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Abstract

This paper develops an asymptotic estimation theory for nonlinear autoregressive models
with conditionally heteroskedastic errors. We consider a general nonlinear autoregression
of order p (AR(p)) with the conditional variance specified as a general nonlinear first order
generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. We do not
require the rescaled errors to be independent, but instead only to form a stationary and
ergodic martingale difference sequence. Strong consistency and asymptotic normality of the
global Gaussian quasi maximum likelihood (QML) estimator are established under conditions
comparable to those recently used in the corresponding linear case. To the best of our
knowledge, this paper provides the first results on consistency and asymptotic normality of
the QML estimator in nonlinear autoregressive models with GARCH errors.
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1 Introduction

This paper studies asymptotic estimation theory for nonlinear autoregressive models with con-

ditionally heteroskedastic errors. Such models have been widely used to analyze financial time

series ever since the introduction of generalized autoregressive conditionally heteroskedastic

(GARCH) models by Engle (1982) and Bollerslev (1986). In addition to ‘pure’ GARCH models,

where the conditional mean is set to zero (or a constant), specifications combining autoregressive

moving average (ARMA) type models with errors following a GARCH process (ARMA–GARCH

models) have been applied. Furthermore, a variety of nonlinear specifications have been used in-

stead of the linear one (see, e.g., the early survey article by Bollerslev, Engle, and Nelson (1994)).

Asymptotic properties of the (Gaussian) quasi maximum likelihood (QML) estimator in

GARCH-type models have been investigated in a number of papers. Contributions in the case of

linear pure GARCH models include Lee and Hansen (1994), Lumsdaine (1996), Berkes, Horváth,

and Kokoszka (2003), Jensen and Rahbek (2004), and Francq and Zaköıan (2004,2007). These

papers also contain further references. The linear ARMA–GARCH case has been studied in

Weiss (1986), Pantula (1988), Ling and Li (1997,1998), Ling and McAleer (2003), Francq and

Zaköıan (2004), Lange, Rahbek, and Jensen (2006), and Ling (2007). Of these papers, Weiss

(1986), Pantula (1988), and Lange, Rahbek, and Jensen (2006) only deal with ARCH, but not

GARCH, errors. Ling and Li (1997,1998) allow for GARCH errors and establish weak consistency

and asymptotic normality of a local, but not global, QML estimator. Their results were extended

to the global QML estimator by Ling and McAleer (2003) who proved weak consistency and

asymptotic normality under second and sixth order moment conditions, respectively (in the

case of ARCH errors, they only needed fourth order moments for asymptotic normality). Strong

consistency and asymptotic normality of the global QML estimator were proved by Francq and

Zaköıan (2004) under conditions that appear to be the weakest so far. Their consistency result

only requires a fractional order moment condition for the observed process and, in the pure

GARCH case, they showed that weak moment conditions also suffice for asymptotic normality.

However, in the ARMA–GARCH case they still needed finite fourth order moments for the

observed process to obtain asymptotic normality. Finally, Lange, Rahbek, and Jensen (2006) and

Ling (2007) consider weighted QML estimators instead of the usual one. As these previous papers

indicate, the inclusion of an autoregressive conditional mean entails non-trivial complications

for the development of asymptotic estimation theory.

The aforementioned papers are all confined to the linear case. Estimation in nonlinear pure

ARCH, but not GARCH, models is considered by Kristensen and Rahbek (2005,2008). To the

best of our knowledge, Straumann and Mikosch (2006) are the only ones to consider asymptotic

estimation theory in nonlinear GARCH models. These authors study QML estimation in a
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rather general nonlinear pure GARCH model. The examples explicitly treated in their paper

are the so-called AGARCH model and EGARCH model. They prove consistency and asymptotic

normality of the QML estimator in the case of the AGARCH model but in the EGARCH model

only consistency is established. As their work indicates, allowing for nonlinearities in GARCH

models considerably complicates the development of asymptotic estimation theory.

The aforementioned papers also differ in regard to what is assumed of the rescaled error

term (i.e., the process obtained by centering the observed variable by the conditional mean, and

then dividing by the conditional standard deviation). In nearly all of these papers, the rescaled

errors are assumed to be independent and identically distributed. This is the case, for instance, in

Berkes, Horváth, and Kokoszka (2003), Francq and Zaköıan (2004), and Straumann and Mikosch

(2006), which are the papers closest to ours in their method of proof. Serial dependence in the

rescaled errors is allowed by Lee and Hansen (1994), who assume them to form a stationary and

ergodic process, and, quite recently, also by Escanciano (2009) and Linton, Pan, and Wang (in

press). All of these three papers are confined to the linear pure GARCH case.

In this paper, we consider QML estimation in autoregressive models with GARCH errors

and allow both the conditional mean and conditional variance to be nonlinear. Specifically, the

conditional mean can be a general nonlinear autoregression of order p (AR(p)) whereas the con-

ditional variance is specified as a general nonlinear first order GARCH model (GARCH(1,1)).

Moreover, the rescaled errors are not required to be independent, but instead to form a sta-

tionary and ergodic martingale difference sequence. As far as we know, this paper provides the

first results on consistency and asymptotic normality of the QML estimator in nonlinear autore-

gressive models with GARCH errors. We have decided to leave the extension to higher order

GARCH models for future research, because the technical difficulties are considerable already in

the first order case. An instance of such difficulties are conditions under which certain stochastic

difference equations possess stationary ergodic solutions (one is lead to such considerations when

examining the conditional variance process in detail, see Propositions 1–3 below). By confining

ourselves to the leading case of GARCH(1,1) models, we are able to present the required rather

intricate theory in a relatively transparent way and give the required conditions in explicit and

easily verifiable forms. The extension to the higher order case is feasible but leads to rather

unintuitive formulations and conditions that appear very difficult to verify. Another instance of

the arising difficulties is that in one of our examples we have been forced to resort to Markov

chain theory to verify identification conditions needed to establish consistency of the QML es-

timator and positive definiteness of its asymptotic covariance matrix. As far as we know, the

only previous references using a similar approach are Chan and Tong (1986), where Markov

chain methods are used to show the positive definiteness of the asymptotic covariance matrix of

a QML estimator in a homoskedastic smooth transition autoregressive model, and Kristensen
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and Rahbek (2008), where nonlinear ARCH models are considered. Because our treatment of

these issues may also be useful in other nonlinear time series models, this part of the paper may

be of independent interest.

In order to relate our paper to previous literature, we note that our results can also be viewed

as extensions to those developing asymptotic estimation theory in homoskedastic nonlinear au-

toregressions. Above we already mentioned the paper by Chan and Tong (1986) which studies

a homoskedastic special case of the general model considered in this paper. Another paper

related to ours is Tjøstheim (1986) which derives asymptotic properties of least squares and

QML estimators in general nonlinear autoregressions. Although conditional heteroskedasticity

is also allowed for, the focus is mainly in homoskedastic models and GARCH type models are

not considered. These two papers differ from ours in that they obtain consistency of a local,

not global, optimizer of the objective function. There also exists an extensive literature on the

estimation theory in general nonlinear dynamic econometric models; for an excellent review and

synthesis, see Pötscher and Prucha (1991a,b). However, we have found it difficult to directly

apply the general results in this literature, although our proofs are based on the same underlying

ideas. A major reason is that, under the assumptions to be used in this paper, a uniform law of

large numbers cannot be directly applied to prove the consistency of the QML estimator.

We establish strong consistency and asymptotic normality of the QML estimator under

conditions which, when specialized to the linear AR–GARCH model with independent and

identically distributed rescaled errors, coincide with the conditions used by Francq and Zaköıan

(2004). For consistency, only a mild moment condition is required, whereas existence of fourth

order moments of the observed process is needed for asymptotic normality. Thus, the use of

our more general nonlinear framework with martingale difference errors does not come at the

cost of more restrictive assumptions. Our results are also closely related to those obtained

by Straumann and Mikosch (2006) in the pure GARCH case. As far as the treatment of the

conditional variance is concerned, we use ideas similar to theirs in our more general model.

Further comparisons to previous work are provided in the subsequent sections.

The rest of this paper is organized as follows. The model considered is introduced in Section

2, and the consistency result is given in Section 3. Differentiability of certain components

of the Gaussian likelihood function is treated in Section 4. These results are needed for the

asymptotic normality of the QML estimator which is presented in Section 5. Concrete examples

are discussed in Section 6, and Section 7 concludes. All proofs are given in Appendices.

Finally, a word on notation and terminology used in this paper. Unless otherwise indicated,

all vectors will be treated as column vectors. For the sake of uncluttered notation, we shall

write x = (x1, ..., xn) for the (column) vector x where the components xi may be either scalars

or vectors (or both). An open interval of the real line will also be denoted as (a, b), but the
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context will make the meaning clear. For example, we denote R+ = (0,∞). For any scalar,

vector, or matrix x, the Euclidean norm is denoted by |x|. For a random variable (scalar, vector,

or matrix), the Lp–norm is denoted by ‖X‖p = (E [|X|p])1/p, where p > 0 (note that this is a

vector norm only when p ≥ 1). If ‖Xn‖p <∞ for all n, ‖X‖p <∞, and limn→∞ ‖Xn −X‖p = 0,

Xn is said to converge in Lp–norm to X. A random function Xn (θ) is said to be Lp–dominated

in Θ if there exists a positive random variable Dn such that |Xn (θ)| ≤ Dn for all θ ∈ Θ and

‖Dn‖p <∞ uniformly in n. Finally, ‘a.s.’ stands for ‘almost surely’.

2 Model

2.1 Data generation process

Suppose our interest is to model a univariate stationary time series and, especially, its conditional

mean and conditional variance. We wish to consider a fairly general model and, therefore, our

introductory discussion is partly informal and involves assumptions that will be weakened and

made precise later.

Many of the models used so far in the literature assume a data generation process yt that

can be described by the general equation

yt = f (yt−1, . . . , yt−p;µ0) + σtεt, t = 1, 2, . . . , (1)

where f (yt−1, . . . , yt−p;µ0) and σ2
t represent the conditional mean and conditional variance,

respectively, εt an unobservable error term, and the (positive) volatility σt depends on the

variables {ys, s < t}. This discussion obviously assumes that the data generation process has

finite variance and that suitable assumptions are imposed on the error term. For instance, it

has been common to make the following assumption.

The random variables εt are independent and identically distributed (i.i.d.) with zero

mean and unit variance, and such that εt is independent of the variables {ys, s < t}.

This ‘i.i.d. assumption’ is not necessary for our general results but appears convenient for ex-

pository purposes. As will be seen later, the i.i.d. assumption may also be of interest in our

subsequent developments, for it can be used to weaken the moment conditions needed to permit

dependence in the error term εt. The assumptions required for the error term (Assumption E)

will be introduced later in this section.

Equation (1) characterizes the conditional mean as a general nonlinear function of p lagged

values of yt and the m× 1 parameter vector µ0. The specification of the conditional variance is

assumed to be of the general parametric form

σ2
t = g(u0,t−1, σ

2
t−1; θ0), (2)
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where θ0 = (µ0, λ0) with λ0 an l × 1 parameter vector specific to the conditional variance, and

u0,t = yt − f (yt−1, . . . , yt−p;µ0) . (3)

We use the subscript ‘0’ to signify true parameter values. Thus, θ0 is a fixed but unknown

and arbitrary point in a parameter space to be specified subsequently and equations (1)–(3)

define the generation process of the observed time series used to estimate θ0. We assume

that the data are generated by a stationary and ergodic process with finite moments of some

order. Unlike in the preceding discussion, existence of finite variance or even finite mean will

not be assumed although, for convenience, we continue to use the terms conditional mean and

conditional variance. Specifically, we make the following assumption.

Assumption DGP. The process (yt, σ
2
t ) defined by equations (1)–(3) is stationary and ergodic

with E[|yt|
2r] <∞ and E[σ2r

t ] <∞ for some r > 0.

This is a high-level assumption that can be checked by using results available in the liter-

ature. A discussion of this issue is provided shortly after completing the model specification

and discussing conditions required for the error term εt. Letting Ft = σ(yt, yt−1, . . .) denote the

σ–algebra generated by present and past observations we impose the following assumption.

Assumption E. The random variables εt satisfy E[ε2t ] <∞ for all t. Moreover, E[εt | Ft−1] =

0 a.s. and E[ε2t | Ft−1] = 1 a.s.

As stated, this assumption alone is not very informative. It becomes more transparent when

combined with Assumption DGP and Assumptions C1–C3 to be imposed in the next section.

Using these assumptions one can justify that both f (yt−1, . . . , yt−p;µ0) and σ2
t are stationary,

ergodic, and Ft−1–measurable (see Proposition 1), which in conjunction with equation (1) and

Assumption E implies that εt is a stationary and ergodic martingale difference sequence and

that the conditional mean and variance of yt (when they exist) are equal to f (yt−1, . . . , yt−p;µ0)

and σ2
t , respectively. Thus, Assumption E (together with the aforementioned other assump-

tions) enables us to somewhat weaken the i.i.d. assumption. Previously, conditions similar to

Assumption E have been employed by Lee and Hansen (1994) and Escanciano (2009) to develop

estimation theory for linear GARCH models (see also Linton, Pan, and Wang (in press)).

We now discuss sufficient conditions for Assumption DGP. Such conditions were recently ob-

tained by Meitz and Saikkonen (2008b) by assuming the conditional mean function is of the form

f (z;µ0) = a (z;µ0)
′ z + b (z;µ0) , (4)

where a (z;µ0) = (a1 (z;µ0) , . . . , ap (z;µ0)) and b (z;µ0) are nonlinear bounded functions (z ∈

R
p). Using theory developed for Markov chains, Meitz and Saikkonen (2008b) give conditions
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for geometric ergodicity and existence of moments in general AR–GARCH models of this type.

For their results to hold, they have to assume (in addition to a number of technical assumptions)

that the error term εt satisfies the i.i.d. assumption and has a positive and lower semicontinuous

(Lebesgue) density on R. The latter requirement is more than needed in some recent work

on the estimation of GARCH and (linear) ARMA–GARCH models (see Berkes, Horváth, and

Kokoszka (2003), Francq and Zaköıan (2004), and Straumann and Mikosch (2006)). Meitz and

Saikkonen (2008b) also need rather stringent smoothness conditions on the nonlinear functions

in (2) and (4). Such conditions are not needed by Cline (2007) who also uses Markov chain

theory to establish geometric ergodicity in nonlinear AR–GARCH models. Similarly to Meitz

and Saikkonen (2008b) he also needs the i.i.d. assumption on the error term. Cline (2007)

considers a very general model but his assumptions are not easy to check. Indeed, Cline (2007)

only verifies all his assumptions for a threshold model and, as is well-known, a discontinuity

in the (Gaussian) likelihood function makes the estimation theory of threshold models with

an unknown threshold location nonstandard (see, e.g., Chan (1993)). However, we are able to

obtain partial results for a model with a known threshold location in the conditional variance.

As shown in Meitz and Saikkonen (2008b), Assumption DGP can be justified for several

widely used models. The conditional mean can be a smooth version of the general functional-co-

efficient autoregressive model of Chen and Tsay (1993) which includes as special cases the expo-

nential autoregressive model of Haggan and Ozaki (1981) and the smooth transition autoregres-

sive models discussed by Teräsvirta (1994) and van Dijk, Teräsvirta, and Franses (2002) among

others. Besides the standard linear GARCH model, the conditional variance can be a smooth

transition GARCH model proposed by González-Rivera (1998) and further discussed by Lund-

bergh and Teräsvirta (2002), Lanne and Saikkonen (2005), and Meitz and Saikkonen (2008a).

Assumption DGP may of course be verified without relying on the results of Meitz and

Saikkonen (2008b), although this may be difficult for general nonlinear models. However, in

Section 6 we exemplify this possibility with a model in which the conditional mean is linear and

the conditional variance can either be an asymmetric GARCH model (see Ding, Granger, and

Engle (1993)) or a threshold GARCH model (see Glosten, Jaganathan, and Runkle (1993) or

Zaköıan (1994)). In this particular example Assumption DGP can be verified without the i.i.d.

assumption, but in general doing so in models involving nonlinearity appears to be very difficult.

Regarding the moment conditions in Assumption DGP, they are mild and not stronger

than needed in the linear case studied by Francq and Zaköıan (2004). They suffice to prove

the consistency of the QML estimator but not asymptotic normality for which more stringent

moment conditions are needed (see Assumption N4 (in Section 5) and the discussion following it).

Finally, although Assumption DGP applies to a variety of well-known models it imposes the

rather strong requirement that the data are generated by a stationary process, by which we
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mean that the initial values in (1) and (2) have the stationary distribution. In this respect, our

approach is similar to that in Berkes, Horváth, and Kokoszka (2003), Francq and Zaköıan (2004),

and Straumann and Mikosch (2006). The possibility to allow for nonstationary initial values in

the pure GARCH case is discussed by Straumann and Mikosch (2006, Section 9) but the situation

seems quite complicated in our context. We shall say more about this later. In ARCH models the

situation is different, for it becomes possible to use limit theorems developed for Markov chains

and avoid the assumption of stationary initial values (see Kristensen and Rahbek (2005, 2008)).

2.2 Approximating the conditional variance process

A difficulty with developing estimation theory for the model introduced in the previous section

(and even for a pure GARCH model) is that the conditional variance process is not observable

and its stationary distribution is, in general, unknown. Thus, even if the value of the true

parameter vector θ0 were known it is not possible to compute the value of the conditional variance

σ2
t from an observed time series. For that, an initial value with the stationary distribution of σ2

t

would be needed and such an initial value is not available in practice. Thus, because the Gaussian

likelihood function depends on the conditional variance we have to use an approximation.

Motivated by the preceding discussion we introduce the process

h0(θ) = ς0 and ht (θ) = g(ut−1, ht−1 (θ) ; θ), t = 1, 2, . . ., (5)

where θ = (µ, λ) is an (m+ l) × 1 parameter vector with true value θ0 = (µ0, λ0) and ut =

yt − f (yt−1, . . . , yt−p;µ). Once the initial value ς0 has been specified one can use equation (5)

to compute ht (θ), t = 1, 2, . . ., recursively for any chosen value of the parameter vector θ. For

simplicity, we assume the initial value ς0 to be a positive constant independent of θ, which is

also the choice most common in practice.1 When there is no need to make the dependence of

ht (θ) explicit about the parameter vector θ we use the notation ht. Similarly, the short-hand

notation ft = ft (µ) = f (yt−1, . . . , yt−p;µ) will sometimes be used.

If the results of Meitz and Saikkonen (2008b) are used to justify the ergodicity assumed in

Assumption DGP then, given any initial value, the conditional distribution of ht (θ0) approaches

the stationary distribution of the true conditional variance σ2
t as t → ∞. Furthermore, limit

theorems developed for Markov chains apply to realizations of the process (yt, ht (θ0)). Unfortu-

nately, however, this is not sufficient to prove consistency and asymptotic normality of the QML

estimator of the parameter vector θ0. The reason is that in these proofs one has to consider the

process ht (θ) for parameter values different from the true value θ0 but the results of Meitz and

Saikkonen (2008b) only apply to the process ht (θ0) and say nothing about properties of ht (θ)

1The results in this paper could be generalized to the case of a stochastic initial value ς0(θ) depending on θ,

but, to avoid additional technical complications, we have decided not to pursue this matter.
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when θ 6= θ0. Another point to note is that the process ht (θ) depends on the entire past history

of the observed process yt. If ht (θ) were a function of a fixed finite number of lagged values of yt

the aforementioned difficulty could be overcome, for the stationarity and ergodicity of yt would

make it possible to apply well-known limit theorems to statistics involving the process ht (θ).

