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tion a typical approach is to estimate a hazard model by regressing the hazard
rate on time-varying covariates like balance sheet or stock market variables.
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that the future evolution of these covariates is unknown. Consequently, some
authors have proposed a framework that augments the prediction problem by
covariate forecasting models. In this paper, we present simple alternatives
for multi-period prediction that avoid the burden to specify and estimate a
model for the covariate processes. In an application to North American public
firms, we show that the proposed models deliver high out-of-sample predictive
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1. Introduction

The need for multi-period credit default prediction arises naturally through the

multi-period risk faced by creditors who lend with a maturity of multiple periods.

Accordingly, rating agencies like Standard & Poor’s assign their ratings – which can

be viewed as ordinal default predictions – with a time horizon of up to five years

(Standard & Poor’s, 2010). Further, the Basel Committee on Banking Supervision

states that ”banks are expected to use a longer time horizon [than one year] in

assigning ratings” (Basel Committee on Banking Supervision, 2006, § 414). The

importance of multi-period default predictions may further rise due to plans of the

International Accounting Standards Board and the Basel Committee on Banking

Supervision to base loss provisions upon the expected loss over the whole life of the

credit portfolio (Basel Committee on Banking Supervision, 2009). This would neces-

sitate the estimation of multi-year default probabilities. However, the considerably

larger fraction of studies in the huge default prediction literature only deals with a

fixed and often short-term prediction horizon. For example, a standard approach

in the literature is to estimate a discrete-time hazard model (which is basically

equivalent to a binary panel model) with yearly data directly yielding one-year de-

fault probabilities (Shumway, 2001; Chava & Jarrow, 2004; Hillegeist et al., 2004;

Männasoo & Mayes, 2009). In such a setting, default predictions for time horizons

of more than one year are not directly available since the covariates are typically

time-varying and their future evolution is unknown. Further, these models cannot

use the information contained in observations censored within one year. Therefore,

even for one-year horizons, multi-period models based for instance on monthly data

are useful since the censoring problem is mitigated.

To overcome the problem of unknown future covariates, some authors have proposed

a framework that augments the prediction problem by a covariate forecasting model.

Duffie et al. (2007) first estimate a proportional hazard model with time-varying

covariates and then forecast their vector of covariates by Gaussian panel vector au-

toregressions. Since a point forecast for the covariate vector is not sufficient due

to the nonlinear nature of hazard models, the corresponding multivariate density

forecast is then used to calculate the default probabilities by numerical methods.

Similarly, Hamerle et al. (2007) estimate a discrete-time hazard model and subse-

quently develop a covariate forecasting model. They offer an interesting option to

reduce the dimension of the problem by forecasting what they call the credit score,

i.e. the inner product of the estimated parameter vector and the covariate vector,
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instead of the covariates themselves.1 To compute the default probabilites, a Monte

Carlo simulation of the paths of the credit scores is utilized. Approaches that in-

volve covariate forecasting models have some drawbacks that make it worthwile to

look for alternatives. First, there is a considerable additional burden in both model

building and computing time. Second, there are purely statistical disadvantages

since the econometrician is left with the choice between a large model containing

many parameters – which may have low out-of-sample predictive power – and quite

restrictive assumptions to reduce dimensionality. As examples for the latter note

that the model of Duffie et al. (2007) contains only four covariates and that in

the approach of Hamerle et al. (2007) equal credit scores lead to equal credit score

forecasts regardless of the composition of the covariate vector. An advantage of the

covariate forecasting approach – as compared to the models we will propose – is that

it is capable of the analysis of portfolio credit risk since the covariate processes pro-

vide a model for the dependence of defaults. In contrast, we focus on single-obligor

credit risk and present models designed for the purposes of rating and probability of

default estimation hereby accentuating a multi-period prediction horizon. Ratings

and default probabilities are – among other risk management applications – impor-

tant inputs for credit portfolio models which may have a multi-period horizon as

well.2

In this paper, we propose relatively simple models that deliver multi-period default

predictions without a covariate forecasting model. We present the framework for

these models in section 2 and discuss their estimation in section 3. In the empirical

analysis of section 4, we apply these models to a dataset of North American public

firms and show that they deliver high out-of-sample predictive accuracy. Section 5

concludes.

