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1 Introduction

The benefits of diversification are well-known and vividly applied when investing into

any kinds of risky assets. Nevertheless, it was not before the famous work of Markowitz

(1952) who introduced the first thorough proof in favor of diversifying one’s portfolio

among all assets. Beyond that, this holds true even if it means sacrificing a seemingly

higher expected return on certain assets. The result of his work, known as the mean-

variance framework, has become a standard part of today’s knowledge in finance.

However, direct application of the mean-variance approach towards portfolio opti-

mization is prohibitive from the practitioner’s as well as from the scientific point of view.

To name only a two impacting empirical studies, Klein and Bawa (1976) and Chopra

and Ziemba (1993) test the out-of-sample performance of the mean-variance framework

and deem it inferior to its theoretical promise. From an analytical point of view, Jorion

(1986) shows that superior out-of-sample performance can be obtained by applying a

Bayesian approach, while Best and Grauer (1991) show that the composition of mean-

variance efficient portfolios can dramatically change due to even small perturbations in

the asset means.

Currently, the usefulness of quantitative portfolio allocation strategies in general is

discussed in the literature. The question whether even the trivial asset allocation rule,

that is, to invest one’s wealth equally into a set of given assets, outperforms sophisticated

approaches is not answered yet, cp. DeMiguel et al. (2009a) or Behr et al. (2010). The

main problem of applying quantitative methods is the estimation error for the input pa-

rameters μ and Σ, that is, the unknown asset means and their variances and covariances,

respectively.

While traditionally, estimation of the expected asset means, μ, is accomplished by

analysts utilizing operating figures or balance sheet data rather than historical averages,

estimation of variances and covariances among assets is more typically done using his-

torical observations of stock prices. The reason covariance estimates are retrieved from

historical data is twofold.

First, even for an asset universe of only 40 assets, there are 780 covariances and 40
variances to be estimated. Leaving the task of judging the co-movement of companies’

stock prices to employees would create considerable cost, and would probably not even

be possible if covariances would have to be estimated on a weekly or even daily basis.

Second, Chopra and Ziemba (1993) quantify (in terms of cash-equivalent loss) the

error in estimating means about 10 times higher as errors in estimating the variances,

and even about 20 times more costly when compared to estimation errors in covariances.
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These observations have led to a shift in the attention of today’s literature about

quantitative portfolio strategies away from the mean-variance framework, focusing on

the so-called minimum-variance strategies.

Minimum-variance strategies aim at minimizing the overall portfolio return vari-

ance, without explicitly paying attention to the estimation of the mean of asset returns. A

growing stock of literature confirms superior performance of minimum-variance strate-

gies as opposed to those originating from the mean-variance framework, cf. Jagannathan

and Ma (2003), DeMiguel et al. (2009a), DeMiguel et al. (2009b), or Frahm and Mem-

mel (2010). Seemingly, the benefits of combining the assets in a way that their return

variance is minimized outweigh the loss due to the departure from the Markowitz model

- even when asset returns are assumed to be normally distributed with mean μ and co-

variance matrix Σ. Put another way, it is the diversification effect among the different

assets that seems to contribute to the portfolio performance. And even though this per-

ception is common knowledge, diversification is mostly managed by ad-hoc constraints

like lower bounds on the number of stocks held in a portfolio or other heuristics.

In line with the above, only little work can be found about the quantitative measure-

ment of the diversification effect. While a qualitative definition can be found in Meucci

(2009), who describes a portfolio as well-diversified “if it is not heavily exposed to indi-

vidual shocks,” its implicit definition given by the Capital Asset Pricing Model (CAPM),

as developed by Sharpe (1966), Lintner (1965) and Mossin (1966) is more precise, and

will be reviewed later on.

The motivation for this paper is a direct consequence of the above considerations,

and the following, central issues are addressed:

1. How can a quantitative measure for the diversification of portfolios of risky as-

sets be defined in a way that it is consistent with the qualitative, common-sense

definition? Which parameters should such a measure depend upon?

2. What are the existing approaches towards the quantitative measurement of diver-

sification, and what are their strengths and weaknesses?

3. In the empirical section, can reliability of the measure be confirmed when being

applied to portfolios of S&P500 constituents?

4. In connection to Question 3, does the proposed measure meet with the intuition

that a portfolio containing stocks from a large number of industries is better-

diversified than one that is concentrated on few assets only?
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5. In terms of the measure, is the widely-spread intuition that the naive portfolio,

defined by equal investment into all of its constituents, really well-diversified?

While the motivating questions are posed in the order of importance of each ques-

tion, the design of this paper slightly deviates from this order. Sections 2 and 3 provide

the framework of the analysis, a review on statistical properties of minimum-variance

as well as naive portfolios, and give an overview on previous works regarding the mea-

surement of diversification, respectively. In Section 4, the measure Dd(·) is introduced.

Also, the estimator of Dd(·) is presented, and for the special case of the trivial portfolio,

its finite-sample properties are described. Section 5 summarizes some statistical tests

regarding the return variances of trivially allocated and minimum-variance portfolios,

respectively. The empirical part of this work can be found in Section 6, and Section 7

concludes the paper.

2 Preliminaries

The asset returns R̄ of d risky assets are assumed to follow a d-variate normal distribu-

tion with mean vector μ ∈ Rd and covariance matrix Σ ∈ Rd×d, viz.

R̄ ∼ Nd

(
μ, Σ

)
. (1)

Let the entries of the covariance matrix Σ be denoted by σij for i, j = 1, . . . , d, that is,

σij = Cov(R̄i, R̄j).
Given a finite sample (R1, . . . , RT ) of independent copies of R̄, the maximum-

likelihood unbiased estimators of μ and Σ along with their distributions are given by

μ̂ := 1
T

T∑
t=1

Rt ∼ Nd

(
μ,

1
T

Σ
)

and (2)

Σ̂ := 1
T − 1

T∑
t=1

(Rt − μ̂) (Rt − μ̂)′ ,

so (T − 1)Σ̂ ∼ Wd (Σ, T − 1) .