In ARCH models this is the case and explains why the development of asymptotic estimation

theory is not hampered by nonstationary initial values (see Kristensen and Rahbek 2005, 2008).

The preceding discussion means that we have to study properties of the process ht (θ) for

all θ = (µ, λ) in a permissible parameter space. Due to the relatively simple structure of

the standard GARCH model this is quite straightforward in the linear ARMA–GARCH model

considered by Francq and Zaköıan (2004). However, nonlinear GARCH models are considerably

more difficult, as the recent work of Straumann and Mikosch (2006) shows. Our approach is to

follow these authors and extend some of their arguments to a model with a nonlinear conditional

mean. To this end, we impose the following assumptions which are central in proving the

consistency of the QML estimator. The permissible parameter spaces of µ and λ are denoted

by M and Λ, respectively, so that their product Θ = M × Λ defines the permissible space of θ.

Assumption C1. The true parameter value θ0 ∈ Θ = M × Λ, where M and Λ are compact

subsets of R
m and R

l, respectively.

Assumption C2. The function g : R × R+ × Θ → R+ is continuous with respect to all its

arguments and satisfies the following two conditions.

(i) For some 0 < ̺ < 1 and C < ∞, and all u ∈ R, x ∈ R+, and θ ∈ Θ, g(u, x; θ) ≤

̺x+ C(1 + u2).

(ii) For some 0 < κ < 1, and all u ∈ R, x1, x2 ∈ R+, and θ ∈ Θ, |g (u, x1; θ) − g (u, x2; θ)| ≤

κ |x1 − x2|.

Assumption C3. The function f : R
p × M → R is such that f (·;µ) is Borel measurable for

every µ and f (z; ·) is continuous for every z ∈ R
p. Furthermore, for some C < ∞ and all

z ∈ R
p and µ ∈ M, |f (z1, . . . , zp;µ)| ≤ C(1 +

∑p
j=1 |zj |).

As usual in nonlinear estimation problems, Assumption C1 requires the parameter space to

be compact. From a mathematical point of view this assumption provides a convenient simplifi-

cation although it may not be easy to justify in practice. Assumption C2 is more stringent than

needed to justify Assumption DGP even when the i.i.d. assumption is used for εt (see Assump-

tion 4 in Meitz and Saikkonen (2008b)). This particularly holds for the Lipschitz condition in

Assumption C2(ii). One might consider relaxing this condition along the lines in Straumann

and Mikosch (2006) but this does not seem straightforward. For instance, allowing κ in C2(ii) to

depend on u leads to additional technical difficulties because in our proofs we have to replace u
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by ut and, unlike in the pure GARCH case, our ut also depends on the parameter µ. This depen-

dence makes the verification of the resulting condition more difficult than in the pure GARCH

case and it may also necessitate imposing additional restrictions on the conditional mean. As-

sumption C3 appears fairly mild. The measurability and continuity requirements are common

in nonlinear estimation problems and the dominance condition holds, for example, for several

functional-coefficient autoregressive models including the exponential autoregressive model and

various smooth transition autoregressive models.

Using Assumptions C1–C3 we can prove the following result.

Proposition 1. Suppose Assumptions DGP and C1–C3 hold. Then, for all θ ∈ Θ there exists

a stationary and ergodic solution h∗t (θ) to the equation

ht (θ) = g(ut−1, ht−1 (θ) ; θ), t = 1, 2, . . . . (6)

This solution is continuous in θ, Ft−1–measurable, and unique when (6) is extended to all t ∈ Z.

Furthermore, the solution h∗t (θ) has the properties h∗t (θ0) = σ2
t a.s. and E

[

supθ∈Θ h
∗r
t (θ)

]

<

∞, and, if ht(θ), θ ∈ Θ, are any other solutions to the equation (6), then for some γ > 1,

γt supθ∈Θ|h
∗
t (θ) − ht(θ)| → 0 in Lr–norm as t→ ∞.

Proposition 1 is proved in Appendix B by using an analogous more general lemma given

in Appendix A. This lemma is similar to Theorem 3.1 of Bougerol (1993) and Theorem 2.8 of

Straumann and Mikosch (2006) although more specific. Proposition 1 shows that the stationary

solution h∗t (θ0) to equation (6) with θ = θ0 coincides (a.s.) with the true conditional variance

of the data generation process and that any other solution obtained with θ = θ0 converges to

the true conditional variance exponentially fast. Note, however, that the mode of convergence

is different from that in the aforementioned result of Meitz and Saikkonen (2008b). Also, the

convergence to the stationary solution does not only hold for the true parameter value θ0 but

uniformly over the parameter space Θ. This last fact and the existence of the stationary and

ergodic solution h∗t (θ) will be of importance in our subsequent developments. Indeed, with

Proposition 1 (and assumptions to be imposed later) we can prove the consistency and asymp-

totic normality of the QML estimator of the parameter vector θ0. As already mentioned, this

requires more stringent conditions about the function g than needed to establish the geometric

ergodicity of the data generation process. It is worth noting that no similar strengthening is

needed for the function f that specifies the conditional mean of the model. This is due to the

fact that the technique used to prove Proposition 1 is only needed for the conditional variance

process, and not for the conditional mean. Had we needed a similar method for the conditional

mean, this might have lead to Lipschitz (contraction) conditions also for the function f , which

could have considerably restricted the type of permitted nonlinearity (this could have been the

case, for example, if a moving average component were also included in the conditional mean).
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3 Consistency of the QML estimator

Suppose we have an observed time series y−p, . . . , y0, y1, . . . , yT generated by the stationary

and ergodic process defined by equations (1)–(3) (cf. Assumption DGP). We shall estimate the

unknown parameter vector θ0 by minimizing the objective function

LT (θ) = T−1
T
∑

t=1

lt (θ) , where lt (θ) = log (ht) +
u2

t

ht

and ut = yt−f (yt−1, . . . , yt−p;µ) and ht are as in (3) and (5) with dependence on the parameter

vectors µ and θ suppressed. Clearly, LT (θ) is an approximation to the conditional Gaussian

log-likelihood multiplied by −2/T. We do not assume Gaussianity, however, so that the resulting

estimator is a QML estimator. Conditioning is on the first p + 1 observations and the initial

value ς0 needed to compute the approximate conditional variances ht (θ) (t = 1, ..., T ). It follows

from Proposition 1 that ht (θ) approximates the stationary solution to equation (6) which for

θ = θ0 coincides (a.s.) with the true conditional variance σ2
t . We also define

L∗
T (θ) = T−1

T
∑

t=1

l∗t (θ) , where l∗t (θ) = log (h∗t ) +
u2

t

h∗t

and h∗t = h∗t (θ) is the stationary and ergodic solution to equation (6) (see Proposition 1). Due

to stationarity, the function L∗
T (θ) is easier to work with than LT (θ) and, using assumptions to

be made below, it turns out that minimizers of L∗
T (θ) and LT (θ) are asymptotically equivalent.

The continuity of the functions f and g imposed in Assumptions C2 and C3 ensures that the

Gaussian log-likelihood function LT (θ) is continuous. This is a common requirement in nonlinear

estimation problems and, in conjunction with the assumed compactness of the parameter space

Θ, it implies the existence of a measurable minimizer θ̂T = (µ̂T , λ̂T ) of LT (θ) (see, e.g., Pötscher

and Prucha (1991a), Lemma 3.4). In view of the continuity of h∗t (θ) established in Proposition

1 the same is true for a minimizer of L∗
T (θ).

In addition to the assumptions already made, we have to supplement Assumption C2 con-

cerning the conditional variance by the following technical condition.

Assumption C4. The function g : R × R+ × Θ → R+ is bounded away from zero in the sense

that inf(u,x,θ)∈R×R+×Θ g(u, x; θ) = g for some g > 0.

This condition bounds the function g away from zero in the same way as, for example,

Assumption C.3 of Straumann and Mikosch (2006). This assumption is somewhat unnatural

but appears useful in the proofs. For instance, it facilitates proving convergence results for l∗t (θ)

and other quantities and is also used to show the finiteness of certain moments. In pure ARCH

models this condition can be relaxed (cf. condition C.3 in Kristensen and Rahbek (2008)), but

doing so here would require strengthening of other assumptions.
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Consistency of the QML estimator θ̂T also requires the following identification condition.

Assumption C5.

(i) f (yt−1, . . . , yt−p;µ) = f (yt−1, . . . , yt−p;µ0) a.s. only if µ = µ0.

(ii) h∗t (µ0, λ) = σ2
t a.s. only if λ = λ0.

As will be seen in the proof of Theorem 1 (Appendix B), given the assumptions so far,

Assumption C5 is equivalent to E[L∗
T (θ)] being uniquely minimized at θ0. In the present context,

this is essentially equivalent to θ0 being an identifiably unique minimizer of L∗
T (θ) in the sense

of Pötscher and Prucha (1991a, Definition 3.1).2 Although more explicit than an identifiable

uniqueness condition, the conditions in Assumption C5 are still of a general nature, and in

particular cases they have to be verified by using more basic assumptions about the functional

forms of the specified conditional mean and conditional variance. In nonlinear cases this turns

out to be difficult, and we next provide some comments on this.

So far, there appears to be rather limited previous work available on the verification of an

identification condition such as C5(i) in nonlinear autoregressive models of the type considered

in this paper. Although Chan and Tong (1986) and Tjøstheim (1986) consider estimation in

homoskedastic nonlinear autoregressions with structures similar to ours, their results concern

a local, not global, minimizer of the objective function, and therefore they need not verify

an identification condition corresponding to C5(i). Lai (1994) considers (global) least squares

estimation in nonlinear regression models, and his identification condition (2.2) is related to

ours. However, he does not verify this condition in any examples similar to ours. It appears

challenging to verify condition C5(i) in a nonlinear autoregression with a nonlinear structure

sufficiently general for the results to be applicable in practice. For instance, general results such

as those provided by Pötscher and Prucha (1991a) do not consider verifying conditions of this

kind. In one of our examples we have found it difficult to verify condition C5(i) without resorting

to rather complicated derivations that involve the application of Markov chain theory. The basic

idea is to impose suitable assumptions on the function f so that, for every µ 6= µ0, there exists

a (Borel) measurable set A ⊂ R
p such that f (z;µ) 6= f (z;µ0) for all z ∈ A. Then condition

C5(i) clearly holds if the event {(yt−1, ..., yt−p) ∈ A} has positive probability. Using Markov

chain theory it is possible to show that events of this kind indeed have positive probability even

though the precise form of the stationary distribution of the process yt is unknown.

Regarding condition C5(ii), it agrees with the identification condition used by Straumann

and Mikosch (2006) in their nonlinear GARCH model. However, in their examples they do

2‘Essentially’ equivalent because in our situation E[L∗

T (θ)] takes values in R ∪ {+∞} instead of R; if E[L∗

T (θ)]

is finite in Θ, compactness of Θ and lower semi-continuity of E[L∗

T (θ)] (to be shown in the proof of Theorem 1)

suffice for this equivalence.
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not consider nonlinearities as complicated as we do, and, therefore, they do not need to rely

on Markov chain theory to verify the identification condition (although even in their case the

verification is quite complicated). One of our examples is again rather difficult and we have

been forced to resort to Markov chain theory to verify condition C5(ii). So far, Straumann and

Mikosch (2006) seems to be the only published paper dealing with identification in nonlinear

GARCH models. However, identification in nonlinear ARCH models has recently been consid-

ered by Kristensen and Rahbek (2008). These authors also use Markov chain techniques to

verify identification conditions similar to C5(ii) but their approach is quite different from ours.

In particular, Kristensen and Rahbek (2008) also make use of the differentiability of h∗t (θ),

which we do not assume; see, e.g., proof of their Corollary 2.

As a final remark we note that in the verification of Assumption C5 it may also be necessary

to make assumptions about the distribution of the error term εt. For instance, in order to

prove consistency in a linear ARMA–GARCH model, Francq and Zaköıan (2004) assume that

the distribution of ε2t is non-degenerate and a similar condition also appears in Straumann and

Mikosch (2006, Theorems 5.1 and 5.5). However, in nonlinear cases much more may need to be

assumed, as one of our examples suggests.

Now we can state our consistency result which is proved in Appendix B.

Theorem 1. Suppose Assumptions DGP, E, and C1–C5 hold. Then the QML estimator θ̂T is

strongly consistent, that is, θ̂T → θ0 a.s.

The proof of this theorem makes use of the relation between the Gaussian log-likelihood

function LT (θ) and its stationary and ergodic counterpart L∗
T (θ). Instead of the QML estimator

θ̂T the proof is reduced to its infeasible analog obtained by minimizing L∗
T (θ) (for details, see

Appendix B). The same approach has also been used in the related previous work of Berkes,

Horváth, and Kokoszka (2003), Francq and Zaköıan (2004), Straumann and Mikosch (2006), and

Escanciano (2009). Similarly to these authors, we can prove consistency with very mild moment

conditions (see Assumption DGP). As a final remark we note that, with our assumptions, a

‘classical’ consistency proof relying on an application of a uniform law of large numbers (see,

e.g., Pötscher and Prucha (1991a)) is not directly applicable. Therefore, our proof relies on

alternative (though well-known) arguments similar to those also used by Straumann and Mikosch

(2006) in part 2 of their proof of Theorem 4.1 (for details, see Appendix B).

4 Derivatives of the approximate conditional variance process

For the asymptotic normality of the QML estimator of the parameter vector θ0 we subsequently

need to consider the first and second derivatives of the objective function LT (θ) as well as its

stationary ergodic counterpart L∗
T (θ). A complication that arises is the differentiability of the
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processes ht and h∗t . In this section we give conditions under which both of these processes are

twice continuously (partially) differentiable and the derivatives of ht converge to those of h∗t .

Similarly to Subsection 2.2, the differentiability of ht and h∗t is more straightforward in the case of

a linear ARMA–GARCH model considered by Francq and Zaköıan (2004). In nonlinear GARCH

models the situation is rather complex, and again our approach is to follow the arguments in

Straumann and Mikosch (2006) and extend them to our case with a nonlinear conditional mean.

We begin with some assumptions.

Assumption N1. The true parameter value θ0 is an interior point of Θ.

Assumption N1 is necessary for the asymptotic normality of the QML estimator. Together

with the differentiability assumptions to be imposed shortly it allows us to use a conventional

Taylor series expansion of the score. Estimation in linear GARCH models when θ0 is allowed

to be on the boundary of the parameter space has only recently been considered by Francq and

Zaköıan (2007). In this case, the resulting asymptotic distribution is no longer normal. We leave

this for future research.

Assumption N1 together with the consistency of the QML estimator implies that in the

subsequent analysis we (without loss of generality) only need to consider parameter values in

an arbitrarily small open ball centered at θ0. For concreteness, let Θ0 be a compact convex

set contained in the interior of Θ that has θ0 as an interior point. This gives us a suitable set

Θ0 on which to investigate the differentiability and the validity of the Taylor expansions of the

objective functions LT (θ) and L∗
T (θ) and their components. The assumed compactness will be

convenient because we will apply Lemma A.3 (in Appendix A) to examine the differentiability

of the processes ht and h∗t on Θ0. On the other hand, convexity ensures that all intermediate

points obtained from Taylor expansions will also be in Θ0.

To present the next assumption, we partition the set Θ0 as Θ0 = M0 × Λ0.

Assumption N2. The function f (z; ·) is twice continuously partially differentiable on M0 for

every z ∈ R
p. The function g(·, ·; ·) is twice continuously partially differentiable on R×R+×Θ0.

Assumption N2 is necessary for the differentiability of the objective function LT (θ) on the set

Θ0, and is similar to (parts of) Assumptions D.1 and D.3 of Straumann and Mikosch (2006). A

difference to these assumptions is that due to the presence of the conditional mean, the function

g is required to be differentiable also with respect to its first argument (we will see in Section 6,

Example 2, that this additional requirement turns out to be restrictive).

We next impose restrictions on the derivatives of f and g. Denote fµ = ∂f (z;µ) /∂µ, fµµ =

∂2f (z;µ) /∂µ∂µ′, and the first and second partial derivatives of g with gυ1
= ∂g (u, h; θ) /∂υ1

and gυ1υ2
= ∂2g (u, h; θ) /∂υ1∂υ

′
2, where υ1 and υ2 can be any of u, h, or θ.
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Assumption N3.

(i) For some C < ∞ and all z ∈ R
p and µ ∈ M0, the quantities |fµ| and |fµµ| (evaluated at

(z;µ)) are bounded by C(1 +
∑p

j=1 |zj |).

(ii) For some C <∞ and all u ∈ R, x ∈ R+, and θ ∈ Θ0, the quantities |gθ|, |gu|, |gθθ|, |guu|,

|gθu|, and |guθ| (evaluated at (u, x; θ)) are bounded by C(1 + u2 + x).

(iii) For some κ′ <∞ and all u ∈ R, x1, x2 ∈ R+, and θ ∈ Θ0,

|gυ(u, x1; θ) − gυ(u, x2; θ)| ≤ κ′|x1 − x2|, υ = u, h, θ,

|gυ1υ2
(u, x1; θ) − gυ1υ2

(u, x2; θ)| ≤ κ′|x1 − x2|, υ1, υ2 = u, h, θ.

Assumption N3(i) places further restrictions on the behaviour of the function f that specifies

the conditional mean. Like the dominance condition already imposed on the function f in

Assumption C3, this condition may be stringent from a mathematical point of view but holds for

various commonly used functional-coefficient autoregressive models of the type (4). The second

and third parts of Assumption N3 are related to conditions C2(i) and (ii) already imposed on the

function g. The condition in N3(ii) is used to ensure the existence of certain moments involving

the partial derivatives of g (a less stringent condition would also suffice, but this one is used for

its simplicity). Condition N3(iii) is a Lipschitz continuity requirement for the partial derivatives

of g but, unlike the condition on the function g itself in C2(ii), the partial derivatives need not

be contractions (i.e., κ′ does not need to be less than one).

We now introduce further notation that is needed to present the derivatives of ht and h∗t

in a reasonably concise form. Denote the first and second partial derivatives of the func-

tion ht (θ) with hθ,t = ∂ht (θ) /∂θ and hθθ,t = ∂2ht (θ) /∂θ∂θ′, respectively. Similarly, de-

note fθ,t = ∂ft (θ) /∂θ and fθθ,t = ∂2ft (θ) /∂θ∂θ′ (note that fθ,t = −∂ut (θ) /∂θ and fθθ,t =

−∂2ut (θ) /∂θ∂θ′, and also that although both ft and ut depend only on µ and not on λ, we

will often use the argument θ for simplicity). Furthermore, let gυ1,t = [gυ1
]u=ut−1(θ),h=ht−1(θ) =

∂g (ut−1 (θ) , ht−1 (θ) ; θ) /∂υ1 denote the first partial derivative of g evaluated at u = ut−1 (θ)

and h = ht−1 (θ), and define gυ1υ2,t similarly (υ1 and υ2 can be any of u, h, or θ). Finally, all

the derivatives may be partitioned conformably with the partition θ = (µ, λ), and θ is replaced

with either µ or λ when denoting these blocks (for example, hθ,t = (hµ,t, hλ,t); note also that

fλ,t, fλλ,t, fµλ,t, and fλµ,t are zero vectors or matrices).

