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STATISTIK UND ÖKONOMETRIE
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1 Motivation

When implementing portfolio optimization according to Markowitz (1952), one needs to

estimate the expected asset returns as well as the corresponding variances and covariances.

The estimation of expected asset returns is the Achilles’ heel in the implementation of

portfolio optimization (Chopra and Ziemba, 1993; Merton, 1980). If the estimates are

based only on time series information, it is well-known that the suggested portfolio tends

to be far removed from the optimum. For this reason, there is a broad literature which

addresses the question of how to reduce estimation risk in portfolio optimization.1

In a recent study, DeMiguel et al. (2009) compare portfolio strategies which differ in the

treatment of estimation risk. It turns out that none of the strategies suggested in the

literature is significantly better than naive diversification, i.e. taking the equally-weighted

portfolio. The same conclusion might be drawn for any value-weighted stock-index port-

folio. In my opinion the underlying problem is twofold:

(i) Even if the number n of observations is large, the impact of errors due to covariance

matrix estimation can be substantial if the number d of assets is large, too, i.e. if

the quantity n/d is small (Frahm, 2008; Jagannathan and Ma, 2003; Kempf and

Memmel, 2006; Wolf, 2007). However, errors which are due to covariance matrix

estimation can be principally reduced by taking short-term data, such as daily or

weekly asset returns, into consideration.2

(ii) Unfortunately, increasing the sampling frequency does not work for estimating ex-

pected asset returns. This argument has been already pointed out by Merton (1980).

See also Jorion (1985) as well as Chopra and Ziemba (1993) for a discussion in the

context of optimal asset allocation.

These fundamental problems are still a matter of debate. In the following I will concentrate

on the estimation of expected returns. During the past three decades several alternatives to

1See, e.g., Bade et al. (2008); DeMiguel et al. (2009); Frahm and Memmel (2010); Frost and Savarino

(1986, 1988); Garlappi et al. (2007); Jobson and Korkie (1979); Jorion (1986); Kan and Zhou (2007); Kempf

and Memmel (2006); Ledoit and Wolf (2003) and the references therein.

2When increasing the sampling frequency, asset returns cannot be assumed to be normally distributed

or serially independent. In that case alternative methods for estimating the covariance matrix, such as

robust covariance matrix estimation (see, e.g., Frahm, 2009) should be applied.
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the usual sample mean estimator have been proposed. In the present work I will investigate

the following standard estimators, which are frequently advocated in the literature:

• The sample mean estimator,

• the James-Stein estimator and the Bayes-Stein estimator,

• the minimum-variance estimator, and

• the estimator based on the Capital Asset Pricing Model.

This work contributes to the literature by providing exact analytical results. By contrast,

the results which can be found in the literature are typically based on Monte Carlo sim-

ulations, re-sampling methods such as (block-)bootstrapping, or empirical investigation.

These procedures suffer from well-known drawbacks. For instance, it is hardly possible to

generalize results which have been obtained by Monte Carlo simulation. Re-sampling pro-

cedures – especially block-bootstrap procedures which take the serial dependence structure

of (out-of-sample) returns into consideration – require very long periods of observed asset

returns. Finally, empirical studies often suffer from insignificant results even if the sample

sizes are large.

I will study the so-called risk functions of the different expected return estimators. This

instrument is well-known from statistical decision theory. Jorion (1986) states that ‘the

computation of the risk function is an arduous task.’. However, the main advantage of

using that kind of statistical analysis is that it becomes possible to make general statements

without relying on specific parametrical assumptions for numerical simulation or struggling

with insignificant results from empirical data. Many important insights can be found by

analytical investigation only, in particular understanding the circumstances under which

quantitative methods of portfolio optimization will outperform naive diversification or any

other trivial strategy.

I will try to provide answers to the following questions:

(i) Why should it be meaningful at all to study the risk function, i.e. a standard instru-

ment of statistical decision theory, in the context of optimal asset allocation?

(ii) Which quantities determine the risk of the different expected return estimators?

(iii) Which estimator is preferable with respect to optimal asset allocation?
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(iv) Does it pay to strive for the optimal portfolio by using time series information or is it

better to renounce parameter estimation altogether and pursue some trivial strategy

such as the totally risk-free investment?

2 Notation and Assumptions

Let Rt = (R1t, . . . , Rdt) be a d-dimensional vector of asset returns at time t = 1, . . . , n .3

More precisely, Rt denotes a vector of excess returns with respect to the risk-free interest

rate, but the prefix ‘excess’ will be dropped for convenience unless otherwise stated. In

the following 0 denotes a vector of zeros and 1 is a vector of ones. Further, Id is the

d-dimensional identity matrix.

In the following Nk(ω,Ω) denotes a k-variate normal distribution with mean vector ω ∈ R
k

and positive-definite covariance matrix Ω ∈ R
k×k. Further, χ2

k(λ) denotes a noncentral χ2-

distribution with k ∈ N degrees of freedom and noncentrality parameter λ ≥ 0 . This

means χ2

k(λ) ∼ X ′X with X ∼ Nk(θ, Ik) and θ ∈ R
k, where the noncentrality parameter

is defined as λ = θ′θ. By contrast, χ2

k stands for a central χ2-distribution (i.e. λ = 0) with

k degrees of freedom. The symbols χ2

k and χ2

k(λ) are also used to indicate some random

variables which are correspondingly distributed.

