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Abstract 
 
We propose a simple and powerful numerical algorithm to compute the transition process in 
continuous-time dynamic equilibrium models with rare events. In this paper we transform the 
dynamic system of stochastic differential equations into a system of functional differential 
equations of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide 
a guess of the policy function and solve the resulting system of (deterministic) ordinary 
differential equations by standard techniques. For parametric restrictions, analytical solutions 
to the stochastic growth model and a novel solution to Lucas' endogenous growth model 
under Poisson uncertainty are used to compute the exact numerical error. We show how 
(potential) catastrophic events such as rare natural disasters substantially affect the economic 
decisions of households. 

JEL-Code: C630, E210, O410. 

Keywords: continuous-time DSGE, Poisson uncertainty, waveform relaxation. 
 
 
 
 
 

Olaf Posch 
Aarhus University 

School of Economics and Management 
Building 1322 
Bartholins Allé 

Denmark – 8000 Århus C 
oposch@econ.au.dk 

Timo Trimborn 
Department of Economics 
University of Hannover 
Königsworther Platz 1 

Germany - 30167 Hannover 
trimborn@vwl.uni-hannover.de 

 
  
  

 
 
April 2011 
We thank Klaus Wälde, seminar and conference participants and one anonymous referee for 
comments. The first author appreciates financial support from the Center for Research in 
Econometric Analysis of Time Series, CREATES, funded by The Danish National Research 
Foundation. 



1 Introduction

Background. The stochastic growth model in continuous time has received extensive study in

the macro literature (following Merton, 1975; Chang and Malliaris, 1987).1 This benchmark

economy gave rise to the development of advanced models for capturing the main features of

aggregate fluctuations, often referred to as dynamic stochastic general equilibrium (DSGE)

models. These models are the workhorse in dynamic macroeconomic theory. We use them

to organize our thoughts, interpret empirical data and for policy recommendations.

The literature on DSGE models, however, has been surprisingly quiet on the effects of

large economic shocks such as natural disasters and economic and/or financial crises. Most

of the papers focus on small and frequent ‘business cycle shocks’. Therefore, departures

from Normal uncertainty are largely unexplored. But the simple awareness of large and

rare ‘Poisson jumps’ leads to an adjustment of households’ optimal consumption plans. One

crucial difference to business cycle shocks is that an econometrician may not observe rare

events for a longer period, and thus households might appear to be irrational.

In economic theory, however, we use Poisson events to model, e.g., natural disasters

(Barro, 2006), technological improvements (Wälde, 1999, 2005),2 exploration for exhaustible

resources (Quyen, 1991), and financial market bubbles (Miller and Weller, 1990). Simi-

larly, from an empirical perspective, beside anecdotal catastrophic events such as the 2004

Sumatra-Andoman earthquake and tsunami (South Asia), the 2005 Hurricane Katrina (USA)

and the recent 2011 Sendai earthquake (Japan), rare disasters are found to have substantial

asset pricing and welfare implications (Barro, 2009). Moreover, there is empirical evidence

for rare Poisson jumps (positive and negative) in US macro data (Posch, 2009).

The open question. For most applications, economists need to rely on numerical methods

to compute the solutions to their models. Thus the literature is making a huge effort in

developing powerful computational methods (cf. Judd, 1992; Judd and Guu, 1997). Unfor-

tunately, no rigorous treatment of how to solve dynamic equilibrium models under Poisson

uncertainty numerically has been provided so far, and the effects of rare events on approxi-

mation errors are unknown.3

Our message. This paper proposes a simple and powerful method for determining the

transition process in dynamic equilibrium models under Poisson uncertainty numerically. It

turns out that local approximation techniques are not applicable and most global numerical

1The discrete-time one-sector stochastic neoclassical model was pioneered by Brock and Mirman (1972).
The mathematical theory of the neoclassical growth model has its origin in Ramsey (1928).

2Rare events in the form of Poisson uncertainty also form the basis in quality ladder and matching models
(Grossman and Helpman, 1991; Aghion and Howitt, 1992; Lentz and Mortensen, 2008).

3Generally most numerical methods are highly accurate locally (cf. Taylor and Uhlig, 1990; Christiano
and Fisher, 2000; Schmitt-Grohé and Uribe, 2004; Aruoba, Fernández-Villaverde and Rubio-Ramı́rez, 2006).
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recipes need to account for the specific nature of rare events. We show how to extend existing

standard algorithms when we allow for the possibility of rare events.

Our framework. Our analysis builds on the continuous-time formulation of a stochastic

neoclassical growth model based on Merton (1975). We use the continuous-time formulation

for two reasons.4 Firstly, we can easily compute stochastic differentials for transformations

based on random variables under Poisson uncertainty. Secondly, for reasonable parametric

restrictions we can solve the models by hand and obtain closed-form policy functions which

can be used as a point of reference and to compute the exact numerical error.5 From these

benchmark solutions our numerical method is used to explore broader parameterizations.

Our idea is to transform the system of stochastic differential equations (SDEs) into a system

of functional differential equations of the retarded type (Hale, 1977). We apply the Waveform

Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting

system of (deterministic) ordinary differential equations (ODEs) by standard techniques.

This procedure is applicable to models which imply an dynamic system of controlled SDEs

under Poisson uncertainty. The controls are Markov controls in the form of policy functions

(cf. Sennewald, 2007). Although our method can also be applied to Normal uncertainty,

existing standard procedures can be used for this class of models (cf. Candler, 1999). We

therefore do not advocate the use of the Waveform Relaxation algorithm over alternative

approaches in all cases and applications. We aim at expanding the set of tools available to

researchers by showing how to solve dynamic economies under Poisson uncertainty.

Results. Our solution method works. Although the suggested procedure computes the

policy functions for the complete state space — even for non-linear solutions — the maximum

(absolute) error compared to the exact solutions is very small. A strength of our approach is

that existing algorithms are easily extended to allow for Poisson uncertainty. We illustrate

our approach for two popular methods computing numerical solutions to dynamic general

equilibrium models, i.e., the backward integration (Brunner and Strulik, 2002) and the Re-

laxation algorithm (Trimborn, Koch and Steger, 2008). From an economic point of view, we

find that (potential) large shocks affect optimal consumption and hours strategies.

Table of contents. In Section 2 of this paper, we describe the class of models of interest.

In Section 3, we describe the Waveform Relaxation method in detail and discuss alternative

approaches. In Section 4, we present two applications. The first is the stochastic growth

model with rare disasters. We choose parameterizations that allow for analytical solutions to

compute the numerical error. The second is the Lucas model of endogenous growth including

4Continuous time models under uncertainty are widely used in economics (for a survey see Wälde, 2011),
a continuous-time New Keynesian model is in Fernández-Villaverde, Posch and Rubio-Ramı́rez (2011).

5Analytical solutions for parametric restrictions are frequently used in macro models (Turnovsky, 1993,
2000; Corsetti, 1997; Wälde, 2005, 2011; Turnovsky and Smith, 2006; Posch, 2009).

2



a novel analytical solution under Poisson uncertainty. We conclude in Section 5.

2 The macroeconomic theory

This section introduces a broad class of economic models under Poisson uncertainty which

can be solved by means of Waveform Relaxation. Our algorithm (presented in Section 3.2)

can be used to study transitional dynamics in models under Poisson uncertainty. We show

how standard numerical techniques, which compute the optimal time paths of variables, can

be extended to allow for Poisson uncertainty, i.e., how they can be used to solve a system

of (stochastic) differential equations. A discussion of alternative approaches is provided in

Section 3.3. For this purpose, we develop our theoretical framework in Section 2.1, and then

present a simple procedure to obtain the (optimal) dynamic system in Section 2.2.

Our motivation stems from the rare disaster literature (Rietz, 1988; Barro, 2006, 2009).