The first and second derivatives of the difference equation ht = g (ut−1, ht−1; θ), t = 1, 2, . . .,
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can now be derived by straightforward but tedious differentiation. We have

hθ,t = gθ,t − gu,tfθ,t−1 + gh,thθ,t−1, t = 1, 2, . . . ,

hθθ,t = gθθ,t + guu,tfθ,t−1f
′
θ,t−1 − fθ,t−1guθ,t − gθu,tf

′
θ,t−1 − gu,tfθθ,t−1

+ (gθh,t − guh,tfθ,t−1)h
′
θ,t−1 + hθ,t−1

(

ghθ,t − ghu,tf
′
θ,t−1

)

+ghh,thθ,t−1h
′
θ,t−1 + gh,thθθ,t−1, t = 1, 2, . . . ,

where the recursions are initialized from a zero vector and matrix, respectively. For further

conciseness we denote

αθ,t = gθ,t − gu,tfθ,t−1, βt = gh,t, γθ,t = gθh,t − guh,tfθ,t−1, δt = ghh,t, (7)

αθθ,t = gθθ,t + guu,tfθ,t−1f
′
θ,t−1 − fθ,t−1guθ,t − gθu,tf

′
θ,t−1 − gu,tfθθ,t−1, (8)

and with this notation the derivatives of ht satisfy the difference equations

hθ,t = αθ,t + βthθ,t−1, t = 1, 2, . . . , (9)

hθθ,t = αθθ,t + βthθθ,t−1 + γθ,th
′
θ,t−1 + hθ,t−1γ

′
θ,t + δthθ,t−1h

′
θ,t−1, t = 1, 2, . . . . (10)

We also define stationary ergodic counterparts of the quantities appearing in (7)–(8). To this end,

let g∗υ1,t = [gυ1
]u=ut−1(θ),h=h∗

t−1
(θ) = ∂g

(

ut−1 (θ) , h∗t−1 (θ) ; θ
)

/∂υ1 denote this partial derivative

evaluated at u = ut−1 (θ) and h = h∗t−1 (θ), where h∗t (θ) is the stationary ergodic solution

obtained from Proposition 1, and define g∗υ1υ2,t similarly (υ1 and υ2 can be any of u, h, or θ).

Furthermore, let α∗
θ,t, β

∗
t , γ∗θ,t, δ

∗
t , and α∗

θθ,t denote the analogously defined counterparts of the

quantities in (7)–(8) (for example, β∗t = g∗h,t = ∂g(ut−1(θ), h
∗
t−1(θ); θ)/∂h).

Given these assumptions and notation, we obtain the following result.

Proposition 2. Suppose Assumptions DGP, C1–C5, and N1–N3 hold.

(a) For all θ ∈ Θ0 there exists a stationary ergodic solution h∗θ,t(θ) to the equation

hθ,t(θ) = α∗
θ,t + β∗t hθ,t−1(θ), t = 1, 2, . . . . (11)

This solution is Ft−1–measurable, unique when (11) is extended to all t ∈ Z, and E
[

supθ∈Θ0
|h∗θ,t(θ)|

r/2
]

<

∞. Furthermore, the stationary ergodic solution h∗t (θ) obtained from Proposition 1 is a.s. con-

tinuously partially differentiable on Θ0 for every t ∈ Z and ∂h∗t (θ)/∂θ = h∗θ,t(θ) a.s.

(b) If ht(θ) and hθ,t(θ), θ ∈ Θ0, are any solutions to the difference equations (6) and (9), then

for some γ > 1, γt supθ∈Θ0
|h∗θ,t(θ) − hθ,t(θ)| → 0 in Lr/4–norm as t→ ∞.

Proposition 2(a) shows that h∗t (θ) is (a.s.) continuously differentiable and that its derivative

coincides (a.s.) with h∗θ,t(θ), the stationary ergodic solution to (11). Part (b) of the propo-

sition shows that for any other solution ht(θ) to equation (6), its derivative hθ,t(θ) converges
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to h∗θ,t(θ) exponentially fast and uniformly over Θ0. These facts will be of importance when

we subsequently consider the first derivatives of the objective function LT (θ) and its stationary

ergodic counterpart L∗
T (θ). In particular, using part (a) we can show that L∗

T (θ) is continuously

differentiable with a stationary and ergodic derivative, whereas using part (b) we can establish

that this derivative provides an approximation to the first derivative of LT (θ).

Our next proposition gives an analogous result for the second derivatives.

Proposition 3. Suppose Assumptions DGP, C1–C5, and N1–N3 hold.

(a) For all θ ∈ Θ0 there exists a stationary ergodic solution h∗θθ,t(θ) to the equation

hθθ,t(θ) = α∗
θθ,t + β∗t hθθ,t−1(θ) + γ∗θ,th

∗′
θ,t−1(θ) + h∗θ,t−1(θ)γ

∗′
θ,t + δ∗t h

∗
θ,t−1(θ)h

∗′
θ,t−1(θ), t = 1, 2, . . . .

(12)

This solution is Ft−1–measurable, unique when (12) is extended to all t ∈ Z, and E
[

supθ∈Θ0
|h∗θθ,t(θ)|

r/4
]

<

∞. Furthermore, the stationary ergodic solution h∗t (θ) obtained from Proposition 1 is a.s. twice

continuously partially differentiable on Θ0 for every t ∈ Z and ∂2h∗t (θ)/∂θ∂θ
′ = h∗θθ,t(θ) a.s.

(b) If ht(θ), hθ,t(θ), and hθθ,t(θ), θ ∈ Θ0, are any solutions to the difference equations (6), (9),

and (10), then for some γ > 1, γt supθ∈Θ0
|h∗θθ,t(θ) − hθθ,t(θ)| → 0 in Lr/8–norm as t→ ∞.

The results of Proposition 3 are analogous to those of Proposition 2. Note that in the

moment and convergence results obtained for h∗θ,t and h∗θθ,t in Propositions 2 and 3, the exact

orders (r/2, r/4, or r/8) are not crucial as long as these results hold for some positive exponents.

Our approach here is somewhat different from the one used by Straumann and Mikosch (2006,

Propositions 6.1 and 6.2) in that we obtain moment results for h∗θ,t and h∗θθ,t and use convergence

in Lp–norm instead of the almost sure convergence used by them. As a consequence, the use of

these results in subsequent proofs appears to lead to less complex and more transparent deriva-

tions.

5 Asymptotic normality of the QML estimator

As already indicated, the moment conditions used to prove strong consistency of the QML esti-

mator are not sufficient to establish asymptotic normality. Our next assumption imposes further

restrictions on the moments of the observed process and the derivatives of the process h∗t (θ).

Assumption N4.

(i) Assumption DGP holds with r = 2 and the random variables εt satisfy E[ε8t ] <∞.

(ii)
∥

∥

∥
supθ∈Θ0

|h∗

θ,t(θ)|

h∗

t (θ)

∥

∥

∥

4
<∞ and

∥

∥

∥
supθ∈Θ0

|h∗

θθ,t(θ)|

h∗

t (θ)

∥

∥

∥

2
<∞.
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The conditions in (i) imply that finiteness of fourth moments is assumed for the observed

process yt, which is much more than needed to prove consistency. As discussed by Francq and

Zaköıan (2004) and Ling (2007) in the linear ARMA–GARCH case, it is quite expected that

finiteness of second moments of the observed process is required to make a suitable central limit

theorem applicable to the score vector and, even in this linear case, it has proved difficult to do

without assuming finite fourth moments. (In the pure GARCH case the situation is different, for

then it is not necessary to impose additional moment conditions on the observed process to prove

asymptotic normality, see Francq and Zaköıan (2004) and Straumann and Mikosch (2006).) If

one is willing to make the i.i.d. assumption the moment condition in (i) can be weakened to

E[ε4t ] < ∞. Finiteness of eighth moments is needed to ensure that the limiting distribution

of the QML estimator has a finite covariance matrix when the errors are dependent and only

satisfy Assumption E (for details, see the proof of Lemma D.1 in Appendix D). (An alternative

to assuming finite eighth moments is to require that E[ε4t ] <∞ and E[ε4t | Ft−1] ≤ K <∞ a.s.,

cf. Assumption A.2(i) of Lee and Hansen (1994).) In this respect, the situation is easier in the

case of linear pure GARCH models where similar dependence in the errors can be allowed by

assuming only E[|εt|
4+δ] < ∞ for some δ > 0 (see Escanciano (2009)). The moment conditions

imposed on the derivatives of h∗t in (ii) are satisfied when the i.i.d. assumption holds and the

conditional mean is modeled by a linear function and conditional variance by a standard linear

GARCH(1,1) model (see Francq and Zaköıan (2004) and Ling (2007)). In our general nonlinear

model it seems difficult to replace these conditions with something more explicit. However, as

will be seen in Section 6, these conditions are satisfied in the nonlinear example we consider.

The assumptions made so far guarantee finiteness of the expectations

I (θ0)
def
= E

[

∂L∗
T (θ0)

∂θ

∂L∗
T (θ0)

∂θ′

]

and J (θ0)
def
= E

[

∂2L∗
T (θ0)

∂θ∂θ′

]

.

Explicit expressions for these matrices are given in Theorem 2. If the matrices I (θ0) and J (θ0)

are positive definite the asymptotic covariance matrix of the QML estimator θ̂T is also positive

definite, as required for statistical inference. This is guaranteed by the following three conditions.

Assumption N5.

(i) For all t, the conditional distribution of εt given Ft−1 is not concentrated at two points.

(ii) x′µ
∂ft(µ0)

∂µ = 0 a.s. only if xµ = 0 (xµ ∈ R
m).

(iii) x′λ
∂g(u0,t,σ2

t ;θ0)
∂λ = 0 a.s. only if xλ = 0 (xλ ∈ R

l).

The third condition in Assumption N5 is similar to the one used by Straumann and Mikosch

(2006, Assumption N.4) in the pure GARCH case, whereas the second one is its analogue for

the conditional mean. These two conditions require the components of both ∂ft(µ0)/∂µ and
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∂g(u0,t, σ
2
t ; θ0)/∂λ to be linearly independent with probability one. Due to the generality of our

model it seems difficult to replace them with more transparent counterparts. However, in the case

of a standard linear AR–GARCH(1,1) model, these two conditions are automatically satisfied

provided condition N5(i) holds and homoskedasticity is ruled out (see Appendix E, Example

1). For a model containing both a conditional mean and a conditional variance, condition N5(i)

appears to be the minimal requirement on the error term εt to ensure the positive definiteness of

the asymptotic covariance matrix of the QML estimator θ̂T . If one makes the i.i.d. assumption,

the unconditional counterpart of condition N5(i) suffices; this condition was also used by Francq

and Zaköıan (2004) in the context of their linear ARMA–GARCH model. In the context of a

nonlinear GARCH model, a condition at least as strong as N5(i) may often be needed to ensure

that condition N5(iii) holds. We will return to this in the concrete examples of the next section.

Verifying conditions N5(ii) and N5(iii) for particular nonlinear models may be complicated.

The technical difficulties are similar to those already discussed in connection with the verification

of the identification conditions in Assumption C5, and we only mention that we have been forced

to use the i.i.d. assumption and Markov chain techniques in order to be able to verify them. A

previous example of this kind of approach is Chan and Tong (1986, Appendix II) where Markov

chain techniques are used to show the positive definiteness of the asymptotic covariance matrix

of the nonlinear least squares estimator in a homoskedastic smooth transition autoregressive

model. See also Tjøstheim (1986, Section 4.1), who verifies his counterpart of condition N5(ii)

in a very simple manner in a homoskedastic first order exponential autoregressive model, and

Kristensen and Rahbek (2008) who deal with nonlinear ARCH models.

Now we can state the main result of this section.

Theorem 2. Suppose Assumptions DGP, E, C1–C5, and N1–N5 hold. Then

T 1/2(θ̂T − θ0)
d
→ N

(

0,J (θ0)
−1 I (θ0)J (θ0)

−1
)

,

where the matrices I (θ0) and J (θ0) are are positive definite and can be expressed as

I (θ0) =





4E
[

fµ,t(µ0)
σt

f ′

µ,t(µ0)

σt

]

0m×l

0l×m 0l×l



+ E

[

(

ε4t − 1
) h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]

(13)

+2





E
[

ε3t

(

fµ,t(µ0)
σt

h∗′

µ,t(θ0)

σ2
t

+
h∗

µ,t(θ0)

σ2
t

f ′

µ,t(µ0)

σt

)]

E
[

ε3t
fµ,t(µ0)

σt

h∗′

λ,t(θ0)

σ2
t

]

E
[

ε3t
h∗

λ,t(θ0)

σ2
t

f ′

µ,t(µ0)

σt

]

0l×l



 ,

J (θ0) =





2E
[

fµ,t(µ0)
σt

f ′

µ,t(µ0)

σt

]

0m×l

0l×m 0l×l



+ E

[

h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]

. (14)

As in the consistency proof, we shall follow Berkes, Horváth, and Kokoszka (2003), Francq

and Zaköıan (2004), and Straumann and Mikosch (2006) and first show that the infeasible QML
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estimator obtained by minimizing the function L∗
T (θ) has the limiting distribution stated in the

theorem. After this intermediate step, the proof is completed by showing that the same limiting

distribution applies to the corresponding feasible estimator θ̂T (for details, see Appendix D).

The covariance matrix of the limiting distribution obtained in the theorem simplifies if the

i.i.d. assumption holds. Then εt is independent of the derivatives of ft and h∗t so that the

expectations in the second and third terms in the expression of I (θ0) factor into products of two

expectations (for instance, the second term then equals E[ε4t − 1]E
[

(h∗θ,t(θ0)/σ
2
t )(h

∗′
θ,t(θ0)/σ

2
t )
]

,

and similarly for the third term). The expression further simplifies if the error term εt has

a symmetric distribution, for then the third term in the expression of I (θ0) drops out. Note

also that if the i.i.d. assumption holds, one can change the assumptions in Theorem 2 so that

Assumption E is deleted and in Assumption N4(i) the condition E[ε8t ] < ∞ is replaced by

E[ε4t ] <∞ (for details on the i.i.d. case, see Meitz and Saikkonen (2008c)).

To compute approximate standard errors for the components of θ̂T and construct asymptot-

ically valid Wald tests we need consistent estimators for the matrices I (θ0) and J (θ0). The ex-

pressions of these matrices in (13) and (14) reveal that it suffices to find consistent estimators for

E

[

fµ,t(µ0)

σt

f ′µ,t(µ0)

σt

]

, E

[

h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]

, E

[

ε4t
h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]

, and E

[

ε3t
fµ,t(µ0)

σt

h∗′θ,t(θ0)

σ2
t

]

. (15)

The obvious choices are

T−1
T
∑

t=1

f̂µ,t

ĥ1/2

t

f̂ ′µ,t

ĥ1/2

t

, T−1
T
∑

t=1

ĥθ,t

ĥt

ĥ′θ,t

ĥt

, T−1
T
∑

t=1

û4
t

ĥ2
t

ĥθ,t

ĥt

ĥ′θ,t

ĥt

, and T−1
T
∑

t=1

û3
t

ĥ
3/2
t

f̂µ,t

ĥ1/2

t

ĥ′θ,t

ĥt

, (16)

respectively, where “ˆ” signifies evaluation at the QML estimator θ̂T . The obvious estimators

of I (θ0) and J (θ0) obtained in this way are denoted by ÎT and ĴT . For these estimators to

be consistent, additional assumptions are needed. It is shown in Appendix D that, under the

conditions of Theorem 2 and the additional requirement that Assumption DGP holds with r = 4,

ÎT → I (θ0) a.s. and ĴT → J (θ0) a.s. (17)

Thus, a consistent estimator of the asymptotic covariance matrix J (θ0)
−1 I (θ0)J (θ0)

−1 in

Theorem 2 is given by Ĵ −1
T ÎT Ĵ

−1
T . As discussed after Theorem 2, if the i.i.d. assumption holds,

the expression of I (θ0) simplifies, which can accordingly be taken into account in its estimation.

Consistency of the resulting estimators of I (θ0) and J (θ0) then also holds under the mentioned

weakened assumptions of Theorem 2 (for details, see Meitz and Saikkonen (2008c)).

6 Examples

We shall now consider concrete examples to which our general theory applies. In each case we

give a set of low-level conditions that guarantee the validity of Assumptions DGP, E, C1–C5,
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and N1–N5. That the stated conditions imply these assumptions is shown in Appendix E.

Example 1: Linear AR–GARCH. Consider the linear AR(p)–GARCH(1,1) model in which

the conditional mean and conditional variance are given by

f (yt−1, . . . , yt−p;µ0) = φ0,0+

p
∑

j=1

φ0,jyt−j and σ2
t = g

(

u0,t−1, σ
2
t−1; θ0

)

= ω0+α0u
2
0,t−1+β0σ

2
t−1,

where u0,t = yt − (φ0,0 +
∑p

j=1 φ0,jyt−j) = σtεt. The parameter vectors µ and λ are µ =

(φ0, . . . , φp) and λ = (ω, α, β) and the permissible parameter spaces M and Λ are compact

subsets of R
p+1 and (0,∞) × [0,∞) × [0, 1) containing the true parameter vectors µ0 and λ0.

Note that our definition of the parameter space includes the restriction that β < 1 over Θ.

Let Fε
t = σ(εt, εt−1, . . .) denote the σ–algebra generated by present and past errors, and

consider the following set of conditions.

(a) (i) The random variables εt are stationary and ergodic

(ii) E
[

ln(β0 + α0ε
2
t )
]

< 0

(iii) E
[

|εt|
2r] <∞ and E

[(

β0 + α0ε
2
t

)r
| Fε

t−1

]

≤ C < 1 a.s. for some r > 0

(iv) 1 −
∑p

j=1 φ0,jz
j 6= 0, |z| ≤ 1

(v) E[ε2t ] <∞, E
[

εt | F
ε
t−1

]

= 0 a.s., and E
[

ε2t | Fε
t−1

]

= 1 a.s.

(b) (i) ε2t has a non-degenerate distribution

(ii) α0 > 0

(c) (i) The true parameter value θ0 is an interior point of Θ

(ii) E[ε4t ] <∞ and E
[(

β0 + α0ε
2
t

)2
| Fε

t−1

]

≤ C < 1 a.s.

(iii) E[ε8t ] <∞

(iv) For all t, the conditional distribution of εt given Fε
t−1 is not concentrated at two points

The five conditions in part (a) imply the validity of Assumptions DGP and E for the linear

AR(p)–GARCH(1,1) model as defined above (for details of this and the following statements, see

Appendix E). Of these conditions, (a.i) and (a.ii) ensure the existence of a (strictly) stationary

and ergodic solution for the conditional variance process, whereas (a.iii) guarantees that this

solution has moments of some (small) order. Condition (a.iv) is needed for these properties

to carry over to the observed process yt and Assumption DGP to hold. Assumption E holds

when condition (a.v) is added. If the conditions in part (b) are also assumed, Assumptions C1–

C5 hold. The conditions in (b) are needed to ensure the identifiability of the parameters in the

conditional variance part. Finally, conditions in (a)–(c) (where (b.i) becomes unnecessary) suffice
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for Assumptions N1–N5 to hold. Condition (c.i) is obviously required for asymptotic normality of

the QML estimator to hold. The second condition ensures that the conditional variance process,

and hence also yt, has finite fourth moments. The moment condition in (c.iii) coincides with the

one in Assumption N4(i). Finally, (c.iv) is needed for the identification condition N5 to hold.

