and EL. This is due to the fact that backstop energy
is usually considered in the electricity sector while fossil energy covers electric as well as non-electric
energy consumption.
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rt − δ6:

max
Rt

T∑
t=0

πR,t∆Πt
s=0 [1 + (rs − δ)]−∆

Resource owners rent the capital used in the extraction process at the market interest
rate. The productivity of capital ∂R/∂KR decreases with ongoing depletion of the
exhaustible resource stock (Rogner, 1997; Nordhaus and Boyer, 2000). The resource
sector, therefore, has to consider the following constraints:

πR,t = pR,tR(St, KR,t)− rtKR,t (9)

St+1 = St −∆Rt, St ≥ 0, S0 given (10)

The learning backstop sector

The learning backstop sector maximizes profit πL under capital input and with a fixed
amount of land N . It considers interest rate and renewable energy prices as given and
may additionally consider a risk premium v ≥ 0 which effectively increases the discount
rate above the market interest rate. The risk premium reflects uncertainty and imperfect
commitment regarding the stringency of future mitigation policies (and, thus, carbon
prices).7 Fossil energy and non-learning backstop firms can in each period adjust their
factor endowment in order to achieve a profit-maximizing allocation to given carbon
prices. In contrast, the learning backstop sector can only achieve the profit-maximum
if the ancounced climate policy is actually implemented for the entire time horizon. If
an anounced mitigation target will be relaxed at some future date, the competetiveness
of the learning backstop with fossil fuels decreases and early investments with the aim
to increase experience turn out to be partly unprofitable. Firms anticipating that the
mitigation target could be relaxed therefore discount future profits at a higher rate.8

The optimization problem of the sector reads:

max
KL,t

T∑
t=0

πL,t∆Πt
s=0 [1 + (rs + v − δ)]−∆

πL,t = pL,tEL(AL(Ht)KL,t, N)− rKL (11)

Ht+1 = Ht + ∆(EL,t − EL,t−1), H0 given (12)

6As the interest rate already reflects depreciation of capital due to our formulation of the repre-
sentative household (see Eqs. 1–3), consumption has to be discounted by the interest rate net of
depreciation.

7Another rationale for imperfect foresight is provided by Rivers and Jaccard (2006) who argue that
the variance of learning investments is larger than for other investments. Additional risk premiums
could be justified if capital or insurance markets are not perfect (i.e. due to asymmetric information)
or investers are risk-averse.

8By the same token, imperfect commitment also concerns the fossil resource owners. Under a
mitigation policy, however, high carbon prices dilute the intertemporal rent dynamics of the fossil
resource sector. In our model, fossil resource rents become almost zero under the mitigation target.
Introducing high risk premiums does not affect the resource extraction which is mainly detemined by
the carbon price.
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The productivity AL depends on cumulative output H according to AL =
AL,max

1+( Ω
H )

γ and

converges to AL,max when H →∞. This formulation is based on Arrows’s learning-by-
doing approach (Arrow, 1962) and widely used in energy economic models (e.g. Kvern-
dokk and Rosendahl, 2007; Fischer and Newell, 2008). Ω is a scaling parameter, and γ is
the learning exponent. It is related to the learning rate lr by γ = − ln(1−lr)/ ln 2, which
measures by how much productivity increases when cumulative capacity is doubled.

As shown in Appendix B, the firms’ internal present value of learning µt is given by

µt − µt−1(1 + (rt + v − δ))∆ = ∆(1 − φ)∂EL

∂Ht

(
pL,t − µt + µt+1

(1+(rt+1+v−δ))∆

)
The spillover

rate φ ∈ [0, 1] is introduced to indicate how much of the learning-by-doing effect is
anticipated by the individual firm. This approach is in more detail explained in Fischer
and Newell (2007) and relies on the learning-by-doing dynamics elaborated in Spence
(1984) and Ghemawat and Spence (1985). It is consistent with econometric studies on
external learning-by-doing spillovers which suggest that learning does not only depend
on the individual firm’s cumulative production but also – to some extent – on the other
firms’ cumulative output (Irwin and Klenow, 1994; Barrios and Strobl, 2004). From a
social planner’s perspective, spillovers are irrelevant as cumulative output determines
learning. In contrast, in a decentralized economy, only a share (1 − φ) of learning is
appropriated by the firm. Hence, φ introduces an incentive problem.9

The mature backstop sector

The mature backstop sector sector maximizes profit πN subject to capital input KN

with an AK-technology function:

πN,t = (pN,t − τN,t)EN(KN,t)− rtKN,t (13)

It takes interest rate and energy price as given and has to consider an output tax τN on
energy generation if it is imposed by the government.