Hence, our illustrations are mainly for rare events such as earthquakes or hurricanes which

remove a certain fraction of the capital stock. Obviously, our framework is not limited to this

particular class of models. For example, infrequent productivity increases are found in the

endogenous growth literature (Wälde, 2005). In any case, below we demonstrate that models

with rare (but potentially large) economic shocks are conceptionally different from models

with smaller shocks, e.g., ‘business cycle shocks’ resulting from Normal uncertainty. In a

nutshell, we show below that the Bellman equation for models under Poisson uncertainty is

a functional differential equation instead of a higher-order differential equation arising under

Normal uncertainty (Sennewald, 2007; Wälde, 2011).

2.1 The theoretical framework

Consider the following infinite horizon stochastic control problem under Poisson uncertainty,

max E

∫ ∞

0

e−ρtu(xt, ct)dt s.t. dxt = f(xt, ct)dt + g(xt−, ct−)dNt, x0 = x, (1)

in which ct ∈ Uc denotes a vector of controls from the control region Uc ⊆ R
nc, xt ∈ Ux

denotes a vector of states from the state space Ux ⊆ Rnx, u : Uc×Ux → R, f : Uc×Ux → Rnx

are vector functions which ensure concavity and boundedness, g : Uc × Ux → R
nx×nx is

an nx × nx matrix, and ρ is the rate of time preference. Let Nt denote the nx vector of

(stochastically independent) Poisson processes with arrival rates λ = (λ1, ..., λnx
)>.6 We

define xt− ≡ lims→t xs for s < t as the left-limit at time t such that xt− is the value an

instant before a discontinuity (henceforth jump) and xt = xt− for continuous paths.

6Though there is no conceptional difficulty in extending our analysis to models where the arrival rate is
a function of the control and/or the state variable, λt = λ(xt, ct), we consider constant arrival rates.
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Economically, u(xt, ct) specifies the (instantaneous) reward function, f(xt, ct) denotes

the drift function of the state variables and g(xt, ct) is a matrix specifying the jump of state

variables if a ‘disaster’ occurs. If such a rare event of the type i materializes, then dNi = 1,

which affects state variables through the ith column of the matrix g(xt, ct).

2.2 Bellman’s principle and reduced form descriptions

Closely following Sennewald (2007), choosing an admissible control, c ∈ Uc and defining

V (x) as the (optimal) value function, we obtain the Bellman equation

ρV (x) = max
c∈Uc

{

u(x, c) +
1

dt
E0dV (x)

}

,

which is a necessary condition for optimality. Using Itô’s formula (change of variables),

dV (x) = Vx(x)>f(x, c)dt +
nx
∑

i=1

(V (x + gi) − V (x)) dNi,t

≡ Vx(x)>f(x, c)dt + v(x, c)>dNt,

in which Vx is the nx vector of partial derivatives, gi is the ith column of g(x, c), and v(x, c)

stacks the vector of jump terms of the value function corresponding to Nt. If we take the

expectation of the integral form and use the martingale property, assuming that the above

integrals exist (Sennewald, 2007, Theorem 2), we arrive at

E0dV (x) = Vx(x)>f(x, c)dt + v(x, c)>λdt, (2)

and the Bellman equation becomes

ρV (x) = max
c∈Uc

{

u(x, c) + Vx(x)>f(x, c) + v(x, c)>λ
}

.

A neat result about the continuous-time formulation (compared to discrete-time models) is

that the Bellman equation (2) is, in effect, a deterministic differential equation because the

expectation operator disappears (Chang, 2004, p.118). The first-order conditions read

uc(x, c) + fc(x, c)>Vx(x) +

nx
∑

i=1

(∂gi(x, c)/∂c)> Vx(x + gi)λi = 0 (3)

for any t ∈ [0,∞). The first two terms denote the first-order conditions as from deterministic

control problems. In case the jump size is a function of the controls, we obtain additional

terms represented by the third summand. These terms reflect the effect of the optimal

control on the jump size of the states weighted by the probability of arrival. Note that the

costate variable is evaluated at different values of the state variables.

4



From now on c denotes the optimal control variable. For the evolution of the costate we

use the maximized Bellman equation,

ρV (x) = u(x, c) + Vx(x)>f(x, c) +
nx
∑

i=1

(V (x + gi) − V (x)) λi. (4)

We make use of the envelope theorem to compute the costate,

ρVx(x) = ux(x, c) + fx(x, c)Vx(x) + Vxx(x)>f(x, c)

+
nx
∑

i=1

(

(1 + ∂gi(x, c)/∂x)>Vx(x + gi) − Vx(x)
)

λi.

Collecting terms we obtain

(ρ · 1 − fx(x, c) + λ)Vx(x) = ux(x, c) + Vxx(x)>f(x, c)

+
nx
∑

i=1

(1 + ∂gi(x, c)/∂x)>Vx(x + gi)λi. (5)

Using Itô’s formula, the costate obeys

dVx = Vxx(x)>f(x, c)dt +

nx
∑

i=1

(Vx(x + gi) − Vx(x)) dNi,t,

where inserting (5) yields the evolution of the costate variable

dVx = ((ρ · 1 − fx(x, c) + λ)Vx(x) − ux(x, c)) dt

−
nx
∑

i=1

(1 + ∂gi(x, c)/∂x)>Vx(x + gi)λidt +
nx
∑

i=1

(Vx(x + gi) − Vx(x)) dNi,t. (6)

The evolution of the costate (6) consists mainly of three parts. Here, λ corresponds to the

probability of the occurrence of disasters over the course of a period ∆, i.e., the probability

of one jump over the course of a period ∆ is given by e−λ∆λ∆. For λ = 0 the costate evolves

as in the standard deterministic model given by the first summand. The second part for

λ > 0 illustrates the functional dependence of the costate not only on x, but also on the state

variables to which the economy jumps in case a rare disaster of the type i occurs, x + gi. In

other words, households take into account that disasters may occur. The last part gives the

actual jump terms in case of a disaster of the type i, in which dNi = 1 (Ni simply counts

the number of arrivals of type i events).

As the final step, we show that the Euler equations are (implicitly) given. Suppose the

inverse function c = h(Vx, x) for the optimality condition (3) exists and is strictly monotonic

in both arguments. Then we may write the reduced form system as

dxt = f(x, c)dt + g(x, c)dNt, (7a)

dct =
∂h(Vx, x)

∂Vx
dVx +

∂h(Vx, x)

∂x
dxt +

nx
∑

i=1

(h(Vx(x + gi), x + gi) − h(Vx(x), x)dNi,t, (7b)
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in which we insert dVx from (6). Further, the transversality condition is limt→∞ e−ρtV (x) ≥ 0

for all admissible paths, where the equality holds for the optimal solution.

3 The numerical solution

This section transforms the reduced form (7) into a system of functional differential equations

of the retarded type (RDEs). We apply the Waveform Relaxation algorithm, i.e., we provide

a guess of the optimal policy function and solve the resulting systems of ODEs.

3.1 Description of the problem

The system of controlled stochastic differential equations (7) can be generalized to

dxt = f (ct, xt) dt + g(ct−, xt−)dNt, (8a)

dct = h (ct, xt,~c, ~x) dt + j(ct−, xt−,~c, ~x)dNt, (8b)

given initial states x0 and transversality conditions. The pair {~c, ~x} denotes the optimal

solution path {~c, ~x} ≡ {ct, xt}t∈R, which is, of course, a priori unknown.7 We define the

functions ~c : R → Uc ⊆ Rnc and ~x : R → Ux ⊆ Rnx, where Uc denotes the control region and

Ux the state space with nc and nx denoting the number of controls and states, respectively.