Suppose that the following assumptions are satisfied:

A1. The asset returns are jointly normally distributed, i.e. Rt ∼ Nd(µ,Σ) for t = 1, . . . , n

with µ ∈ R
d and positive-definite matrix Σ ∈ R

d×d.

A2. The asset returns are serially independent.

A3. It holds that 1
′Σ−1µ > 0 .

I make the assumption of jointly normally distributed and serially independent asset returns

even though there exist by far more advanced time series models (especially for high-

frequency data). However, Assumptions A1 and A2 are made for three reasons:

(i) These are the standard assumptions in the finance literature.

3In the subsequent discussion ‘(x1, . . . , xd)’ indicates a d-tuple, i.e. a d-dimensional column vector.
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(ii) In workaday portfolio management it is common to use low-frequency data, for ex-

ample monthly asset returns. For these data, the assumption of joint normality

and serial independence can be readily justified (Aparicio and Estrada, 2001; McNeil

et al., 2005, p. 122).

(iii) Generally it is difficult to derive small-sample results without the normal distribution

assumption but for understanding the impact of estimation errors on optimal asset

allocation, studying the small-sample properties of the estimators is crucial (Frahm

and Memmel, 2010).

Every vector v ∈ R
d is said to be a portfolio. The Sharpe ratio of a portfolio v is given by

Shv =
v′µ√
v′Σv

.

In this work I will often refer to the tangential portfolio

wT =
Σ−1µ

1′Σ−1µ

and the global minimum variance portfolio

wMV =
Σ−1

1

1′Σ−11
.

Every d-dimensional random vector ŵ = (ŵ1, . . . , ŵd) ∈ C ⊆ Rd is said to be an investment

strategy . Here C denotes a convex set of portfolio-weight constraints. This means every

convex combination of different strategies lies also in C.4 The weight of the risk-free asset

follows implicitly by ŵ0 = 1− ŵ′
1. This guarantees that the budget constraint is satisfied

for every ŵ ∈ R
d.

A deterministic vector v ∈ C is referred to as a fixed strategy . Further, a strategy which

does not depend on empirical data is said to be trivial . For instance, every fixed strategy

is trivial. Due to A1 and A2 the out-of-sample performance of a buy-and-hold strategy ŵ

(where the chosen portfolio is liquidated after 1 period) is given by

φ(ŵ) = ŵ′µ− α

2
· ŵ′Σŵ ,

4The convexity assumption is weak but very useful for technical reasons. For example, otherwise it

could not be even guaranteed that E(ŵ) ∈ C.
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where α > 0 is the investor’s individual risk-aversion parameter. Hence, under parameter

uncertainty, the out-of-sample performance is a stochastic quantity unless the investor has

a fixed strategy.

Now suppose that

A4. the investor seeks for a buy-and hold strategy ŵ ∈ C where the chosen portfolio is

liquidated after T ∈ N periods.

A5. He aims at maximizing the expected out-of-sample performance of ŵ given his in-

vestment horizon T , i.e.5

TE
(
ŵ′µ− α

2
· ŵ′Σŵ

)
.

Assumption A5 guarantees that the investor’s optimal decision is not determined by his

specific investment horizon and in the following I will suppose that T = 1 without loss of

generality. An alternative way of quantifying the out-of-sample performance of a strategy

would be to calculate

ϕ(ŵ) = E(ŵ′R)− α

2
· Var(ŵ′R) ,

but it can be shown that φ(ŵ)−ϕ(ŵ) is negligible (Frahm and Memmel, 2010). Hence, in

the following I will concentrate on analyzing φ(ŵ) (see also Kan and Zhou, 2007).

The optimal portfolio, i.e. the portfolio which maximizes φ(·) without any constraints on

the portfolio weights, is denoted by

w∗ =
Σ−1µ

α
. (1)

Assumption A3 guarantees that the expected return of w∗ is positive.6 The out-of-sample

performance of w∗ corresponds to

φ(w∗) =
µ′Σ−1µ

2α
.

The quantity µ′Σ−1µ equals to the squared Sharpe ratio (with respect to the given sampling

frequency) of w∗ or any other portfolio being proportional to w∗ such as the tangential

5This is based on a simplifying assumption which is frequently used in the finance literature, namely

that the sum of T independent and identically distributed returns corresponds to the return after T periods.

6
A3 implies also that the expected return of the global minimum variance portfolio is positive. Roughly

speaking, this technical assumption guarantees the existence of the efficient frontier.
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portfolio wT . Typical values for annualized ex-post Sharpe ratios of stock-index portfolios

which can be found in empirical data are between 0.2 and 0.5 (Cogley and Sargent, 2008;

Dimson et al., 2003; Jorion, 1991). This means if µ and Σ refer to monthly data, the

squared Sharpe ratio might take values up to 2%. By contrast, typical values for the risk

aversion parameter α are between 3 and 5 (Chopra and Ziemba, 1993).