If one makes the i.i.d. assumption, conditions (a.i), (a.iii), (a.v), and (c.iii) can be dropped,

and (c.ii) and (c.iv) can be replaced by their unconditional counterparts (‘E[ε4t ] < ∞ and

E
[(

β0 + α0ε
2
t

)2]
< 1’ and ‘the distribution of εt is not concentrated at two points’), see Meitz

and Saikkonen (2008c) for details. In this case, the resulting conditions (almost) coincide with

those required in Francq and Zaköıan (2004) for strong consistency and asymptotic normality of

the QML estimator in the case of a linear AR(p)–GARCH(1,1) model.3 Therefore, although our

framework allows for rather general forms of nonlinearity and dependence in the errors, it does

not come at the cost of assumptions that would be stronger than those required in the linear case

in earlier literature. We refer to Francq and Zaköıan (2004) for a discussion of previous, more

stringent, assumptions used in QML estimation of linear GARCH and ARMA–GARCH models.

Example 2: AR–AGARCH. As a second example, we consider a model in which a linear

AR(p) model is combined with the Asymmetric GARCH (AGARCH) model of Ding, Granger,

and Engle (1993). For this model we are able to show strong consistency, but not asymptotic

normality, of the QML estimator. The set-up is otherwise exactly the same as in Example 1,

except that now the conditional variance process is defined as

σ2
t = g

(

u0,t−1, σ
2
t−1; θ0

)

= ω0 + α0(|u0,t−1| − γ0u0,t−1)
2 + β0σ

2
t−1, (18)

and the parameter vector λ defined as λ = (ω, α, β, γ) with the permissible parameter space Λ

a compact subset of (0,∞) × [0,∞) × [0, 1) × [−1, 1] containing the true parameter vector λ0.

Note that, letting 1 (·) stand for the indicator function, (18) can be rewritten as

σ2
t = ω0 + α0(1 − γ0)

2u2
0,t−11(u0,t−1 ≥ 0) + α0(1 + γ0)

2u2
0,t−11(u0,t−1 < 0) + β0σ

2
t−1,

so that the threshold GARCH formulations of Glosten, Jaganathan, and Runkle (1993) and

Zaköıan (1994) are included in the AGARCH model.

Consider the following set of conditions.

(a) (i) The random variables εt are stationary and ergodic

(ii) E
[

ln
(

β0 + α0(|εt| − γ0εt)
2
)]

< 0

3There appears to be only one small difference. In their condition A8, Francq and Zaköıan (2004) assume

that the roots of the autoregressive polynomial are outside the unit circle for all θ ∈ Θ, whereas our condition

(a.iv) requires this only for the true parameter value θ0. However, inspecting their proofs it would seem that this

stronger requirement is actually not used. In this sense, our conditions appear to coincide with theirs.
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(iii) E
[

|εt|
2r] <∞ and E

[(

β0 + α0(|εt| − γ0εt)
2
)r

| Fε
t−1

]

≤ C < 1 a.s. for some r > 0

(iv) 1 −
∑p

j=1 φ0,jz
j 6= 0, |z| ≤ 1

(v) E[ε2t ] <∞, E
[

εt | F
ε
t−1

]

= 0 a.s., and E
[

ε2t | Fε
t−1

]

= 1 a.s.

(b) (i) For all t, the conditional distribution of εt given Fε
t−1 is not concentrated at two points

(ii) α0 > 0

Conditions (a.i)–(a.v) ensure the validity of Assumptions DGP and E for the AR–AGARCH

model and are analogous to the ones used in Example 1. Altogether the conditions in (a) and

(b) ensure that Assumptions C1–C5 hold. Note that the restriction −1 ≤ γ ≤ 1 imposed on

the parameter γ and the slightly stronger condition (b.i) compared to Example 1 are needed

to verify the identification condition in C5(ii). The conditions again simplify if one makes the

i.i.d. assumption. Then (a.i), (a.iii), and (a.v) can be dropped, and (b.i) can be replaced by its

unconditional counterpart (see Meitz and Saikkonen (2008c) for details).

In this example, we are unable to show the asymptotic normality of the QML estimator.

This is due to the appearance of |u0,t| in the equation defining the conditional variance, which,

as can readily be verified, invalidates Assumption N2 requiring the function g to be twice contin-

uously differentiable with respect to all its arguments. A similar complication occurs in several

other nonlinear GARCH models that involve absolute values. In the pure AGARCH model the

situation simplifies because u0,t = yt contains no parameters and therefore differentiability of g

with respect to u is not required. In this case (and under the i.i.d. assumption) the asymptotic

normality of the QML estimator is proved by Straumann and Mikosch (2006).

Example 3: Nonlinear AR–GARCH. As a third example we consider a model in which both

the conditional mean and conditional variance are nonlinear. We model the conditional mean

by a fairly general subclass of the functional-coefficient autoregressive models of Chen and Tsay

(1993). The best known special case to which our results apply is the logistic smooth transition

autoregressive specification considered by Teräsvirta (1994). For the conditional variance, we

consider a smooth transition GARCH model similar to those discussed by González-Rivera

(1998) and Lundbergh and Teräsvirta (2002). The resulting nonlinear AR–GARCH model is a

special case of the one considered by Meitz and Saikkonen (2008b). Using similar arguments

other models of interest could also be considered. For instance, the conditional mean might be

as in the exponential autoregressive model of Haggan and Ozaki (1981) or the smooth transition

in the conditional variance might be of the type considered by Lanne and Saikkonen (2005).

In the nonlinear AR(p)–GARCH(1,1) model we consider the conditional mean and condi-
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tional variance are given by

f (yt−1, . . . , yt−p;µ0) = φ0,0 + ψ0,0F (yt−d;ϕ0) +

p
∑

j=1

(φ0,j + ψ0,jF (yt−d;ϕ0)) yt−j and

σ2
t = g

(

u0,t−1, σ
2
t−1; θ0

)

= ω0 + (α0,1 + α0,2G(u0,t−1; γ0))u
2
0,t−1 + β0σ

2
t−1, (19)

where u0,t = yt − f (yt−1, . . . , yt−p;µ0) = σtεt, ϕ0 = (ϕ0,1, ϕ0,2), and γ0 = (γ0,1, γ0,2). The

parameter vectors µ and λ are µ = (φ0, . . . , φp, ψ0, . . . , ψp, ϕ1, ϕ2) and λ = (ω, α1, α2, β, γ1, γ2)

and the permissible parameter spaces M and Λ are compact subsets of R
2p+3 × R+ and R+ ×

[0,∞)2 × [0, 1)×R×R+ containing the true parameter vectors µ0 and λ0. In both ϕ = (ϕ1, ϕ2)

and γ = (γ1, γ2), the first parameter is supposed to have the role of a location parameter so that

it takes values in R, whereas the latter parameter is a scale parameter and hence is restricted

to be positive (these restrictions and interpretations are done only for concreteness and are not

necessary for the development of the theory). The nonlinear functions F and G are assumed

to take values in [0, 1]. The former depends on the lagged observable yt−d, where d is a fixed

known integer between 1 and p (which is not estimated), whereas the latter depends on ut−1.

For clarity of exposition, we concentrate on the case of F and G being cumulative distribution

functions of the logistic distribution, that is,

F (y;ϕ1, ϕ2) =
[

1 + exp
(

−ϕ2(y − ϕ1)
)]−1

and G (u; γ1, γ2) =
[

1 + exp
(

−γ2(u− γ1)
)]−1

,

although our results also hold much more generally. This is also one of the most common choices

in practice. In Appendix E we give a set of conditions for the functions F and G that suffice

for our results to hold. It is straigtforward to verify that these conditions are satisfied with

the choice of logistic functions (or, e.g., the Gaussian cumulative distribution functions). In the

following we assume that F and G satisfy the additional conditions given in Appendix E.

To present the conditions for this model we require additional notation. For p = 1, define

A01 = φ0,1 and A02 = φ0,1 + ψ0,1, and for p > 1 define A01 and A02 as the p× p matrices

A01 =

[

φ0,1 · · · φ0,p−1 φ0,p

Ip−1 0p−1

]

and A02 =

[

φ0,1 + ψ0,1 · · · φ0,p−1 + ψ0,p−1 φ0,p + ψ0,p

Ip−1 0p−1

]

,

where Ip−1 denotes the identity matrix and 0p−1 a vector of zeros. We also need the concept of

joint spectral radius defined for a set of bounded square matrices A by

ρ (A) = lim sup
k→∞

(

sup
A∈Ak

‖A‖

)1/k

,

where Ak = {A1A2 · · ·Ak : Ai ∈ A, i = 1, . . . , k} and ‖·‖ can be any matrix norm (the value of

ρ (A) does not depend on the choice of this norm). If the set A only contains a single matrix A

then the joint spectral radius of A coincides with ρ (A), the spectral radius of A. Several useful
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results about the joint spectral radius are given in the recent paper by Liebscher (2005) where

further references can also be found; see also Meitz and Saikkonen (2008b).

Now consider the following set of conditions.

(a) (i) The random variables εt are independent and identically distributed with zero mean

and unit variance, and such that εt is independent of the variables {ys, s < t}

(ii) The εt have a (Lebesgue) density which is positive and lower semicontinuous on R

(iii) Either
∑p

j=1 max {|φ0,j |, |φ0,j + ψ0,j |} < 1 or ρ ({A01, A02}) < 1

(iv) E
[

log
(

β0 + (α0,1 + α0,2)ε
2
t

)]

< 0

(v) α0,1 > 0 and β0 > 0

(b) (i) At least one of the ψ0,j , j = 0, . . . , p, is nonzero

(ii) α0,2 > 0

(c) (i) The true parameter value θ0 is an interior point of Θ

(ii) E[ε4t ] <∞ and E
[(

β0 + (α0,1 + α0,2)ε
2
t

)2]
< 1

Conditions (a.i)–(a.v) ensure the validity of Assumptions DGP and E in the case of the

considered nonlinear AR–GARCH model. Conditions (a.i) and (a.ii) restrict the error term more

than required in Examples 1 and 2, but this is needed to verify Assumption DGP with the results

of Meitz and Saikkonen (2008b). In particular, we make the i.i.d. assumption (a.i). Conditions

(a.i) and (a.ii) also facilitate the verification of the identification conditions in Assumptions C5

and N5. As our discussion following Assumption C5 indicated, this is now a considerably more

complicated task than in the preceding examples and involves using Markov chain techniques

to show that the events {(yt−1, ..., yt−p) ∈ A} have a positive probability with suitably defined

(Borel) measurable sets A ⊂ R
p. Conditions (a.i) and (a.ii) will be critical in establishing

this. A condition similar to (a.ii) is also used by Kristensen and Rahbek (2008, their condition

C.Z). The two alternative conditions in (a.iii) are both sufficient restrictions on the conditional

mean needed to show the validity of Assumption DGP. They are used in Meitz and Saikkonen

(2008b, Section 4) and, as discussed by Liebscher (2005, p. 682), the latter condition is strictly

weaker than the former one. Condition (a.iv) is an unconditional analogue of the moment

conditions (a.ii) in the previous two examples, and it also coincides with the sufficient condition

for geometric ergodicity of a pure smooth transition GARCH model given in Example 4 of Meitz

and Saikkonen (2008a). Condition (a.v) excludes the ARCH case, but is required for the results

in Meitz and Saikkonen (2008b) to hold. In many applications the estimate of β would typically

be rather large (and close to unity), and hence condition (a.v) is not very restrictive in practice.4

4The ARCH case could be treated separately as is also mentioned in Meitz and Saikkonen (2008b, p. 465). We

do not pursue this further and only note that in this case many of the required derivations simplify considerably.
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If conditions (b.i) and (b.ii) are also assumed, Assumptions C1–C5 hold. These two condi-

tions are required to identify the parameters of the model. Finally, the additional conditions (c.i)

and (c.ii) ensure that Assumptions N1–N5 also hold. The former condition was already used in

Example 1, whereas the latter is an unconditional analogue of condition (c.ii) used therein.

Above we assumed that the function G is strictly increasing and the value of the parameter

α0,2 is positive, in which case the coefficient of u2
0,t−1 in (19) increases with u0,t−1. Often, an

empirically interesting case is the one in which the effect is in the opposite direction. This

case is obtained by choosing G to be strictly decreasing (in the preceding logistic example the

permissible parameter space of γ2 is then a compact subset of (−∞, 0) instead of (0,∞)). Our

results also apply to this case (with minor changes to the derivations; see Appendix E).

7 Conclusion

In this paper we have developed an asymptotic estimation theory for nonlinear AR(p) models

with conditionally heteroskedastic errors specified as a general nonlinear GARCH(1,1) model.

We proved strong consistency and asymptotic normality of the QML estimator under conditions

similar to those previously employed in linear ARMA–GARCH models. In particular, for con-

sistency only a mild moment condition was required, whereas existence of fourth order moments

of the observed process was needed for asymptotic normality. In addition, our results do not

require the rescaled errors to be independent, but instead to form a stationary and ergodic mar-

tingale difference sequence. To the best of our knowledge, our paper is the first one to derive

asymptotic estimation theory for a model allowing for nonlinearity in both the conditional mean

and in the GARCH-type conditional variance.

Because our specification for the conditional variance was restricted to a GARCH(1,1) model

it would be of interest to replace it by a higher order GARCH model. Relaxing our assumptions is

another topic for potential future work. In particular, it would be useful if asymptotic normality

could be established without the assumption of finite fourth order moments. As far as QML

estimators are concerned, this has turned out to be difficult even in the linear case where weighted

QML estimators have been developed as alternatives (see Ling (2007) and the discussion therein).

Another interesting extension would be to relax our assumption about the differentiability of

the conditional variance function, and thereby make it possible to obtain asymptotic normality

of the QML estimator also for the type of models discussed in our Example 2. Furthermore, our

assumptions about permitted nonlinearity in the GARCH-part were more stringent than those

needed to obtain stationarity and ergodicity of the data generation process so that relaxing these

assumptions would be of interest.

26



Appendix A: Auxiliary results

We shall first give two simple lemmas which are useful in several subsequent derivations. We

omit their proofs, which are available from the authors on request.

Lemma A.1. For any r > 0,
∥

∥

∑k
i=1 xi

∥

∥

r
≤ ∆r,k

∑k
i=1‖xi‖r, where ∆r,k = max

{

1, k1/r−1
}

.

Lemma A.2. Suppose for some r > 0, γ > 1, and nonnegative process xt, γ
txt converges to

zero in Lr–norm. Then
∑∞

t=1 xt <∞ a.s. and
∥

∥

∑∞
t=1 xt

∥

∥

r
<∞ also holds.

The following lemma presents a result which is similar to Theorem 3.1 of Bougerol (1993)

and Theorem 2.8 of Straumann and Mikosch (2006). Its formulation involves a function G :

Mv ×Mz ×K →Mz where Mv, Mz, and K are subsets of Euclidean spaces and K is compact.

The function G is assumed to satisfy the following condition.

Condition G (i) For all ϑ ∈ K, |G(v, z;ϑ)| ≤ ¯̺ |z| + ψ (|v|), where 0 < ¯̺< 1 is a constant and

ψ : [0,∞) → [0,∞) a measurable function.

(ii) The function G(·, ·; ·) is continuous and, for all (v, ϑ) ∈Mv ×K, |G(v, z1;ϑ) −G(v, z2;ϑ)| ≤

κ̄ |z1 − z2| for some 0 < κ̄ < 1 and all z1, z2 ∈Mz.

By C (K,Mz) we denote the Banach space of continuous functions from K into Mz endowed

with the supremum norm |·|K , that is, |z|K = supϑ∈K |z(ϑ)|.

Lemma A.3. Let Condition G hold. Then, for all ϑ ∈ K, there exists a stationary and ergodic

solution z∗t (ϑ) to the equation

zt (ϑ) = G (vt−1 (ϑ) , zt−1 (ϑ) ;ϑ) , t = 1, 2, ..., (20)

where z0 is a random function taking values in C (K,Mz) and vt is a stationary and er-

godic process taking values in C (K,Mv) and satisfying E[supϑ∈K ψ (|vt (ϑ)|)r] < ∞, r > 0.

The solution z∗t (ϑ) is continuous in ϑ, measurable with respect to the σ–algebra generated by

(vt−1 (ϑ) , vt−2 (ϑ) , ...), and unique when (20) is extended to all t ∈ Z. Moreover, E[supϑ∈K |z∗t (ϑ)|r] <

∞ and, if zt(ϑ), ϑ ∈ K, are any other solutions to (20) with E[supϑ∈K |z0(ϑ)|r] <∞, then for

a finite constant C (depending on r and the distribution of z0),

∥

∥

∥

∥

sup
ϑ∈K

|z∗t (ϑ) − zt(ϑ)|

∥

∥

∥

∥

r

≤ Cκ̄t.

Compared to Bougerol (1993, Theorem 3.1) and Straumann and Mikosch (2006, Theorem

2.8), Lemma A.3 is more specific although sufficient for the purpose of this paper. Due to its

specificity its application in subsequent proofs also appears to lead to less complex derivations.

Another difference to the abovementioned theorems is that Lemma A.3 also implies the existence
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of certain moments, which turns out to be useful. In particular, because the stationary solution

z∗t obtained from Lemma A.3 is an element of C (K,Mz), Theorem 2.7 of Straumann and Mikosch

(2006) immediately gives the result supϑ∈K

∣

∣T−1
∑T

t=1 z
∗
t (ϑ) − E[z∗t (ϑ)]

∣

∣ → 0 a.s. when r ≥ 1.

Lemma A.3 also states that the solution z∗t is unique, with which we mean that any two stationary

solutions to (20) coincide a.s. Hence, z∗t is uniquely defined up to an event with probability zero.

Proof of Lemma A.3. We apply Theorem 3.1 of Bougerol (1993) (see also Theorem 2.8 of

Straumann and Mikosch (2006)). Define the random function Gt : C (K,Mz) → C (K,Mz) as

[Gt (x)] (ϑ) = G(vt−1 (ϑ) , x (ϑ) ;ϑ) (x ∈ C (K,Mz), ϑ ∈ K). Then Gt, t ∈ Z, is a stationary and

ergodic sequence of mappings. By the continuity assumption in Condition G(ii) and the fact

that z0 belongs to C (K,Mz), the function zt (·) defined by equation (20) is in C (K,Mz) and is

a solution to the difference equation xt = Gt (xt−1) , t ≥ 1. Define

ρ (Gt) = sup

{

|Gt(x1) −Gt(x2)|K
|x1 − x2|K

; x1, x2 ∈ C (K,Mz) , x1 6= x2

}

and notice that, due to our Lipschitz condition in Condition G(ii),

sup
ϑ∈K

|G(vt−1 (ϑ) , x1 (ϑ) ;ϑ) −G(vt−1 (ϑ) , x2 (ϑ) ;ϑ)| ≤ κ̄ sup
ϑ∈K

|x1 (ϑ) − x2 (ϑ)| ,

implying |Gt(x1) −Gt(x2)|K ≤ κ̄ |x1 − x2|K . Thus, ρ (Gt) is a stationary and ergodic process

bounded from above by κ̄ < 1.