Hence, we define the functions f, g, h and j as f : Uc × Ux → Rnx, g : Uc × Ux → Rnx,

h : Uc ×Ux ×Ck(R, Uc)×Ck(R, Ux) → Rnc, and j : Uc ×Ux ×Ck(R, Uc)×Ck(R, Ux) → Rnc,

respectively. All functions are of class Ck, i.e., the partial derivatives of up to (and including)

order k exist and are continuous, where k is sufficiently large.

Consumers’ choice of control variables depends on the complete solution {~c, ~x}, because

they consider the probability that a (Poisson) disaster hits the economy. In this rare event,

the state variable xt jumps by g(ct−, xt−) and consumption adjusts accordingly. In normal

times, however, when no disaster occurs, consumers still consider the possibility that a

disaster could occur in the next instant of time for their optimal plans. In equation (6) this

is illustrated by the fact that the evolution of the costate depends on the current state and

on the state of the economy immediately after a disaster occurs. Equation (8b) accounts

for this fact by including the complete solution {~c, ~x} on the right hand side. Hence, the

more general formulation of system (8) includes our system (7), and accounts exactly for

this mechanism: hypothetical ‘after-shock’ states and controls influence today’s decisions.

System (8) has to be augmented by boundary conditions for the beginning and the end

of the time horizon. Transversality conditions usually require (scale-adjusted) variables to

7The optimal solution path ~c will be defined as the policy function c(x) for a given path {xt}∞t=0.
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converge towards some interior steady states for t → ∞, conditional on no jumps, dNt ≡ 0.8

We denote steady-state values by {c∗, x∗} ⊆ {~c, ~x}. However, it is not sufficient to compute

the solution on the domain [x0, x
∗], because a state could be thrown back to an even smaller

value than x0 or jump to a value above x∗. For that reason, the optimal control on [x0, x
∗]

depends on the optimal control for some xt < x0 and xt > x∗. Since this argument holds for

any component of the state vector in the state space Ux, the solution has to be computed

on the entire domain Ux, which for macroeconomic problems usually is Ux = R
nx

+ .

We assume that system (8) has a unique solution, {~c, ~x}, which only depends on the

state variables.9 In other words, given the actual states x, the optimal controls are uniquely

determined and we can define a policy function c : Ux → Uc as c(x). However, this does

not mean that a priori the information about the current state is sufficient for households

to solve their optimization problem. The policy function simply summarizes households’

actions after they have solved the maximization problem.

3.2 The Waveform Relaxation algorithm

The crucial task for the numerical solution is to compute the policy function implied by the

(conditional) deterministic system, which means for dNt ≡ 0,

dxt = f (ct, xt) dt, (9a)

dct = h (ct, xt,~c, ~x) dt. (9b)

In a second step, the stochastic paths are obtained by adding the Poisson process Nt, making

use of the entire solution path {~c, ~x} and thus ct = c(xt). By construction, any solution to

(9) solves the Bellman equation (4). The controls and the states follow the paths implied by

the system (9) as long as no jump occurs (pathwise continuous). If a jump occurs at date

t−, the systems adjusts according to j and g with ct− = c(xt−).

In the mathematical literature, the equations in system (9) are referred to as functional

differential equations of the retarded type (cf. Hale, 1977; Kolmanovskii and Myshkis, 1999).

A well-known special case of these equations are differential-difference equations (DDEs) in

which the dynamic system exhibits a time delay (e.g. Boucekkine, Germain, Licandro and

Magnus, 1998, 2001, Asea, Zak 1999). In our system (8), the jump term in case of a disaster

is known in terms of controls and states, not in terms of time and, hence, the solution

methods for DDEs are not suitable. This is why we apply a more general algorithm to solve

functional differential equations. Our method is also suitable for solving systems of DDEs.

8If no ambiguity arises, we use ‘steady state’ and ‘conditional steady state’ interchangeably.
9For cases where one function, say h = h(ct, xt, Zt,~c, ~x) is a function of a random variable, Zt, in general

our procedure requires conditioning, Zt = z, such that h = h(ct, xt, z,~c, ~x) ≡ h̄(ct, xt,~c, ~x).

7



Table 1: Summary of the Waveform Relaxation algorithm

Step 1 (Conditioning) Construct the conditional deterministic system of RDEs (system 9).
Step 2 (Initialization) Provide an initial guess for the policy function.
Step 3 (Solution) Solve the resulting system of ODEs (system 10).
Step 4 (Update) Update the policy function.
Step 5 (Iteration) Repeat Steps 3 and 4 until convergence.

For calculating the policy function ct = c(xt) we exploit the fact that numerous numerical

methods are available to solve (9) without a dependency on the optimal solution,

dxt = f (ct, xt) dt, (10a)

dct = h̃ (ct, xt) dt. (10b)

The idea of Waveform Relaxation algorithms is as follows: by providing a guess of the

optimal pair {~c0, ~x0}, system (9) reduces to (10), because the feedback of the solution path

on dct is neglected.10 Now, problem (10) is a standard system of ODEs and can thus be

solved by standard algorithms.11 In general, the obtained solution {~c1, ~x1} will be different

from the initial guess {~c0, ~x0}. Hence, a solution of the original (deterministic) problem (9)

is not found yet. In the next step the initial guess is updated to {~c1, ~x1} and the loop is

repeated. If the updated solution {~ci, ~xi} is the same as the guess {~ci−1, ~xi−1}, a solution of

the deterministic problem (9) is found and thus ct = c(xt) (cf. Table 1).

More formally, we construct a fix-point iteration for the operator N such that a function

z is a fix point of this operator: N (z) = z. The function z represents the desired solution,

z : R → Rnc+nx. The operator N is defined by a modification of problem (9). We start with

a trial solution z0 and iterate by evaluating N , until ‖zi − zi−1‖ is sufficiently small.

For defining the operator N , we take a trial solution {~c0, ~x0} as given. We define

dxi = f (ci, xi) dt, (11a)

dci = h (ci, xi,~ci−1, ~xi−1) dt, (11b)

for each iteration i = 1, . . . , n. Hence, system (11) represent a system of ordinary differential

equations which can be solved by the existing standard numerical methods.

10Waveform Relaxation algorithms for initial value problems and appropriate error estimation are described
in Feldstein, Iserles and Levin (1995), Bjørhus (1994) and Bartoszewski and Kwapisz (2001). Alternative
procedures for solving system (9) are collocation methods as described in Bellen and Zennaro (2003).

11For problems with one state variable, among others, these are the backward integration procedure
(Brunner and Strulik, 2002) and the procedure of time elimination (Mulligan and Sala-i-Mart́ın, 1991). For
problems with multiple state variables we can use projection methods (e.g., Judd, 1992), the method of
Mercenier and Michel (1994), and the Relaxation method (Trimborn et al., 2008).

8



For single-state problems (nx = 1) we employ the backward integration method proposed

by Brunner and Strulik (2002).12 For a brief description of this method, recall that equations

(11a) and (11b) represent a system of ODEs with an interior, computable stationary point.

This point usually exhibits a saddle-point structure, i.e., a stable one-dimensional manifold

(policy function) connecting the steady state to the origin, and an unstable one-dimensional

manifold. Our task is to compute the stable manifold numerically, for which we exploit

the saddle-point structure. By reversing time, the stable (unstable) manifold becomes an

unstable (stable) manifold. Thus, by starting near the manifold, solution trajectories are

attracted by the (optimal) policy function.

An important difference to standard methods in each iteration step is the evaluation of

{~ci, ~xi}. Note that the solution of the previous iteration {~ci−1, ~xi−1} is only available on a

mesh of points in time, or equivalently that the function ci−1(xi−1) in the phase space is

only represented at certain points. However, functions f and h of system (11) also need

an evaluation of {~ci−1, ~xi−1} at interior points. We employ a cubic spline interpolation of

ci−1(xi−1) to evaluate f and h. In order to control for the improvement in convergence, a

suitable norm has to be chosen. We calculate the deviation of the policy function between

two iterations on a mesh of points representing the whole state space (0,∞) and employ the

Euclidian norm, i.e., ||ci(xi)− ci−1(xi)||, where 0 < xi(1) < ... < xi(M) < ∞ and M denotes

the number of points on the mesh (M determines the accuracy of the solution).