2. The econometric models

As a background to the subsequently presented approach we briefly address the

study of Campbell et al. (2008). In their work, the authors estimate discrete-time

hazard models lagging their time-varying covariates by s months, s = 6, 12, 24, 36.

1Besides the firm-specific covariates which are summarized in the credit score, Hamerle et al.

(2007) also consider macroeconomic covariates which are summarized in a ”macro score” and are

similarly modeled.
2For instance, the popular industry model CreditRisk+ has a hold-to-maturity option and can

thus be used as a multi-period model. For further discussion of multi-period credit portfolio models

see Ebnöther & Vanini (2007); Hamerle et al. (2007); Rösch & Scheule (2007).
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The authors point out that this approach can be extended by letting s run from 1

to H (H denoting the prediction horizon) meaning a stepwise increase of the lag

index in the hazard regressions. Then, multi-period default probabilities can be

calculated in closed form since the hazard rate in period t + s is directly given as

a function of the covariates in period t. Once the hazard rates for period t + s,

s = 1, . . . , H, are estimated, they are easily combined to give an estimate for the

probability of a default event in the next H periods. However, estimation gets a

bit cumbersome since one has to estimate H different parameter vectors which also

increases the numbers of parameters substantially and thereby raises questions about

out-of-sample predictive power. While Campbell et al. (2008) do not perform and

validate such an extended approach, it nevertheless provides an interesting means

to overcome the burden to specify a covariate forecasting model. Therefore, we

will consider this approach in the empirical analysis. Before we do so, we will now

introduce a framework that does not need a covariate forecasting model as well and

thereby involves the estimation of just one parameter vector.

Let us first introduce the basic notation. We observe obligor i, i = 1, . . . , N , for Ti

periods thereby recording his default history and a vector of time-varying covariates

xit. Thus, we consider datasets that have a panel structure. Now, for each period

t, t = 1, . . . , Ti, define Yit to be the lifetime (the time until default) of obligor i

starting in period t. It follows that we observe Ti − 1 partially overlapping lifetimes

for each obligor since we have no information about the lifetime starting in the last

period. In real datasets we will not observe the end of every lifetime, so that we

have to define additionally the corresponding censoring indicator variable Cit which

is zero in the case of no censoring, i.e. the lifetime ends with a default event, and one

for censored lifetimes. We will specify our models in terms of the continuous-time

hazard rate which is defined as

λ(y) = lim
∆y→0

P (y ≤ Y < y + ∆y |Y ≥ y)

∆y
. (1)

The hazard rate measures the instantaneous risk of default. We choose the

continuous-time specification since it is more common in the survival analysis litera-

ture and gives us a greater variety of models to choose from. Additionally, software

packages usually offer more implementations for continuous-time hazard models.3

The idea behind the models we propose is as follows. Suppose that at a point in

time t we want to predict the default probabilities for the next H periods using the

3Discrete-time hazard models are often estimated by routines for binary panel models. However,

this is not so easily done for our kind of models since we deal with a panel of lifetimes and not

with a panel of binary variables.
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information, i.e. the covariates, we have at t. A simple solution is to specify the

hazard rate in period t + s, λ(t + s), as a function of the covariates in period t, xit,

and the ”forecast time” s. For instance, if we choose a proportional hazard (PH)

specification we would get

λ(t + s, xit) = λ0(s)exp(β′xit) . (2)

λ0(s) is called the baseline hazard and captures here the variation in the influence

of the covariates over the forecast time. The variation of the hazard rate over s may

also be interpreted as duration dependence. Note that the forecast time s is the

analogon to the lag length in the approach of Campbell et al. (2008) outlined in the

beginning of this section. There, the covariate effects are free to fluctuate for different

s due to the repeated estimation of the model. In contrast, we impose a structure

on the evolution of the covariate effects over the forecast time by integrating s

as an argument into the functional form of the model. Importantly, the default

probabilities are easily calculated in closed form:

P (Yit ≤ H) = 1 − exp

(
−

∫ H

0

λ(t + s, xit) ds

)
(3)

Note also the difference to the usual PH specification as, for instance, used in Duffie

et al. (2007). There, the hazard rate in period t + s, λ(t + s), is a function of the

covariates in period t + s leaving those models with the problem that the covariates

are not known in t + s.