The carbon bank

We assume that society’s mitigation goal is formulated as an upper constraint on cu-
mulative carbon extraction – a so-called carbon budget –, and that the government has
appointed an institution, the carbon bank, to manage the corresponding carbon permits
efficiently. The carbon bank has the objective to maximize the revenues πC from a given
carbon budget B0 ≥ 0. It decides how much carbon permits P to issue in each time
period. As each unit of carbon R extracted by the fossil resource sector requires the
purchase of one carbon permit, it follows that P = R.

max
Rt

T∑
t=0

πB,t∆Πt
s=0 [1 + (rs − δ)]−∆

9A spillover rate of 100 percent implies that firms perceive the productivity increase as fully ex-
ogenous. In contrast, a 0 percent spillover rates implies a perfect internalization of learning by firms.
Learning then is a pure private good.
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πB,t = pC,tRt (14)

Bt+1 = Bt −∆Rt, Bt ≥ 0, B0 given (15)

Similar to an exhaustible resource, the carbon budget is a stock of permits which can
be used throughout the planning horizon. The resulting carbon price set by the bank
therefore follows the Hotelling rule. This approach allows us to decouple climate policy
(the price on carbon) from technology policies.

2.2 Equilibria of the economy

In this study, we distinguish three types of equilibria for the economy outlined above.
The social optimum given by the choice of a benevolent social planner serves as the
benchmark equilibrium. In the Stackelberg equilibria, a welfare-maximizing government
selects the optimal trajectory of policy instruments from a pre-defined subset of available
policy instruments given the implicit reaction functions of the economic sectors (see for
example Dockner et al. (2000, p. 111)). Thirdly, we consider a laissez-faire market
equilibrium with no government intervention.

Social optimum

The intention of considering the social optimum of our model economy, is to measure
the extend to what second-best policies fall short of the first-best. The socially op-
timal allocation is determined by solving the welfare maximizing problem subject to
investment, fossil extraction, carbon budget, technology and macroeconomic budget
constraints according to:

max
{Kj,t}

T∑
t=0

(1 + ∆ρ)−t∆LtU (Ct/Lt) (16)

subject to Eqs. 2, 3, 10, 12, 15, 20–32

and Ct = Yt − It

Stackelberg equilibrium

The first-order conditions of the sectors described above (and spelled out in Appendix
B) define an intertemporal market equilibrium for given policy instruments. The gov-
ernment considers all technology constraints, budget constraints, equations of motion
and first-order and transversality conditions and chooses policy instruments to maximize
welfare (see Fig. 1).

Furthermore, the government balances incomes and expenditures in any time with
households’ lump-sum tax Γ. In case of the feed-in-tariff, the subsidy ςF for the learning
energy is financed by the tax for fossil and mature energy τF .

Γt = τN,tEN,t − τL,tEL,t + τR,tRt + πB,t (17)

ςF,tEL,t = τF,t(EF,t + EN,t) (18)
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Hence, the government’s optimization problem is described by:

max
Θ

T∑
t=0

(1 + ∆ρ)−t∆LtU (Ct/Lt) (19)

subject to Eqs. 1–15, 17–18 , 20–32, 33–52

Θ = {τL,t, τN,t, τR,t, ςF,t, ψTL,t, ψBL,t, ψTB,t} is the set of government policies. For the purpose
of our paper it will be convenient to restrict policies to a single instrument while all other
instruments are set to zero.

Laissez-faire equilibrium

The laissez-faire market equilibrium is a special case of the Stackelberg equilibrium.
Here we set all policy instruments to zero – thus, Θ ≡ 0. Note that this does not
include climate policy, as we always assume that climate policy in form of a carbon
budget is implemented by the carbon bank setting pC .

2.3 Calibration and implementation of the model

Model parameters are chosen to reproduce the baseline from a model comparison project
in the social optimum without any carbon budget (Edenhofer et al., 2010). We use a
carbon budget of 450 GtC for the mitigation scenario. This limits global warming to 2°C
above the preindustrial level with a probability higher than 50 percent (Meinshausen
et al., 2009). The endogenous fossil energy price starts at 4 ct/kWh in 2010 and increases
up to 8 ct/kWh in 2100 (under business as usual) due to increasing extraction costs.
The mature backstop technology refers to nuclear, gas or coal (with CCS) technologies
as their learning rates are very low (1-9%) compared to renewable energy technologies
like solar, wind and ethanol (8-35%) (IEA, 2000; McDonald and Schrattenholzer, 2001).
The parameters describing the non-lerning backstop technology are chosen to reproduce
constant energy costs at 15 ct/kWh. This is at the upper bound of IEA’s cost estimate
for nuclear and gas (IEA, 2010).10 For the learning backstop energy we consider two
parameterizations: a moderate learning parameterization with a 17% learning rate and
9 ct/kWh generation costs in 2100 (standard parameterization); and a high learning
scenario with a 25% learning rate and 5 ct/kWh generation costs in 2100. Initially,
the average costs are around 28 ct/kWh. The discounted consumption losses due to
the consideration of the carbon budget (i.e. the mitigation costs) are 1.7% for the 25%
learning rate and 4.0% for the 17% learning rate scenario.