For multiple-state problems (nx > 1) we employ the Relaxation algorithm as described in

Trimborn et al. (2008) to solve the deterministic system (11). This method can be applied

to continuous-time deterministic problems with any number of state variables. The principle

of relaxation is to construct a large set of non-linear equations, the solution of which repre-

sents the desired trajectory. This is achieved by a discretization of the involved differential

equations on a mesh of points in time. The set of differential equations is augmented by

algebraic equations representing equilibrium conditions or (static) no-arbitrage conditions at

each mesh point. Finally, equations representing the initial and final boundary conditions

are appended. The whole set of equations is solved simultaneously.

For multiple-state problems, the policy function is also multidimensional. Technically,

ct = c(xt) : Ux ⊆ R
nx → Uc ⊆ R

nc. We select starting values x0 uniformly located in a

rectangle in the state space Ux and calculate transitional dynamics starting from each of

these initial values. The solutions give a good representation of the policy function. Again,

the policy function is only available on a mesh in the state space. Similar to the simulations

with a one-dimensional state space, we employ a cubic spline interpolation to obtain the

policy function at arbitrary interior points. Different from the procedure above, we use only

12Note that backward iteration can be applied to any number of control variables, i.e., nc ≥ 1.
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the initial value of each iteration for interpolation. This turns out to be a more robust

approach, presumably due to the evenly spaced grid one obtains in this case.

Similar to other procedures, complexity and computation time increases considerably

with the number of state variables, which is known as the ‘curse of dimensionality’. The

computational speed could be improved substantially, however, by using graphics processing

units (cf. Aldrich, Fernández-Villaverde, Gallant and Rubio-Ramı́rez, 2011). The idea is to

parallelize the algorithm and employ graphic processors to solve each independent step at

the same time. It is straightforward to parallelize the Waveform relaxation algorithm: each

of the transition paths starting at a particular initial position in the state space can be used

as one independent step and, hence, these paths can be calculated at the same time. Thus,

by parallelization, computational costs per iteration can be reduced considerably.

3.3 Comparison to alternative approaches

We briefly compare the Waveform Relaxation algorithm to alternative solution methods

which are frequently used in order to solve DGSE models. For a detailed description of these

methods see, for example, Judd (1998) and Marimon and Scott (1999).

3.3.1 Local approximation methods

Local approximation methods are widely applied in economics since they are known to solve

the stochastic models (under Normal uncertainty) efficiently. The effects of large economic

shocks on the approximation error, however, are largely unexplored. This is unfortunate since

the local approximation might be inaccurate far off the stationary state around which the

solution is approximated. Even without observing large economic shocks, as shown above,

households’ decisions near (or at) the steady state depend on the value of state variables off

the steady state, which again would lead to approximation errors since the solution technique

would incorrectly incorporate the effect of a potential disaster. The approximation error far

off the steady state thus propagates to the steady state region, which implies that local

methods might also approximate poorly the policy function around the steady state. This

property makes local numerical approximation techniques unattractive: a Poisson shock may

drive the economy far away from its steady state value (cf. Barro, 2006), i.e., it may do so

in regions where the accuracy is poor. For this reason, local methods are not suitable for

approximations of the policy functions in our models.
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3.3.2 Global approximation techniques

A number of methods are customized to solve models with Normal uncertainty. Most of these

methods exploit the specific structure of the Bellman equation and thus are not suitable for

our problem. For example, Büttler (1995) and Candler (1999) apply finite differences to solve

the Bellman equation as a partial differential equation (PDE). However, finite differences

cannot be used to solve our functional differential equation. As illustrated before, the major

difficulty in using such methods is that the value function depends on the current state and

on the state of the economy immediately after a Poisson shock occurs.

We are aware of at least two global approaches capable of solving our problem at hand:

policy function (and value function) iteration and projection methods (spectral methods).

Both approaches solve for the policy function numerically using the standard contraction

mapping theorem which is independent from its particular functional form. One caveat

is that such methods may converge to a wrong solution since the unstable manifold also

solves the Bellman equation. Moreover, even for the standard stochastic growth model a

sophisticated initial guess for the policy function is needed in order to obtain the correct

solution and/or to achieve convergence (cf. Judd, 1992, p.431). Our approach is not subject

to those limitations. Since the Waveform Relaxation algorithm solves the system of ODEs

for the time path of variables instead of solving the Bellman equation, by construction, it

converges to the stable manifold. In our applications below we never encounter any problem

of convergence even when starting with uninformative priors about the optimal solution.

While projection methods probably outperform both the policy function iteration and

the Waveform relaxation algorithm in terms of computation speed, our suggested procedure

scores with reliability and user-friendliness. A detailed comparison along the lines of Taylor

and Uhlig (1990) is on our research agenda.

4 Illustrative examples

The following examples are intended to illustrate potential economic applications in macro.

To start with, we first consider the stochastic Ramsey problem with a single control and state

variable, and then use a stochastic version of the Lucas model of endogenous growth mainly

to illustrate the fact that multi-dimensional systems do not pose conceptional difficulties. In

order to keep notation simple, we only consider problems faced by a benevolent planner, and

use capital letters to denote variables in the planning problem which correspond to individual

variables in the household’s and firms’ problems.
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4.1 A neoclassical growth model with disasters

This section solves the stochastic neoclassical growth model under Poisson uncertainty which

is motivated by the Barro-Rietz rare disaster hypothesis (Rietz, 1988; Barro, 2006).

Specification. Suppose that production takes the form of Cobb-Douglas, Yt = Kα
t L1−α,

0 < α < 1. Labor is supplied inelastically and capital can be accumulated according to

dKt = (Yt − Ct − δKt) dt − γKt−dNt, (K0, N0) ∈ R
2
+, 0 < γ < 1, (12)

where Nt denotes the number of (natural) disasters up to time t, occasionally destroying γ

percent of the capital stock Kt at an arrival rate λ ≥ 0.13

The benevolent planner maximizes welfare by choosing the optimal path of consumption,

max
{Ct}∞t=0

E

∫ ∞

0

e−ρt C
1−θ
t

1 − θ
dt s.t. (12). (13)

Solution. From the Bellman principle, a necessary condition for optimality is

ρV (K0) = max
C0∈R+

{

C1−θ
t

1 − θ
+ (Kα

0 L1−α − C0 − δK0)VK(K0) + (V (K0 − γK0) − V (K0))λ

}

,

and the first-order condition corresponding to (3) reads

C−θ
t − VK(Kt) = 0 (14)

for any t ∈ [0,∞), making the control variable a function of the state variable, Ct = C(Kt).

Hence, the problem (13) can be summarized as a system of controlled SDEs,

dKt = (Kα
t L1−α − Ct − δKt)dt − γKt−dNt,

dCt =
(

αKα
t L1−α − ρ − δ − λ + λ(1 − γ)C̃(Kt)

−θ
)

Ct/θdt −
(

1 − C̃(Kt−)
)

Ct−dNt,

in which we define C̃(Kt) ≡ C((1−γ)Kt)/C(Kt), such that 1−C̃(Kt−) denotes the percentage

drop of optimal consumption after a disaster.

4.1.1 Evaluation of the algorithm

We calculate numerical solutions for two benchmark calibrations. In both cases, an analytical

representation of the policy function can be computed for plausible parameter restrictions.

Therefore, we can compare numerical and analytical solutions and calculate computational

errors to evaluate the performance of the Waveform Relaxation algorithm.14

13For a stochastic neoclassical growth model with elastic labor supply and the asset market implications
of the Barro-Rietz rare disaster hypothesis, the interested reader is referred to Posch (2011).