Now consider Theorem 3.1 of Bougerol (1993), and note that its assumptions (C1) and (C2)

are satisfied due to the assumptions imposed. Specifically, by Condition G(i), the moment

condition imposed on ψ (|vt|), and Lemma A.1, |G1 (x) − x|rK has finite expectation for any

x ∈ C (K,Mz), and thus (C1) holds by Jensen’s inequality. Regarding (C2), it holds (with

p = 1) because ρ (Gt) is bounded from above by κ̄ < 1. The existence of a stationary ergodic

solution z∗t ∈ C (K,Mz) to (20) now follows from this theorem whereas the stated uniqueness can

be obtained from Remark 2.9(2) of Straumann and Mikosch (2006). Defining zt,n (x) = (Gt◦· · ·◦

Gt−n) (x) with n ≥ 0 and a fixed x ∈ C (K,Mz) as the backward iterates obtained by repetitive

application of the random function Gt, we also find from the aforementioned papers that z∗t

can be defined as the (almost sure) limit z∗t = limn→∞ zt,n (x) (with any fixed x ∈ C (K,Mz)).

Hence, z∗t (ϑ) is measurable with respect to the σ–algebra generated by (vt−1 (ϑ) , vt−2 (ϑ) , ...)

(cf. Proposition 2.6 of Straumann and Mikosch (2006)).

As for the remaining assertions, fix x ∈ C (K,Mz) and use Condition G(i) to obtain

|[zt,n (x)] (ϑ)| = |G (vt−1 (ϑ) , [(Gt−1 ◦ · · · ◦Gt−n) (x)] (ϑ) ;ϑ)|

≤ ¯̺ |[(Gt−1 ◦ · · · ◦Gt−n) (x)] (ϑ)| + ψ (|vt−1 (ϑ)|)

= ¯̺ |[zt−1,n−1 (x)] (ϑ)| + ψ (|vt−1 (ϑ)|)
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and, continuing iteratively, |[zt,n(x)](ϑ)| ≤ ¯̺n|[zt−n,0(x)](ϑ)| +
∑n−1

j=0 ¯̺jψ(|vt−j−1(ϑ)|). Here

|[zt−n,0 (x)] (ϑ)| = |[Gt−n (x)] (ϑ)| = |G(vt−n−1 (ϑ) , x (ϑ) ;ϑ)| ≤ ¯̺ |x (ϑ)| + ψ (|vt−n−1 (ϑ)|) ,

where the inequality is due to Condition G(i). As the preceding inequalities hold for all ϑ ∈ K,

|zt,n (x)|K ≤ ¯̺n+1 |x|K +
n
∑

j=0

¯̺j sup
ϑ∈K

ψ (|vt−j−1 (ϑ)|) ≤ |x|K +
∞
∑

j=0

¯̺j sup
ϑ∈K

ψ (|vt−j−1 (ϑ)|) .

Denote the stationary process defined by the last expression by wt. By Lemma A.2, this pro-

cess is well defined because the series converges a.s. and, furthermore, E [|wt|
r] < ∞ where

Lemma A.1 is also made use of. Hence, we can conclude that the collection of random variables
{

|zt,n (x)|rK , n = 1, 2, ...
}

is uniformly integrable (see Billingsley (1995, p. 338)). Thus, because

z∗t = limn→∞ zt,n (x) a.s. (in C (K,Mz)) we also have limn→∞ |zt,n(x)|rK = |z∗t |
r
K (a.s.) and the

above mentioned uniform integrability allows us to conclude that E[|z∗t |
r
K ] (= E[supϑ∈K |z∗t (ϑ)|r])

is the finite limit of E[|zt,n (x)|rK ] (see Davidson (1994), Theorem 12.8).

Now consider the last assertion. Using Condition G(ii),

sup
ϑ∈K

∣

∣G(vt−1(ϑ), z∗t−1(ϑ);ϑ) −G(vt−1(ϑ), zt−1(ϑ);ϑ)
∣

∣

r
≤ κ̄r sup

ϑ∈K

∣

∣z∗t−1(ϑ) − zt−1(ϑ)
∣

∣

r
,

or, in other words, |z∗t − zt|
r
K ≤ κ̄r

∣

∣z∗t−1 − zt−1

∣

∣

r

K
. Continuing iteratively,

|z∗t − zt|
r
K ≤ κ̄rt |z∗0 − z0|

r
K ≤ κ̄rt max

{

1, 2r−1
}

(|z∗0 |
r
K + |z0|

r
K) ,

where the second inequality follows from Lemma A.1. Because the two norms in the last ex-

pression have finite expectations the stated inequality follows.

Appendix B: Proofs for Sections 2 and 3

Proof of Proposition 1. We apply Lemma A.3. Specifically, choosing Mv = R, Mz = R+,

K = Θ, G = g, vt = ut = yt − f (yt−1, . . . , yt−p;µ), and zt (θ) = ht (θ) = g (ut−1 (θ) , ht−1 (θ) ; θ),

it follows from Assumption C2 that Conditions G(i) and (ii) are satisfied with the function

ψ (x) = C(1 + x2). Furthermore, the last condition in Assumption C3, Assumption DGP, and

Lemma A.1 give
∥

∥supθ∈Θ|ft|
∥

∥

2r
<∞ and

∥

∥supθ∈Θ|ut|
∥

∥

2r
<∞, implying the moment condition

E[supϑ∈K ψ (|vt (ϑ)|)r] < ∞. The stated result, except for the equality h∗t (θ0) = σ2
t (a.s.),

now follows from Lemma A.3 (note that the solution h∗t (θ) is initialized from h∗0(θ) having

this stationary distribution instead of the constant ς0). From the proof of this lemma it is

also seen that h∗t can be defined as the (almost sure) limit h∗t = limn→∞ ht,n, where ht,n =

(gt ◦ · · · ◦ gt−n) (x), n ≥ 0, are the backward iterates obtained by repetitive application of

the random function [gt (x)] (θ) = g(ut−1 (θ) , x (θ) ; θ) with a fixed x ∈ C (Θ,R+). To prove
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that h∗t (θ0) = σ2
t a.s. (cf. Propositions 3.7 and 3.12 in Straumann and Mikosch (2006)), note

that h∗t (θ0) = limn→∞ ht,n(θ0) a.s. where ht,n(θ0) = [(gt ◦ · · · ◦ gt−n) (x)](θ0) and [gt (x)] (θ0) =

g(u0,t−1, x(θ0); θ0). By Assumption DGP and the definition of ht,n(θ0), (ht,n(θ0), σ
2
t ) is stationary

for every fixed n, and hence ht,n(θ0)−σ
2
t and hn,n(θ0)−σ

2
n are identically distributed. Regarding

the latter, repeated use of Assumption C2(ii) yields
∣

∣hn,n(θ0) − σ2
n

∣

∣ ≤ κn
∣

∣h0,0(θ0) − σ2
0

∣

∣, where
∣

∣h0,0(θ0) − σ2
0

∣

∣ =
∣

∣g(u0,−1, x(θ0); θ0) − σ2
0

∣

∣ ≤ ̺x(θ0) + C(1 + u2
0,−1) + σ2

0 by Assumption C2(i).

Making use of Assumption DGP, the result
∥

∥supθ∈Θ|ut|
∥

∥

2r
< ∞ obtained above, and Lemma

A.1,
∥

∥hn,n(θ0) − σ2
n

∥

∥

r
≤ Cκn for all n ≥ 0 and some finite C. Because ht,n(θ0) − σ2

t and

hn,n(θ0)−σ
2
n are identically distributed,

∥

∥ht,n(θ0) − σ2
t

∥

∥

r
≤ Cκn and, using Lemma A.2, we can

conclude that limn→∞(ht,n(θ0) − σ2
t ) = 0 a.s. As noticed above, h∗t (θ0) = limn→∞ ht,n(θ0) a.s.,

and hence h∗t (θ0)−σ
2
t = 0 a.s. Finally, note also that from Lemma A.3 we obtain the inequality

∥

∥

∥

∥

sup
θ∈Θ

|h∗t − ht|

∥

∥

∥

∥

r

≤ Cκt, (21)

for some finite constant C, a result that will repeatedly be used in the proofs.

Proof of Theorem 1. For strong consistency of θ̂T it suffices to show that, for every δ > 0,

lim inf
T→∞

inf
θ∈B(θ0,δ)c

(

LT (θ) − LT (θ0)
)

> 0 a.s.,

where B (θ0, δ) = {θ ∈ Θ : |θ − θ0| < δ} and B (θ0, δ)
c is the complement of this set in Θ (see,

e.g., Pötscher and Prucha (1991a, p. 145)). To this end, first recall that l∗t (θ) and lt (θ) denote

the summands of L∗
T (θ) and LT (θ), respectively. It will be seen below that E[l∗t (θ)] is well

defined taking values in R ∪ {+∞} but E[l∗t (θ0)] <∞. Next note that

lim inf
T→∞

inf
θ∈B(θ0,δ)c

(

LT (θ) − LT (θ0)
)

≥ −lim sup
T→∞

sup
θ∈Θ

∣

∣

(

L∗
T (θ) − L∗

T (θ0)
)

−
(

LT (θ) − LT (θ0)
)∣

∣

+lim inf
T→∞

(

E[l∗t (θ0)] − L∗
T (θ0)

)

+lim inf
T→∞

inf
θ∈B(θ0,δ)c

(

L∗
T (θ) − E[l∗t (θ0)]

)

. (22)

We shall prove that the first two terms on the minorant side of (22) equal zero a.s. whereas the

third term is strictly positive.

We begin by showing that

sup
θ∈Θ

|L∗
T (θ) − LT (θ)| → 0 a.s. as T → ∞, (23)

from which it follows that the first term on the minorant side of (22) equals zero a.s. Note that

|l∗t (θ) − lt (θ)| =
∣

∣log (h∗t ) − log (ht) + u2
t (1/h

∗
t − 1/ht)

∣

∣ ≤ g−1 |h∗t − ht| + g−2u2
t |h

∗
t − ht| ,
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where the inequality makes use of the mean value theorem and Assumption C4. Using Lemma

A.1 and the Cauchy-Schwartz inequality we obtain
∥

∥

∥

∥

sup
θ∈Θ

|l∗t (θ) − lt (θ)|

∥

∥

∥

∥

r/2

≤ C1

(

1 +

∥

∥

∥

∥

sup
θ∈Θ

u2
t

∥

∥

∥

∥

r

)
∥

∥

∥

∥

sup
θ∈Θ

|h∗t − ht|

∥

∥

∥

∥

r

for some finite C1. As seen in the proof of Proposition 1, the term in the parenthesis is finite,

whereas inequality (21) gives the upper bound Cκt for the term
∥

∥supθ∈Θ|h
∗
t − ht|

∥

∥

r
. Hence,

there exists a γ > 1 such that γt supθ∈Θ |l∗t (θ) − lt (θ)| converges to zero in Lr/2–norm, and thus
∑∞

t=1 supθ∈Θ |l∗t (θ) − lt (θ)| <∞ a.s. by Lemma A.2. Hence the result in (23) follows.

To handle the remaining two terms, first note that by Proposition 1, h∗t is stationary and

ergodic, and hence the same holds for log (h∗t ) + u2
t /h

∗
t . Because h∗t ≥ g, l∗t (θ) is bounded from

below uniformly in Θ, implying that E [l∗t (θ)] is well defined and belongs to R ∪ {+∞} (in

particular, E [infθ∈Θ l
∗
t (θ)] > −∞). Also, by Proposition 1, E [supθ∈Θ h

∗r
t ] <∞ with r > 0, and

hence E [supθ∈Θ log (h∗t )] <∞ by Jensen’s inequality. As for the term u2
t /h

∗
t , notice that

u2
t = σ2

t ε
2
t − 2 (ft(µ) − ft(µ0))σtεt + (ft(µ) − ft(µ0))

2 . (24)

For θ = θ0, u
2
t (θ0) = σ2

t ε
2
t , and therefore E [l∗t (θ0)] < ∞ because E

[

ε2t
]

< ∞ by Assumption

E and h∗t (θ0) = σ2
t a.s. by Proposition 1. However, for θ 6= θ0, we may have E

[

u2
t /h

∗
t

]

= ∞.

(We note that if E [supθ∈Θ l
∗
t (θ)] < ∞, a uniform law of large numbers applies and the proof

simplifies; cf. Straumann and Mikosch (2006), part 1 of the proof of Theorem 4.1.) That the

second term on the minorant side of (22) equals zero a.s. can now be concluded from the ergodic

theorem (because l∗t (θ0) is a stationary ergodic sequence with E [l∗t (θ0)] <∞).

Now consider the third term on the minorant side of (22). As in Pfanzagl (1969), proof of

Lemma 3.11, it can be shown that E [l∗t (θ)] is a lower semicontinuous function on Θ and

lim inf
T→∞

inf
θ∈B(θ0,δ)c

L∗
T (θ) ≥ inf

θ∈B(θ0,δ)c
E [l∗t (θ)] a.s.

(we omit the details, which can be obtained from the authors on request). Thus, the third

term on the minorant side of (22) is positive if E [l∗t (θ)] − E [l∗t (θ0)] ≥ 0 with equality if and

only if θ = θ0. Because E [l∗t (θ0)] < ∞ this obviously holds if E [l∗t (θ)] = ∞. Therefore

in the following we assume that E [l∗t (θ)] < ∞. As h∗t and (ft(µ) − ft(µ0)) are functions of

(yt−1, yt−2, ...) only and h∗t (θ0) = σ2
t a.s., (24) together with Assumption E yields E

[

u2
t /h

∗
t

]

=

E
[

σ2
t /h

∗
t

]

+ E[(ft(µ) − ft(µ0))
2 /h∗t ] and thus

E [l∗t (θ)] − E [l∗t (θ0)] = E
[

log
(

h∗t /σ
2
t

)]

+ E
[

σ2
t /h

∗
t

]

+ E[(ft(µ) − ft(µ0))
2 /h∗t ] − 1. (25)

Making use of the inequality x − log(x) ≥ 1 (x ∈ R+) and the identification conditions in

Assumption C5 we conclude that the expression in (25) is nonnegative and equals zero if and

only if θ = θ0. This completes the proof.
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Appendix C: Proofs for Section 4

We first present a simple lemma which is used in the proofs of Propositions 2 and 3. We omit

the proof, which is available from the authors on request.

Lemma C.1. Suppose the assumptions of Propositions 2 and 3 hold. Then (i) α∗
θ,t and α∗

θθ,t are

Lr/2–dominated in Θ0 whereas γθ,t and γ∗θ,t are L2r–dominated in Θ0, (ii) |α∗
θ,t −αθ,t|, |α

∗
θθ,t −

αθθ,t|, |β
∗
t −βt|, |γ

∗
θ,t −γθ,t|, and |δ∗t − δt| are all bounded from above by Ct−1|h

∗
t−1 −ht−1|, where

Ct−1 = κ′(1 + 2|fθ,t−1|+ |fθ,t−1|
2 + |fθθ,t−1|) is Lr–dominated in Θ0, and (iii) supθ∈Θ0

|βt| ≤ κ,

supθ∈Θ0
|β∗t | ≤ κ, supθ∈Θ0

|δt| < κ′, and supθ∈Θ0
|δ∗t | < κ′, where κ and κ′ are as in Assumptions

C2(ii) and N3(iii), respectively.

Proof of Proposition 2. To prove part (a), we first apply Lemma A.3. Set zt (θ) = hθ,t (θ)

and v∗t−1(θ) = (α∗
θ,t, β

∗
t ). For all v ∈ R

m+l+1, z ∈ R
m+l, and θ ∈ Θ0, define the function G as

G (v, z; θ) = (v1, . . . , vm+l)+vm+l+1z, where the subscript denotes a particular coordinate of the

vector v. Thus zt (θ) = hθ,t (θ) satisfies the difference equation zt (θ) = G
(

v∗t−1 (θ) , zt−1 (θ) ; θ
)

.

Condition G, the continuity of v∗t (·), and the moment condition E[supθ∈Θ0
ψ (|v∗t (θ)|)r/2] <

∞ hold with ψ (x) = x due to Assumption N2 and Lemma C.1. The results of part (a), except

for the last one concerning differentiability, now follow from Lemma A.3 (note that the solution

h∗θ,t(θ) is understood to be initialized from h∗θ,0(θ) having this stationary distribution).

The a.s. continuous differentiability of h∗t (θ) and the relation ∂h∗t (θ)/∂θ = h∗θ,t(θ) a.s. can be

proved in a similar manner as in Straumann and Mikosch (2006, pp. 2483–2484). To this end, let

x ∈ C (Θ,R+) be twice continuously differentiable on Θ0 and define the sequence h̃n(θ), n ≥ 0,

with h̃0(θ) = x (θ) and h̃n(θ) = hn,n−1(θ), n ≥ 1, where ht,s = (gt ◦ · · · ◦ gt−s) (x), s ≥ 0, with

[gt (x)] (θ) = g(ut−1 (θ) , x (θ) ; θ) (cf. proof of Proposition 1). Thus h̃n(θ), n ≥ 0, is a random

sequence in C (Θ,R+) with elements twice continuously differentiable on Θ0 with probability

one (the latter fact follows from Assumption N2). Moreover, h̃n(θ) and h̃θ,n(θ) = ∂h̃n(θ)/∂θ

are solutions to the difference equations (6) and (9). Hence, by part (b) of this proposition (the

proof of which does not rely on the subresult currently being proven), for some γ > 1,

γn sup
θ∈Θ0

|h∗θ,n(θ) − h̃θ,n(θ)| → 0 in Lr/4 − norm as n→ ∞. (26)

On the other hand, note that for any fixed n ≥ 1, (∂ht,n−1(θ)/∂θ, h
∗
θ,t(θ)) is a stationary

process. Therefore, (∂ht,n−1(θ)/∂θ, h
∗
θ,t(θ)) and (∂hn,n−1(θ)/∂θ, h

∗
θ,n(θ)) are identically dis-

tributed. In the latter, ∂hn,n−1(θ)/∂θ = h̃θ,n(θ), and hence, making use of (26), it also

holds that γn supθ∈Θ0
|h∗θ,t(θ) − ∂ht,n−1(θ)/∂θ| → 0 in Lr/4–norm as n → ∞. By Lemma A.2,

supθ∈Θ0
|h∗θ,t(θ)−∂ht,n−1(θ)/∂θ| → 0 a.s. as n→ ∞. To conclude, we have shown that ht,n−1(θ)

converges to h∗t (θ) a.s. as n → ∞ for each θ ∈ Θ0 (see the proof of Proposition 1) and that

∂ht,n−1(θ)/∂θ converges uniformly to h∗θ,t(θ) a.s. as n → ∞. Now, by Lang (1993, Theorem
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XIII.9.1) and the continuity of h∗θ,t(θ) (obtained from Lemma A.3), h∗t (θ) is a.s. continuously

differentiable on Θ0 and ∂h∗t (θ)/∂θ = h∗θ,t(θ) a.s.