PH models have received great popularity not least because it is possible to estimate

β without specifying the baseline hazard. This approach, developed by Cox (1972),

can be followed by nonparametric estimation of the baseline hazard and is thus

often called semiparametric. However, the PH model in our version implies that

the hazard ratios for two obligors i and j, λ(t + s, xit)/λ(t + s, xjt), are constant

with respect to the forecast time s. There is evidence in the literature that this

assumption is not realistic at least in the area of corporate credit (Fons, 1994). This

can be easily seen by looking at tables of marginal default rates (the counterparts

of hazard rates) for different rating grades.4 There, it is quite obvious that the

gap in the marginal default rates between firms with different ratings narrows with

the prediction horizon. An intuitive interpretation is that the importance of the

information in period t decays with the forecast time s. Fortunately, there is a

class of hazard models that covers the case of converging hazard rates. Proportional

4Marginal default rates are easily derived from the cumulative default rates (the counterparts

to default probabilities) regularly published by Standard & Poor’s and Moody’s.
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odds (PO) models generally imply that the hazard ratios converge monotonically

towards one (Bennett, 1983) where the convergence is with respect to the forecast

time s in our setting. In PO models the survival odds and not the hazard rates are

proportional to exp(β′xit). The most common PO specification is the log-logistic

model where the conditional distribution of Yit is assumed to be log-logistic. Then,

in our framework the hazard rate is given by

λ(t + s, xit) =
α exp(β′xit)

αsα−1

1 + {exp(β′xit)s}α
. (4)

Here, α determines the shape of the hazard curve. The cumulative distribution

function evaluated at H (yielding the default probabilities) under this model is

P (Yit ≤ H) =
1

1 + {exp(β′xit)H}α . (5)

While this model is fully parametric, there also exist semiparametric specifications

for the PO model. For instance, Royston & Parmar (2002) use cubic splines for a

flexible but smooth estimation of the baseline odds thereby achieving similar flex-

ibility as in the Cox model. In our empirical analysis, we also experimented with

this approach. However, this did not lead to improved predictive accuracy.5 Thus,

we do not document it further here.

3. Estimation

For the models we propose, the lifetimes starting at t, Yit, are simply connected to

the covariates in period t, xit. Clearly, the multiple lifetimes of an individual obligor

are not conditionally independent, i.e. Yit is not conditionally independent from Yit∗ ,

t 6= t∗. Too see this, note that for instance Yit already covers the lifetime Yi,t+1 plus

one additional period so that we have a sample of partially overlapping lifetimes.

The reason why Yi,t+1 is included although it is completely covered by Yit is that

the covariates vary from period t to t + 1 and provide additional information. For

the purpose of point estimation, it is possible to ignore the dependencies due to our

overlapping sample and still to consistently estimate the parameters. This is a result

from multivariate survival analysis (Lawless, 2003, Ch. 11) where the asymptotics

only require that the lifetimes of different obligors are conditionally independent

and that the number of obligors (N) approaches infinity. No assumptions are made

5The reason for this is arguably the fact that we measure predictive accuracy in terms of an

accurate risk ordering of the obligors which is usually invariant to changes in the shape of the

baseline hazard. See section 4 for further discussion.
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about the dependence structure within the lifetimes of an individual obligor. Our

pseudo log likelihood function is

log L =
N∑

i=1

Ti−1∑

t=1

(1 − Cit) · log{λ(t + Yit, xit)} + log{S(t + Yit, xit)} , (6)

where S(·) ≡ 1 − F (·) is the so-called survival function referring to the cumula-

tive distribution function F (·). In many applications the assumption of conditional

independence of the lifetimes of different obligors may be at best approximately

true because of common shocks which affect all obligors over the forecast time and

which are not reflected in the covariates at the start of the lifetime. However, our

approach can be justified by one theoretical and two practical arguments. First,

results on Maximum Likelihood estimation under multi-way clustering indicate that

an additional clustering (dependence) within the time dimension does not lead to in-

consistency of our estimator at least if the time dimension is large as well (Cameron

et al., 2011).6 Second, dummy variables for each period should capture common

shocks to a large extent. We experimented with this option but found – similar to

Campbell et al. (2008) – no important effects on our results. And third, the high

out-of-sample predictive power of our models (the central objective of our analysis)

which will be reported in the upcoming section provides further support for our

approach.