14The literature typically evaluates the performance using Euler equation residuals (see e.g. Judd, 1992).
Santos (2000) shows that approximation errors of the policy function are of the same order of magnitude
as the Euler equation residuals. Hence, we are able to compare our results with algorithms solving similar
models (as in Aruoba, Fernández-Villaverde and Rubio-Ramı́rez, 2006; Dorofeenko, Lee and Salyer, 2010).
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Because the neoclassical growth model has one state variable, it is well suited for the

backward integration procedure (cf. Brunner and Strulik, 2002). As explained above, by

starting near the steady-state value K∗ (the value towards which the economy tends if no

disasters occur), the solution trajectories are attracted by the optimal policy function.15

Our first benchmark solution employs a plausible parameterization which allows for an

analytical solution (α, θ, δ, λ, γ) = (0.5, 2.5, 0.05, 0.2, 0.1) similar to Posch (2009) and imposes

ρ = ((1 − γ)1−αθ − 1)λ − (1 − αθ)δ which gives ρ = 0.0178. Using this parametrization, the

average time between two disasters is 1/λ = 5 years, with each Poisson event destroying 10

percent of the capital stock. For less frequent and/or smaller rare events, as e.g. for US

data (with γ roughly 2.5 percent), our algorithm would improve performance since the true

solution is closer to the deterministic guess. As shown in the appendix, consumers choose a

constant saving rate s ≡ 1/θ and the policy function is Ct = C(Kt) = (1− s)L1−αKα
t . Thus

the optimal jump term is constant, C̃(Kt) = (1 − γ)α. Although technically a knife-edge

solution, the policy functions for solutions around this parameter region are very similar.

As shown in Figure 1, the deterministic policy function (for λ = 0 and/or γ = 0) and

the stochastic policy function differ substantially for our calibration. This illustrates that

(potential) rare events can have substantial effects on households’ behavior.

Figures 2a and 2b show the absolute and relative error of the numerically obtained

policy function compared to the analytical solution, respectively. Both plots indicate that

the solution exhibits a high accuracy even for a large deviation from the steady state implied

by economically large shocks. The absolute and relative errors compared to the true solution

are below 10−8 within the most relevant interval between 0 and K∗. The maximum (absolute)

errors are below 10−5 for values of capital of 150 percent of K∗, which is below the accuracy

usually required for economic applications. Economically, this value denotes the error as a

fraction of consumption at Kt: with a relative error of 10−5, the consumer is making a $1

mistake for each $10, 000 spent (Aruoba et al., 2006, p.2499).

Figures 2c and 2d show the absolute and relative change of the policy function, respec-

tively, compared to the previous iteration. It is apparent that both functions are of the same

shape and order of magnitude as the numerical errors compared to the analytical solution.

This shows that the change of the policy function between two iterations is an excellent ap-

proximation for measuring the numerical error of the solution. We make use of this striking

similarity to define our criterion function to gauge the accuracy of the numerical solution for

the general case where no analytical solution is available.

Our second benchmark solution requires the parametric restriction α = θ, which implies

15For the backward integration procedure we deviate 10−12 in magnitude from the ‘steady state’ and we
choose 10−12 as relative error tolerance for the Runge-Kutta procedure (cf. Brunner and Strulik, 2002).
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a linear policy function, Ct = C(Kt) = φKt.
16 As shown in the appendix, the marginal

propensity to consume is φ = (ρ− ((1− γ)1−θ − 1)λ− (θ − 1)δ)/θ. Since the policy function

is linear, the optimal jump term is constant, C̃(Kt) = 1 − γ. For ease of comparison, we

choose the same calibration for parameters as above, but a smaller value for the parameter

of relative risk aversion (or higher value for the intertemporal elasticity of substitution),

θ = 0.5. As shown in Figure 3a both the deterministic policy function and stochastic policy

function are indeed linear in the capital stock. Once again, both policy functions differ

substantially. Figure 3b shows the optimal jump in consumption with respect to capital,

which is again independent of capital.

Figures 4a and 4b show the absolute and relative error of the numerically obtained policy

function compared to the analytical solution, respectively. In fact, the solution exhibits a

high accuracy of roughly 10−15, close to the machine’s precision. Figures 4c and 4d show the

absolute and relative change of the policy function, respectively, compared to the previous

iteration. Again both measures are of similar shape and order of magnitude.

Our third illustration in Figure 5a shows both the deterministic and the stochastic policy

functions for the intermediate case of logarithmic preferences, θ = 1, for which no analytical

solution is known. As shown in Figure 5b the optimal jump term now indeed varies with

the capital stock and the function C̃(Kt) is decreasing in capital. As before, we iterate until

convergence, i.e., the change of the policy function between two iterations is sufficiently small

(cf. Figures 5a and 5b). Because no analytical benchmark solution is available, we now use

that both the absolute and relative change of the policy function between two iterations have

the same order of magnitude to conclude that the maximum (absolute) error is roughly 10−8

within values for capital between 0 and 150 percent of K∗.

Finally, we should emphasize three main points: First, convergence does not depend on

parameter restrictions. The algorithm proves to be stable for a wide range of parameters. We

restrict the presentation of results to the three calibrations only due to lack of space. Second,

computational requirements are rather small. The solution of the model on a standard

laptop requires between some seconds and a few minutes. Third, our procedure can be

implemented with an average ability in computational skills. While the numerical solution

of the deterministic system is standard, the novel part of it is an interpolation routine based

on the Waveform Relaxation idea. However, most software packages provide routines for

(spline) interpolation. The Matlab codes and details of our implementation are summarized

in a technical appendix, both are available on request.

16This solution is well established in macroeconomics (cf. Posch, 2009, and the references therein).
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4.1.2 The economic effects of rare disasters

Asking whether rare disasters lead to higher saving is equivalent to examining whether

more uncertainty raises or lowers the marginal propensity to consume. It is well established

that the intertemporal substitution effect depresses the marginal propensity to save for risk-

avers individuals. The optimum way to maintain the original utility level when uncertainty

increases is to consume more today (and thus avoid facing the disaster risk). In contrast,

the income effect is a precautionary savings effect, as higher uncertainty implies a higher

probability of low consumption tomorrow against which consumers will protect themselves

the more, by consuming less, the more averse they are to intertemporal fluctuations of

consumption (cf. Leland, 1968; Sandmo, 1970). By using a nonlinear production technology,

the neoclassical theory of growth under uncertainty offers a third channel through which

uncertainty has effects on the asymptotic distribution of capital (cf. Merton, 1975).

As shown in Weil (1990), the effect on optimal consumption (or saving) depends on

the magnitude of the intertemporal elasticity of substitution, 1/θ.17 Moreover, optimal

consumption depends on the degree of curvature of the production technology, α, since the

curvature of the policy function matters for effective risk aversion (cf. Posch, 2011). In case

the income effect is relatively small, θ < 1, the presence of rare disasters tends towards

higher consumption (cf. Figure 3a). For the case where income and substitution effects

balance each other, θ = 1, the only effect on consumption is due to the concave production

technology which depresses the marginal propensity to save (cf. Figure 5a), i.e., the mean

capital stock decreases. It is only when the intertemporal elasticity of substitution is small,

θ > 1, the precautionary savings motive dominates the substitution effect and eventually

the effect of the nonlinear production technology, and savings increase (cf. Figure 1a).

4.2 Lucas’ model of endogenous growth with disasters

This section uses the Waveform Relaxation algorithm to solve a stochastic version of the

Lucas (1988) endogenous growth model with two controls and two state variables. Motivated

by the rare disaster hypothesis, rare events - such as natural disasters - occasionally destroy

a fraction of the physical capital stock. Our solution method sheds light on the effects on

optimal consumption, human capital accumulation, and thus the balanced growth rate.