To prove part (b), note that by the definitions, Lemma C.1, and denoting at = Ct(1+ |h∗θ,t|),

|h∗θ,t−hθ,t| ≤ |α∗
θ,t−αθ,t|+|β∗t −βt||h

∗
θ,t−1|+|βt||h

∗
θ,t−1−hθ,t−1| ≤ at−1|h

∗
t−1−ht−1|+κ|h

∗
θ,t−1−hθ,t−1|.

Repeated substitution yields |h∗θ,t−hθ,t| ≤
∑t−1

j=0 κ
t−1−jaj |h

∗
j−hj |+κ

t|h∗θ,0−hθ,0|, where hθ,0 = 0.

Using Lemma A.1 and Hölder’s inequality we obtain

∆−1
r/4,t+1

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗θ,t − hθ,t

∣

∣

∥

∥

∥

∥

r/4

≤

t−1
∑

j=0

κt−1−j

∥

∥

∥

∥

sup
θ∈Θ0

aj

∥

∥

∥

∥

r/3

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗j − hj

∣

∣

∥

∥

∥

∥

r

+ κt

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗θ,0

∣

∣

∥

∥

∥

∥

r/4

.

In the former term on the majorant side,
∥

∥supθ∈Θ0
aj

∥

∥

r/3
is bounded by a finite constant by

Hölder’s inequality, part (a), and Lemma C.1, whereas
∥

∥supθ∈Θ0
|h∗j −hj |

∥

∥

r
≤ Cκj by (21). Thus

the former term is bounded by C ′tκt−1 for some finite C ′. In the latter term, the norm is finite

by part (a). Therefore, for some finite C ′′,
∥

∥

∥

∥

sup
θ∈Θ0

|h∗θ,t − hθ,t|

∥

∥

∥

∥

r/4

≤ C ′′ max{t, t4/r}κt−1, (27)

from which the stated result follows.

Proof of Proposition 3. The proof uses arguments similar to those used in the proof of

Proposition 2. We omit the details, which can be obtained from the authors on request.

Appendix D: Proofs for Section 5

Recall from Section 3 that LT (θ) = T−1
∑T

t=1 lt(θ) and L∗
T (θ) = T−1

∑T
t=1 l

∗
t (θ), where lt(θ) =

log (ht) + u2
t /ht and l∗t (θ) = log (h∗t ) + u2

t /h
∗
t . Let Lθ,T (θ) = ∂LT (θ)/∂θ and lθ,t(θ) = ∂lt(θ)/∂θ,

and denote the analogous first and second partial derivatives of L∗
T (θ) and l∗t (θ) with L∗

θ,T , L∗
θθ,T ,

l∗θ,t, and l∗θθ,t. (Pedantically, these derivatives are only defined on an event with probability one,

but as this has no significant consequence on our results, we do not always make this explicit.)

As an intermediate step in the proof of Theorem 2, we first establish (in Lemmas D.1–D.4 below)

the asymptotic normality of the infeasible estimator θ̃T based on minimizing L∗
T (θ). This is done

by using a standard mean value expansion of the score L∗
θ,T (θ) given by

T 1/2L∗
θ,T (θ̃T ) = T 1/2L∗

θ,T (θ0) + L̇∗
θθ,TT

1/2(θ̃T − θ0) a.s., (28)

where L̇∗
θθ,T signifies the matrix L∗

θθ,T (θ) with each row evaluated at an intermediate point θ̇i,T

(i = 1, . . . ,m+ l) lying between θ̃T and θ0. Subsequently, in Lemmas D.5 and D.6 we show the

asymptotic equivalence of the estimators θ̂T and θ̃T . The result of Theorem 2 is then obtained

as an immediate consequence of the conclusions of Lemmas D.4 and D.6.
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Lemma D.1. If the assumptions of Theorem 2 hold, then T 1/2L∗
θ,T (θ0)

d
→ N (0, I (θ0)), where

I (θ0) = E
[

l∗θ,t(θ0)l
∗′
θ,t(θ0)

]

is finite and can be expressed as in (13).

Proof. Partitioning l∗θ,t as l∗θ,t = (l∗µ,t, l
∗
λ,t), direct calculation yields

l∗µ,t = −2
fµ,t

h∗1/2

t

ut

h∗1/2

t

−
h∗µ,t

h∗t

(

u2
t

h∗t
− 1

)

a.s. and l∗λ,t = −
h∗λ,t

h∗t

(

u2
t

h∗t
− 1

)

a.s., (29)

and hence

l∗µ,t (θ0) = −2
fµ,t(µ0)

σt
εt −

h∗µ,t(θ0)

σ2
t

(

ε2t − 1
)

a.s. and l∗λ,t (θ0) = −
h∗λ,t(θ0)

σ2
t

(

ε2t − 1
)

a.s. (30)

By straightforward calculation one now obtains the expression (13). Finiteness ofE
[

l∗θ,t(θ0)l
∗′
θ,t(θ0)

]

is an immediate consequence of fµ,t being L2r–dominated in Θ0, Assumption N4, and Hölder’s in-

equality. Noting that l∗θ,t(θ0) (or, more precisely, the almost sure representation of l∗θ,t(θ0) in (30))

is a stationary ergodic martingale difference sequence (with respect to Ft) and T 1/2L∗
θ,T (θ0) =

T−1/2
∑T

t=1 l
∗
θ,t(θ0), the stated convergence is obtained from Billingsley’s (1961) central limit

theorem in conjunction with the Cramér-Wold device.

As noted in the discussion following Assumption N4, the moment condition E[ε8t ] < ∞

can be weakened to E[ε4t ] < ∞ if the i.i.d. assumption is made. The reason is that then the

terms involving εt in the expression of E
[

l∗θ,t(θ0)l
∗′
θ,t(θ0)

]

can be factored out. On the other

hand, when the errors are allowed to be dependent, requiring E[|εt|
4+δ] < ∞ for some δ > 0

suffices in the linear pure GARCH case because then, unlike in our present case, the term

|h∗θ,t(θ0)|/σ
2
t possesses moments of any order; see Escanciano (2009). Alternatively, if E[ε4t ] <∞

and E[ε4t | Ft−1] ≤ K < ∞ a.s. are assumed, finiteness of E
[

l∗θ,t(θ0)l
∗′
θ,t(θ0)

]

also follows as in

Lee and Hansen (1994, p. 49) (this can be justified by using the law of iterated expectations and

other common properties of conditional expectations which hold true for possibly non-integrable

random variables, see Loève (1978, Sections 27–28)).

Lemma D.2. If the assumptions of Theorem 2 hold, then l∗θθ,t(θ) is L1–dominated in Θ0 and

sup
θ∈Θ0

∣

∣L∗
θθ,T (θ) − J (θ)

∣

∣→ 0 a.s.,

where J (θ) = E
[

l∗θθ,t(θ)
]

is continuous at θ0. Moreover, J (θ0) can be expressed as in (14).

Proof. The first partial derivatives of l∗t were obtained in (29). The second ones are (a.s.)

l∗µµ,t = −
h∗µµ,t

h∗t

(

u2
t

h∗t
− 1

)

+
h∗µ,t

h∗t

h∗′µ,t

h∗t

(

2
u2

t

h∗t
− 1

)

− 2
fµµ,t

h∗1/2

t

ut

h∗1/2

t

+2
fµ,t

h∗1/2

t

f ′µ,t

h∗1/2

t

+ 2

(

fµ,t

h∗1/2

t

h∗′µ,t

h∗t
+
h∗µ,t

h∗t

f ′µ,t

h∗1/2

t

)

ut

h∗1/2

t

,

l∗µλ,t = −
h∗µλ,t

h∗t

(

u2
t

h∗t
− 1

)

+
h∗µ,t

h∗t

h∗′λ,t

h∗t

(

2
u2

t

h∗t
− 1

)

+ 2
fµ,t

h∗1/2

t

h∗′λ,t

h∗t

ut

h∗1/2

t

,

l∗λλ,t = −
h∗λλ,t

h∗t

(

u2
t

h∗t
− 1

)

+
h∗λ,t

h∗t

h∗′λ,t

h∗t

(

2
u2

t

h∗t
− 1

)

.
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It follows from Assumption DGP and Propositions 1–3 that l∗θθ,t (or, more precisely, its a.s. repre-

sentation given by the above equations) forms a stationary ergodic sequence in C
(

Θ0,R
(m+l)×(m+l)

)

and hence the uniform strong law of large numbers in Theorem 2.7 of Straumann and Mikosch

(2006) applies if E
[

supθ∈Θ0
|l∗θθ,t(θ)|

]

is finite. Thus, the stated convergence is proved if

∥

∥

∥

∥

sup
θ∈Θ0

|ut|

∥

∥

∥

∥

4

,

∥

∥

∥

∥

sup
θ∈Θ0

|fµ,t|

∥

∥

∥

∥

4

,

∥

∥

∥

∥

sup
θ∈Θ0

|fµµ,t|

∥

∥

∥

∥

4

,

∥

∥

∥

∥

sup
θ∈Θ0

1

h∗t

∥

∥

∥

∥

∞

,

∥

∥

∥

∥

∥

sup
θ∈Θ0

|h∗θ,t|

h∗t

∥

∥

∥

∥

∥

4

, and

∥

∥

∥

∥

∥

sup
θ∈Θ0

|h∗θθ,t|

h∗t

∥

∥

∥

∥

∥

2

are all finite. For the first norm, this has already been shown in the proof of Proposition

1. For the second and third norms, the justification is similar but now based on Assumption

N3(i). Assumption C4 implies the finiteness of the fourth norm. The last two are finite by

Assumption N4(ii). Finally, the continuity of J (θ) at θ0 also follows from the aforementioned

theorem of Straumann and Mikosch (2006), and that J (θ0) can be expressed as in (14) is seen

by straightforward calculation.

Lemma D.3. If the assumptions of Theorem 2 hold, then I (θ0) and J (θ0) are positive definite.

Proof. Consider the matrix I (θ0). For an arbitrary x = (xµ, xλ) ∈ R
m × R

l, suppose

x′I (θ0)x = E
[(

x′l∗θ,t(θ0)
)2]

= 0. Then, by (30), we must have

x′l∗θ,t(θ0) = 2εtx
′ fθ,t (θ0)

σt
+
(

ε2t − 1
)

x′
h∗θ,t (θ0)

σ2
t

= 0 a.s.

Now the proof proceeds as in Francq and Zaköıan (2004), their derivation between equations

(4.52) and (4.53), but with the i.i.d. assumption used therein replaced by Assumption E (this

means that instead of ordinary expectations we use expectations conditional on Ft−1 so that

the third and fourth moments of the errors that appear in Francq and Zaköıan (2004) will be

replaced by their conditional counterparts E[ε3t | Ft−1] and E[ε4t | Ft−1]). Using Assumption

N5(i) instead of its unconditional counterpart we can therefore conclude that, almost surely,

x′µfµ,t (θ0) = 0 and x′h∗θ,t (θ0) = 0. By Assumption N5(ii), xµ = 0, and hence x′λh
∗
λ,t (θ0) = 0

a.s. By equation (11) and the definitions preceding it in Section 4,

h∗λ,t (θ0) = α∗
λ,t (θ0) + β∗t (θ0)h

∗
λ,t−1 (θ0)

= ∂g(u0,t−1, σ
2
t−1; θ0)/∂λ+ ∂g(u0,t−1, σ

2
t−1; θ0)/∂h · h∗λ,t−1 (θ0) a.s.

By stationarity, also x′λh
∗
λ,t−1 (θ0) = 0 a.s., and hence x′λ∂g(u0,t−1, σ

2
t−1; θ0)/∂λ = 0 a.s. By

Assumption N5(iii), xλ = 0, and hence we have proved that I (θ0) is positive definite.

Regarding the matrix J (θ0), note that x′J (θ0)x = 0 now directly implies that

2E
[(

x′µfµ,t(θ0)
)2
σ−2

t

]

+ E
[(

x′h∗θ,t(θ0)
)2
σ−4

t

]

= 0.

This can only happen if x′µfµ,t (θ0) = 0 a.s. and x′h∗θ,t (θ0) = 0 a.s. As above, this implies that

x = 0. Hence also J (θ0) is positive definite.
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Lemma D.4. If the assumptions of Theorem 2 hold, then

T 1/2(θ̃T − θ0)
d
→ N

(

0,J (θ0)
−1I(θ0)J (θ0)

−1
)

.

Proof. First note that from the proof of Theorem 1 it can be seen that θ̃T → θ0 a.s. (because

lim infT→∞ infθ∈B(θ0,δ)c (L∗
T (θ) − L∗

T (θ0)) equals the sum of the last two terms on the minorant

side of (22)). In the mean value expansion of L∗
θ,T (θ) in (28) we therefore have θ̇i,T → θ0 a.s. as

T → ∞ (i = 1, . . . ,m + l) which, together with the uniform convergence result for L∗
θθ,T (θ) in

Lemma D.2, yields L̇∗
θθ,T → J (θ0) a.s. as T → ∞. This and the invertibility of J (θ0) obtained

from Lemma D.3 implies that, for all T sufficiently large, L̇∗
θθ,T is also invertible (a.s.) and

L̇∗−1
θθ,T → J (θ0)

−1 a.s. as T → ∞ (see Lemma A.1 of Pötscher and Prucha (1991b)). Given

these facts the proof can be completed by using the mean value expansion (28) and standard

arguments (see, e.g., Pötscher and Prucha (1991b)). Details are available on request.

Lemma D.5. If the assumptions of Theorem 2 hold, then for some γ > 1,

γt sup
θ∈Θ0

∣

∣l∗θ,t (θ) − lθ,t (θ)
∣

∣→ 0 in L1/3–norm as t→ ∞.

Proof. In this proof we assume r = 2, but retain the notation r for ease of comparison to

previous results. First consider the difference h∗θ,t/h
∗
t −hθ,t/ht and use Assumption C4 to obtain

|h∗θ,t/h
∗
t −hθ,t/ht| ≤ g−2|h∗θ,t||h

∗
t −ht|+ g−1|h∗θ,t −hθ,t|. By Lemma A.1, Hölder’s inequality, and

the norm inequality, we now find that

∆−1
r/4,2

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣

∣

∣

h∗θ,t

h∗t
−
hθ,t

ht

∣

∣

∣

∣

∥

∥

∥

∥

r/4

≤ g−2

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗θ,t

∣

∣

∥

∥

∥

∥

r/2

∥

∥

∥

∥

sup
θ∈Θ0

|h∗t − ht|

∥

∥

∥

∥

r

+g−1

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗θ,t − hθ,t

∣

∣

∥

∥

∥

∥

r/4

.

Thus, Proposition 2 and inequalities (21) and (27) give, for some finite C,

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗θ,t/h
∗
t − hθ,t/ht

∣

∣

∥

∥

∥

∥

r/4

≤ Cmax
{

t, t4/r
}

κt. (31)

Now consider the difference l∗θ,t (θ)−lθ,t (θ). Using Assumption C4 and the inequality |x∗y∗ − xy| ≤

|x∗ − x| |y∗| + |x∗ − x| |y∗ − y| + |x∗| |y∗ − y| for any conformable vectors we obtain, a.s.,

∣

∣l∗θ,t (θ) − lθ,t (θ)
∣

∣

=

∣

∣

∣

∣

−
h∗θ,t

h∗t

(

u2
t

h∗t
− 1

)

+
hθ,t

ht

(

u2
t

ht
− 1

)

− 2
fθ,t

h∗t
ut + 2

fθ,t

ht
ut

∣

∣

∣

∣

≤

∣

∣

∣

∣

h∗θ,t

h∗t
−
hθ,t

ht

∣

∣

∣

∣

∣

∣

∣

∣

u2
t

h∗t
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

h∗θ,t

h∗t
−
hθ,t

ht

∣

∣

∣

∣

∣

∣

∣

∣

u2
t

h∗t
−
u2

t

ht

∣

∣

∣

∣

+

∣

∣

∣

∣

h∗θ,t

h∗t

∣

∣

∣

∣

∣

∣

∣

∣

u2
t

h∗t
−
u2

t

ht

∣

∣

∣

∣

+ 2 |fθ,t| |ut|

∣

∣

∣

∣

1

h∗t
−

1

ht

∣

∣

∣

∣

≤

∣

∣

∣

∣

h∗θ,t

h∗t
−
hθ,t

ht

∣

∣

∣

∣

[

(g−1u2
t + 1) + u2

t g
−2 |h∗t − ht|

]

+
(∣

∣h∗θ,t

∣

∣u2
t g

−3 + 2 |fθ,t| |ut| g
−2
)

|h∗t − ht| .

36



By Lemma A.1, Hölder’s inequality, and the norm inequality

∆−1
r/6,4

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣l∗θ,t (θ) − lθ,t (θ)
∣

∣

∥

∥

∥

∥

r/6

≤

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣

∣

∣

h∗θ,t

h∗t
−
hθ,t

ht

∣

∣

∣

∣

∥

∥

∥

∥

r/4

(

∥

∥

∥

∥

sup
θ∈Θ0

(g−1u2
t + 1)

∥

∥

∥

∥

r

+ g−2

∥

∥

∥

∥

sup
θ∈Θ0

u2
t

∥

∥

∥

∥

r

∥

∥

∥

∥

sup
θ∈Θ0

|h∗t − ht|

∥

∥

∥

∥

r

)

+

(

g−3

∥

∥

∥

∥

sup
θ∈Θ0

∣

∣h∗θ,t

∣

∣

∥

∥

∥

∥

r/2

∥

∥

∥

∥

sup
θ∈Θ0

u2
t

∥

∥

∥

∥

r

+ 2g−2

∥

∥

∥

∥

sup
θ∈Θ0

|fθ,t|

∥

∥

∥

∥

2r

∥

∥

∥

∥

sup
θ∈Θ0

|ut|

∥

∥

∥

∥

2r

)

∥

∥

∥

∥

sup
θ∈Θ0

|h∗t − ht|

∥

∥

∥

∥

r

.

The result now follows from inequalities (21) and (31) and arguments already used.

Lemma D.6. If the assumptions of Theorem 2 hold, then T 1/2(θ̂T − θ̃T ) → 0 a.s. as T → ∞.

Proof. Because both θ̂T and θ̃T are strongly consistent estimators of θ0 (see Theorem 1 and the

proof of Lemma D.4), we can assume that T is so large that θ̂T , θ̃T ∈ Θ0 with probability one.

From the a.s. identity L∗
θ,T (θ̃T ) = Lθ,T (θ̂T ) = 0 and the mean value theorem one then obtains

T 1/2
(

Lθ,T (θ̂T ) − L∗
θ,T (θ̂T )

)

= T 1/2
(

L∗
θ,T (θ̃T ) − L∗

θ,T (θ̂T )
)

= L̈∗
θθ,TT

1/2(θ̃T − θ̂T ) a.s., (32)

where L̈∗
θθ,T signifies the matrix L∗

θθ,T (θ) with each row evaluated at an intermediate point θ̈i,T

(i = 1, . . . ,m+ l) lying between θ̃T and θ̂T . Concerning the term on the left hand side of (32),

T 1/2
∣

∣

∣
Lθ,T (θ̂T ) − L∗

θ,T (θ̂T )
∣

∣

∣
≤ T−1/2

T
∑

t=1

sup
θ∈Θ0

∣

∣l∗θ,t (θ) − lθ,t (θ)
∣

∣ a.s.,

and the majorant side converges to zero a.s. by Lemmas D.5 and A.2. Similarly to the proof

of Lemma D.4 it can be shown that L̈∗
θθ,T on the right hand side of (32) is invertible for all T

sufficiently large and L̈∗−1
θθ,T → J (θ0)

−1 a.s. as T → ∞. Hence the result follows.