Recall that n corresponds to the number of observations and d is the number of assets.

A6. It is supposed that n > d+ 1 and d > 1.

In the following it is assumed that Σ is estimated by the sample covariance matrix Σ̂ , i.e.

Σ̂ =
1

n

n∑

t=1

(
Rt − µ̂

)(
Rt − µ̂

)′

where µ̂ = 1/n
∑n

t=1
Rt represents the sample mean vector of R1, . . . , Rn .

Finally, the loss of a strategy ŵ is defined as

L(ŵ) = φ(w∗)− φ(ŵ)

and, according to statistical decision theory, R(ŵ) = E
{
L(ŵ)

}
is referred to as the risk of

the investment strategy ŵ .

3 The Expected Out-of-Sample Performance

Consider a d-dimensional random vector X ∼ Nd(µ,Σ) . A typical instrument in statistical

decision theory for examining an estimator θ̂ for µ is given by

R(θ̂) = E
{
ℓ(θ̂)

}
= E

{
(θ̂ − µ)′Σ−1(θ̂ − µ)

}
.

This is the so-called risk function of the estimator θ̂ . The risk function depends on the

true but unknown parameter µ.7 Jorion (1986) suggests to use the quadratic loss function

ℓ(θ̂) for finding better estimators for expected asset returns in the context of portfolio

optimization. His arguments lead to the well-known shrinkage estimators, i.e. the James-

Stein and Bayes-Stein estimators, which will be investigated below.

Concerning the statistical loss function ℓ(θ̂) Jorion (1986) writes ‘The use of this loss

function is relatively widespread because it leads to tractable results’ and ‘also, a quadratic

7Here the covariance matrix Σ is considered as fixed.
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loss is generally a good local approximation of a more general loss function expanded in

a Taylor series.’. However, in the context of portfolio optimization investors are typically

interested in finding a strategy which leads to a better expected out-of-sample performance.

Hence, it might be questionable whether the presented loss function makes sense from the

perspective of optimal asset allocation. In the following I will prove that ℓ(θ̂) in fact is

equivalent to the actual loss function L(ŵ) presented above. This means if somebody is

interested in maximizing her expected out-of-sample performance, the choice of ℓ(θ̂) is not

only ad hoc but even inevitable.

Before that I will establish a theorem which is useful for quantifying the expected out-of-

sample performance of a strategy.

Theorem 1

Under the assumptions A1 to A5 the risk of an investment strategy ŵ ∈ C amounts to

R(ŵ) =
α

2
E
{
(ŵ − w∗)′Σ (ŵ − w∗)

}
=

α

2

{
B(ŵ) + V(ŵ)

}
,

where

B(ŵ) = (w̄ − w∗)′Σ (w̄ − w∗) and V(ŵ) = E
{
(ŵ − w̄)′Σ (ŵ − w̄)

}

with w̄ = E(ŵ) and w∗ = Σ−1µ/α .

Proof: See the appendix.

This means the risk of a strategy can be separated into a part which quantifies the bias,

i.e. the systematic deviation of that strategy from the optimal portfolio, and another part

which quantifies the variance of the chosen strategy. Moreover, if ŵ1 and ŵ2 are such that

B(ŵ1) + V(ŵ1) < B(ŵ2) + V(ŵ2) ,

strategy ŵ1 outperforms strategy ŵ2 for every investment horizon T ∈ N and risk-aversion

parameter α > 0 .

Let v be some fixed strategy, i.e. V(v) = 0 and ŵ a non-trivial strategy with B(ŵ) < B(v)
but V(ŵ) > 0 due to estimation errors. The main problem of implementing Markowitz’

theory is that V(ŵ) > B(v)−B(ŵ) in many practical situations, so that the trivial strategy

v outperforms the sophisticated strategy ŵ.
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Now consider the random vector θ̂ = αΣŵ. This can be interpreted as an estimator for

θ = αΣw, where w is the optimal portfolio under the constraint C. The components of θ

will be referred to as implicit returns (with respect to the constraint C). This is directly

motivated by Eq. 1. For instance, in case C = R
d it holds that θ = µ . The vector of

implicit returns is the solution of a reverse mean-variance optimization problem. This

means instead of deducing w from θ by calculating w = Σ−1θ/α , conversely θ is derived

from w by calculating θ = αΣw .8

Corollary 1

Under the assumptions A1 to A5 the risk of an investment strategy ŵ ∈ C amounts to

R(ŵ) =
1

2α
R(θ̂) =

1

2α

{
B(θ̂) + V(θ̂)

}
,

where

B(θ̂) = (θ̄ − µ)′Σ−1(θ̄ − µ) and V(θ̂) = E
{
(θ̂ − θ̄)Σ−1(θ̂ − θ̄)

}

with θ̂ = αΣŵ and θ̄ = E(θ̂).