For the estimation of the log-logistic model, we simply substitute the definitions

of the hazard rate and the survival function as given in the preceding section into

Equation (6). For the the semiparametric Cox model, we have to adjust our notation

a bit. Suppose that we have r distinct values of uncensored lifetimes in our (over-

lapping) sample, Y(1), . . . , Y(r). Further, denote by R(Y(j)) the set of observations

with a lifetime of at least Y(j) (those ”at risk” at Y(j)) and denote by d(j) the number

of defaults at Y(j). Formally, d(j) =
∑N

i=1

∑Ti−1
t=1 1[Yit=Y(j),Cit=0]. Further, we build

the sum of the covariate vectors of all observations that ended with a default at Y(j)

and denote this by z(j): z(j) =
∑N

i=1

∑Ti−1
t=1 1[Yit=Y(j),Cit=0]xit. Then, the pseudo log

partial likelihood under the Breslow approximation (Breslow, 1974) for tied lifetimes

is

log Lp =
r∑

j=1

β′z(j) − d(j)log





∑

l∈R(Yj)

exp(β′xl)




 . (7)

After β has been estimated, the baseline hazard can be estimated nonparametrically

(Lawless, 2003, Ch. 7).

6In our empirical analysis the sample length is 352 months.
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While we can consistently estimate our models under the working independence

assumption, the dependencies due to overlapping lifetimes are not ignorable for

covariance matrix estimation. In fact, unadjusted standard errors would be much

too low. Instead, if we view all the lifetimes of an individual obligor as one cluster, we

can apply cluster-robust covariance matrix estimation. Let V̂H = (−δ2ln L/δβ̂δβ̂′)−1

be the conventional covariance matrix estimator based on the Hessian of the log

likelihood function. Further, denote by si(β̂) the contribution of obligor i to the

score vector. Then, the cluster-robust covariance matrix estimator is

V̂ (β̂) = V̂H

(
N∑

i=1

si(β̂)′si(β̂)

)
V̂H . (8)

Again, the estimator is consistent for N → ∞. Note that for the Cox model the

score contributions are not immediately available since we do not simply have a

sum over i different obligors in the log likelihood function. However, cluster-robust

covariance matrix estimation is still possible. Details can be found in Lin (1994).

The implementation of our models is easy. If for every observation of the panel

dataset the lifetime Yit and the corresponding censoring indicator Cit is calculated,

standard survival analysis routines can be employed. An option for cluster-robust

standard errors is also available in many software packages. There is a final point

to note about the definition of the lifetimes Yit. Given that we usually assume a

limited prediction horizon, H, it may be sensible to conduct an artificial censoring

of the lifetimes at H thereby omitting possibly irrelevant information about what

happened after H. For instance, with H equal to 60 months, we would set a value

of 60 to all lifetimes larger than 60 together with a change in the censoring indicator

if the lifetime ended with a default event before. Empirical tests show that while

the differences are rather small it is indeed preferable to conduct such an additional

censoring.

4. Empirical analysis

To construct our dataset for the empirical analysis, we have merged three different

datasets all of them referring to North American public firms. First, we collect

monthly Standard & Poor’s rating and default data from Compustat. Consequently,

default is in our study defined to be a default rating (D or SD) from Standard &

Poor’s. We then merge the default histories with quarterly balance sheet data from

Compustat and monthly stock market data from CRSP. The balance sheet variables

are taken to be constant over the months between financial statements so that the
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final dataset has monthly time intervals. Since there are on average two months

between the end of the corresponding fiscal period and the reporting date we lag

the balance sheet variables by two months so that the values of the variables should

have been indeed available in each month. Further, following common practice

and relying on the results from Chava & Jarrow (2004) we exclude financial firms

(SIC codes 6000-6799). Finally, to eliminate the effect of outliers, we winsorized

all variables at the 5th and 95th percentile. The final dataset consists of 339 222

firm-months from 3575 firms in the period from December 1980 until March 2010.

We observe 498 different default events, but note that our definition of Yit leads to

18 914 partially overlapping lifetimes in our sample that end with a default event.

