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Abstract

We consider four orthant stochastic orderings between random vectors

X and Y that have �nitely discrete probability distributions in IRk � For
each of the orderings conditions have been developed that are necessary and
su�cient for dominance of Y over X � We present an algorithm that checks

these conditions in an e�cient way by operating on a semilattice generated
by the support of the two distributions� In particular� the algorithm can be

used to compute multivariate Smirnov statistics�

Keywords� Multivariate stochastic orders� decision under risk� comparison of em�
pirical distribution functions�

AMS Subject Classi�cation� Primary 

E�	� Secondary �
A���

�Seminar f�ur Wirtschafts� und Sozialstatistik� Universit�at zu K�oln� D������ K�oln
�Institut f�ur Statistik und Quantitative �Okonomik� Universit�at der Bundeswehr Hamburg�

D������ Hamburg
�Seminar f�ur Wirtschafts� und Sozialstatistik� Universit�at zu K�oln� D������ K�oln



� Description and purpose of the algorithm

For random vectors X� Y in IRk� the four orthant orderings �lo� �uo� �locc and
�uocx are de�ned in the following way�

X �lo Y �� P �X � a� � P �Y � a� for all a � IRk�

X �uo Y �� P �X � a� � P �Y � a� for all a � IRk�

X �locc Y ��
Z

����a�

P �X � z�dz �
Z

����a�

P �Y � z�dz for all a � IRk�

X �uocx Y ��
Z

�a���

P �X � z�dz �
Z

�a���

P �Y � z�dz for all a � IRk�

The orders are called lower orthant order� upper orthant order� lower orthant
concave order and upper orthant convex order� respectively�

We provide an algorithm to check whether one of these four stochastic orderings
holds� when X and Y have �nitely discrete probability distributions�

This algorithm can also be used to compute four multivariate Smirnov statistics�
Let

D�
� �X�Y � � max

x�IRk

�F �x��G�x��� ���

D�
� �X�Y � � min

x�IRk

�F �x��G�x��� ���

D�
� �X�Y � � max

x�IRk

�G�x�� F �x��� ���

D�
� �X�Y � � min

x�IRk

�G�x�� F �x��� ���

where

F �x� � P �X � x�� F �x� � P �X � x�� G�x� � P �Y � x�� G�x� � P �Y � x��

When k � �� both �lo and �uo become the usual stochastic order �� �rst de�
gree stochastic dominance�� while �locc and �uocx become the univariate con�
cave� respectively convex� order �� second degree stochastic dominance�� Then
our problem reduces to checking two �nite discrete distributions for �rst and
second degree stochastic dominance� A number of computational approaches has
been proposed in the literature to solve this problem when k � �� See Porter et
al� ������� Markowitz ������� Bawa et al� ������� Levy and Sarnat ������� Levy
������� Aboudi and Thon �������

For general k � �� Dyckerho� and Mosler ������ present the background� the�
ory and applications of the four orthant stochastic orderings and the theoretical
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justi�cation of the present algorithm� Let S denote the joint support of the dis�
tributions of X and Y � and J�S� the join�semilattice �Birkho� ���
� generated
by S� For each s � S let �s � P �X � s�� P �Y � s�� We introduce �lo by

�lo�z� �
X

s�S�s�z

�s � z � IRk� �	�

For a nonempty I � f�� �� � � � � kg and x � IRk� let xI � �xi�i�I � IRI � Further� let
XI and YI be the marginals with respect to I� and SI their joint support� �locc

I is
de�ned as follows�

�locc
I �z� �

X
s�S�sI�z

�s �
Y
i�I

�zi � si� � z � IRI � �
�

Dyckerho� and Mosler ������ prove the following results�

Result �� X �lo Y if and only if

�lo�z� � 
 for all z � J�S�� ���

Result �� X �locc Y if and only if

�locc
I �z� � 
 for all z � J�SI� and all nonempty subsets I of f�� � � � � kg� ���

Result �� X �lo Y � X �locc Y �

E�X� � E�Y �� ���

Result ��

X �uo Y �� �Y �lo �X�

X �uocx Y �� �Y �locc �X�

The main subroutine in our algorithm is the procedure CheckJoinSemilattice� This
procedure proceeds as follows�

Step � For a given set I of components the joint support SI of the two distribu�
tions w�r�t� I is constructed� Further� the �s� s � SI � are computed�

Step � SI is put into lexicographical order�

Step � In a recursive way� all joins z of at most k points of S which are not
comparable in the usual componentwise ordering of IRk are determined�
This generates all points of the join�semilattice J�SI�� As soon as a point z
is generated� one of the following steps is done�

Step �a If the algorithm was called to check for �lo� inequality ��� is
checked� Once a violation is detected the calculations are stopped�

Step �b If the algorithm was called to check for �locc� inequality ��� is
checked� Once a violation is detected the calculations are stopped�
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Step �c If the algorithm was called to compute the Smirnov statistics
D�

� �X�Y � and D�
� �X�Y � the maximum and minimum of �lo�z� over

all z in the join�semilattice is computed�

To decide whether the lower orthant order holds between X and Y � our algo�
rithm proceeds as follows� First� it is checked whether the necessary condition
��� holds� If not� the algorithm stops� If the inequality ��� holds� the procedure
CheckJoinSemilattice is called with I � f�� � � � � kg�

To compute the Smirnov statistics D�
� �X�Y � and D

�
� �X�Y � CheckJoinSemilattice

is again called with I � f�� � � � � kg� Since �lo�z� � F �z� � G�z�� this procedure
yields the desired result�

To check for the lower orthant concave order between X and Y � more extensive
calculations have to be performed� Again� �rst we check the inequality ��� which
is a necessary condition for the lower orthant concave order� too� Then the pro�
cedure CheckAllMargins is called� It constructs all subsets I of f�� � � � � kg� This
is again done by a recursive procedure� Whenever such a subset is constructed
CheckJoinSemilattice is called with the I that was just constructed�

Upper orthant order and upper orthant convex order betweenX and Y are checked
using Result �� i�e�� by applying the previous procedures to the transformed ran�
dom Vectors �Y and �X� The same holds for the Smirnov statistics D�

� �X�Y �
and D�

� �X�Y �� The transformation of the random vectors is done in Step � of
CheckJoinSemilattice�

The algorithm has been used �Holz and Mosler ����� to determine a nondominated
�with respect to one of the orderings� set of distributions from a given �nite set
of distributions� This is a standard problem in multiattribute decision making
under risk� The algorithm has also been employed to construct statistical tests on
F 	lo G and F 	uo G which are based on resampling�

� Structure

Language

ISO�Pascal �Level 
�

Procedures

PROCEDURE CheckForOrthantOrdering�PX� PY� PDistribution� Dim� Integer�
VAR Info� TInfo� VAR IFault� Integer��

Global constant

MaxDim is the maximum dimension�

�



Global types

TPoint � ARRAY����MaxDim	 OF Real�

PDistribution � 
TDistribution�
TDistribution � RECORD

Point � TPoint�
Prob � Real�
Link � PDistribution�

END�

Remark� Distributions are represented by simply linked lists of records of the
type TDistribution� Every such record contains a point of the support� its
probability� and a pointer at the next support point� If there is no further
point� the value of the Link��eld is nil� A distribution is identi�ed with a
variable of the type PDistribution which points at the �rst support point of
the distribution�

TCheck � �lo�locc�uo�uocx�Smirnov��Smirnov���

TInfo � RECORD
CASE Check�TCheck OF
lo�uo�locc�uocx� � Dominance� Boolean� Index� �������
Smirnov��Smirnov�� � DeltaMin� DeltaMax� Real ��

END�

Remark� A TInfo�record is used as an input�output parameter� The tag �eld
Check speci�es which check shall be done or which statistics shall be com�
puted� It serves as an input parameter to the algorithm� Depending on the
value of the tag �eld the algorithm returns the result in the following way�

If Check is lo� uo� locc or uocx� then Dominance is true if X dominates Y in
the respective order or vice versa� In this case

Index � � if X dominates Y �
Index � �� if Y dominates X�
Index � 
 if X and Y are equivalent�

If neither X dominates Y nor vice versa� then Dominance is false and Index
is unde�ned�

If Check is Smirnov�� then DeltaMax is the value of D�
� �F�G� and DeltaMin

is the value of D�
� �F�G��

If Check is Smirnov�� then DeltaMax is the value of D�
� �F�G� and DeltaMin

is the value of D�
� �F�G��

	



Formal parameters

PX PDistribution value� the distribution of X
PY PDistribution value� the distribution of Y
Dim Integer value� the dimension k
Info TInfo input�output� the tag �eld Check speci�es the

operation to be made� the result
is returned in the variant part of
the record� see above

IFault Integer output� the error indicator

Local constants

MaxSupport is the maximum size of the joint support of PX and PY�
Eps is the precision� Numbers whose absolute values are smaller

than or equal to Eps will be treated as zero� This ensures that
small rounding errors do not lead to an erroneous violation of
��� or ���� Thus� Eps should be set to at least the accuracy of
the data�

Failure indications

IFault � 
 no error occurred�
IFault � � the constraint � � Dim �MaxDim is not satis�ed�
IFault � � the joint support of PX and PY exceeds MaxSupport�
IFault � � PX or PY is not a probability distribution�

� Accuracy and time

The accuracy of the results depends on the compiler� All constants are set in a
declaration part and can be adapted to the machine and the compiler used� Since
in calculating the Smirnov statistics only additions are involved� the accuracy of
the Smirnov statistics is the same as the accuracy of the data�

Because the algorithm is very e�cient it has been used in statistical resampling
procedures and in building nondominated sets of distributions�

The CPU�times depend strongly on the given data� Consider two k�variate prob�
ability distributions with n points in the joint support� In the case of �lo and �uo

to prove ���� at most
Pk

i��

�
n

i

�
points have to be checked� This stems from the fact

that every point in the join�semilattice J�S� is the join of at most k points in S� To
prove lower orthant concave order �or upper orthant convex order�� all marginal

distributions are examined� Thus in the worst case
Pk

i��

Pi
j��

�
k

i

��
n

j

�
points are

constructed and checked�






In practical applications the parameters should stay within certain limits� For
k � � a number of �




 points in the joint support seems to be feasible� whereas
for k � 	 the number of points in the joint support should not exceed �

�

It should be emphasized that the above bounds are no equalities� In general� the
join�semilattice has cardinality much smaller than

Pk
i��

�
n

i

�
� Apart from n and k�

the size of the semilattice depends strongly on how the points of S are dispersed in
k�space� Further� if the algorithm just checks for one of the orthant orders� it stops
as soon as ��� or ��� is violated at some z � J�S�� This reduces the computation
time when the distributions are not ordered and no Smirnov statistic is calculated�

Table � summarizes some computation times� Two samples of size n�� were drawn
from a k�variate normal distribution having expectations �� � �� � � � � � �k � 

and covariances �ij � �ji�jj� i� j � �� � � � � k� Then the one�sided Smirnov statis�
tics ��� and ��� were computed� For every triple �n� k� �� this procedure was carried
out ten times� The table shows the average computation times in seconds on a
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Table �� Computation times �in seconds� of the algorithm�

As can be seen from Table � the computation times depend not only on n and k�
The greater the correlation of the distributions� as measured by �� the faster is
the algorithm�

� Additional comments

Although the algorithm works for every k ��� for k � � a special approach is
advisable� In the unidimensional case we have J�S� � S� since the support S is
linearly ordered� Thus� the di�erences �lo and �locc

I can be easily calculated in a
recursive way� which is simpler and more e�cient than the above algorithm�
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The algorithm as presented here is capable of checking for four di�erent orders
and of computing four di�erent statistics� If one is interested only in some of these
issues� its structure can be simpli�ed in an obvious way�

However� it should be noted� that these modi�cations will only simplify the struc�
ture� They will not result in a signi�cant reduction of computation times compared
to our algorithm�

� Availability

The algorithm is available by request from the authors or can be downloaded from
our website http���www�uni�koeln�de�wiso�fak�wisostatsem�algorithms�
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