(3)

Here, Wd (Σ, T − 1) denotes a d-dimensional central Wishart distribution with scale

matrix Σ and T − 1 degrees of freedom.

As usual, any vector v ∈ Rd is supposed to be a column vector, whereas v ′ denotes

the row vector arising by transposition of v. Furthermore, 1 denotes the column vector

(1, . . . , 1)′, and a portfolio weight vector w ∈ Rd, or short, a portfolio, comprising
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the entries w1, . . . , wd describes the fractions of wealth invested into assets 1, . . . , d,

respectively.

Note that, as R̄ is a random variable, the portfolio return defined by the

weighted sum of the asset returns, w ′R̄, is also a random variable. Its mean

return is given by μP := IE(w′R̄) = w′μ, whereas its return variance reads

σ2
P := Var(w′R̄) = w′Σw. As μ and Σ are unknown to the investor, both quantities

may be estimated from the given return data (R1, . . . , RT ) via replacing μ and Σ by

their empirical counterparts (2) and (3).

2.1 The Naive Portfolio

In the special case of the naive portfolio, also called the equally-weighted portfolio and

defined by w = 1
d
1, equal fractions of wealth are allocated to each of the d assets. The

return variance σ2
d of the naive portfolio reads

σ2
d =

(1
d

1
)′

Σ
(1

d
1

)
= 1

d2 1′Σ1 = 1
d
Var︸ ︷︷ ︸

diversifiable
part

+ d − 1
d

Cov︸ ︷︷ ︸
non-diversifiable

part

, (4)

where

Var := 1
d

d∑
i=1

σii and Cov := 1
d(d − 1)

d∑
i=1

d∑
j=1
i�=j

σij

denote the average of the variances and the average of the covariances of the assets,

respectively.

Clearly, σ2
d

d→∞−→ Cov, so for a growing number d of portfolio constituents, the

impact of their individual variances vanishes, and the overall portfolio variance becomes

the average of the constituents’ covariances.

With the traditional sample covariance matrix estimator given by (3), the sample

counterpart of σ2
d , denoted by σ̂2

d, has the following finite-sample distribution. It can

be obtained by application of well-known theorems for the Wishart distribution, see

Chapter 3 in Muirhead (1982). It holds that

σ̂2
d = 1

d2 1′Σ̂1 ∼ σ2
d

χ2
T −1

T − 1 , (5)

that is, the sample variance of the naively allocated d-asset portfolio has a scaled χ2-

distribution around its true value σ2
d .
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Thus, in the context of normally distributed asset returns σ̂2
d is an unbiased estimator

of σ2
d, and its variance amounts

Var
(

σ̂2
d | σ2

d

)
= Var

(
σ2

d

χ2
T −1

T − 1 | σ2
d

)
= σ4

d

2
(T − 1) . (6)

As such, σ̂2
d is an unbiased and also consistent estimator of σ2

d.

2.2 The Global Minimum-Variance Portfolio

As mentioned in the introduction, minimum-variance portfolios have started to gain

more attention in recent publications. A special portfolio in this context is the global

minimum-variance portfolio (GMVP), which aims at minimizing the variance of its

return. It is denoted by wGMVP and defined by

wGMVP := arg max
w

w′Σw s.t. w′1 = 1. (7)

Without additional constraints, the analytical solution to (7) takes the form

wGMVP = Σ−11
1′Σ−11 , (8)

resulting in the return variance of the GMVP given by

σ2 := w′
GMVP Σ wGMVP =

(
1′Σ−11

)−1
. (9)

The distribution for the moment estimator of the GMVP return variance, denoted by σ̂2,

is

σ̂2 :=
(
1′Σ̂−11

)−1 ∼ σ2 χ2
T −d

T − 1 , (10)

and it follows that

E

(
σ̂2 | σ2

)
= σ2 1

T − 1E
(
χ2

T −d

)
= T − d

T − 1 σ2 ≈
(

1 − d

T

)
σ2. (11)

With Q := T
d

defined as the effective sample size, and given an estimate σ̂2 of the

return variance of the GMVP, it follows that the true variance σ2 is underestimated by

about the factor 1 /
(
1 − 1

Q

)
. As such, the estimator σ̂2 is biased, and furthermore it is

consistent only if limT →∞ d
T

= 0.

For example, when a medium-sized minimum-variance portfolio with d = 20 assets

is estimated from T = 60 monthly return data, the true variance can be expected to
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Figure 1: Bias of the GMVP variance estimator σ̂2
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Biased and unbiased variance estimates of the d-asset GMVP when estimated from actual return data.
60 monthly observations of the excess returns of d assets are available, with the assets being randomly
selected from the pool of S&P500 constituents in 2009. As d grows from 1 to 40, the bias of the variance
estimate can be seen to sharply increase, as indicated by the dotted line. While the estimated GMVP
variance σ̂2 decreases with growing d, it falls below the 95% confidence interval for the unbiased variance.

be about 50% above its estimate. Figure 1 demonstrates the importance of taking the

effective sample size into account. With 60 months of return data at hand, denoted by

(R1, . . . , R60), the estimation of Σ and the d-asset GMVP weights, wGMVP, is accom-

plished for various portfolio sizes d. In 250 repetitions, the estimated variance σ̂2 as

well as its bias-corrected version are calculated and averaged. The confidence interval

in Figure 1 is constructed using (10), and as a χ2-distribution is involved, the interval

encloses the true variance asymmetrically.

The confidence interval also shows - for all portfolio sizes - how variable the esti-

mation of the GMVP variance even in the context of normally distributed asset returns

is. For d = 15, the average bias-corrected variance estimate amounts 1.8% on an annual

basis, while the 95% confidence interval allows for values between 1.25% and 2.9%. In

more commonly used terms of annual portfolio standard deviations, these values allow

the average 15-asset GMVP standard deviation σP to vary between 11.2% and as much

as 17%.