The climate externality can be easily incorporated by a fixed carbon budget consis-
tent with a certain temperature target. The magnitude of the innovation market failure,

10We use a small negative external learning rate in Eq. 32 of gN = −0.4% to obtain constant costs
for the non-learning backstop energy because the interest rate falls over time. A negative learning rate
can also be justified by increasing scarcities (uranium, gas, carbon dioxide storage capacities for CCS)
or increasing safety standards which raised capital costs for nuclear power plants in the past (Du and
Parsons, 2009). However, we ran our model also for gN = 0 and did not observe qualitative differences
in the economic dynamics.
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however, i.e. learning spillovers and risk premiums, seems to be difficult to quantify.
Several econometric studies about learning-by-doing spillovers in manufacturing and
semiconductor industry suggest 0.2 ≤ φ ≤ 0.6 (Irwin and Klenow, 1994; Gruber, 1998;
Barrios and Strobl, 2004).11 Within related integrated assessment or policy assessment
models, spillover rates usually range between 50 and 80 percent (Jones and Williams,
1998; Popp, 2006; Fischer and Newell, 2008). In the following, we set φ = 0.75 for
illustrative purpose, but we consider also lower and higher values. Due to the lack of
empiric evidence, we assume that the risk premium is zero (v = 0). Nevertheless, we
elaborate the impact of deviations from these values in Sec. 3. We set σ3 = 3, implying a
good substitutability between fossil and backstop energy. As the backstop energy sector
covers mainly electric energy, we assume a higher substitutability and set σ4 = 12.12

The optimization problems as defined by (16) and (19) form a non-linear program
(NLP) which is solved numerically with GAMS (Brooke et al., 2005). All parameters of
the model are listed in Appendix C. Additional figures with several model results can
also be found in the supplementary material.13

3 The lock-in effect

In this section, we compare the laissez-faire market equilibrium (with Hotelling carbon
price) with the optimal solution. In order to compare the dynamic outcome of several
equilibria we introduce two metrics: (i) consumption losses refer to the relative devia-
tion of discounted consumption from the social optimum under the same technological
parameters (we use a 3% discount rate); (ii) the delay of learning backstop genera-
tion (compared to the social optimum) is measured by the difference in years until the
learning backstop achieves a share of 10% in the total energy.14

3.1 Why the energy sector is highly vulnerable to lock-ins

Fig. 2a shows backstop energy generation and costs in the social optimum (which is
equivalent to the laissez-faire equilibrium for φ = 0 and v = 0, i.e. without market
failures) for two different elasticities of substitution σ4 between EL and EN . Energy
from learning backstop technology is used significantly, although its average unit costs
are initially higher compared to those of the mature technology. But when the learning

11These spillover rates refer to countries that already have a comprehensive patent legislation.
12IAMs use different elasticities of substitutions between energy technologies. Some models assume

perfect substitutability (Messner, 1997; Kverndokk et al., 2004; Edenhofer et al., 2005; Kverndokk and
Rosendahl, 2007), others use values of 0.9 (Goulder and Schneider, 1999), 2 (van der Zwaan et al.,
2002; Böhringer and Rutherford, 2008) or 8.7 (Popp, 2006). Gerlagh and Lise (2005) use a variable
elasticity of substitution ranging from 1 to 4. IAMs with differentiation between electric and non-
electric energy usually assume high (Cian et al., 2009) or perfect (Manne et al., 1995; Leimbach et al.,
2010) substitutability between electric energy technologies while using lower elasticities of substitution
between electric and non-electric energy.

13Supplementary material is available under: http://www.pik-potsdam.de/∼kalkuhl/SM/tech-
policy.pdf

14As we use a time-discrete model with a period length of ∆ = 5 years, we use a linear approximation
in-between time steps.
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Figure 2: Backstop energy generation and costs (2030-2080) for two different elasticities of substitution
(σ4 ∈ {3, 12}) between learning and mature backstop energy: (a) optimal outcome and
(b) laissez-faire equilibrium with 75 percent spillovers and no additional technology policy
instruments.

curve and spillovers are internalized, future cost reductions for the learning technology
are fully anticipated. Hence, the learning technology dominates the mature backstop
technology.

Fig. 2b shows the generation in the laissez-faire equilibrium with intrasectoral learn-
ing spill-overs. The spillovers lead to an imperfect anticipation of the future benefits
of learning-by-doing. For a low elasticity of substitution (σ4 = 3), the laissez-faire out-
come does not differ significantly from the optimal solution. For a higher elasticity of
substitution, however, this changes fundamentally: The learning backstop technology
is delayed significantly and energy demand is met by energy from the mature backstop
technology. This has a clear and intuitive explanation: a low elasticity creates a niche
demand for the learning backstop energy even when it is more expensive than the ma-
ture backstop. Driven by such a niche demand the learning sector may gain experience
and reduce production costs until it becomes competitive. But at high elasticities of
substitution niche demand vanishes. In this case, the technology with the lowest market
price wins.

Fig. 2 shows that a dynamically inferior technology dominates the dynamically effi-
cient technology for many decades. The energy sector “locks-in” into the mature energy
which competes with a learning technology that cannot internalize the value of future
learning appropriately into its price. The energy sector is highly vulnerable to lock-in
because electricity is an almost perfect substitute for consumers. In contrast, many in-
novations in the manufacturing or entertainment electronic sector provide a new product
different from existing ones (e.g. flat screens vs. CRT monitor). The low substitutabil-
ity implies a high niche demand and, thus, provokes ongoing learning-by-doing although
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Ω 20000 200 60
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Mature Backstop Cost AN 0.3 0.2 0.1

Carbon Budget B0 200 450 700

Figure 3: Consumption losses due to lock-in for several parameter variations around the standard
parameterization.

considerable spillovers exist and market prices are distorted.