Specification. Consider a closed economy with competitive markets, with identical agents

and a Cobb-Douglas technology, yt = kα
t (utht)

1−α, where 0 < α < 1. Suppose at date t,

workers (normalized to one) have skill level ht and own the physical capital stock, kt. A

17Weil (1990) shows that risk aversion, by determining the amplitude of the associated reduction in the
certainty equivalent rate of return to saving, only affects the magnitude of the effects described above.
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worker devotes ut of his non-leisure time to current production, and the remaining 1− ut to

human capital accumulation (improving skills). Hence, the effective aggregate hours devoted

to production are utht. Denoting wt as the hourly wage rate per unit of effective labor, the

individual’s labor income at skill ht is wthtut. Let the rental rate of physical capital be rt.

For simplicity, there is no capital depreciation, thus kt evolves according to

dkt = (rtkt + wtutht − ct) dt − γkt−dNt, (16)

where Nt denotes the number of (natural) disasters up to time t, occasionally destroying

0 < γ < 1 percent of the capital stock kt at an arrival rate λ ≥ 0.

To complete the model, the research effort 1− ut devoted to the accumulation of human

capital must be linked to ht. Suppose the technology relating the change of human capital

dht to the level already attained and the effort devoted to acquiring more is

dht = (1 − ut)ϑhtdt. (17)

According to (17), if no effort is devoted to human capital accumulation, ut = 1, then non

accumulates. If all effort is devoted to this purpose, ut = 0, ht grows at rate ϑ > 0. In

between these extremes, there are no diminishing returns to the stock ht.

The resource allocation problem faced by the representative individual is to choose a time

path for ct and for ut in Uc ⊆ R+ × [0, 1] such as to maximize expected life-time utility,

max
{ct,ut}

∞

t=0

E0

∫ ∞

0

e−ρt c1−θ
t

1 − θ
dt s.t. (16) and (17), (k0, h0, N0) ∈ R

3
+, (18)

where θ > 0 denotes constant relative risk aversion and ρ is the subjective time preference.

Solution. From the Bellman principle, choosing the controls c0, u0 ∈ Uc requires the

Bellman equation as a necessary condition for optimality,

ρV (k0, h0) = max
c0,u0∈Uc

{

c1−θ
0 /(1 − θ) + (r0k0 + w0u0h0 − c0)Vk + (1 − u0)ϑh0Vh

+(V ((1 − γ)k0, h0) − V (k0, h0))λ
}

. (19)

For any t ∈ (0,∞), the two first-order conditions corresponding to (3) are

c−θ
t − Vk = 0, (20)

wthtVk − ϑhtVh = 0, (21)

making the controls a function of the state variables, ct = c(kt, ht) and ut = u(kt, ht).

After some tedious algebra we obtain the Euler equations for consumption and hours.

Together with initial and transversality conditions and constraints in (16) and (17), these
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describe the equilibrium dynamics. We may summarize the reduced form dynamics by

defining c̃(kt, ht) ≡ c((1 − γ)kt, ht)/c(kt, ht) and ũ(kt, ht) ≡ u((1 − γ)kt, ht)/u(kt, ht) as

dkt = (rtkt + wtutht − ct) dt − γkt−dNt, (22a)

dht = (1 − ut)ϑhtdt, (22b)

dct =
rt − ρ − λ + c̃(kt, ht)

−θ(1 − γ)λ

θ
ctdt + (c̃(kt−, ht−) − 1)ct−dNt, (22c)

dut =
(

1−α
α

ϑ +
(

ũ(kt, ht)
−α − (1 − γ)1−α

)

(1 − γ)αλc̃(kt, ht)
−θ/α − ct/kt + utϑ

)

utdt

+(ũ(kt, ht) − 1)ut−dNt, (22d)

and the transversality condition reads (cf. Benhabib and Perli, 1994, p.117)

lim
t→∞

E0

[

Vke
−ρt[kt − k∗

t ] + Vhe
−ρt[ht − h∗

t ]
]

≥ 0

for all admissible kt and ht, where k∗
t and h∗

t denote the optimal state values.

Balanced growth. From the reduced form system, we can derive the balanced growth

rate of physical capital, human capital and consumption of the conditional deterministic

system (conditioned on no disasters) as follows. First, we can neglect the stochastic integrals

because for the case with no disasters dNt ≡ 0. Second, similar to the deterministic model,

the condition optimal research effort is constant, such that dut = 0 must hold.

Now, for dut = 0 research effort along the balanced growth path is implicitly given by

−ϑu∗ = 1−α
α

ϑ + (ũ−α − (1 − γ)1−α) (1 − γ)αλc̃−θ/α − c/k, where ũ ≡ ũ(kt, ht), c̃ ≡ c̃(kt, ht)

and c/k ≡ ct/kt are constants. This property of the jump terms implies that asymptotically,

c̃(kt, ht) = c̃(kt/ht). Similarly, along this balanced growth path the other equations imply

gk = r∗/α − c/k, gh = (1 − u∗)ϑ, gc =
(

r∗ − ρ − λ + c̃−θ(1 − γ)λ
)

/θ.

Since ct/kt is constant, ct and kt must grow at the same rate, gk = gc, which in turn implies

c/k =
(

r∗− ρ−λ+ c̃−θ(1−γ)λ
)

/θ + r∗/α. Along this path we need r∗ to be constant, which

requires that kt and ht grow at the same rate, gk = gh. Hence, r∗/α− c/k = (1−u∗)ϑ. This

pins down the interest rate r∗ = ϑ + (ũ−α − (1 − γ)1−α) c̃−θ(1 − γ)αλ. Hence, the balanced

growth rate of the conditional deterministic system is

g ≡
(

ϑ − ρ − λ + (1 − γ)αũ−αc̃−θλ
)

/θ, (23)

which finally implies the consumption-to-capital ratio

c/k =
(

ϑ +
(

ũ−α − (1 − γ)1−α
)

c̃−θ(1 − γ)αλ − ρ − λ + c̃−θ(1 − γ)λ
)

/θ

+
(

ϑ +
(

ũ−α − (1 − γ)1−α
)

c̃−θ(1 − γ)αλ
)

/α.
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The growing variables of the reduced-form system ct, ht, and kt in (22) need to be scaled

such that they approach some stationary steady-state values (scale-adjustment).

Scale-adjusted dynamics. In what follows, we simply subtract the endogenous balanced

growth rate (23) from the reduced-form system in instantaneous growth rates to obtain

scale-adjusted variables. The scale-adjusted system (conditioned on no disasters) reads

d ln kt = (rt + wtutht/kt − ct/kt − g) dt, (24a)

d lnht = (ϑ − utϑ − g)dt, (24b)

d ln ct =
((

rt − ρ − λ + c̃(kt, ht)
−θ(1 − γ)λ

)

/θ − g
)

dt, (24c)

dut =
(

1−α
α

ϑ +
(

ũ(kt, ht)
−α − (1 − γ)1−α

)

(1 − γ)αλc̃(kt, ht)
−θ/α − ct/kt

)

utdt

+ϑu2
t dt, (24d)

where g follows iteratively from (23).

Note that in general it is not possible to compute the steady state levels in terms of

variables k∗, h∗, c∗, and u∗ from system (24). We presume that the stochastic model inherits

this characteristic from its deterministic counterpart, which exhibits a ray of steady states,

i.e., a center manifold of stationary equilibria (cf. Lucas, 1988; Caballé and Santos, 1993).

Each point on this ray differs with respect to the level of physical and human capital and,

hence, consumption the economy can generate. The particular stationary equilibrium, to

which the economy finally converges is determined by the initial values of physical and human

capital. Since in general the functions c̃ and ũ are not known for the stochastic counterpart

of the model, we are not able to prove this property for the general case. However, for the

parametric restriction α = θ we obtain a closed-form solution and indeed provide a proof

of this property below. Moreover, our numerical results confirm that the stochastic model

indeed exhibits a ray of steady states. A ‘steady-state’ value in the stochastic setup again

refers to the value the economy converges if no disasters occur.