For the selection of our covariates, we used the experience from studies based on

similar datasets (Campbell et al., 2008; Chava & Jarrow, 2004; Shumway, 2001) to

choose candidate variables. We consider market-based and accounting-based vari-

ables since recent research indicates that a combination of both delivers the highest

predictive accuracy (Campbell et al., 2008; Agarwal & Taffler, 2008). We do not

include macroeconomic covariates although it is likely that these have a significant

impact on the hazard rate as well. The reason for doing so is that macroeconomic

covariates are known to be important for the absolute level of default risk but only

of little importance for the assessment of the relative risk of firms (Carling et al.,

2007; Jacobson et al., 2008; Hamerle et al., 2006). We will concentrate on the lat-

ter (see also the discussion later in this section) and thus disregard macroeconomic

variables.7 The final specification of our models was derived by a backward se-

lection approach that entailed the sequential reduction of the model containing all

candidate variables. As the main criteria in the model selection process we used

the Wald statistics and the associated p values of the covariates since we have to

be careful with likelihood ratio tests and information criteria in a pseudo likelihood

setting. Further, we looked for possible non-monotone effects of the variables on

the hazard rate by grouping each covariate into quartiles and including the corre-

sponding dummy variables into our model. We find strongly non-monotone effects

for growth of total assets. Both high and low (highly negative) growth rates are

associated with higher default risk. Therefore, our final model contains a dummy

variable which is one if annual growth of total assets is in the upper or lower quartile

and zero otherwise. The other covariates are quite standard and are used in this

way or very similarly in the aforementioned studies. Note that liquidity variables

were also tested but found to be insignificant. Finally, we checked the correlation

7For a comprehensive analysis of the influence of macroeconomic variables on the default risk

of North American firms see Figlewski et al. (2006).
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Table 1: Summary statistics for covariates

Name Description Mean Median St. dev. Min Max

NITA Net income over previous year / Total assets .0072 .0096 .0201 -.1549 .0792

TLTA Total liabilities / Total assets .6360 .6299 .1679 .1151 1

GRO Dummy for extreme growth of total assets .5 0 .5 0 1

RET Excess one-year log stock return over S&P 500 -.0291 .0014 .3674 -1.3165 1.2196

VOLA St. dev. of monthly log returns in previous year .1100 .0925 .0627 .0385 .2979

SIZE Log(market value / S&P 500 total market value) -8.9940 -8.8744 1.7204 -13.2707 -6.3406

Table 2: Results from hazard regressions

Cox model (PH) Log-logistic model (PO)

Coef. Std. error Coef. Std. error

NITA -5.598 (1.358) -6.804 (1.271)

TLTA 2.426 (0.296) 2.311 (0.254)

GRO 0.212 (0.054) 0.184 (0.053)

RET -0.826 (0.056) -0.813 (0.053)

VOLA 6.142 (0.526) 6.062 (0.461)

SIZE -0.374 (0.031) -0.336 (0.027)

const. 11.992 (0.278)

α 1.255 (0.023)

firm-months 339 222 339 222

Wald χ
2 2351.88 2415.62

between our covariates. There is no correlation above 0.5 so that multicollinear-

ity should not pose a problem. A brief description and summary statistics for all

selected covariates are presented in Table 1.

We now turn to our estimation results. Table 2 shows the parameter estimates for

the Cox model and the log-logistic model. The results refer to lifetimes which have

been (additionally) censored at 60 months as described at the end of the previous

section. All coefficients have the expected sign and are highly significant. As we

estimate the Cox model with the partial likelihood approach, we do not estimate

parameters for the baseline hazard (including the intercept) here. The results from

the Cox model and the log-logistic model turn out to be quite similar. The goodness-

of-fit is larger for the log-logistic model as can be seen by the corresponding Wald

χ2 statistics for the standard test that all coefficients of the covariates are zero.

Our primary motivation to estimate the log-logistic model was its property of de-
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Figure 1: Evolution of hazard ratios

5
6

7
8

0 20 40 60
s

36
38

40
42

44
46

0 20 40 60
s

Hazard ratios of the upper and lower quartile firm (left) and upper and lower decile firm (right)

derived from the log-logistic model

clining hazard ratios. To study the evolution of hazard rates over the forecast time

we plotted in Figure 1 the hazard ratios of the upper and lower quartile firm on

the left hand side and the hazard ratios of the upper and lower decile firm on the

right hand side. For this calculation, we sorted all firms-months according to their

risk (as measured by x′
itβ) so that for the upper quartile firm, for instance, 25% of

all firms-months are estimated to be less risky. The decrease of the hazard ratios

is evident but seems to happen at a moderate pace. This does not surprise as we

do not expect that the hazard rates of high-risk and low-risk firms approach each

other very quickly. By comparing both curves we further see that more extreme

hazard ratios decline more quickly. In the Cox model, the hazard ratios for the

same quantiles are constant at 5.30 and 24.28, respectively.