3.2 Economic impacts of lock-ins

In our standard parameterization the consumption losses due to the lock-in are 0.8%.
Fig. 3 shows how this value changes if several parameters are modified. As we already
argued, a high elasticity of substitution is an important condition for a lock-in to occur.
A second important condition is that the generation cost of mature backstop energy is
at a critical level: In the case of 0.2 ≤ AN ≤ 0.25, which corresponds to production costs
between 12 and 15 ct/kWh, the mature backstop energy is an attractive option before
learning has started and an expensive one after considerable learning took place. Thirdly,
there must exist a market failure in the learning backstop sector, which is introduced
by the spillover rate or the discount rate mark-up (risk premium). Beside these three
necessary conditions, Fig. 3 indicates that learning rates and mitigation targets influence
the magnitude of consumption losses. Hence, ambitious climate targets (like 200 GtC)
become more expensive if energy markets do not perform well although an efficient
carbon pricing instrument is applied.

Generally we can distinguish two sources of welfare losses. First, the intertemporally
suboptimal deployment of the learning backstop energy causes consumption losses even
if no competitive mature backstop technology is available (and no lock-in occurs). A
doubling of the mature backstop production costs (i.e. AN = 0.1) for example, makes
the learning technology competitive even if spillovers exist. In this case the mature
backstop generation is virtually zero. The resulting consumption losses due to spillovers
are 0.3% for 3 ≤ σ4 ≤ 21 and there is almost no delay in learning backstop generation
(< 5 years). In contrast, in case of lock-in, the delay of the learning backstop deployment
increases to 25 years (σ4 = 12) or 35 years (σ4 = 21), respectively. Such a delay causes

13



lr φ v B0 σ4 Consumption
losses [%]

Delay
[years]

Initial carbon price
[1=optimal]

1 17% 50% 15% 450 21 0.9 27 1.23
2 17% 50% 15% 200 21 1.4 35 1.17
3 17% 75% 10% 450 16 1.5 40 1.27
4 17% 75% 10% 200 16 2.2 50 1.18
5 25% 50% 15% 450 21 1.1 16 1.83
6 25% 50% 15% 200 21 1.3 17 1.77
7 25% 75% 15% 450 13 2.0 26 2.27
8 25% 75% 15% 200 13 3.4 37 2.09
9 25% 100% 0% 200 13 8.0 82 2.15

Table 1: Parameter values that provoke severe lock-ins: Impact on consumption losses, delay of achiev-
ing 10% learning backstop energy share and initial carbon price.

much higher consumption losses.
In Fig. 3 only one parameter is varied at a time. This ignores that changes in

multiple parameters may cancel each other out or may mutually reinforce their effect
on the technology lock-in. Indeed, Tab. 1 shows further parameter sets that cause
particularly severe lock-ins with consumption losses greater than one percent. Even if
spillovers are only 50 percent, the existence of an additional high risk premium postpones
learning energy generation and provokes consumption losses of 1.4% under a carbon
budget of 200 GtC. A (rather theoretically) upper bound for the consumption losses is
given for the case where spillovers are 100% and the carbon budget is very ambitious.
In this case, consumption losses increase to 8.0%.

The lock-in does not only provoke consumption losses and delayed learning backstop
generation, it furthermore modifies the Hotelling carbon price by changing the interest
rate and the initial carbon price. While the impact on the interest rate is small, the
initial carbon price level increases by 22 percent to meet the carbon budget in our
standard parameterization. The medium-learning parameterizations in Tab. 1 show
similar figures. In contrast, if the learning rate is high the initial carbon price increases
by 77–127 percent compared to the case where no market failures exist.

3.3 The role of energy subsidies

Besides technological parameters, existing energy subsidies may also exacerbate lock-
ins if they favor non-learning technologies against learning ones. The limited liability
of nuclear reactor operators for accidents, for example, exhibits an implicit subsidy on
nuclear energy. Heyes and Heyes (2000) estimate the magnitute of this implicit subsidy
to be 0.01–3.58 ct/kWh for nuclear reactor operators in Canada.15 Government grants,
rebates, loans or guarantees for investments into nuclear power plants provide further
implicit subsidies as well as non-internalized environmental costs for the safe storage

15The low subsidy value results from a worst off-site damage scenario of $1 bn and an accident
probability of 10−6 per reactor-year while the high value results from a worst off-site damage scenario
of $100 bn and an accident probability of 10−5.
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Learning rate lr Spillovers φ Non-learning subsidy [ct/kWh]

0 1 2 3 4

17% 0% 0.0 0.0 0.0 0.0 0.2
17% 75% 0.8 1.0 1.3 1.7 2.1
25% 0% 0.0 0.0 0.0 0.0 –
25% 75% 1.3 1.5 1.8 2.1 –

Table 2: Consumption losses (in %) due to energy subsidies for non-learning backstop energy relative
to the reference case with zero spillovers and subsidies.

of nuclear waste. Goldberg (2000) calculates the average direct subsidies to nuclear
electricity generation within 1947–1999 by 1.2 ct/kWh.