3 Previous Approaches on Diversification Measurement

There exist different contributions towards how to measure the degree of diversifica-

tion in a portfolio of d risky assets. However, there are different concepts of the term
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diversification, and a first aim is to motivate an understanding of that term.

Let there be a universe of risky assets, and let w be a portfolio of d of these assets,

where, of course, not necessarily all assets from the asset universe must be included.

When saying that w is a well-diversified portfolio, one would expect w to be immune

against shocks created by a single or a few assets.

In turn, this does not mean that w is not subject to any shocks. As - by its very nature

- the universe of risky assets is exposed to economic fluctuations, up- and downturns in

the market will affect its value. As such, the task is to find some sensible benchmark

which separates the level of variation induced by idiosyncratic shocks, defined as shocks

generated by single assets, from the level of variation that is induced by the market and

therefore is unavoidable.

In this context, it is also important to clarify what data a measure of diversification

should depend upon. Given the portfolio w of d risky assets, a reliable measurement

of the degree of diversification can only be achieved by incorporating the dependence

structure among these assets. Thus, not only d and w must be taken into account, but also

the information of how the portfolio constituents interact. Commonly, and especially

in the setting of normally distributed asset returns R̄, this is done by evaluating the

covariance matrix Σ.

Nevertheless, not all previous contributions towards diversification measurement are

based on the above considerations. Indeed, some of the measures to be introduced reveal

a very different perception of what diversification is.

On the other hand, there are many possibilities to measure the dispersion of the port-

folio return caused by the interaction of the different assets’ return characteristics. For

example, Louton and Saraoglu (2008) examine portfolios with regard to the measures

semivariance and expected shortfall. To evaluate the variance or the standard deviation

is the most common approach, though. Using the variance of a portfolio alone as an

indicator for its degree of diversification is not advisable. This is because the calcu-

lated variance needs to be compared to a benchmark, and it is not a priori clear which

benchmark to use.

In the sequel of this section, a non-exhaustive overview of different methods is given

and some main contributions are mentioned. Also, some weaknesses of the existing

approaches are discussed.
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Figure 2: The Capital Asset Pricing Model (CAPM)
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The CAPM postulates a linear relationship between portfolio risk and portfolio return. In equilibrium,
every investor holds the market portfolio (MP), leveraged by a factor according to his individual risk
preference. The set of all these leveraged holdings constitutes the capital market line (CML). The global
minimum-variance portfolio (GMVP) can be seen to have a smaller return variance than the MP.

3.1 Theoretical Considerations

The Capital Asset Pricing Model (CAPM), as developed independently by Sharpe (1966),

Lintner (1965) and Mossin (1966), postulates (in the presence of a risk-free asset) a

linear relationship between portfolio return μP and portfolio risk, measured by the port-

folio return standard deviation, σP . In this context, the existence of a market portfolio

(MP) consisting of all risky assets traded on the financial market is claimed.

The MP comprises all risky assets available in the asset universe, with each asset

being weighted by its share of the total financial market’s value. As a portfolio of risky

assets only, the market portfolio is defined as being completely diversified, and the risk

it bears is called systematic or non-diversifiable.

As the CAPM is an equilibrium model, it implies that all investors eventually al-

locate their wealth to the market portfolio. According to Tobin (1958), the fraction of

wealth invested into the market portfolio depends on the individual risk behavior of the

investor. A strongly risk-averse agent would prefer to invest only a small fraction of

his wealth into the market portfolio, whereas a risk-loving agent might even take out a

loan in order to obtain a higher leverage on the market portfolio. For each level of risk

aversion, the combination of riskless asset and market portfolio constitutes the capital

market line (CML), see Figure 2.

Unfortunately, as the market portfolio is a theoretical construct, it is unobservable. It

is approximated by indices like the S&P500, or even worldwide indices like the MSCI

World Index, comprising about 8 500 risky assets from more than 40 countries. Thus,
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the market portfolio cannot be used as a benchmark of diversification. At most, its

proxies could be used, and these indices indeed serve as benchmarks for comparisons

of levels of variations. Sharpe and Alexander (1999, p.654f.), for example, use the

S&P500 index as proxy and compute R2, the coefficient of determination, when ex-

plaining variation in fund returns by variations of the index over the period 1970-1974.

The above described framework constitutes the theoretical definition of diversifica-

tion implied by the CAPM. It defines the MP to be totally diversified. But this does not

mean that there is no other portfolio with smaller return variance, see Figure 2. By its

very definition, the GMVP always allows for lower return variance, see (7). In contrast,

the definition of diversification in connection with the CAPM stems from the fact that

the CAPM is an equilibrium model, and that in equilibrium, every investor is expected

to hold some fraction of the MP.

Furthermore, the investor or a manager of a mutual fund must choose among a given

set of d risky assets, which - in practice - is bounded sharply by issues such as the in-

vestment policy or the resources needed to monitor these assets. Such an investor would

want to know how much reduction in his portfolio return variation can theoretically be

obtained, and how close to this bound his actual portfolio is.

The following approaches towards measuring the degree of diversification of a port-

folio of risky assets therefore deal with the problem of measuring the degree of diversi-

fication of a portfolio that comprises of at most d assets.

3.2 Number of Assets

The most elementary approach to measure the diversification of a portfolio of risky as-

sets is to count the number of its constituents. Numerous studies, with the two most im-

pacting being the works of Evans and Archer (1968) and Fisher and Lorie (1970), have

pursued this methodology. In detail, Evans and Archer (1968) build equally-weighted

d-asset portfolios comprising randomly chosen assets from the S&P500 index for the

year 1958. For each d between 1 and 40, the d-asset portfolio standard deviation is

calculated and averaged over a total of 60 repetitions. Afterwards, the obtained average

standard deviation of the d-asset portfolios is regressed against 1/d.