We are now prepared to solve this (scale-adjusted) system using the Relaxation algorithm

together with the Waveform relaxation idea.

4.2.1 Evaluation of the algorithm

We calculate numerical solutions for the Lucas model employing a benchmark calibration for

which an analytical solution is available. Again, we compare the numerical and analytical

solutions to evaluate the algorithm’s accuracy. Moreover, we calculate numerical solutions

for a second calibration for which no analytical solution is available.

Because this model has two state variables, we choose the Relaxation algorithm to solve

system (10) (cf. Trimborn et al., 2008). As already mentioned this algorithm is capable of
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solving deterministic systems with multiple state variables. Moreover, the algorithm can

also solve models that exhibit a center manifold of stationary equilibria. Since the method

calculates the solution path as a whole, the particular conditional steady state to which the

economy converges is determined numerically.

Our benchmark solution uses the calibration (α, ϑ, λ, γ, ρ) = (0.75, 0.075, 0.2, 0.1, 0.03)

and the parametric restriction θ = α. As shown in the appendix, in this case consumers

optimally choose constant hours, ut = u = (ρ − (1 − θ)ϑ)/(αϑ), and optimal consumption

does not depend on human capital and is linear in physical capital, ct = c(kt, ht) = ϕkt.

ϕ = (ρ − ((1 − γ)1−θ − 1)λ)/θ denotes the marginal propensity to consume with respect to

physical capital. Since the policy function is linear in physical capital, the optimal jump

terms are constant, c̃(kt, ht) = 1− γ and trivially ũ(kt, ht) = 1. Observe that this solution is

very similar to the neoclassical growth model, though the growth rate is endogenous. From

(23) we find that for α = θ, the balanced growth rate (in normal times, after the transition)

is not affected by the presence of rare events, g = (ϑ−ρ)/θ. Below we compare our numerical

solution obtained by the Waveform Relaxation algorithm with the analytical solution.

Figures 7a and 7b, respectively, show the optimal level of consumption and the optimal

jump in consumption with respect to physical capital and human capital. Note that the

optimal jump in consumption is independent of both physical capital and human capital.

Similar to the neoclassical growth model, we find that the deterministic policy function for

consumption (for λ = 0 and/or γ = 0) and the stochastic counterpart differ substantially.

Moreover, the center manifold of stationary equilibria of (scale-adjusted) values for human

capital and physical capital is different from the deterministic model.

Figures 8a and 8b show the absolute and relative error of consumption for the computed

mesh grid of physical and human capital. Given the nature of the problem, the (absolute)

errors are extremely small, not exceeding 10−8 in magnitude. As explained above, this level

of accuracy is higher than what is usually required for most economic applications. Figures

8c and 8d show the absolute and relative change in the policy function for consumption,

respectively, compared to the previous iteration. It is apparent that both functions are of

the same shape and order of magnitude as the numerical errors compared to the analytical

solution, which helps us to gauge the numerical error of the solution in the general case.

Similarly to the case of consumption, Figures 9a and 9b show the optimal level of hours

worked and the optimal jump with respect to physical capital and human capital. Hours

are independent of capital goods along the transition and, hence, do not adjust in case of a

Poisson jump. Figures 10a and 10b show the absolute and relative error of hours worked,

whereas the absolute and relative change in the policy function for hours compared to the

previous iteration are shown in Figures 10c and 10d, respectively. Again, the maximum
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(absolute) errors are very small and do not exceed 10−6.

As an illustration for a case where closed-form solutions are not available, we compare our

benchmark solution to the case of logarithmic preferences, θ = 1. Figures 11 and 13 show the

optimal policy functions for consumption and hours and the optimal jump in consumption

and hours, respectively. We find that the optimal levels and their jump terms now depend

on the level of physical capital and human capital. While the level of optimal consumption

is increasing in both capital goods, hours are increasing in human capital but decreasing

in physical capital. Hence, countries with an abundant supply of human capital but scarce

supply of physical capital tend to supply the most hours to production.

Again we would like to emphasize that we are able to calculate policy functions not only

for the parametric restrictions presented above, but for a wider range of parameter values.

However, the algorithm is not as stable as for the one-dimensional case and is less precise

mainly due to interpolation problems. Eventually, for extreme combination of parameter

values, problems of convergence might occur, or at least the procedure needs refinement with

respect to the chosen mesh and/or interpolation method. Since our main objective is to show

that multiple state variables do not pose conceptional problems for our solution method, we

leave this work for future research. The Matlab codes and details of our implementation are

summarized in a technical appendix, both available on request.

4.2.2 The economic effects of rare disasters

The Lucas model of endogenous growth has several channels through which uncertainty

enters in the economic decisions, and thus optimal plans will be affected when consumers

face more uncertainty. First, uncertainty will affect the consumption/saving decision as in the

neoclassical growth model. Second, uncertainty will enter the optimal allocation problem

of hours devoted to production and human capital accumulation. Finally, their optimal

behavior takes account of the effect on the (conditional) balanced growth path.

As shown in Figures 7a and 11a, the level of (scale-adjusted) consumption increases

for both calibrations, thus the dominating channel is the intertemporal substitution effect,

i.e., to consume more today (and thus avoid facing the disaster risk). In other words, the

intertemporal elasticity of substitution is sufficiently elastic to compensate the precautionary

savings effect. This is in line with the result from the neoclassical growth model.

In this model consumption is no longer the only way to accommodate the presence of risk.

From Figure 13a, for the case of logarithmic preferences with θ = 1, we find that optimal

hours decrease due to the presence of rare disasters (a level shift). Intuitively, consumers

prefer to invest more in human capital accumulation which — in contrast to the physical

capital good — is not subject to disaster risk. Though it seems an intuitive response from
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an asset pricing perspective, we find that this result cannot be generalized. As from Figure

9a, optimal hours are independent of the disaster risk. Supplying less hours for production

also has an income effect, which in the case of α = θ exactly offsets the previous effect.

This example illustrates that it is important to study the effects of uncertainty within a

dynamic stochastic general equilibrium (DSGE) model, in order to avoid missing potentially

important feedback mechanisms when focusing on partial equilibrium effects only.

As from (23), the balanced growth rate (in normal times, after the transition) depends

on the optimal jump terms for both consumption and hours. In our numerical solution for

θ = 1, the balanced growth rate of the deterministic system of (ϑ − ρ)/θ = 4.5% increases

by roughly 0.2 percentage points to g = 4.7% due to the presence of rare disasters. An

intuitive explanation of this effect is indeed the shift of optimal hours supplied to human

capital accumulation, and thus implying a higher growth rate in times without disasters.

5 Conclusion

In this paper we propose a simple and powerful method for determining the transitional

dynamics in continuous-time DSGE models under Poisson uncertainty. Our contribution is

to show how existing algorithms can be extended with an additional layer when we allow for

the possibility of rare events in the form of Poisson uncertainty.

We illustrate the algorithm by computing the stochastic neoclassical growth model and a

stochastic version of the Lucas model motivated by the Barro-Rietz rare disaster hypothesis.

We use analytical solutions for plausible parametric restrictions as a benchmark in order

to address the numerical accuracy. We find that even for non-linear policy functions, the

numerical error is extremely small.

From an economic perspective, we show that the simple awareness of the possibility of

infrequent large economic shocks affects optimal decisions and thus economic growth. The

effect is economically important and thus needs to be explored in future research.
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A Appendix

A.1 A closed-form solution to the Ramsey model

The idea is to provide an educated guess of the value function and then derive conditions

under which it satisfies both the first-order condition and the maximized Bellman equation.