In order to analyse the impact of distortionary subsidies on the magnitude of lock-
ins, we integrate in the laissez-faire economy a constant ad-hoc subsidy for the non-
learning backstop energy ranging from 1 to 4 ct/kWh. Tab. 2 shows the resulting
consumption losses for different learning and spillover rates against the reference case
of zero spillovers and zero subsidies. In the case where learning-by-doing is perfectly
anticipated (φ = 0%), subsidies in the range of 1–4 ct/kWh have only a marginal
effect on consumption and learning backstop deployment. However, if learning is not
anticipated appropriately (φ = 75%), the consumption losses increase significantly due
to an extended lock-in into the non-learning technology. For example, a 3 ct/kWh
subsidy doubles the costs of technology lock-ins in the mdium learning-rate scenario.
Even small distortionary subsidies can delay the deployment of the learning backstop
technology by more than one decade and decrease therefore consumption.

4 Optimal policy instruments

The previous section showed that in absence of policy intervention there are significant
consumption losses higher than one percent possible due to severe temporary lock-ins.
This motivates the analysis of several policy instruments to prevent lock-ins and reduce
welfare losses. We focus on two illustrative parameter settings: a high learning scenario
(25 percent learning rate) and a medium learning case (17 percent learning rate). We
calculate optimal policies for a 75% spillover rate; considering cases with 50% spillover
rate, high substitutability between EN and EL or additional risk premium leads to
similar results.16

In the Stackelberg equilibrium, we calculate the welfare maximizing time paths of
(i) learning backstop subsidies, (ii) feed-in-tariffs, (iii) backstop energy quotas, (iv)
mature backstop taxes, and (v) a modified carbon price. The performance of each of
these instruments with respect to consumption losses and delay of learning backstop
deployment is shown in Fig. 4. In the following we discuss these instruments in detail.

16See the supplementary material for optimal learning subsidies for paramter choices according to
Tab. 1.
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Figure 4: Performance of several policy instruments under the Stackelberg equilibrium: (a) Consump-
tion losses relative to the optimal solution; (b) delay to achieve a share of 10% learning
backstop energy.

4.1 Subsidy for learning backstop energy

Economic intuition suggests that a subsidy would be the appropriate instrument to
internalize spillovers and achieve an optimal energy generation. As the social value
of the learning technology is higher than its private value, an instrument is needed to
correct for this positive externality. A subsidy is the most obvious way to implement
this. Here, the subsidy τL is lump-sum financed and changes the energy allocation via
an impact on the first-order conditions of the production sector (see Eq. 38 in the
appendix).
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Figure 5: (a) Optimal subsidy and subsidy stimulus (2010-2030 only) and (b) optimal quota for learn-
ing backstop on total energy and share of learning backstop on total energy in the social
optimum.

The numerical calculation confirms that this subsidy is a first-best instrument. If
learning rates are high, the subsidy is initially high as an early deployment of learning
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backstop energy is socially optimal (see Fig. 5a). For lower learning rates, fossil energy
is more attractive in the first decades. Learning energy generation and the subsidy
are delayed because postponed learning costs are lower due to discounting. Note that
after an initial “activation” phase which shifts the energy generation from the niche
to large-scale generation, the subsidy is declining because of diminishing learning with
cumulative output.

4.2 Feed-in-tariff

Although a lump-sum financed subsidy is an efficient instrument, it is scarcely employed
in reality. Governments which prefer a price instrument to a quota widely choose feed-in-
tariffs to encourage renewable energy generation. In contrast to the lump-sum-financed
subsidy τL, the feed-in-tariff (ςF ) is a subsidy on learning backstop energy that is cross-
financed by a tax on fossil and mature backstop energy τF . This captures the idea that
the costs of feed-in-tariffs are borne by the entire energy sector.

The optimal path of the feed-in-tariff closely follows the lump-sum financed subsidy
displayed in Fig. 5a. As the cross-financing mechanism causes small distortions for
fossil and mature backstop energy prices,17 the feed-in-tariff converges faster to zero.
Consumption losses, however, are small (< 0.1%) and there is no delay in learning
backstop energy deployment (Fig. 4).

4.3 Quota on the energy mix

Some governments use tradable quotas instead of subsidies to encourage renewable en-
ergy generation. In the following, we calculate the performance of several quota regimes
which differ with respect to their degree of technological discrimination. In Eqs. (5–7),
we introduced three different quota designs: (i) a minimum quota for the backstop en-
ergy on the total energy generation (ψTB), (ii) a minimum quota for the learning energy
on the total energy generation (ψTL), and (iii) a minimum quota for the learning energy
on the total backstop generation (ψBL ).

Quota for (total) backstop energy

A quota on EB does not increase welfare compared to the laissez-faire equilibrium in our
model. Hence, it is therefore optimal to keep it at zero. A positive quota encourages both
the learning and the mature backstop technology relative to the fossil energy technology.
However, this is too unspecific to prevent the lock-in into the mature backstop. A
positive quota requirement would be met primarily by the mature backstop.

Quotas for learning backstop energy

This instrument is more specific. It can indeed increase the generation of learning
backstop energy. However, we find that the reference point of the quota matters: if

17The difference between lump-sum subsidy τL and feed-in-tariff ςF becomes apparent in the first-
order conditions (37–39) in Appendix B.
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the quota is chosen relative to the shares of the two backstop energies (ψBL ), it can
discriminate mature against learning technology and therefore prevent a (temporary)
lock-in. Nevertheless, it cannot push the learning technology relative to the fossil energy
which would be necessary to achieve an efficient timing of learning energy generation.