Both works build upon the well-documented fact that the return variance of an

equally-weighted portfolio declines with the number of its constituents. An explana-

tion is already given by (4), indicating that the variance of such a portfolio eventually

drops down towards the average of the covariances among all assets. Evans and Archer

(1968), in their conclusion,
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“raise doubts concerning the economic justification of increasing portfolio

sizes beyond 10 or so securities, and indicate the need for analysts and

private investors alike to include some form of marginal analysis in their

portfolio selection models.”

With marginal analysis, an analysis of the trade-off between growing transaction costs

on the one hand and the reduction of return standard deviation on the other hand is

meant.

It should be noted, though, that the approach described above is not exactly in line

with the theory suggested by (4), which was firstly pointed out by Elton and Gruber

(1977, p. 418), and again by Bird and Tippett (1986). Actually, a linear relationship

exists only between the return variance σ2
d of the naive portfolio and the inverse of the

number of its constituents, 1/d. In contrast, as described above, Evans and Archer

(1968) and subsequent studies often regressed the estimated standard deviation σ̂d on

1/d, leading to inappropriate results.

Because of its simplicity, the number of securities still serves as a prominent mea-

sure of portfolio diversification. Tang (2004, p.156) gives an overview on textbooks’

recommendations regarding the number of assets that constitute a well-diversified port-

folio, yielding numbers between 10 and 40. It is interesting to see that most of these

textbook recommendations still refer to either the study of Evans and Archer (1968) or

to studies of comparable age.

There are three shortcomings in using the number of assets as measure for a portfo-

lio’s diversification.

First, this approach is only useful when an equally-weighted portfolio is under con-

sideration, as it crucially depends on the relationship (4).

The second problem with using the number of assets as an indicator is the hetero-

geneity of the assets. In the idealized case where all asset returns arise from a mul-

tivariate normal distribution with equal means, equal variances and equal covariances,

counting the number of assets is perfectly fine for measuring the reduction of its vari-

ance. But as these idealized assumptions do not meet with reality, the need for a different

measure is apparent.

Third, even if the textbooks’ recommendations of ‘between 10 and 40 assets’ to be

held in a portfolio meets with reality for most investors, even institutional ones, the

question still arises which stocks to choose.

Section 6 will reconsider the reduction of average portfolio variance for a growing

number d of portfolio constituents in equally-weighted portfolios empirically and in
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more detail. Moreover, the statistical tests gathered in Section 5 might yield support

for the investor in situations where the question of which asset to add to an existing

portfolio is raised.

3.3 Information-Theoretic Approaches

Another approach towards assessing the degree of a portfolio’s diversification stems

from information theory. Loosely speaking, information theory is concerned with the

quantification of the disorder of a random variable, with its most prominent measure

being the Shannon entropy. These measures take the distribution of a random variable as

the generic object, and as such, they are also applicable to non-negative weight vectors

in portfolio theory. To apply this approach the portfolio weight vector w must not have

negative entries and it must sum up to one.

Woerheide and Persson (1993) introduce measures from information theory as well

as measures of economic concentration to portfolio theory in order to assess the concen-

tration of weights on single assets. Thus, their approach of measuring the diversification

of a portfolio w depends not only on the number of assets, d, but also on the fractions

of wealth invested into the assets, (w1, . . . , wd). Their main point of criticism on former

studies is that the mere number of portfolio constituents provides an adequate picture

of a portfolio’s degree of diversification only if it is equally-weighted. Also, they reach

out for finding a measure which does not rely on the analysis of market data. A short

outline of their methodology is presented.

With monthly return data covering the entire period of the years 1965 through 1985
from 483 American exchange-listed companies at hand, Woerheide and Persson (1993)

evaluate the relationship between the standard deviation of randomly composed, and

thus unequally-weighted d-asset-portfolios and the respective index of diversification.

The indices of diversification to be evaluated consist of 5 predetermined measures,

which are called diversification indices (DI). These include the complements of the

Herfindahl and the Rosenbluth indices, respectively, an entropy-based measure as well

as two other measures, see Woerheide and Persson (1993, pp. 76-78). For example, the

complement of the Herfindahl index (CHI) for a portfolio w ∈ Rd is given by

CHI(w) := 1 −
d∑

i=1
w2

i︸ ︷︷ ︸
Herfindahl index

. (12)

13



The d-asset portfolios examined in their study are arranged by randomly choos-

ing non-negative weights that sum up to one. Afterwards, d assets are randomly se-

lected from the universe of 483 assets, and the weights (w1, . . . , wd) are assigned to

these assets. Then, the standard deviation of each portfolio w is calculated utilizing

the whole sample period of 240 months. For each d between 2 and 30, this proce-

dure is repeated 60 times. This yields a series of 1 740 standard deviations (σP )d,i

and a series of the portfolios’ respective DI-measures,
(
DI (k)

)
d,i

for each measure

k = 1, . . . , 5, with d = 2, . . . , 30 and i = 1, . . . , 60.

Finally, for each of the 5 diversification indices, the portfolio return standard de-

viations (σP )d,i are regressed against the respective index values
(
DI (k)

)
d,i

via the 5

models

σP = αk + γk DI(k) + εk, k = 1, . . . , 5. (13)

The goodness-of-fit measure R2 of each of the 5 regressions is then used as an indicator

of how well the linear relationship between the standard deviations and the respective

index of diversification fits.

Woerheide and Persson (1993) find that - among the 5 indices of diversification they

examine - the CHI, given by (12), yields the highest explanatory power with an R2 of

0.548. Thus, they recommend the CHI as a means to assess the degree of diversification

of a portfolio w.

When repeating the study with data from the 2009 CRSP database, including only

companies with at least 12 years of continuous return data, the estimates of coefficients

and the goodness-of-fit-measure R2 were similar, see Figure 3.