Proof: See the appendix.

Corollary 1 implies that if θ̂1 and θ̂2 are two implicit return estimators such that R(θ̂1) <

R(θ̂2), investment strategy ŵ1 = Σ−1θ̂1/α has a higher expected out-of-sample perfor-

mance than ŵ2 = Σ−1θ̂2/α for every investment horizon T ∈ N and risk-aversion parameter

α > 0 .9 This is the answer to the first question which has been posed in the introduction:

(i) It is meaningful to study the risk function in the context of optimal asset allocation,

since the estimator for expected asset returns which has the smallest risk can be

expected to produce the largest expected out-of-sample performance.

For this reason I will focus on calculating the risk functions of the 5 expected return

estimators mentioned above. Here it is simply assumed that C = R
d, i.e. the investor aims

at finding the optimal portfolio w∗ which is the standard case of modern portfolio theory.

8As well this is the basic idea behind the Black-Litterman approach for optimal asset allocation (Black

and Litterman, 1992).

9A similar result under more restrictive assumptions has been derived by Memmel (2004, p. 75).
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4 Estimators for Expected Asset Returns

4.1 The Sample Mean Vector

In most practical applications µ is estimated by the sample mean vector µ̂ . The following

proposition is a well-known result of multivariate analysis.

Proposition 1

Under the assumptions A1 to A5 the risk of µ̂ amounts to

R(µ̂) =
d

n
.

Proof: See the appendix.

Hence, if the covariance matrix is assumed to be known, the risk of the strategy ŵ =

Σ−1µ̂/α amounts to

R(ŵ) =
1

2α
· d
n
.

Since in real-world applications the covariance matrix is unknown, the risk even increases

due to the estimation errors produced by the sample covariance matrix Σ̂ . Closed form

expressions for the risk under this circumstance have been derived by Kan and Zhou (2007).

It might be helpful to illustrate the latter result by a sample calculation. Suppose that

n = 60 monthly asset returns have been observed (i.e. the observation period corresponds

to 5 years) and the investor has a risk-aversion parameter of α = 5 . He can calculate the

sample covariance matrix for any number d < n of assets. Suppose that the corresponding

stock market consists of d = 30 assets. This leads to a risk of

R(ŵ) =
1

2 · 5 · 30
60

= 0.05 .

Even if the squared Sharpe ratio of the tangential portfolio corresponds to 2%,10 the

expected out-of-sample performance of ŵ amounts to

E
{
φ(ŵ)

}
=

0.02

2 · 5 − 0.05 = −0.048 < 0 = E
{
φ(0)

}
.

This means it is much better to put all the money into the risk-free asset instead of using

the sample mean vector for portfolio optimization. I will come back to this point later on.

10As already mentioned before, this value is at the upper end of the typical interval which can be observed

in many empirical studies.
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4.2 The Shrinkage Estimators

James-Stein estimators and Bayes-Stein estimators belong to the class of shrinkage esti-

mators which have a long tradition in portfolio optimization (Jobson and Korkie, 1979;

Jorion, 1986). James-Stein estimators (Stein, 1956) are of the form

θ̂JS = ωJSθ + (1− ωJS)µ̂ ,

where θ ∈ R
d is a fixed vector and

ωJS = min

{
1,

d− 2

n− d+ 2
· 1

(µ̂ − θ)′Σ̂−1(µ̂− θ)

}
. (2)

By contrast, the Bayes-Stein estimator (Jorion, 1985, 1986) can be written as

θ̂BS = ωBSθ + (1− ωBS)µ̂ ,

where

ωBS =
d+ 2

(d+ 2) + (n− d− 2)(µ̂ − θ)′Σ̂−1(µ̂− θ)
. (3)

Jorion (1986) suggests to use the shrinkage target

θMV =
1
′Σ−1µ

1′Σ−11
· 1 , (4)

i.e. the vector of expected asset returns under the assumption that the tangential portfolio

wT corresponds to the global minimum variance portfolio. In real-world applications µ

and Σ are typically replaced by µ̂ and Σ̂ , i.e. θMV is replaced by

θ̂MV =
1
′Σ̂−1µ̂

1′Σ̂−11

· 1 .

Theorem 2

Under the assumptions A1 to A6 the James-Stein estimator

θ̂JS = ωJSθMV + (1− ωJS)µ̂

with shrinkage weight (2) and shrinkage target (4) has risk

R(θ̂JS) =
d

n
− 2E

{
ω

(
ξ′ξ

n
+

∆MVξ1√
n

)}
+ E

(
ω2 · χ

′χ

n

)

with

ω = min

{
1,

d− 2

n− d+ 2
· ζ

′ζ

χ′χ

}
,
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where ξ ∼ Nd(0, Id) and ζ ∼ Nn−d(0, Id) are stochastically independent, χ = (
√
n∆MV +

ξ1, ξ2, . . . , ξd), and

∆MV =

√
Sh2

T
− Sh2

MV
.

Further, ShT is the Sharpe ratio of the tangential portfolio and ShMV is the Sharpe ratio

of the global minimum variance portfolio.