In contrast, the quota for learning energy relative to total energy (ψTL) does not
only prevent a lock-in, but also induces a more efficient learning energy generation at
the expense of fossil energy generation. The optimal quota almost achieves the socially
optimal energy generation (Fig. 5b). Similar to the feed-in-tariff the quota operates like
an implicit subsidy on EL and an implicit tax on EF and EN .18 This explains why the
quota is set to zero in the second half of the century: the consumption losses due to
the distortion outweigh the gains due to higher learning backstop generation. Overall
consumption losses are small and of the same magnitude as for the feed-in-tariff.

4.4 Tax on the mature backstop

Instead of promoting the learning technology, the lock-in can alternatively be addressed
by taxing the mature backstop technology which causes the lock-in. As shown in Fig. 4,
this policy is relatively expensive compared to the optimal subsidy, the feed-in-tariff,
or the optimal quota. However, consumption losses are mainly due to the delay of the
learning backstop energy similar to the case where no (or only a prohibitively expensive)
mature energy technology is available (as discussed in Sec. 3).

4.5 Modified carbon pricing

The management of the carbon budget by the carbon bank leads to a Hotelling carbon
price. In a first-best setting (no technology failures) this is equivalent to an optimal
carbon tax τR. However, when additional market failures such as learning spillovers
are present, the second-best carbon price differs from the Hotelling carbon price. In
our model the second-best carbon price deviates from the carbon bank’s carbon price
in the laissez-faire equilibrium only during the short transition phase when massive
investments into the learning backstop technology are made. Nevertheless, the modified
carbon tax cannot prepone this transition phase. A higher carbon price would primarily
encourage the mature backstop technology. Hence, the delay and consumption losses
remain almost unchanged compared to the laissez-faire outcome.

5 Policy stimulus

The policy instrument analysis in Section 4 calculated optimal first-best and second-
best instruments for the entire time horizon (21st century). In reality such a long-lasting
commitment by governments might be difficult to implement. Furthermore, long-term
subsidies may have adverse side-effects if they cause rent-seeking behavior and transac-
tion costs. A charming solution might be to limit the duration of policy intervention.
We therefore calculated the optimal subsidy starting in 2010 for different time spans.

18See the marginal conditions (37–39) in Appendix B for mathematical details.
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Figure 6: Consumption losses with respect to the length of optimal temporary subsidies (starting in
2010).

The consumption losses of these policy stimuli are shown in Fig. 6. A policy stimulus
of 30 years is sufficient to prevent lock-ins and decrease consumption losses below 0.2%.
If learning is moderate the subsidy is relatively unimportant during the first 15 years as
the large-scale learning energy deployment begins in 2030. Hence, it is important that
the subsidy is implemented when the transition phase starts (under the high learning
parameterization, this is immediately in 2010). The optimal stimulus subsidy may differ
substantially from the optimal permanent subsidy as indicated exemplarily by Fig. 5a.
For the moderate (17%) learning case, the 25-year-subsidy (and thus, learning backstop
deployment) is preponed because the subsidy is not available in later periods.

6 Robustness of optimal policy instruments

This section provides some elementary considerations about the robustness of optimal
policies by introducing small perturbations. For the three most efficient instruments we
calculate the consumption losses of varying the instrument by one percent relative to
its optimal use.

As shown in Fig. 7, changes in discounted consumption are small except when the
subsidy is set too low. In this case significant consumption losses in the range of the
laissez-faire outcome can result. Lowering the subsidy by one percent results in a strong
lock-in into the mature backstop technology because the subsidy is too low to make the
learning backstop competitive. This does not occur for the other instruments. Even the
1%-lower-than-optimal feed-in-subsidy makes the learning technology early competitive
because it additionally implies a taxation of fossil and mature backstop energy. For the
quota, small perturbations translate directly to small deviations in production if the
quota is binding. Thus, a lock-in cannot occur.
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7 Conclusions

Our model provides important insights into the causes and implications of market fail-
ures for energy innovations (Sec. 3). We identified a trio infernale of necessary con-
ditions that provoke a lock-in into a mature (non-learning) technology although a su-
perior (learning) contender technology is available: (i) high learning spillovers (and/or
imperfect commitment to climate policy), (ii) a high substitutability between these two
technologies, and (iii) a critical range of present and future generation costs of the com-
peting technologies. The cost level must be such that the contender technology is more
expensive than the mature technology in the short term, yet cheaper in the long run
due to its learning potential. If only (i) and (ii) or (i) and (iii) hold, the market failure
is small and the associated welfare losses may be exceeded by the transaction costs of
addressing it. For example, if the high-cost backstop is prohibitively expensive, no lock-
in occurs, and thus, consumption losses of only 0.3% are caused by suboptimal timing
of innovation alone. Similarly, if substitutability is imperfect, the innovative technology
gains experience in niche markets. In this case, consumption losses are also low (0.2%).
If all three conditions hold, however, the innovation process may be delayed by several
decades. For plausible parameters, this causes consumption losses ranging from 0.8%
to 3.4% and carbon price increases by 17–127 percent. Hence, lock-ins between low-
carbon technologies interfer with climate policy: Higher carbon prices and mitigation
costs make it difficult for governments to seek for ambitious temperature targets.