Other studies that incorporate information-theoretical approaches are Bouchaud et

al. (1997) and Bera and Park (2008), although these work are directed more onto the

portfolio construction process itself. Nevertheless, both works propose the achievement

of a certain level of diversification during the construction process of the optimal port-

folio. While Bouchaud et al. (1997) entangle the additional postulation of a certain level

of entropy among the portfolio weights with the reliability of the estimates of the means

and covariance structure, Bera and Park (2008) maximize the entropy of the portfolio

weights subject to constraints on the portfolio return and portfolio variance.

Even though entropy-based measures, when used in the portfolio optimization pro-

cess, yield portfolios that are not concentrated on single assets, they should not be used

as measures of its diversification. The main problem lies at the axiomatization of mea-

sures of concentration, especially in the axioms of symmetry and monotonicity, which

are common to information-theoretic measures and measures of economic concentra-
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Figure 3: The study of Woerheide and Persson (1993) repeated on 2009 data
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estimated regression: σP = 45.0 -26.5CHI , R2 = 0.455

The study of Woerheide and Persson (1993), conducted on 2009 data. For repeatedly, randomly generated
portfolio weights w = (w1, . . . , wd), where d varies between 2 and 30, the CHI is calculated as well as
the standard deviation of w when allocating randomly chosen assets from the CRSP database according
to w. When assuming a linear relationship, the observed coefficients are proportional to those of the
original study, and also a similar R2 is obtained.

tion. These axioms imply that the portfolio weights can be exchanged without any

alteration of the degree of diversification. Of course, this is in contrast to the non-

exchangeability of the distribution of the asset returns.

Furthermore, while the approach in Bouchaud et al. (1997) might be a justified ap-

proach towards portfolio optimization from a decision theoretic point of view, the ap-

proach in Bera and Park (2008) seems to be - though interesting from the practitioner’s

perspective - rather heuristic.

3.4 Measurements via Principal Component Analysis

A general task of multivariate data analysis is to detect patterns among given data. In

the case of d risky assets, the historical return data of which typically show correlations

with each other, the idea is to transform the return data of these d risky assets into a

set of k linear combinations of these assets, called principal components. The attractive

feature about the principal components is that they are uncorrelated with each other. It

also holds that k ≤ d, so a principal component analysis can be interpreted as the search

for a certain number of k factors which explain ‘most’ of the variance in the data.

Intuitively, whenever the original assets are close to being uncorrelated, the number

of principal components will be close to d, indicating a high degree of heterogeneity.
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Thus, skipping assets from such a portfolio might increase its variance. On the other

hand, when there is much correlation among different assets, not much diversification

potential would be lost in treating these assets as one single component.

Formally, the principal components are uncorrelated linear combinations of the orig-

inal d assets, and as such, they cannot be interpreted as assets themselves. They can

rather be thought of as uncorrelated portfolios, and as such they shall be called princi-

pal portfolios in the sequel.

It must be mentioned that the weights of such a principal portfolio need not sum up

to one, and typically, it will include positive as well as negative weights. The name prin-

cipal portfolios is given in the style of Partovi and Caputo (2004), who also deal with

this concept; however, they use the principal portfolios in the context of constructing

the efficient frontier.

Principal component analysis makes use of the spectral decomposition theorem from

linear algebra, which ensures that the covariance matrix Σ can be written as the product

Σ = ΓΛ Γ′, (14)

where Λ = diag(λ2
1, . . . , λ2

d) is the diagonal matrix of eigenvalues of Σ. With-

out loss of generality, these eigenvalues can be ordered in descending order, that is,

λ2
1 ≥ . . . ≥ λ2

d. Moreover, Γ is an orthogonal matrix with Γ′Γ = Id, and its columns

are the standardized eigenvectors of Σ. These eigenvectors then constitute the principal

portfolios, and for each principal portfolio i, λ2
i equals its variance.

Rudin and Morgan (2006) make use of principal component analysis in the following

way. As they only examine equally-weighted d-asset portfolios, the portfolio weight

vector w is fixed. They try to overcome the deficiency of only using the number of

assets as a measure for diversification by defining their Portfolio Diversification Index

as

PDId := 2
d∑

k=1
kWi with Wi := λ2

i∑d
j=1 λ2

j

.

The Wi are called the relative strengths of the ith principal portfolio, and each Wi can

be interpreted as the fraction of the original portfolio’s total return variance that is ex-

plained by the i-th principal portfolio, for i = 1, . . . , d.

If the underlying assets contained in the original, equally-weighted portfolio show

a strong correlation with each other, the first few principal portfolios account for nearly

all the variability, and thus the PDI will be small. In this case, the same degree of

diversification can be obtained with fewer assets. In the optimal case, where all d assets
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are uncorrelated, Wi = 1
d

for all i, and thus the upper bound for PDId, d will be attained.

The interpretation of the number PDI for a d-asset equally-weighted portfolio there-

fore is as follows. Investment into these d assets yields the same degree of diversification

as investing equally into PDId uncorrelated assets.

Rudin and Morgan (2006) test their diversification index on equally-weighted port-

folios of the S&P100 index and on a sample of hedge funds, and they find a sublinear

relation between PDId and portfolio size d. More exactly, in their study they find that

the average PDI40 for 40-asset portfolios randomly selected from the index equals about

20, the average PDI for the portfolio comprising of all 100 assets is only 40.

Although taking into account the return history of the underlying assets, Rudin and

Morgan (2006) only consider equally-weighted portfolios of various sizes d. Clearly,

institutional as well as private investors yearn for a measure that also works on non-

naively allocated portfolios, and as such, the PDI might be of little use.