Proof: See the appendix.

The key observation is that the risk of the James-Stein estimator depends on the parameters

µ and Σ only through the quantity ∆MV . This can be interpreted as a measure for the

distance between the Sharpe ratios ShT and ShMV . In contrast to the unknown parameters

µ and Σ , the quantities Sh2
T

and Sh2
MV

are much more easy to grasp. As already mentioned,

several empirical studies indicate the possible interval for ShT and note that Sh2
MV

≤ Sh2
T

,

i.e. 0 ≤ ∆MV ≤ ShT .

The next theorem implies that the same property holds for the Bayes-Stein estimator, too.

Theorem 3

Under the assumptions A1 to A6 the Bayes-Stein estimator

θ̂BS = ωBSθMV + (1− ωBS)µ̂

with shrinkage weight (3) and shrinkage target (4) has risk

R(θ̂BS) =
d

n
− 2E

{
ω

(
ξ′ξ

n
+

∆MVξ1√
n

)}
+ E

(
ω2 · χ

′χ

n

)

with

ω =
d+ 2

d+ 2 + (n − d− 2)χ′χ/ζ ′ζ
,

where ξ ∼ Nd(0, Id) and ζ ∼ Nn−d(0, Id) are stochastically independent, χ = (
√
n∆MV +

ξ1, ξ2, . . . , ξd), and

∆MV =

√
Sh2

T
− Sh2

MV
.

Further, ShT is the Sharpe ratio of the tangential portfolio and ShMV is the Sharpe ratio

of the global minimum variance portfolio.

Proof: See the appendix.
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4.3 The Minimum-Variance Estimator

The minimum-variance estimator corresponds to

θ̂MV =
1
′Σ̂−1µ̂

1′Σ̂−11

· 1 .

According to the next theorem, the risk of the minimum-variance estimator can be split

into a bias part B(θ̂MV) and a variance part V(θ̂MV) = Vµ̂(θ̂MV)+V
Σ̂
(θ̂MV). Here Vµ̂(θ̂MV)

represents the impact of µ̂ and V
Σ̂
(θ̂MV) the impact of Σ̂ .

Theorem 4

Under the assumptions A1 to A6 the minimum-variance estimator

θ̂MV =
1
′Σ̂−1µ̂

1′Σ̂−11

· 1

has risk

R(θ̂MV) = B(θ̂MV) + Vµ̂(θ̂MV) + V
Σ̂
(θ̂MV)

with

B(θ̂MV) = ∆2

MV
, Vµ̂(θ̂MV) =

1

n
, and V

Σ̂
(θ̂MV) =

(d− 1)/n +∆2

MV

n− d− 1
,

where

∆MV =

√
Sh2

T
− Sh2

MV
.

Further, ShT is the Sharpe ratio of the tangential portfolio and ShMV is the Sharpe ratio

of the global minimum variance portfolio.

Proof: See the appendix.

4.4 The CAPM Estimator

Let w ∈ R
d (w 6= 0) be some fixed strategy, e.g. the equally-weighted portfolio w = 1/d

or some vector of market capitalizations. Consider the linear regression model

Ri = αi + βiRw + εi , i = 1, . . . , d ,

where Rw = w′R is the return of the chosen portfolio w . Further, αi and βi are such that

Rw and εi are uncorrelated as well as E(εi) = 0 .11

11It can be shown that α′Σ−1α = Sh2
T − Sh2

w, i.e. if w = wT it holds that α = (α1, . . . , αd) = 0 .
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The CAPM estimator corresponds to

θ̂CAPM = η̂β̂ ,

where β̂ is the vector of OLS estimates for β = (β1, . . . , βd) and η̂ is the sample mean of

the portfolio returns Rw1, . . . , Rwn , i.e.

θ̂CAPM = w′µ̂ · Σ̂w

w′Σ̂w
= (w′µ̂)β̂ .

Theorem 5

Under the assumptions A1 to A6 the CAPM estimator

θ̂CAPM = (w′µ̂)β̂

with β̂ = Σ̂w/(w′Σ̂w) has risk

R(θ̂CAPM) = B(θ̂CAPM) + Vµ̂(θ̂CAPM) + V
Σ̂
(θ̂CAPM)

with

B(θ̂CAPM) = ∆2

w , Vµ̂(θ̂CAPM) =
1

n
, and V

Σ̂
(θ̂CAPM) =

(
Sh2w +

1

n

)
d− 1

n− 3
,

where

∆w =

√
Sh2

T
− Sh2w

with ShT being the Sharpe ratio of the tangential portfolio and Shw the Sharpe ratio of

the portfolio w .

Proof: See the appendix.