Proof of (17). It suffices to show that the four quantities in (16) are strongly consistent

estimators of those in (15). Due to the strong consistency of θ̂T , it suffices to prove that

∣

∣

∣

∣

∣

T−1
T
∑

t=1

A
∗(i)
t − E

[

A
∗(i)
t

]

∣

∣

∣

∣

∣

, i = 1, . . . , 4, and

∣

∣

∣

∣

∣

T−1
T
∑

t=1

(

A
∗(i)
t −A

(i)
t

)

∣

∣

∣

∣

∣

, i = 1, . . . , 4, (33)

converge to zero almost surely uniformly over Θ0 as T → ∞, where

A
∗(1)
t =

fµ,t

h∗1/2

t

f ′µ,t

h∗1/2

t

, A
∗(2)
t =

h∗θ,t

h∗t

h∗′θ,t

h∗t
, A

∗(3)
t =

u4
t

h∗2t

h∗θ,t

h∗t

h∗′θ,t

h∗t
, and A

∗(4)
t =

u3
t

h
∗3/2
t

fµ,t

h∗1/2

t

h∗′θ,t

h∗t
,

and A
(i)
t , i = 1, . . . , 4, are defined similarly but with h∗t and h∗θ,t replaced with ht and hθ,t. We

omit the remaining details, which are available from the authors on request.
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Appendix E: Technical details of the examples

Example 1: Linear AR–GARCH

We first show that the conditions in (a) suffice for the validity of Assumptions DGP and E.

First consider the process σ2
t . Under conditions (a.i) and (a.ii), the process σ2

t defined by

σ2
t = ω0

{

1 +
∑∞

j=1

∏j
i=1

(

α0ε
2
t−i + β0

)

}

is finite for all t a.s., strictly stationary, ergodic, and

Fε
t−1–measurable. This can be seen as in Nelson (1990, proof of Theorem 2), replacing the strong

law of large numbers for i.i.d. random variables used therein with a one for ergodic stationary

variables (cf. Lee and Hansen (1994, proof of Lemma 2(1)) and Linton, Pan, and Wang (in

press, proof of Theorem 1)). Moreover, a process σ2
t defined like this clearly is a solution to

σ2
t = g

(

σt−1εt−1, σ
2
t−1; θ0

)

= ω0 + α0σ
2
t−1ε

2
t−1 + β0σ

2
t−1. Making use of condition (a.iii), Lemma

A.2, and the law of iterated expectations it can also be shown that E[σ2r
t ] < ∞. Hence the

process (σt, εt) is stationary and ergodic, Fε
t –measurable, and E[σ2r

t ] < ∞ and E[|εt|
2r] < ∞

for some r > 0. Therefore, u0,t = σtεt is stationary and ergodic with E[|u0,t|
2r] < ∞. Denote

φ0 (z) = 1 −
∑p

j=1 φ0,jz
j and let φ0 (z)−1 =

∑∞
j=0 π0,jz

j be the power series expansion of

φ0 (z)−1. As is well known, condition (a.iv) implies that |π0,j | ≤ Cρj for some 0 ≤ ρ < 1

and 0 < C < ∞, so that the expansion of φ0 (z)−1 is well defined for |z| ≤ 1. Moreover,

from Lemma A.2 we find that the series yt =
∑∞

j=0 π0,ju0,t−j converges almost surely. Thus,

using Proposition 2.6 of Straumann and Mikosch (2006), (yt, σ
2
t ) is stationary, ergodic, and Fε

t –

measurable. Furthermore, from Lemma A.2 we can also conclude that E[|yt|
2r] < ∞. Thus,

Assumption DGP holds. Finally, as (yt, σ
2
t ) was shown to be Fε

t –measurable, we have Ft ⊆ Fε
t .

This together with condition (a.v) ensures that Assumption E holds. (We note that Fε
t ⊆ Ft

also holds so that these two σ–algebras actually coincide. This holds because εt can be written as

a measurable function of (yt, yt−1, . . .) due to equation (1) and Proposition 1, cf. the discussion

following Assumption E.)

For the assumptions required for consistency, first note that the parameter space is compact

by definition so that it is immediate that Assumptions C1, C3, and C4 hold (the last one

because ω is bounded away from zero for all θ ∈ Θ). The compactness also implies that, for all

θ ∈ Θ, β ≤ β̄ < 1 for some β̄, yielding Assumption C2 except for the continuity of g, which

is obvious. To see that C5 holds (cf. Francq and Zaköıan (2004), result (ii) in their proof of

Theorem 2.1 and result (ii) in their proof of Theorem 3.1), assume that f(yt−1, . . . , yt−p;µ) =

f(yt−1, . . . , yt−p;µ0) a.s. for some µ 6= µ0, which implies the existence of a linear combination

of yt−1, . . . , yt−p that is a.s. equal to a constant. Hence, to have µ 6= µ0, we must have yt−i

for some i = 1, . . . , p being a.s. equal to a deterministic function of yt−i−j , j ≥ 1. However, by

definition yt−i = f(yt−i−1, . . . , yt−i−p;µ0)+σt−iεt−i and, conditional on yt−i−j , j ≥ 1, yt−i is not

deterministic because σt−i ≥ ω > 0 and the conditional distribution of εt−i is not degenerate
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(because E[εt−i | Ft−i−1] = 0 a.s. and E[ε2t−i | Ft−i−1] = 1 a.s.). Hence µ = µ0. Similarly it can

be shown that h∗t (µ0, λ) = h∗t (µ0, λ0) a.s. implies λ = λ0 given conditions (b.i) and (b.ii).

Now consider the validity of the assumptions required for asymptotic normality. Assumption

N1 holds by condition (c.i), and Assumptions N2 and N3 are clearly satisfied (N3(iii) with κ′ =

1). For Assumption N4, condition (c.ii) ensures that in the preceding justification of assumption

DGP the arguments remain valid with r = 2. Hence it can be seen that Assumption DGP holds

with r = 2. The latter part of Assumption N4(i) holds by condition (c.iii). Assumption N4(ii)

can be verified as in Francq and Zaköıan (2004, p. 635), derivation of their equations (4.59)

and (4.60). Assumption N5(i) follows from condition (c.iv) because Ft ⊆ Fε
t . For Assumption

N5(ii), note that having x′µ∂ft(µ0)/∂µ = 0 a.s. with xµ 6= 0 implies the existence of a linear

combination of yt−1, . . . , yt−p that is a.s. equal to a constant, and a contradiction follows exactly

as in verifying Assumption C5. For N5(iii), suppose that x′λ∂g(u0,t−1, σ
2
t−1; θ0)/∂λ = xλ1 +

xλ2σ
2
t−1ε

2
t−1 + xλ3σ

2
t−1 = 0. First, xλ2 = 0, because otherwise ε2t−1 would be a (measurable)

function of (εt−2, εt−3, . . .), which is ruled out by condition (c.iv). Then, we must also have

xλ3 = 0, because otherwise σ2
t−1 would be a.s. equal to a constant, which is impossible due to

α0 > 0 and (b.i). Thus, we also get xλ1 = 0 and xλ = 0 so that Assumption N5 holds.

Example 2: AR–AGARCH

Assumptions DGP, E, C1–C4, and C5(i) can be checked in a manner similar to that of the linear

AR–GARCH case, the only modification being that the term β0 + α0ε
2
t is replaced with β0 +

α0(|εt−1|−γ0εt−1)
2 throughout. Assumption C5(ii) can be verified using arguments analogous to

those in Straumann and Mikosch (2006, Lemmas 5.2–5.4), replacing unconditional distributions

with conditional ones in relevant places. Details are omitted.

Example 3: Nonlinear AR–GARCH

We first supplement conditions (a)–(c) given in Section 6 with conditions required for the non-

linear functions F and G. Subscripts in F and G will denote partial derivatives.

(a) (vi) The derivatives of F (·;ϕ0) and G(·; γ0) exist up to any order and are continuous, and

G(·; γ0) is strictly increasing (or, alternatively, strictly decreasing).

(b) (iii) The functions F (·; ·) and G(·; ·) are continuous.

(iv) For all ϕ, limy→−∞ yF (y;ϕ) = 0 and limy→∞ y(1 − F (y;ϕ)) = 0; if ϕ 6= ϕ0, then for

some ȳ, F (ȳ;ϕ) 6= F (ȳ;ϕ0).

(v) For all γ, limu→−∞ u2G(u; γ) = 0 and limu→∞ u2(1 − G(u; γ)) = 0 (or, alternatively,

limu→∞ u2G(u; γ) = 0 and limu→−∞ u2(1−G(u; γ)) = 0); if γ 6= γ0, then for some ū,

G(ū; γ) 6= G(ū; γ0).
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(c) (iii) There exist open neighbourhoods N(ϕ0) and N(γ0) of ϕ0 and γ0 such that F (·; ·)

and G(·; ·) are twice continuously partially differentiable on R × N(ϕ0) and R ×

N(γ0), respectively. Moreover, these partial derivatives are bounded in absolute

value uniformly over R ×N(ϕ0) and R ×N(γ0), respectively.

(iv) limy→±∞ yFϕ(y;ϕ0) = 0; if (x1, x2) 6= (0, 0), then for some ȳ, (x1, x2)
′Fϕ(ȳ;ϕ0) 6= 0.

(v) limu→±∞ u2Gγ(u; γ0) = 0; if (x1, x2) 6= (0, 0), then for some ū, (x1, x2)
′Gγ(ū; γ0) 6= 0.

(vi) Gu (u; γ)u2, Guu (u; γ)u2, and Guγ (u; γ)u2 are bounded in absolute value uniformly

over R ×N(γ0).

All of the conditions above are satisfied if F and G are, for example, cumulative distribution

functions of either the logistic or the normal distribution. Condition (a.vi) is required to apply

the results in Meitz and Saikkonen (2008b). Here, as well as in condition (b.v), we separately

consider the cases of G being either strictly increasing or strictly decreasing. In the subsequent

derivations, we confine ourselves to the former case; details of the latter can be found in Meitz

and Saikkonen (2008c). Condition (b.iii) is needed for the continuity requirement in Assumptions

C2 and C3. It is also used to verify the identification conditions in Assumption C5, for which

also (b.iv) and (b.v) are needed. Condition (c.iii) ensures the differentiability requirements

in Assumptions N2 and N3(i)–(ii), and is also used to verify the identification conditions in

Assumption N5. Conditions (c.iv) and (c.v) are also needed for Assumption N5 to hold, whereas

(c.vi) ensures that Assumption N4(ii) holds.

Verification of Assumptions DGP and E.

The validity of Assumption DGP follows from the conditions in (a) due to the results in Meitz

and Saikkonen (2008b). Specifically, the conditions in (a) imply that Assumptions 1–4, 5(b), and

6 of Meitz and Saikkonen (2008b) hold so that from Theorem 1 of that paper we can conclude

that Assumption DGP holds. To see this, note first that conditions (a.i) and (a.ii) imply that

Assumption 1 of Meitz and Saikkonen (2008b) holds, whereas the conditions imposed on the

function F in (a.vi) and the assumed range of F imply Assumption 2 of the same paper. That

Assumption 3 of Meitz and Saikkonen (2008b) holds follows from the discussion given in Section

4 of that paper and condition (a.iii). Finally, (a.iv), (a.v), and the conditions assumed about

the function G in (a.vi) and its range imply that the model satisfies the assumptions required

for the model for conditional variance in Proposition 1 of Meitz and Saikkonen (2008b). Of the

two alternative cases in that proposition, (a) and (b), the latter is relevant, and it follows that

Theorem 1 of Meitz and Saikkonen (2008b) applies with some r0 ∈ (0, 1). Thus, Assumption

DGP holds with r = r0. Finally, Assumption E follows from the i.i.d. assumption (a.i).
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Verification of Assumptions for consistency.

Of the assumptions required for consistency, C1 holds due to the definition of the permissible

parameter space. The continuity condition in Assumption C2 is an immediate consequence of

condition (b.iii). The other conditions in C2 hold because the range of the function G is [0, 1]

and because, for all θ ∈ Θ, β ≤ β̄ < 1 for some β̄ in view of the assumed compactness of the

parameter space. Assumption C3 is satisfied because of (b.iii) and the fact that F has range

[0, 1], and C4 holds because, due to compactness, ω is bounded away from zero for all θ ∈ Θ.

In order to verify Assumption C5(i), we first demonstrate that if Ai, i = 0, . . . , p, are any

nonempty open subsets of R, the event

{(yt, . . . , yt−p) ∈ A0 × · · · ×Ap} (34)

has a positive probability. By the aforementioned results of Meitz and Saikkonen (2008b),
(

yt, . . . , yt−p, σ
2
t

)

is a (geometrically ergodic) Markov chain to which Proposition 4.2.2(iii) and

Theorem 10.4.9 of Meyn and Tweedie (1993) apply. By these two results, the event in (34) has

positive probability if, from any fixed initial value, the (nonstationary) chain (y†t , . . . , y
†
t−p, σ

†2
t )

eventually reaches the set A0 × · · · × Ap × R+ with positive probability (here we need to dis-

tinguish between the chain
(

yt, . . . , yt−p, σ
2
t

)

initialized from the stationary distribution and the

nonstationary one obtained by using a fixed initial value). Because εt has an everywhere positive

density, the nonstationary chain can reach the set Ap×R
p×R+ in one step with positive proba-

bility. Making use of the Chapman-Kolmogorov equations (Meyn and Tweedie, 1993, Theorem

3.4.2), the set Ap−1 ×Ap ×R
p−1 ×R+ can be reached in the next step with positive probability.

Continuing inductively, in p+ 1 steps the set A0 × · · · × Ap × R+ can be reached with positive

probability. Because this holds for any initial value, the event in (34) has a positive probability.

Consider now the identification condition in Assumption C5(i). To this end, defineAj(y;µ, µ0) =

φj −φ0,j +ψjF (y;ϕ)−ψ0,jF (y;ϕ0), j = 0, . . . , p, let ȳ1, . . . , ȳp denote real numbers, and choose

a µ ∈ M such that f (yt−1, . . . , yt−p;µ) = f (yt−1, . . . , yt−p;µ0) a.s. Then

A0(yt−d;µ, µ0) +

p
∑

j=1

Aj(yt−d;µ, µ0)yt−j = 0 a.s. (35)

To show that φj = φ0,j , j = 0, . . . , p, first suppose that φd 6= φ0,d, and consider the set

S(d, y•) = {(ȳ1, . . . , ȳp) : ȳd ∈ (y•−1, y•), ȳj ∈ (−1, 1), j 6= d}, where y• < 0. Concerning the sum

A0(ȳd;µ, µ0) +
∑

j=1,...,p,j 6=dAj(ȳd;µ, µ0)ȳj , we can find an M > 0 (not depending on y•) such

that this sum is bounded in absolute value by M on the set S(d, y•) for any y• < 0 (this holds be-

cause F has range [0, 1]). However, as φd 6= φ0,d, it follows from (b.iv) that Ad(ȳd;µ, µ0)ȳd attains

values arbitrarily large in absolute value on the set S(d, y•) when y• is small enough. Specifi-

cally, for y• small enough, |Ad(ȳd;µ, µ0)ȳd| > M . As the event {(yt−1, . . . , yt−p) ∈ S(d, y•)} has

positive probability for any y•, we can contradict (35), and hence φd = φ0,d.
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Next suppose that φk 6= φ0,k for some k = 1, . . . , p, k 6= d, and consider the set S(k, y•) =

{(ȳ1, . . . , ȳp) : ȳk, ȳd ∈ (y• − 1, y•), ȳj ∈ (−1, 1), j 6= k, d}, where y• < 0. First note that because

φd = φ0,d, Ad(ȳd;µ, µ0)ȳd = (ψdF (ȳd;ϕ) − ψ0,dF (ȳd;ϕ0))ȳd will approach 0 as ȳd → −∞ due

to condition (b.iv). Hence, the sum A0(ȳd;µ, µ0) +
∑

j=1,...,p,j 6=k Aj(ȳd;µ, µ0)ȳj will be bounded

in absolute value by some M > 0 on the set S(k, y•) for all sufficiently small y• < 0 (and M

does not depend on y•). Again, because φk 6= φ0,k, the term Ak(ȳd;µ, µ0)ȳk will attain values

arbitrarily large in absolute value on the set S(k, y•) when y• is chosen small enough, and a

contradiction is found in the same way as above. Therefore φj = φ0,j for all j = 1, . . . , p.

Finally, to show that φ0 = φ0,0, consider the set S(y•) = {(ȳ1, . . . , ȳp) : ȳj ∈ (y• − 1, y•), j =

1, . . . , p}, where y• < 0. Under the restrictions derived so far and making use of condition (b.iv),

the sum A0(ȳd;µ, µ0) +
∑p

j=1Aj(ȳd;µ, µ0)ȳj will tend to φ0 − φ0,0 on the set S(y•) when y• is

chosen small enough. As above, a contradiction is found, and thus φ0 = φ0,0.

Using similar arguments it can be shown that ψj = ψ0,j , j = 0, . . . , p (we omit the details).

Therefore, the identity (35) takes the form

(

F (yt−d;ϕ) − F (yt−d;ϕ0)
)

[

ψ0,0 +

p
∑

j=1

ψ0,jyt−j

]

= 0 a.s. (36)

If ϕ 6= ϕ0, then by the last part of condition (b.iv) we can find a ȳ such that F (ȳ;ϕ)−F (ȳ;ϕ0) 6=

0. The continuity of F (·; ·) assumed in (b.iii) now ensures the existence of some y• < ȳ < y•

such that F (ȳd;ϕ) − F (ȳd;ϕ0) is bounded away from zero for all ȳd ∈ (y•, y
•). On the other

hand, by condition (b.i), at least one of the ψ0,j , j = 0, . . . , p, is nonzero. First suppose that

ψ0,d 6= 0, and consider the set S(d, δ) = {(ȳ1, . . . , ȳp) : ȳd ∈ (y•, y
•), ȳj ∈ (−δ, δ), j 6= d}, where

δ > 0. The sum ψ0,0 +
∑

j=1,...,p,j 6=d ψ0,j ȳj will take values in a small neighborhood of ψ0,0 on

the set S(d, δ) when δ is sufficiently small. On the other hand, ψ0,dȳd takes the values between

ψ0,dy• and ψ0,dy
• on the set S(d, δ). Because the event {(yt−1, . . . , yt−p) ∈ S(d, δ)} has positive

probability for any δ > 0, we find by choosing δ small enough that the term in square brackets

in (36) cannot be equal to zero with probability one. Hence, unless ϕ = ϕ0, a contradiction has

been found. Now suppose that ψ0,d = 0 but ψ0,k 6= 0 for some k = 1, . . . , p, k 6= d. Consider the

set S(k, δ) = {(ȳ1, . . . , ȳp) : ȳk, ȳd ∈ (y•, y
•), ȳj ∈ (−δ, δ), j 6= k, d}, where δ > 0. Using similar

arguments as above, a contradiction is again found unless ϕ = ϕ0. Finally, if ψ0,j = 0 for all

j = 1, . . . , p but ψ0,0 6= 0, a contradiction is obvious unless ϕ = ϕ0. Therefore ϕ = ϕ0, which

completes the proof of µ = µ0 and hence the verification of the identification condition C5(i).