3.5 Meucci’s Approach

A rather new methodology, which combines the previously introduced approaches, is

presented in Meucci (2009). As in Rudin and Morgan (2006), the covariance matrix Σ
of the d assets can be decomposed via

Σ = ΓΛ Γ′,

where, as above, Λ := diag(λ2
1, . . . , λ2

d), with λ2
1 ≥ . . . ≥ λ2

d, is the diagonal matrix of

eigenvalues of Σ, cp. (14). The columns e1, . . . , ed of the orthogonal matrix Γ are the

eigenvectors corresponding to each eigenvalue λ2
1, . . . , λ2

d. As above, these eigenvectors

will be referred to as principal portfolios.

As Meucci deals with arbitrarily allocated d-asset portfolios w, though, some more

terminology is needed.

The return on each of the principal portfolios e1, . . . , ed, with ei ∈ Rd, is given by

R̃ :=
(
e′

1R̄, . . . , e′
dR̄

)′
= Γ′R̄, (15)

where, as above, R̄ denotes the random returns on the d risky assets. Note that in this ex-

pression R̄ does not need to be normally distributed. Again, the return variances of these

d principal portfolios are λ2
1, . . . , λ2

d, and their covariances are zero by construction.
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The original portfolio w is now reconstructed as a linear combination of the principal

portfolios via w̃ := Γ′w = (e′
1w, . . . , e′

dw)′, and w̃ is referred to as a weighted principal

portfolio.

Using orthogonality of Γ, the random portfolio return can be written as

w̃′R̃ =
(
Γ′w

)′(
Γ′R̄

)
= w′ΓΓ−1R̄ = w′R̄. (16)

Furthermore, each of the weighted principal portfolio return variances reads

Var
(
w̃iR̃i

)
= w̃i

2
Var

(
R̃i

)
= w̃i

2λ2
i for each i = 1, . . . , d, (17)

and due to the fact that Cov
(
w̃iR̃i, w̃jR̃j

)
= 0 for i �= j, the total portfolio return’s

variance can be expressed additively, as opposed to (4), as

Var(w′R̄) = Var
(
w̃′R̃

)
=

d∑
i=1

w̃i
2 λ2

i , (18)

where the identity (16) is used.

The above observations give rise to the definition of what Meucci calls the diversifi-

cation distribution p(w) =
(
p1(w), . . . , pd(w)

)
∈ Rd with

pi(w) := w̃i
2λ2

i∑d
i=1 w̃i

2λ2
i

, i = 1, . . . , d, (19)

which is the fraction of each weighted principal portfolio’s return variance on the total

variance of portfolio w.

Meucci then defines the portfolio w as well-diversified whenever its total variance,

as given by the denominator of (19), is not concentrated in a few pi(w).
In turn, with this definition at hand, and with the uncorrelated principal portfolios,

the application of measures of concentration introduced in (3.3) is justified, and gives a

precise picture of what is meant by the phrase ‘concentrated in a few pi(w)’.
With the additive partition of total portfolio risk, each of the pi(w) in (19) measures a

risk that arises from the i-th weighted principal portfolio. The next step of diversification

measurement is to apply an entropy measure, as in Woerheide and Persson (1993) or in

Bera and Park (2008), to the diversification distribution p(w).
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Meucci (2009) proposes to evaluate the exponential of the Shannon entropy measure

on the diversification distribution, viz.

NEnt(w) := exp
(

−
d∑

i=1
pi(w) log

(
pi(w)

))
︸ ︷︷ ︸

Shannon entropy of p(w)

. (20)

Put another way, this means that NEnt(w) measures the number of truly independent

sources of risk that is evident in the portfolio w consisting of d assets. A higher value

of NEnt would represent a more diversified portfolio, whereas a lower value indicates

concentration on a few independent sources of risk only.

For any d-asset portfolio w, it holds that 1 ≤ NEnt(w) ≤ d, where higher values

indicate a better-diversified portfolio. Thus, the measure NEnt(·) can easily be normed

by division by d. In Section 6, where the empirical part of this paper is carried out,

the normed version of NEnt will be used rather than the standard version for better

comparability with the introduced measure.

Furthermore, NEnt relies on all available information the investor has at his disposal,

which are the number of assets d, the allocation w of wealth to these assets, and finally

also the return characteristics of these assets stored in the covariance matrix Σ.

In the style of Bera and Park (2008), Meucci (2009) also proposes a new heuristic

for asset selection. Instead of pursuing the Markowitz (1952) approach,

max
w

μ′w − λ

2 w′Σw s.t. w ∈ C, (21)

which theoretically yields some optimal solution wopt that might be subject to a set

of constraints C and is influenced by the investor-specific risk-aversion parameter λ,

Meucci (2009) proposes to locate the optimal solution on what he names the mean-

diversification frontier, calculated as follows.

For some investor-specific parameter φ ∈ [0, 1], where φ reflects the degree of the

investor’s confidence in the asset return estimate, he selects the portfolio wdiv which

solves

max
w

φ μ′w − (1 − φ) NEnt(w) s.t. w ∈ C. (22)

Meucci’s way of measuring the diversification present in a portfolio of d risky assets

is the most appealing one of the approaches summarized in this section. It combines

information-theoretical approaches with the methodology of using principal component

analysis, thus avoiding the problems of each of the approaches when applied separately
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to the portfolio weights w or when examining equally-weighted portfolios only.

The diversification distribution (19) shows how Meucci’s approach can be seen as a

generalization of the PDI introduced by Rudin and Morgan (2006). Instead of analyz-

ing the assets’ covariance matrix, which imputes an equally-weighted original portfolio,

Meucci applies the weighting scheme via the weighted principal portfolio w̃ in his defi-

nition of the diversification distribution p(w). The application of information-theoretic

measures, which in Meucci (2009) is the exponential of the Shannon entropy, to the

diversification distribution in this case is a useful and sensible approach. Therefore,

his method also mitigates the shortcomings identified in the pure application of such

measures to the original portfolio vector w.