The preceding theorems provide the answer to the second question which has been posed

in the introduction:

(ii) The risks of the different expected return estimators depend only on the number of

observations, the number of assets, the Sharpe ratio of the tangential portfolio, and

the Sharpe ratio of the reference portfolio of the respective estimator.
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5 Numerical Results

Hitherto I derived analytically the risk functions of the different estimators for expected

asset returns. Now I will present some numerical approximations for typical values of the

number of observations n, the number of assets d, and the Sharpe ratios ShT , ShMV, and

Shw . Suppose that n is the number of monthly asset returns. As already mentioned, the

typical range for the annualized ex-post Sharpe ratios of stock-index portfolios is between

0.2 and 0.5. This means the upper bound for the monthly Sharpe ratio ShT is about

0.5/
√
12 ≈ 0.15 . Since ShMV,Shw ≤ ShT , it holds that 0 ≤ ∆MV,∆w ≤ ShT ≤ 0.15 .

The most simple estimator, i.e. the trivial estimator θ̂tr = 0 has not been discussed, yet.

Its risk is easy to calculate, viz

R(0) = µ′Σ−1µ = Sh2T .

The question whether it is possible to beat the standard estimators by the trivial estimator

will be investigated later on. First of all I will compare the standard estimators only.

5.1 The Standard Estimators

Table 1 provides the risks of the standard estimators for different numbers of observations

and numbers of assets. It is worth pointing out that in real-world applications the risks

of the James-Stein estimator will be larger than those which are suggested by Table 1.

This is because the values which are contained in the panels are calculated on the basis

of Theorem 2, where it is assumed that θMV is known. However, in practice the vector

θMV is replaced by the minimum-variance estimator θ̂MV. This means the reported values

for the James-Stein estimator represent lower risk bounds, whereas the true risks can

be considerably larger in real-world applications. The same argument holds also for the

Bayes-Stein estimator.12

For comparing the minimum-variance estimator with the CAPM estimator it can be as-

sumed that ShMV = Shw for the sake of simplicity. The values reported in Table 1 are

calculated under the assumption that ShT = 0.15.13 The left hand side of the table repre-

sents the case where ∆MV = ∆w = 0 , i.e. where the standard estimators attain their lower

12However, Monte Carlo simulations indicate that the values which are calculated on the basis of Theorem

3 are quite good approximations for the case where θMV is replaced by θ̂MV.

13Other values of ShT between 0 and 0.15 produce similar outcomes.
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n = 30 d = 5 d = 25 d = 50 d = 100

SM 0.167 0.833 — —

JS 0.054 0.223 — —

BS 0.038 0.172 — —

MV 0.039 0.233 — —

CAPM 0.042 0.083 — —

n = 60 d = 5 d = 25 d = 50 d = 100

SM 0.083 0.417 0.833 —

JS 0.025 0.035 0.119 —

BS 0.019 0.101 0.193 —

MV 0.018 0.028 0.107 —

CAPM 0.019 0.0332 0.0503 —

n = 120 d = 5 d = 25 d = 50 d = 100

SM 0.042 0.208 0.417 0.833

JS 0.012 0.013 0.017 0.060

BS 0.010 0.051 0.103 0.201

MV 0.009 0.011 0.014 0.052

CAPM 0.009 0.015 0.021 0.034

n = 240 d = 5 d = 25 d = 50 d = 100

SM 0.021 0.104 0.208 0.417

JS 0.006 0.005 0.006 0.008

BS 0.005 0.026 0.051 0.103

MV 0.004 0.005 0.005 0.007

CAPM 0.005 0.007 0.010 0.015

n = 30 d = 5 d = 25 d = 50 d = 100

SM 0.167 0.833 — —

JS 0.068 0.240 — —

BS 0.050 0.184 — —

MV 0.062 0.262 — —

CAPM 0.061 0.086 — —

n = 60 d = 5 d = 25 d = 50 d = 100

SM 0.083 0.417 0.833 —

JS 0.039 0.054 0.138 —

BS 0.030 0.112 0.205 —

MV 0.041 0.052 0.132 —

CAPM 0.040 0.046 0.054 —

n = 120 d = 5 d = 25 d = 50 d = 100

SM 0.042 0.208 0.417 0.833

JS 0.024 0.032 0.037 0.081

BS 0.019 0.062 0.113 0.213

MV 0.031 0.033 0.037 0.075

CAPM 0.031 0.033 0.034 0.038

n = 240 d = 5 d = 25 d = 50 d = 100

SM 0.021 0.104 0.208 0.417

JS 0.015 0.024 0.026 0.029

BS 0.013 0.036 0.062 0.114

MV 0.027 0.027 0.028 0.030

CAPM 0.027 0.027 0.028 0.028

Table 1: Risks of the sample mean estimator (SM), James-Stein estimator (JS), Bayes-

Stein estimator (BS), minimum-variance estimator (MV), and CAPM estimator (CAPM)

for different numbers of asset returns (n) and numbers of assets (d). Further, it is assumed

that ShT = 0.15 and ∆MV = ∆w = 0 (left hand side) as well as ∆MV = ∆w = 0.15 (right

hand side). Bold entries indicate the best estimators within the corresponding panel.
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risk bounds. Table 1 shows that the CAPM estimator clearly outperforms the minimum-

variance estimator if the number of assets is close to the number of observations. Otherwise

the risks of the minimum-variance and the CAPM estimator are not essentially different.