Market failure due to spillovers may not only affect the energy sector but all innova-
tive sectors in the economy. But in contrast to electronic, information and entertainment
industries, energy – and in particular electricity – is a homogeneous good where almost
no product differentiation is possible.19 Thus, while in many economic sectors condition
(i) and (iii) hold, condition (ii) is violated. Spillovers and discount rate mark-ups have

19An exception might be niche markets due to imperfect grid access or benevolent consumers that
are aware of the social costs of lock-ins and therefore purchase the more expensive learning technology
at their own costs. However, consumers must be aware of choosing not only the carbon-free technology
(which includes AN ), but the learning (carbon-free) technology at higher costs.
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only small impact on welfare and may not justify (technology-specific) policy interven-
tion. In contrast, energy from several technologies is an almost perfect substitute which
leads to a strong competition in prices. Thus, the energy sector is at high risk of lock-ins
into dynamically inferior technologies which exacerbates consumption losses.

Our parameter analysis showed that ambitious mitigation targets, high learning rates
and high risk premiums (due to imperfect commitment to climate policy) particularly
delay innovation and raise consumption losses. Even a 50 percent spillover can cause a
severe lock-in with 1.4% consumption loss if risk premiums are high (15 percent) and the
mitigation goal is ambitious (200 GtC). Furthermore, existing distortionary subsidies –
albeit beeing small – can substantially exabercate the lock-in if they favor non-learning
technologies agains learning ones.

An optimal policy has to internalize spillovers. This can be done by a subsidy on
learning backstop energy which is lump-sum financed (Sec. 4). Feed-in-tariffs and min-
imum quotas on learning backstop energy also provide a way to promote a technology.
However, these are cross-financed by an implicit tax on mature backstop and fossil
energy. The distortionary financing mechanism leads to the occurrence of small ineffi-
ciencies (around 0.1%). All these instruments require the regulator to pick the “winner”,
i.e. to support the dynamically more efficient technology while discriminating the other
technologies. In reality, the regulator might not have this option due to information,
incentive and political-economy problems. Instead of picking-the-winner, the regulator
could “drop-the-losers”, i.e. discriminate the non-learning technologies by a tax. In par-
ticular, this could be useful if it was easier to identify technologies which need to be
avoided, than to determine which (maybe yet not existing) technology will be essential
for future energy generation. This also enhances competition under several learning
technologies. While such a policy prevents lock-in, it cannot achieve the optimal timing
of innovation leading to consumption losses of 0.3–0.5 percent. Technology-unspecific
backstop quotas and modified carbon pricing are poor instruments resulting in negligible
or zero welfare gains.

Finally, we analyzed the performance of subsidies which are only available for a
certain time (Sec. 5). It turned out that a policy stimulus of 30 years is sufficient to
decrease consumption losses below 0.2%.

Regarding the robustness of instruments, the implementation of the subsidy carries
the risk of being ineffective if it deviates only slightly from the optimal value. In con-
trast, the consumption losses for feed-in-tariffs and quotas are always small if realized
implementation differs from the optimal values (Sec. 6) although they are never first-best
in a deterministic setting. A concluding evaluation of these risks requires a comprehen-
sive robustness analysis which considers uncertainties in several economic parameters.
While this is beyond the scope of this paper, it indicates an important question for
future research.
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A Technology

The following functional forms for utility and production are used:
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EN(KN) = ANe
∆gN tKN (32)

B First-order conditions of decentralized agents

Household sector Maximizing the Lagrangian
LH =

∑T
t=0(∆LtU(Ct/Lt) [1 + ρ]−∆t + λH,t(Kt+1 −Kt −∆(It − δKt))) with respect to

Ct and Kt and by using the substitution (1) yields the following first-order conditions:

Lt
∂U

∂Ct
= λH,t (33)

λH,t − λH,t−1(1 + ρ)∆ = −∆λH,t(rt − δ) (34)

0 = λH,TKT+1 (35)

Production sector Maximizing the Lagrangian LY,t = πY,t + φTB,t(EL,t + EN,t −
ψTB,t(EF,t+EN,t+EL,t))+φBL,t(EL,t−ψBL,t(EN,t+EL,t))+φTL,t(EL,t−ψTL,t(EF,t+EN,t+EL,t))
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with respect to KY,t, Lt, EF,t, EL,t and EN,t and using the substitutions (4) and (21–24)
leads to the first-order conditions:

rt =
∂Y(Z,E)

∂KY,t

, wt =
∂Y(Z,E)

∂Lt
(36)

pF,t =
∂Y(Z,E(EF,EB))

∂EF,t
− τF,t − ψ1,tψ2,tφL,t − ψ3,tφB,t, (37)

pL,t =
∂Y(Z,E(EF,EB(EL,EN)))

∂EL,t
+ ςF,t + φL,t(1− ψ1,t) + (1− ψ3,t)φB,t,+τL,t (38)

pN,t =
∂Y(Z,E(EF,EB(EL,EN)))

∂EN,t
− τF,t − φL,tψ1,t + (1− ψ3,t)φB,t (39)