We now proceed with the evaluation of the predictive power of our models. Follow-

ing common practice we will focus on what is usually referred to as discriminative

power, i.e. the ability of our models to provide an accurate rank order of the firms

according to their risk. We will not evaluate the calibration of our models which

concerns the levels of the predicted probabilities. The reason for this is that a recal-

ibration of models is both possible and commonplace. In the credit risk area, such a

recalibration is often done by classifying the obligors into rating classes and estimat-

ing default probabilities for these classes. In contrast, it is not possible to adjust the

discriminative power of a model afterwards. To measure predictive accuracy, we will

use the Accuracy Ratio and Harrell’s C, a related measure from survival analysis
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which is advocated in Orth (2010) for credit risk applications.8 The latter has a

very similar interpretation as the Accuracy Ratio in that it is also bounded between

−1 and 1 while the upper limit is reached by a hypothetical perfect model. The

main differences are that Harrell’s C can use censored observations and the timing

of default events. We use our measures in the following way. For a given sample

month t, we calculate the Accuracy Ratio and Harrell’s C for the predictions made

in period t (and the corresponding lifetimes starting at t). We do this in monthly

steps for a range of values for t and then take a weighted average of our indices with

the number of firms observed in each period as weights. We measure both in-sample

and, more importantly, out-of-sample predictive power. In the in-sample part, t

is ranging from December 1985 to March 2005 which covers all periods where the

indices can be calculated. In the out-of-sample part, t is ranging from December

1995 to March 2005. There, each month the models are re-estimated using only the

information available until period t, a procedure known as a recursive estimation

scheme. Stein (2004) calls it alternatively a walk-forward approach and argues that

it is closest to the practical use of default prediction models.

Besides the Cox model and the log-logistic model we consider as competitors the

stepwise lagging procedure (SLP) as outlined in the beginning of section 2 (using

a logit specification for the discrete-time hazard rate as in Campbell et al., 2008)

and Standard & Poor’s Long Term Issuer Credit Ratings. As prediction horizons

we choose one, three and five years. The results are shown in Table 3. We observe

high predictive accuracy for all our models. While comparisons with other studies

have to be taken with care note that Duffie et al. (2007) report out-of-sample Accu-

racy Ratios of 87% (one year) and 70% (five years) using a similar dataset thereby

achieving less accuracy than our models.9 Comparing our different specifications,

we see that the log-logistic model performs best in every category. The Cox model is

second-best in the out-of-sample part and similar to the SLP procedure in-sample.

This difference is most likely due to the fact that the SLP approach is more highly

parameterized and thus suffers more from out-of-sample instability than the other

models. Standard & Poor’s ratings throughout have the lowest predictive power

with the exception of the out-of-sample five-year Accuracy Ratio. The gains from

our models as compared to S&P are highest for the shorter horizons. This is sim-

8Both measures are special cases of Somers’ D which is again very closely related to Goodman

and Kruskal’s γ (Somers, 1962). The Accuracy Ratio is statistically equivalent to the Area under

the ROC curve and also sometimes referred to as the Gini coefficient. See Basel Committee on

Banking Supervision (2005) for an overview.
9Duffie et al. (2007) use a covariate forecasting approach as described in section 1 and state

that their model is an improvement over available alternatives.
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Table 3: Model performance statistics

Panel A: In-sample predictive accuracy

Harrell’s C Accuracy Ratio

Prediction horizon (months) 12 36 60 12 36 60

log-logistic .9086 .9011 .8283 .8071 .7931 .7593

Cox .9077 .9003 .8274 .8061 .7917 .7580

SLP .9078 .9004 .8279 .8065 .7910 .7571

S&P .8353 .8264 .7929 .7616 .7784 .7284

Panel B: Out-of-sample predictive accuracy

Harrell’s C Accuracy Ratio

Prediction horizon (months) 12 36 60 12 36 60

log-logistic .8862 .7672 .7104 .8939 .7864 .7436

Cox .8840 .7628 .7059 .8917 .7819 .7389

SLP .8829 .7586 .6993 .8906 .7785 .7338

S&P .8149 .7338 .6943 .8234 .7625 .7417

ilar to findings in related studies and is also in line with the common perception

that rating agencies are not making the most efficient use of short-term relevant

information.