The values on the right hand side of Table 1 are obtained under the worst case scenario

∆MV = ∆w = 0.15 . In that case the shrinkage estimators become comparably good as

the minimum-variance and the CAPM estimator. This is because the shrinkage estimators

are convex combinations of θ̂MV and µ̂ and so they can take a benefit from shrinking back

to µ̂ if θ̂MV is a bad target. Nevertheless, the left hand side of Table 1 represents a more

realistic scenario. It can be concluded that the minimum-variance and CAPM estimator

dominate the other estimators in most practical situations.14

Hence, the answer to the third question which has been posed in the introduction is:

(iii) The minimum-variance estimator and the CAPM estimator exhibit approximately

the same risks and are preferable among the standard estimators in most practical

situations. The CAPM estimator dominates the minimum-variance estimator only if

the number of assets is close to the number of observations.

This means in most practical situations it is best to choose the global minimum variance

portfolio or some benchmark portfolio among all non-trivial strategies which have been

considered in this work.15 These results have been obtained analytically and not by Monte

Carlo simulation, re-sampling or empirical investigation and so they do not suffer from

the typical drawbacks. Jorion (1991) compares different investment strategies which corre-

spond to the standard estimators discussed above (except for the James-Stein estimator)

by their ex-post Sharpe ratios using long-term financial data from 1931 to 1987. In fact,

he finds that the minimum-variance and the CAPM estimator produce the best strategies

but has to defend his findings against contrary results which have been reported in the lit-

erature (Grauer and Hakansson, 1995). Interestingly, Jorion’s empirical evidence perfectly

agree with the analytical results presented in this work.

14Only if the number of assets is small (d = 5), the Bayes-Stein estimator becomes slightly preferable.

15More precisely, these risky portfolios are combined with the risk-free asset according to the investor’s

individual risk-aversion.
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5.2 The Trivial Estimator

The risk of any trivial estimator θ̂tr = θ ∈ R
d corresponds to

R(θ) = (θ − µ)′Σ−1(θ − µ) ,

which can be estimated by

R̂(θ) = (θ − µ̂)′Σ̂−1(θ − µ̂) . (5)

Theorem 6

Let θ̂tr = θ ∈ R
d be some trivial estimator for µ ∈ R

d and consider the estimator R̂(θ)

given by Eq. 5 for its risk R(θ). Under the assumptions A1 to A6 it holds that

R̂(θ) ∼ χ2

d

{
nR(θ)

}

χ2

n−d

,

where χ2

d

{
nR(θ)

}
and χ2

n−d are stochastically independent.

Proof: See the appendix.

The lower risk bounds presented on the left hand side of Table 1 allow for clarifying the

circumstances under which it is better to choose some trivial estimator rather than a

standard estimator. More precisely, if R(θ) is smaller than each of the lower risk bounds,

it is guaranteed that the trivial estimator outperforms the standard estimators. In the

following I will concentrate on the trivial estimator θ̂tr = 0 ∈ R
d, which will be compared

with the minimum-variance and the CAPM estimator only, due to the arguments given in

Section 5.1.

According to Theorem 4, the lower risk bound of the minimum-variance estimator is

inf
∆MV

R(θ̂MV) =
1

n
+

(d− 1)/n

n− d− 1
.

Further, from Theorem 5 it can be concluded that the CAPM estimator exhibits minimum

risk in case ∆w = 0 , i.e. Shw = ShT . Hence, its lower risk bound amounts to

inf
∆w

R(θ̂CAPM) =
1

n
+

(
Sh2

T
+

1

n

)
d− 1

n− 3
.

This leads to the following theorem.
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Theorem 7

Suppose that the assumptions A1 to A6 are satisfied. In case

R(0) = Sh2T <
(n − 2)/n

n− d− 1

the risk of the trivial estimator θ̂tr = 0 ∈ R
d is smaller than the risk of the minimum-

variance estimator and the CAPM estimator.

Proof: See the appendix.

For instance, in case n = 60 and d = 25 the lower risk bound given by Theorem 7

corresponds to 0.028 . Since the upper bound for Sh2
T

is only 0.152 = 0.023 < 0.028 , the

trivial estimator clearly outperforms both the minimum-variance and the CAPM estimator

under these circumstances. The same argument holds for many other constellations of n

and d . Especially, if the number of assets is large compared to the number of observations,

the trivial estimator outperforms every standard estimator.

Hence, the answer to the fourth question which has been posed in the introduction is:

(iv) Instead of applying the non-trivial strategies which have been considered in this

work, in many practical situations it is better to renounce parameter estimation

altogether and put the money straight away into the risk-free investment. This holds

in particular if the number of assets is large compared to the number of observations.