With the KKT conditions for the inequaltiy constraints (5–6):

0 = φTL,t(EL,t − ψTL,t(EF,t + EN,t + EL,t)) (40)

0 = φBL,t(EL,t − ψBL,t(EN,t + EL,t)) (41)

0 = φTB,t(EL,t + EN,t − ψTB,t(EF,t + EN,t + EL,t)) (42)

Fossil energy sector By maximzing πF given by (8), the common static conditions
apply:

pR,t + τR,t + pC,t = pF,t
∂EF

∂Rt

, rt = pF,t
∂EF

∂KF,t

(43)

Fossil resource extraction sector Maximizing the Lagrangian

LR =
∑T

t=0

(
∆πR,tΠ

t
s=0 [1 + rs − δ]−∆ + λR,t(St+1 − St + ∆Rt)

)
with respect to Rt and

St and the substitutions (9) and (28–29) leads to the first-order conditions:

λR,t = pR,t − rt/κt (44)

λR,t − λR,t−1(1 + (rt − δ))∆ = −∆(pR,t − λR,t)
∂R

∂St
(45)

λR,TST+1 = 0 (46)

Learning backstop energy sector Maximizing the Lagrangian
LL =

∑T
t=0(∆πL,tΠ

t
s=0 [1 + rs + v − δ]−∆ λL,t(Ht+1−Ht−∆(EL,t−EL,t−1))) with respect

to KL,t and Ht and introducing the spillover rate φ leads to the first-order conditions:

0 =

(
pL,t

∂EL

∂KL,t

− rt
)

Πt
s=0 [1 + rs + v − δ]−∆ + (λL,t+1 − λL,t)

∂EL

∂KL,t

0 = ∆(1− φ)
∂EL

∂Ht

(
pL,tΠ

t
s=0 [1 + rs + v − δ]−∆ + λL,t+1 − λL,t

)
− λL,t + λL,t−1

0 = λT
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With µt := λtΠ
t
s=0 [1 + ∆(rs + v − δ)] we can transform this into:

rt =

(
pL,t − µt +

µt+1

(1 + rt+1 + v − δ)∆

)
∂EL

∂KL,t

(47)

µt − µt−1(1 + rt + v − δ)∆ = ∆(1− φ)
∂EL

∂Ht

(
pL,t − µt +

µt+1

(1 + rt+1 + v − δ)∆

)
(48)

µT = 0 (49)

Mature backstop energy sector The common static condition applies:

ANe
∆gN t(pN,t − τN,t) = rt (50)

Carbon bank Intertemporal optimization results in a Hotelling price:

pC,t = (1 + rt − δ)∆pC,t−1 (51)

pC,TBT+1 = 0 (52)

C Parameters and initial values for numerical solu-

tion

Symbol Parameter Value

ρ pure time preference rate of household 0.03
η elasticity of intertemporal substitution 1
δ capital depreciation rate 0.03
Lmax population maximum (bill. people) 9.5
f population growth parameter 0.04

a1 scale parameter in final good production 0.95
b1 scale parameter in final good production 0.05
σ1 elasticity of substitution energy–intermediate 0.5
a2 scale parameter in intermediate production 0.3
b2 scale parameter in intermediate production 0.7
σ2 elasticity of substitution labor–capital 0.7
a3, b3, a4, b4 scale parameter (energy usage) 1
σ3 elasticity of substitution fossil–backstop energy 3
σ4 elasticity of substitution learning–mature backstop 12
g0 productivity growth parameter 0.026
ζ productivity growth parameter 0.006

a scale parameter in fossil energy generation 0.8
b scale parameter in fossil energy generation 1.65E-4
σ elasticity of substitution energy–intermediate 0.15

χ1 scaling parameter 20
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χ2 scaling parameter 700
χ3 resource base (GtC) 4000
χ4 slope of Rogner’s curve 2

ν share parameter learning backstop generation 0.95
AL,max maximum productivity learning backstop 0.6
Ω scaling parameter 200
γ learning exponent 0.27
N land 1

v risk premium (learning backstop) 0.0
φ spillover rate (learning backstop) 0.75

AN productivity mature backstop 0.2
gN productivity change rate -0.004

K0 Initial total capital stock (trill. US$) 165
S0 Initial stock of fossil resources (GtC) 4000
B0 Carbon budget (GtC) 450
H0 Initial experience stock 0.2
L0 Initial population (bill. people) 6.5
AY,0 Initial productivity level 6

∆ length of time period (years) 5
T time horizon (in ∆ years) 30

Table 3: Parameters used for the numerical model.

References

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D., 2009. The environment and di-
rected technical change. NBER Working Papers (15451).

Arrow, K. J., 1962. The economic implications of learning by doing. The Review of
Economic Studies 29 (3), 155–173.

Arthur, W. B., 1989. Competing technologies, increasing returns, and lock-in by histor-
ical events. The Economic Journal 99 (394), 116–131.

Arthur, W. B., 1994. Increasing returns and path dependence in the economy. University
of Michigan Press.

Barrios, S., Strobl, E., 2004. Learning by doing and spillovers: Evidence from firm-level
panel data. Review of Industrial Organization 25 (2), 175–203.
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