It must be noted, though, that Meucci (2009) reveals a different perception of the

term diversification than presented up to this point. In fact, he takes the portfolios w

as given, and therefore, also its return variance. He then identifies the risk drivers of

the portfolio w as the principal portfolios, which, by definition, are uncorrelated. His

definition of a well-diversified portfolio can then be stated as a portfolio, the risk drivers

of which are invested into equally. Put another way, the portfolio would be not well-

diversified if not all risk drivers are invested into equally.

This definition of diversification is generalized by Tasche (2006, Definition 4.1).

For an arbitrary risk measure ρ, Tasche defines a diversification factor of some risky

position v = ∑d
i=1 wiR̄i as

DFρ(v) := ρ(v)∑d
i=1 ρ(wiR̄i)

, (23)

whenever all risks are properly defined. Here, the asset return R̄ is modeled as a random

variable which does not necessarily follow a multivariate distribution.

Clearly, as the variance is not a risk measure in the sense of Artzner et al. (1999),

this definition is somehow inappropriate in the given context, but it meets with the un-

derstanding of diversification as Meucci defines it.

To illustrate the above point, which is in contrast to the described and also to pre-

vious perceptions of what a well-diversified portfolio should be, the following example

is presented. An evaluation of the d-asset GMVP and the d-asset naive portfolio is car-

ried out via randomly selecting d = 15 assets from the S&P500 constituents from 2009,

which possess a continuous return history of at least 12 months. The GMVP weights are

estimated, and afterwards, for both portfolios, the respective indices of diversification

NEnt are calculated. In 500 repetitions, this yields a series of 500 measured diversifica-

tion numbers for both allocation strategies. As in each run, the same assets are used, the
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Figure 4: The measure NEnt for different portfolios
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Simulation of the measure of diversification introduced in Meucci (2009). For 15 randomly selected assets
from the S&P500 in 2009, the naive portfolio (solid line) and the GMVP (dashed line) is calculated. N Ent

is evaluated on these portfolios, and the resulting numbers N Ent for 100 repetitions are shown. As in each
run, the GMVP and the naive portfolio for the same 15 assets is constructed, the measure in this case acts
somehow contraintuitive. The GMVP can be expected to possess the lower return variance, which should
be expressed in a larger degree of diversification.

‘better-diversified’ portfolio should be expected to also have the lower return variance.

The results are depicted in Figure 4.

The 100 equally-weighted portfolios, with an average diversification number of

10.9, were found to have a mean annual estimated standard deviation of 18.7%. By con-

trast, the average diversification number of the 100 portfolios allocated via the minimum-

variance strategy possess only a mean diversification number of 7.6 and a mean annual

estimated (and bias-corrected) standard deviation of 14.4%, which indicates that the

return of the minimum-variance portfolios is much less volatile than the return of the

equally-weighted portfolios. The understanding of the term diversification would ex-

pect the portfolio with a higher diversification index to have a lower return variance,

though.
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4 A Measure of Diversification

This section presents the measure of diversification motivated in the preceding sections.

First, the theoretical construct is presented, making use of the concepts introduced in

Section 2. As already shown, estimation error must not be ignored when dealing with

the variance, and thus, the finite-sample properties of the measure will be reviewed in

detail, along with its asymptotic properties.

4.1 Theoretical Construct

Given a portfolio w of d risky assets traded on some market, the following simple mea-

sure of its degree of diversification is proposed:

Dd(w) := smallest possible variance among d assets
actual variance of w

= variance of the d-asset-GMVP
actual variance of w

=

(
1′Σ−11

)−1

w′Σw

(24)

Dd is a natural measure, as it yields the ratio of non-avoidable return variation to

overall return variation. In practice, the portfolio selection process is often a combi-

nation of qualitative and quantitative analyses, resulting in portfolios that are subject

to investor-specific constraints like weight restrictions or even legal constraints. For

portfolios constructed in this manner, the information of how much removable variation

is still contained when compared to a non-restricted portfolio might be valuable to the

investor.

It is noteworthy, though, that at this stage, the measure Dd(·) is a theoretical con-

struct. This is because the true distributional parameter Σ is unknown to the investor.

Estimating the parameter Σ introduces estimation error, as well as estimation of the

portfolio weights w. In contrast to the previous studies, this paper explicitly accounts

for the estimation error when estimating the measure from observed return data.

Also, there are no restrictions towards the portfolio weights w in the denominator

of (24), except that they must sum up to one. Especially, at this stage they are allowed

to be negative. It should also be noted that the smallest achievable variance is given by

σ2 = (1′Σ−11)−1, in which case the GMVP may have negative weights.

Extensions of Dd should include a definition of Dd for long-only portfolios, i.e., for

portfolios with short sale restriction. For practical purposes, using the long-only GMVP

as the benchmark might be even more interesting than using the unrestricted version,

as short sale restrictions are a natural restriction for the private investor as well as for

22



mutual funds; in the light of the current financial crisis, some Euroland countries even

consider short sale restrictions for all market participants.

As such a short sale constrained measure is used in Section 6, it is defined as

D+
d (w) := variance of the short sale restricted d-asset GMVP

actual variance of w
. (25)

Clearly, it holds that D+
d ≥ Dd, as the variance of the short sale restricted minimum-

variance portfolio with d assets is always larger than the variance of the unconstrained

d-asset-GMVP.

4.2 Estimation of Dd

Estimation error is a prominent phenomenon in portfolio optimization, mostly in con-

nection with the expected returns of the assets. Chopra and Ziemba (1993) find that - in

terms of the performance measure cash equivalence loss - that errors in estimating the

mean is up to four times more harmful than errors in estimating the variance of certain

assets, and up to ten times more harmful than estimation error in covariances.

More recent research has revealed that also variances estimated from historical ob-

servations can contain large errors, see, for example, Ledoit and Wolf (2003), Pafka

and Kondor (2003) or Jagannathan and Ma (2003). In Section 2.2, even under the as-

sumption of normally distributed asset returns, it is shown that the basic level of return

variation can be drastically underestimated by the traditional estimator σ̂2. The reliabil-

ity of the estimator crucially depends on the effective sample size Q = d/T , see (11).