In order to prove part (ii) of Assumption C5, we first show that for some σ > 0 (which will

be defined below) and all σ < σ• < σ•, the probability of the event

{σ2
t ∈ (σ•, σ

•)} (37)
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is positive. As when considering the event in (34), it suffices to show that the nonstation-

ary chain (y†t , . . . , y
†
t−p, σ

†2
t ) eventually reaches the set R

p+1 × (σ•, σ
•) with positive probabil-

ity from any initial value. The components y†t , . . . , y
†
t−p are not essential here, so we concen-

trate only on σ†2t . From a fixed initial value σ2
0, the process σ†2t reaches σ†21 = ω0 + (α0,1 +

α0,2G(σ0ε0; γ0))σ
2
0ε

2
0 + β0σ

2
0 in one step. Because ε0 has a density that is positive everywhere,

P
{

ε20 ≤ (α0,1 + α0,2)
−1(1 − β0)/2

}

is positive for all t. For all ε0 taking such values, and defin-

ing β̄0 = (1 + β0)/2 (< 1), we have σ†21 ≤ ω0 + β̄0σ
2
0. Because ε1, . . . , εk−1 also take such values

with positive probability, the Chapman-Kolmogorov equations and an inductive argument yield

that σ†2k ≤ ω0(1 + β̄0 + . . .+ β̄k−1
0 ) + β̄k

0σ
2
0 with positive probability. Setting σ = ω0/(1− β̄0) + δ

for some δ > 0 it is clear that σ†2k ≤ σ with positive probability in a finite number of steps k.

Next, because εk has an everywhere positive density, in one step σ†2k+1 can take values in any set

(σ•, σ
•) such that σ < σ• < σ• with positive probability. Hence, P{σ2

t ∈ (σ•, σ
•)} > 0.

Now, to prove part (ii) of Assumption C5, choose a λ ∈ Λ such that h∗t (µ0, λ) = σ2
t a.s. By

stationarity, also h∗t+1 (µ0, λ) = σ2
t+1 a.s., and by Assumption C4, σ2

t ≥ g > 0. Hence we obtain

(α1 − α0,1) ε
2
t = − (β − β0)−σ

−2
t

[

(ω − ω0) + (α2G(σtεt; γ) − α0,2G(σtεt; γ0)) ε
2
tσ

2
t

]

a.s. (38)

Because εt has an everywhere positive density, the event {σ2
t ≥ g, εt ≤ g−1/2M} has positive

probability for all M < 0, and on this event σtεt ≤ M . By condition (b.v), the term in square

brackets in (38) can be made arbitrarily close to (ω − ω0) on the event {σtεt ≤M} by choosing

a small enough M . Because σ−2
t is bounded by g−1, the right hand side of (38) is bounded on

{σtεt ≤M} whereas the left hand side may attain values arbitrarily large in absolute value if

α1 6= α0,1 and M is chosen small enough. Thus, because σtεt ≤M with positive probability for

every M < 0, we must have α1 = α0,1. Under this restriction, (38) can be rearranged as

(α2 − α0,2) ε
2
t = − (β − β0)−σ

−2
t

[

(ω − ω0) + (α2(G(σtεt; γ) − 1) − α0,2(G(σtεt; γ0) − 1)) ε2tσ
2
t

]

a.s.

As above, but now considering the event {σ2
t ≥ g, εt ≥ g−1/2M} with M taking large positive

values, α2 = α0,2 follows by making use of condition (b.v). With the restrictions derived so far,

(ω − ω0) + α0,2 (G(σtεt; γ) −G(σtεt; γ0)) ε
2
tσ

2
t + (β − β0)σ

2
t = 0 a.s., (39)

where α0,2 > 0 by (b.ii). Now consider events {σ2
t ∈ (σ•, σ

•), εt ≤ σ−1/2M} with σ < σ• < σ•

and M < 0, which, by (37) and the independence of σ2
t and εt, have positive probability. On

these events σtεt ≤ M regardless of the values of σ• and σ•. Thus, by condition (b.v) and

choosing a small enough M , the sum of the first two terms in (39) can be made arbitrarily

close to (ω − ω0) with positive probability. However, considering events with different values

of σ• and σ•, (39) is clearly violated unless β = β0. Similar reasoning using (39) and the

restriction β = β0 also yields ω − ω0. Hence [G(σtεt; γ) − G(σtεt; γ0)]ε
2
tσ

2
t = 0 a.s. If γ 6= γ0,
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then by (b.iii) and the last condition in (b.v), we can find some u• < u• such that on the event

{σtεt ∈ (u•, u
•)} the term in square brackets is bounded away from zero. As this event clearly

has positive probability, we must have γ = γ0. Thus λ = λ0, and Assumption C5(ii) holds.

Verification of Assumptions for asymptotic normality.

Of the assumptions required for asymptotic normality, N1 holds by condition (c.i), and N2 by

condition (c.iii). Assumptions N3(i) and N3(ii) can be verified by condition (c.iii), whereas

N3(iii) is clearly satisfied with κ′ = 1. That Assumption DGP holds with r = 2 and E[ε4t ] <∞

follow from conditions (a) and (c.ii). (As discussed after Assumption N4, due to the i.i.d. as-

sumption, condition E[ε8t ] < ∞ can be weakened to E[ε4t ] < ∞.) Specifically, part (a) of

Proposition 1 of Meitz and Saikkonen (2008b) now applies with r = 2, and thus the validity of

Assumption DGP with r = 2 follows from Theorem 1 of the same paper (cf. the verification of

Assumption DGP above).

Now consider Assumption N4(ii). In what follows, we assume that θ ∈ Θ0. Moreover,

without loss of generality we may assume Θ0 is small enough to ensure that θ ∈ Θ0 implies

0 < ω ≤ ω ≤ ω < ∞, 0 < α1 ≤ α1 ≤ α1 < ∞, 0 < α2 ≤ α2 ≤ α2 < ∞, 0 < β ≤ β ≤ β < 1,

ϕ ∈ N(ϕ0), and γ ∈ N(γ0). Now, for the first norm in Assumption N4(ii) concerning the

vector h∗θ,t/h
∗
t , recall that in the present case h∗t = ω+ (α1 + α2G(ut−1; γ))u

2
t−1 + βh∗t−1 (where

the argument θ has been suppressed from h∗t and ut) and, in the notation of Section 4, h∗θ,t =

g∗θ,t − g∗u,tfθ,t−1 + g∗h,th
∗
θ,t−1 (see equations (7) and (11)). Partitioning h∗θ,t as h∗θ,t = (h∗µ,t, h

∗
λ,t)

we obtain h∗µ,t = −g∗u,tfµ,t−1 + βh∗µ,t−1 and h∗λ,t = g∗λ,t + βh∗λ,t−1 as immediate consequences of

the definitions. Because β ≤ β̄ < 1 by assumption, h∗µ,t and h∗λ,t have the representations

h∗µ,t = −
∞
∑

j=0

βjg∗u,t−jfµ,t−j−1 and h∗λ,t =
∞
∑

j=0

βjg∗λ,t−j , (40)

where the infinite sums converge due to Lemmas A.2 and C.1. By straightforward derivation,

g∗u,t = 2 (α1 + α2G(ut−1; γ))ut−1 + α2Gu (ut−1; γ)u
2
t−1, whereas the vector g∗λ,t has components

1, u2
t−1, G(ut−1; γ)u

2
t−1, h

∗
t−1, and α2Gγ(ut−1; γ)u

2
t−1. (41)

Because the range of G is [0, 1], and Gu (u; γ)u2 and Gγ(u; γ) are bounded in absolute value

uniformly over R × N(γ0) by conditions (c.iii) and (c.vi), the finiteness of
∥

∥supθ∈Θ0
|h∗µ,t|/h

∗
t

∥

∥

4

and
∥

∥supθ∈Θ0
|h∗λ,t|/h

∗
t

∥

∥

4
, and hence of the first norm in Assumption N4, follows if we show that
∥

∥

∥

∥

∥

sup
θ∈Θ0

∞
∑

j=0

βja
(i)
t−1−j/h

∗
t

∥

∥

∥

∥

∥

4

<∞, i = 1, . . . , 4, (42)

where a
(1)
t = u2

t , a
(2)
t = h∗t , a

(3)
t = |ut||fµ,t|, and a

(4)
t = |fµ,t|. To show this, first express h∗t as

h∗t =
∞
∑

k=0

βk
(

ω + (α1 + α2G(ut−1−k; γ))u
2
t−1−k

)

, (43)
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where the infinite sum converges due to Lemma A.2 and the result
∥

∥supθ∈Θ|ut|
∥

∥

2r
<∞ obtained

in the proof of Proposition 1. Because ω ≥ ω > 0, α1 ≥ α1 > 0, α2 ≥ α2 > 0, and β ≥ β > 0,

h∗t ≥

∞
∑

k=0

βk
(

ω + α1u
2
t−1−k

)

≥ ω + βjα1u
2
t−1−j (44)

for any j ≥ 0. Now, considering (42) with i = 1 and making use of (44) and the fact that

x/(1 + x) ≤ xs for all x ≥ 0 and any s ∈ (0, 1) (cf. Francq and Zaköıan (2004), above their

equation (4.25)), we obtain that, for any j ≥ 0 and s ∈ (0, 1),

βju2
t−1−j

h∗t
≤ α−1

1

βjα1u
2
t−1−j/ω

1 + βjα1u
2
t−1−j/ω

≤ αs−1
1 ω−sβsj |ut−1−j |

2s ≤ αs−1
1 ω−sβ̄sj sup

θ∈Θ0

|ut−1−j |
2s . (45)

As was noted above,
∥

∥supθ∈Θ|ut|
∥

∥

2r
< ∞, or

∥

∥supθ∈Θ|ut|
∥

∥

4
< ∞ when r = 2 is assumed.

Thus, choosing s ≤ 1/2 and making use of the norm inequality we obtain
∥

∥supθ∈Θ0
|ut|

2s
∥

∥

4
≤

∥

∥supθ∈Θ0
|ut|
∥

∥

2s

4
. Using this fact, (45), and Minkowski’s inequality we find that

∥

∥

∥

∥

∥

sup
θ∈Θ0

∞
∑

j=0

βju2
t−1−j/h

∗
t

∥

∥

∥

∥

∥

4

≤ αs−1
1 ω−s

∞
∑

j=0

β̄sj

∥

∥

∥

∥

sup
θ∈Θ0

|ut−1−j |

∥

∥

∥

∥

2s

4

,

where the majorant side is finite. Hence we have established (42) with i = 1. Verification of (42)

with i = 2, 3, 4 uses similar arguments, and we omit the details (they are available on request).

Now consider the latter norm in Assumption N4(ii). Recall from Section 4 that

h∗θθ,t = α∗
θθ,t + β∗t h

∗
θθ,t−1 + γ∗θ,th

∗′
θ,t−1 + h∗θ,t−1γ

∗′
θ,t + δ∗t h

∗
θ,t−1h

∗′
θ,t−1,

where α∗
θθ,t, β

∗
t , γ∗θ,t, and δ∗t are as in (7)–(8) but with ht throughout replaced with h∗t . As

already noticed, β∗t = g∗h,t = β, which implies that g∗hh,t = 0 and g∗uh,t = 0. Moreover, only

one element of g∗θh,t is nonzero, namely the one related to the component β of θ for which the

resulting partial derivative is unity. Thus, δ∗t = 0, γ∗θ,t = γ∗θ is independent of t, and we get

h∗θθ,t = α∗
θθ,t + γ∗θh

∗′
θ,t−1 + h∗θ,t−1γ

∗′
θ + βh∗θθ,t−1, giving the representation

h∗θθ,t =
∞
∑

j=0

βjα∗
θθ,t−j +

∞
∑

j=0

βjγ∗θh
∗′
θ,t−1−j +

∞
∑

j=0

βjh∗θ,t−1−jγ
∗′
θ

(the infinite sums converge due to Lemmas A.2 and C.1 and Proposition 2). This, and the

definition of α∗
θθ,t, show that for

∥

∥supθ∈Θ0
|h∗θθ,t|/h

∗
t

∥

∥

2
<∞ it suffices to establish that

∥

∥

∥

∥

∥

sup
θ∈Θ0

∞
∑

j=0

βja
(i)
t−1−j/h

∗
t

∥

∥

∥

∥

∥

2

<∞, i = 5, . . . , 9, (46)

where a
(5)
t = |g∗θθ,t+1|, a

(6)
t = |g∗uu,t+1||fθ,t|

2, a
(7)
t = |g∗uθ,t+1||fθ,t|, a

(8)
t = |g∗u,t+1||fθθ,t|, and a

(9)
t = |h∗θ,t|.

The details of verifying (46) are similar to those used to deduce (42), and we omit them (they

are available from the authors on request).
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As for Assumption N5, part (i) clearly holds due to conditions (a.i) and (a.ii). To verify

N5(ii), calculate the partial derivatives of f (yt−1, . . . , yt−p;µ) as

1, yt−1, . . . , yt−p, (1, yt−1, . . . , yt−p)F (yt−d;ϕ), and (ψ0 +

p
∑

j=1

ψjyt−j)Fϕ(yt−d;ϕ). (47)

Choose an x = (x1, . . . , x2p+4) ∈ R
2p+4 such that x′ ∂ft(µ0)

∂µ = 0 a.s. By (47) and rearranging,

[

x1 + xp+2F (yt−d;ϕ0) + ψ0,0(x2p+3, x2p+4)
′Fϕ(yt−d;ϕ0)

]

+

p
∑

j=1

[

x1+j + xp+2+jF (yt−d;ϕ0) + ψ0,j(x2p+3, x2p+4)
′Fϕ(yt−d;ϕ0)

]

yt−j = 0 a.s.

Using conditions (b.iv) and (c.iv) and arguments similar to those used to verify Assumption

C5(i), it can be deduced that x1 = · · · = x2p+2 = 0 (we omit the details). Hence

(

(x2p+3, x2p+4)
′Fϕ(yt−d;ϕ0)

)

[

ψ0,0 +

p
∑

j=1

ψ0,jyt−j

]

= 0 a.s.

If either x2p+3 6= 0 or x2p+4 6= 0, then by the last part of condition (c.iv) we can find a ȳ such

that (x2p+3, x2p+4)
′Fϕ(ȳ;ϕ0) 6= 0. The continuity of Fϕ(·; ·) assumed in (c.iii) now ensures the

existence of some y• < ȳ < y• such that (x2p+3, x2p+4)
′Fϕ(ȳd;ϕ0) is bounded away from zero for

all ȳd ∈ (y•, y
•). By (b.i), at least one of the ψ0,j , j = 0, . . . , p, is nonzero, and the arguments

used when verifying condition C5(i) can be used to arrive at contradiction (see equation (36)

and the discussion following it). Hence, x2p+3 = x2p+4 = 0 and x = 0. Therefore, N5(ii) holds.

Now consider Assumption N5(iii), and suppose that for some xλ = (x1, . . . , x6) ∈ R
6,

x′λ∂g(u0,t, σ
2
t ; θ0)/∂λ = 0 a.s. or, using the expressions of the partial derivatives in (41),

x1 + x2σ
2
t ε

2
t + x3G(σtεt; γ0)σ

2
t ε

2
t + x4σ

2
t + α0,2(x5, x6)

′Gγ(σtεt; γ0)σ
2
t ε

2
t = 0 a.s. (48)

Now, similarly to the verification of Assumption C5(ii), consider the events {σ2
t ∈ (σ•, σ

•), εt ≤

σ−1/2M} with σ < σ• < σ• and M < 0, which by (37) and the independence of σt and εt have

positive probability, and, moreover, on these events σtεt ≤M regardless of the values of σ• and

σ•. For fixed σ• and σ• and for arbitrarily small values of M , all the other terms in (48) are

bounded (due to (b.v) and (c.v)) except the second one, which takes values arbitrarily large in

absolute value unless x2 = 0. Next, under the restriction x2 = 0, writing x3G(σtεt; γ0)σ
2
t ε

2
t =

x3σ
2
t ε

2
t + x3(G(σtεt; γ0) − 1)σ2

t ε
2
t and considering the events {σ2

t ∈ (σ•, σ
•), εt ≥ σ−1/2M} with

M positive, we can similarly conclude that x3 = 0. With the restrictions derived so far,

x1 + x4σ
2
t + α0,2(x5, x6)

′Gγ(σtεt; γ0)σ
2
t ε

2
t = 0 a.s. (49)

Consider again the events {σ2
t ∈ (σ•, σ

•), εt ≥ σ−1/2M}. Letting M > 0 be arbitrarily large,

but this time considering these events with different values for σ• and σ•, (49) is clearly violated
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unless x4 = 0. With similar reasoning, also x1 = 0. Hence (x5, x6)
′Gγ(σtεt; γ0)σ

2
t ε

2
t = 0 a.s.,

from which x5 = x6 = 0 follows by using the last condition in (c.v) and arguments similar to

those used at the end of the verification of Assumption C5(ii). Thus, N5(iii) holds.
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Lundbergh, S., and T. Teräsvirta (2002): “Evaluating GARCH models,” Journal of Econo-

metrics, 110, 417–435.

Meitz, M., and P. Saikkonen (2008a): “Ergodicity, mixing, and existence of moments of

a class of Markov models with applications to GARCH and ACD models,” Econometric

Theory, 24, 1291–1320.

Meitz, M., and P. Saikkonen (2008b): “Stability of nonlinear AR–GARCH models,” Journal

of Time Series Analysis, 29, 453–475.

Meitz, M., and P. Saikkonen (2008c): “Parameter estimation in nonlinear AR–GARCH

models,” Department of Economics Discussion Paper Series No. 396, University of Oxford.

Meyn, S. P., and R. L. Tweedie (1993): Markov Chains and Stochastic Stability. Springer-

Verlag, London.

49



Nelson, D. (1990): “Stationarity and persistence in the GARCH(1,1) model,” Econometric

Theory, 6, 318–334.

Pantula, S. G. (1988): “Estimation of autoregressive models with ARCH errors,” Sankhya B,

50, 119–138.

Pfanzagl, J. (1969): “On the measurability and consistency of minimum contrast estimates,”

Metrika, 14, 249–272.

Pötscher, B. M., and I. R. Prucha (1991a): “Basic structure of the asymptotic theory in

dynamic nonlinear econometric models, Part I: Consistency and approximation concepts,”

Econometric Reviews, 10, 125–216.

Pötscher, B. M., and I. R. Prucha (1991b): “Basic structure of the asymptotic theory

in dynamic nonlinear econometric models, Part II: Asymptotic normality,” Econometric

Reviews, 10, 253–325.

Straumann, D., and T. Mikosch (2006): “Quasi-maximum-likelihood estimation in condi-

tionally heteroscedastic time series: a stochastic recurrence equations approach,” Annals of

Statistics, 34, 2449–2495.
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