6 Empirical Study

In this section I will present an empirical study which shall clarify the question whether it

is possible to beat the standard estimators by the trivial estimator. By applying Theorem

6 in combination with Theorem 7 it is possible to conduct an exact hypothesis test for

H0 : R(0) ≥ (n− 2)/n

n− d− 1
vs. H1 : R(0) <

(n− 2)/n

n− d− 1

on a significance level of α (0 < α < 1

2
). This is done by comparing

R̂(0) = µ̂′Σ̂−1µ̂ = Ŝh
2

T

with the α-quantile of
χ2

d

(
n−2

n−d−1

)

χ2

n−d

.
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Figure 1: Estimates for annualized expected returns based on the sample mean vector

(black), minimum-variance estimator (red), and CAPM estimator (green) given n = 120

observations and d = 100 assets.

The latter can be simply computed by Monte Carlo simulation and the null hypothesis is

rejected if Ŝh
2

T falls below the α-quantile. In that case the trivial estimator is significantly

better than every standard estimator. Intuitively speaking, if the ex-ante Sharpe ratio of

the tangential portfolio is sufficiently small, the asset returns cannot be expected to be

essentially different from zero and so it is better to use the trivial estimator rather than

some standard estimator which suffers from estimation errors.

For the empirical study I use a sample of monthly stock returns which have been obtained

from the CRSP data set. This data set consists of stock prices which are observed on the

NYSE, AMEX, and NASDAQ. The sample incorporates monthly returns between January

1969 and December 2008. The risk-free interest rate is calculated on the basis of 3-month

treasury bill secondary market rates, which are provided online by the Federal Reserve

System. For each year beginning in 1979 I constitute a separate asset universe consisting

of all assets which exhibit return data for the last n = 120 months.16 Finally, from each

asset universe I randomly draw d = 100 stocks without replacement. By this way 30 asset

16The amount of stocks in each asset universe ranges from 1 239 assets in the time period 1969–1979 to

2 992 assets in the period 1998–2008.
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1 2 3 4 5 6 7 8 9 10

Ŝh
2

T 1.584
(0)

1.907
(0)

2.989
(0.034)

3.113
(0.045)

1.898
(0)

3.078
(0.041)

4.446
(0.275)

3.101
(0.043)

1.876
(0)

3.903
(0.160)

11 12 13 14 15 16 17 18 19 20

Ŝh
2

T 2.738
(0.017)

2.338
(0.004)

9.086
(0.915)

2.613
(0.011)

3.287
(0.063)

4.305
(0.244)

1.698
(0)

2.142
(0.002)

3.375
(0.074)

6.251
(0.650)

21 22 23 24 25 26 27 28 29 30

Ŝh
2

T 7.029
(0.759)

3.551
(0.010)

4.986
(0.397)

4.187
(0.218)

4.651
(0.321)

2.141
(0.002)

3.430
(0.082)

2.895
(0.027)

2.432
(0.006)

3.539
(0.097)

Table 2: Results of the hypothesis tests for 30 asset universes with n = 120 observations

and d = 100 assets. Bold entries indicate asset universes where the trivial estimator had

outperformed the standard estimators on the significance level α = 0.05 .

universes are produced and the hypothesis test described above is applied separately on

each asset universe.

Figure 1 illustrates a typical realization of the sample mean vector, the minimum-variance

estimator and the CAPM estimator for such an asset universe.17 Further, Table 2 provides

the results of the empirical study. In 17 out of 30 asset universes it was better (on the

significance level of α = 0.05) to use the trivial estimator instead of any standard estimator.

This means in most cases the excess returns which can be expected on the stock markets

are not essentially different from zero or, in other words, the expected original asset returns

are not essentially different from the risk-free interest rate.

7 Conclusion

It has been shown that the risk function of an estimator for expected or implicit asset re-

turns is proportional to the expected out-of-sample performance of the investment strategy

based on that estimator. For that reason I investigated the risk function of 5 estimators

for expected asset returns which are frequently advocated in the literature. It turns out

that the risks of the different estimators depend only on the number of observations, the

number of assets, and the Sharpe ratios of the tangential portfolio as well as the reference

portfolio of the respective estimator. The minimum-variance and the CAPM estimator

exhibit approximately the same risks and are preferable among the standard estimators

17The chosen reference portfolio of the CAPM estimator corresponds to w = 1/d .
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in most practical situations. The CAPM estimator performs substantially better only if

the number of assets is close to the number of observations. This means among all non-

trivial strategies which have been considered in this work, in most practical situations it

is best to choose a portfolio which is proportional to the global minimum variance portfo-

lio or some benchmark portfolio such as the equally-weighted portfolio. Moreover, it has

been shown that if the squared Sharpe ratio of the tangential portfolio is smaller than

1

n
(n− 2)/(n− d− 1) (where n is the number of observations and d the number of assets)

the asset returns cannot be expected to be essentially different from the risk-free interest

rate and so it is better to renounce parameter estimation altogether and put the money

straight away into the risk-free investment. An exact hypothesis test has been derived for

deciding whether the squared Sharpe ratio undershoots the critical threshold. Finally, this

hypothesis test has been applied to 30 asset universes, each one containing 120 empirical

observations of 100 assets from the NYSE, AMEX, and NASDAQ. In 17 out of the 30 asset

universes it was significantly better to choose the risk-free investment.
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