We now go on to analyze if the differences in out-of-sample predictive power between

our competing predictors are statistically significant. We choose the bootstrap as a

robust tool for this purpose. Due to the dependencies in our data we have to choose

a bootstrap procedure that accounts for this. To be specific, we need a bootstrap

procedure which is based on resampling with replacement from approximately in-

dependent units. This can be achieved by resampling from the set of firms instead

of the set of firm-months.10 Then, the standard bootstrap formulas can be applied.

Such an approach is actually a version of the cluster bootstrap (Field & Welsh, 2007)

if we view again all observations of one obligor as one cluster. By resampling from

our out-of-sample predictors and the associated lifetimes we can perform bootstrap

hypothesis tests for the null that two models have the same predictive power.

The results of Table 4 show that the log-logistic model is a significant improvement

over all alternatives with the exception of S&P ratings at the five-year time hori-

zon. Further, the stepwise lagging procedure performs significantly worse than the

10In a related application, Hanson & Schuermann (2006) employ this procedure as well.
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Table 4: Bootstrap hypothesis tests for out-of-sample predictive accuracy

Prediction horizon of 12 months

Harrell’s C Accuracy Ratio

log-l. Cox SLP S&P log-l. Cox SLP S&P

log-l. . .002 .002 .001 . .001 .001 .001

Cox . .009 .001 . .008 .001

SLP . .001 . .001

S&P . .

Prediction horizon of 36 months

Harrell’s C Accuracy Ratio

log-l. Cox SLP S&P log-l. Cox SLP S&P

log-l. . .001 .001 .012 . .001 .001 .068

Cox . .009 .022 . .029 .135

SLP . .056 . .217

S&P . .

Prediction horizon of 60 months

Harrell’s C Accuracy Ratio

log-l. Cox SLP S&P log-l. Cox SLP S&P

log-l. . .001 .001 .223 . .001 .001 .871

Cox . .001 .383 . .009 .816

SLP . .700 . .575

S&P . .

The table contains p values for the null hypothesis that the population values of the indices (i.e., the Accuracy Ratio

or Harrell’s C) for two predictors are equal which is tested against the two-sided alternative. The test refers to the

results of Table 3, Panel B. The number of bootstrap replications is B = 999. If ∆I denotes the difference of two

indices and ∗ refers to a bootstrap sample, the formula for the p values is p = {1+#(|∆I∗ −∆I| ≥ |∆I|)}/{1+B}.

See Davison & Hinkley (1997) for details.

more parsimonious Cox and log-logistic models. This result holds regardless of the

prediction horizon and the accuracy measure used. Our findings give rise to the fol-

lowing two main interpretations. On the one hand, we see that it pays off to choose

a parsimonious model with relatively few parameters. This is of course a common

finding especially in the forecasting literature. On the other hand, we observe that it

is worthwhile to thoroughly analyze the structure imposed by the functional form.

Here, the more realistic assumption of converging hazard rates of the log-logistic

model as opposed to the constant hazard ratio assumption of the Cox model leads

to a significantly higher predictive accuracy.
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5. Conclusions

In this paper we have derived and estimated simple but accurate models for multi-

period credit default predictions. The relative simplicity stems mainly from the facts

that in our approach no covariate forecasting model is needed and that the models

can be estimated in one step. Our approach further has the advantage that exten-

sions are quite straightforward. Such possibilities include semi- or nonparametric

specifications and forecast combinations/model averaging. Moreover, extensive out-

of-sample tests as we have done are computationally affordable. All these things

would be a much greater challenge in a more complex settings.

We apply our models to corporate defaults, but our approach is generally useful for

predictive hazard models if the data have a panel structure and if the time intervals

are shorter than the prediction horizon. Obvious related applications in the credit

risk area include models of sovereign risk or models based on mortgage data with

time-varying characteristics.

Finally, the sparseness of multi-period default prediction models in the literature

partly seems to be based on the seemingly high effort needed for model building and

computing as compared to single-period models. With relatively easy estimation

methods at hand and due to their economic importance, multi-period models deserve

to gain popularity.
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