Suppose that

V (Kt) =
C1K

1−αθ
t

1 − αθ
. (25)

From (14), optimal consumption per effective worker is a constant fraction of income,

C−θ
t = C1K

−αθ
t ⇔ Ct = C(Kt) = C

−1/θ
1 Kα

t .

Now use the maximized Bellman equation together with CRRA utility u(Ct) = C1−θ
t /(1−θ)

and insert the solution candidate,

ρV (Kt) =
C(Kt)

1−θ

1 − θ
+ (Kα

t L1−α − C(Kt) − δKt)VK + (V ((1 − γ)Kt) − V (Kt)) λ,

which is equivalent to

(ρ + λ)
C1K

1−αθ
t

1 − αθ
=

C
− 1−θ

θ

1 Kα−αθ
t

1 − θ
+

(

Kα
t L1−α − C

−1/θ
1 Kα

t − δKt

)

C1K
−αθ
t

+
C1K

1−αθ
t

1 − αθ
(1 − γ)1−αθλ

⇔ 0 =
θ

1 − θ
C

− 1

θ

1 + L1−α − (ρ + (1 − αθ)δ + λ − (1 − γ)1−αθλ)
K1−α

t

1 − αθ
.

This equation has a solution for C
−1/θ
1 = (θ − 1)/θL1−α and

ρ = (1 − γ)1−αθλ − λ − (1 − αθ)δ. (26)

For reasonable parametric calibrations equation (26) is satisfied. Though being a special case,

a Keynesian consumption function could be an admissible policy function for the neoclassical

model (cf. also Chang, 1988). Its plausibility is an empirical question.

A.2 A closed-form solution to the Lucas model

We start with an educated guess on the value function and derive conditions under which it

actually is the unique solution of the optimal stochastic control problem. Suppose that

V (kt, ht) =
C1k

1−θ
t + C2h

1−θ
t

1 − θ
. (27)
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From (20), we obtain that optimal consumption is a linear function in the capital stock

c−θ
t = C1k

−θ
t ⇒ c(kt, ht) = C

− 1

θ

1 kt. (28)

Similarly, from (21) we obtain the optimal share of hours allocated to production, ut,

wthtC1k
−θ
t = ϑhtC2h

−θ
t ⇔ u(kt, ht) =

(

ϑ

(1 − α)

C2

C1
hα−θ

t kθ−α
t

)− 1

α

,

in which we use wt = (1 − α)kα
t (utht)

−α. Observe that for the parametric restriction α = θ,

optimal hours allocated to production becomes a constant,

α = θ ⇒ u(kt, ht) =

(

ϑ

(1 − α)

C2

C1

)− 1

α

.

Using the maximized Bellman equation, we may write with rt = αkα−1
t (utht)

1−α

ρV (kt, ht) =
c(kt, ht)

1−θ

1 − θ
+ (kα

t (u(kt, ht)ht)
1−α − c(kt, ht))Vk + (1 − u(kt, ht))ϑhtVh

+(V ((1 − γ)kt, ht) − V (kt, ht))λ.

Inserting the guess for the value function gives

(ρ + λ)
C1k

1−θ
t + C2h

1−θ
t

1 − θ
=

c(kt, ht)
1−θ

1 − θ
+ (kα

t (u(kt, ht)ht)
1−α − c(kt, ht))C1k

−θ
t

+(1 − u(kt, ht))ϑhtC2h
−θ
t +

C1(1 − γ)1−θk1−θ
t + C2h

1−θ
t

1 − θ
λ.

Now insert the policy function for consumption c(kt, ht),

(ρ + λ)
C1k

1−θ
t + C2h

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 k1−θ
t

1 − θ
+

(

kα
t (u(kt, ht)ht)

1−α − C
− 1

θ

1 kt

)

C1k
−θ
t

+(1 − u(kt, ht))ϑC2h
1−θ
t +

C1(1 − γ)1−θk1−θ
t + C2h

1−θ
t

1 − θ
λ.

Now, we employ the restriction θ = α such that optimal hours are constant, u(kt, ht) = u,

(ρ + λ)
C1k

1−θ
t + C2h

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 k1−θ
t

1 − θ
+

(

u1−αh1−α
t − C

− 1

θ

1 k1−θ
t

)

C1

+(1 − u)ϑC2h
1−θ
t +

C1(1 − γ)1−θk1−θ
t + C2h

1−θ
t

1 − θ
λ.

Collecting terms, we obtain

(

ρ + λ − θC
− 1

θ

1 − (1 − γ)1−θλ
)

C1k
1−θ
t =

(

(1 − θ)u1−α
C1 + (1 − θ)(1 − u)ϑC2 − (ρ + λ)C2 + C2λ

)

h1−θ
t .
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Hence, the first constant is pinned down by C1 = (θ/(ρ + λ − (1 − γ)1−θλ))θ. Inserting u

finally pins down the second constant,

ρC2 = (1 − θ)u1−α
C1 + (1 − θ)(1 − u)ϑC2

⇔
ρ − (1 − θ)ϑ

(1 − θ)ϑ
=

α

1 − α

(

ϑ

(1 − α)

)− 1

α

C
1

α

1 C
− 1

α

2

⇒ C2 =

(

αϑ

ρ − (1 − θ)ϑ

)α
1 − α

ϑ

(

θ

ρ + λ − (1 − γ)1−θλ

)θ

.

Observe that we solved not only for some balanced growth path, but for the whole transition

path for a parameter restriction. To summarize, for α = θ we obtain

c(kt, ht) = c(kt) =
ρ + λ − (1 − γ)1−θλ

θ
kt, (29)

u(kt, ht) = u =
ρ − (1 − θ)ϑ

αϑ
. (30)

Hence, individuals prefer relatively more consumption (or less investment) but work the same

hours compared to the deterministic model for α = θ (a similar condition for deterministic

Hamiltonian dynamic systems is in Ruiz-Tamarit, 2008). Note that this analytical solution

to the stochastic extension of the Lucas model is novel.

B Figures

B.1 A neoclassical growth model with disasters
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Figure 1: Policy functions and optimal jump in the neoclassical growth model (1)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of capital for
the calibration (α, θ, δ, λ, γ, ρ) = (0.5, 2.5, 0.05, 0.2, 0.1, 0.0178), which implies a constant saving rate.

Figure 2: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 3: Policy functions and optimal jump in the neoclassical growth model (2)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of capital for
the calibration (α, θ, δ, λ, γ, ρ) = (0.5, 0.5, 0.05, 0.2, 0.1, 0.0178), which implies a linear policy function.

Figure 4: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 5: Policy functions and optimal jump in the neoclassical growth model (3)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model (no analytical benchmark solution available), and (b) the optimal jump as a function of capital for the calibration
(α, θ, δ, λ, γ, ρ) = (0.5, 1, 0.05, 0.2, 0.1, 0.0178).

Figure 6: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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B.2 Lucas’ model of endogenous growth with disasters
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Figure 7: Policy functions and optimal jump for consumption in the Lucas model (1)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of physical capital and human
capital for the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 0.75, 0.075, 0.2, 0.1, 0.03), which implies a linear policy plane.

Figure 8: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 9: Policy functions and optimal jump for hours in the Lucas model (1)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of physical capital and human
capital for the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 0.75, 0.075, 0.2, 0.1, 0.03), which implies a linear policy plane.

Figure 10: Absolute and relative error compared to the analytical benchmark solution and
to the policy function of the last iteration
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Figure 11: Policy functions and optimal jump for consumption in the Lucas model (2)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
(no analytical benchmark solution available), and (b) the optimal jump as a function of physical capital and human capital for
the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 1, 0.075, 0.2, 0.1, 0.03).

Figure 12: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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Figure 13: Policy functions and optimal jump for hours in the Lucas model (2)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
(no analytical benchmark solution available), and (b) the optimal jump as a function of physical capital and human capital for
the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 1, 0.075, 0.2, 0.1, 0.03).

Figure 14: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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