Thus, examination of the nominator of the measure Dd with regard to its susceptibility

towards estimation error is essential.

Estimation error in the denominator of (24) is even more difficult to handle, as it

depends on the strategy chosen. For a strategy that relies heavily on the observed data,

there may be large deviations, while for a data-independent strategy, the estimation error

in the denominator stems only from uncertainty in Σ̂.

Nevertheless, as estimation error is present in both, the nominator and the denomi-

nator of (24), the estimator of the measure of diversification is defined by

D̂d(ŵ) := (1′Σ̂−11)−1

ŵ′Σ̂ŵ
. (26)

To calculate the bias-free version (26), it must be noted that estimation error is not only

prominent for the covariance matrix estimator Σ̂, but, as stated above, even more so in

the estimator for the portfolio weights, ŵ.
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The same holds for the short sale restricted version of the introduced measure of

diversification, D+
d (ŵ), as defined by (25). Its estimator is defined in exact analogy to

(26), but in the nominator, the estimate of the variance of the short sale restricted GMVP

is used.

4.2.1 Diversification of the Naive Portfolio

In the case of an equally-weighted d-asset portfolio, the estimator of the measure of

diversification reads

D̂d(1
d

1) = σ̂2

σ̂2
d

= σ̂2

(1
d
1)′Σ̂(1

d
1)

= σ̂2

1
d2 1′Σ̂1

= d2

(
1′Σ̂−11

)−1

1′Σ̂1
. (27)

Now, with the distributions from (5) and (10), it holds that

σ̂2 ∼ 1
1′Σ−11

χ2
T −d

T − 1 = σ2 χ2
T −d

T − 1 and

σ̂2
d ∼ 1′Σ1

d2
χ2

T −1
T − 1 = σ2

d

χ2
T −1

T − 1 .

If the respective χ2-distributions in the above equations were independent, the estimator

of the measure of diversification was distributed as some multiple of a

FT −d,T −1-distribution. In the case of (27), though, nominator and denominator are not

independent, as both are formed using the sample covariance matrix Σ̂.

Fortunately, the distribution of (27) can directly be obtained as a byproduct of Frahm

and Memmel (2010, Theorem 9), as they examine a similar statistic.

It holds that

D̂d

(1
d

1
)

∼
[
1 + d − 1

T − d
Fd−1,T −d

(
(D−1

d (1
d

1) − 1) χ2
T −1

)]−1
, (28)

where Fν1,ν2(λ) denotes a noncentral F -distribution with noncentrality parameter λ and

ν1 and ν2 degrees of freedom in the nominator and denominator, respectively.

To illustrate the effect of the dependence of the nominator and denominator through

Σ̂ in the expression of D̂d

(
1
d
1

)
, its theoretical distribution (28) is plotted in Figure 5,

on the basis of a data-based simulation. The inappropriate FT −d,T −1-distribution is also

plotted. In a simulation with d = 5 assets, the respective distribution means are nearly

identical with 0.383, 0.382 and 0.392, respectively, but the FT −d,T −1-distribution has

an inferior fit. Specifically, the FT −d,T −1-distribution has heavier tails, leading to incon-

clusions or even mistakes whenever confidence intervals are constructed or hypothesis
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Figure 5: Distribution of D̂d for the naive portfolio
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Distribution of D̂d

( 1
d 1

)
for T = 40, d = 5 and 50 000 data-based simulation runs. The un-

derlying data consists of 10 years of monthly returns of 5 stocks randomly selected from the
S&P500 stocks from 2009. The departure of the finite-sample distribution of D̂d

( 1
d 1

)
from the false

FT −d,T −1-distribution can be seen to be substantial, while the simulated and the theoretical distributions
nearly coincide.

tests are carried out.

Nevertheless, the above allows for the calculation of an unbiased estimator of

Dd

(
1
d
1

)
. In (6) and (10), unbiased estimators for the naive portfolio’s and the GMVP’s

variance were deduced. Following this course of action, an unbiased estimator of the

degree of diversification of the naive portfolio can be derived via taking the expectation

of the right side of (28), yielding

E

(
D̂d

(1
d

1
)

| Dd

(1
d

1
))

≈ T − d

T
Dd

(1
d

1
)

= T − d

T

σ2

σ2
d

. (29)

The factor of bias-correction for D̂d

(
1
d

)
is the same as for the variance of the GMVP in

(11) and equals T −d
T

. This is in line with the intuition about the fraction (28), as there are

no additional errors introduced by estimating portfolio weights for the naive portfolio.

Of course, for the measure D̂d, the underestimation of the GMVP variance by the

traditional estimator means that the true degree of diversification is higher than esti-

mated by its biased version.

It is a well-known fact that imposing short sale restrictions on the GMVP mitigates

the estimation error, see, e.g., Jagannathan and Ma (2003). Thus, D+
d can be expected to

be less biased than Dd. Nevertheless, the measure D+
d , when applied to the naive d-asset
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portfolio, will also be bias-corrected, with the same correction term used for D̂d(1
d
1).

Firstly, this will make comparison between D̂d and D̂+
d easier when applied to

naively allocated portfolios.

Secondly, doing so makes D̂+
d an optimistic measure when assessing the diversifica-

tion of an equally-weighted portfolio.

4.2.2 Diversification of any Constant Portfolio

Extending the result of the preceding paragraph, the distribution of D̂d(c) can be cal-

culated whenever the portfolio weights c are constant and sum up to one, i.e., when

c′1 = 1 holds true. This is the case whenever these weights are not estimated from the

data, implying that they are not subject to any estimation risk. Investors who wish to

allocate certain but not necessarily equal amounts of their wealth to certain industries or

sectors, might be characterized by this behavior.

In the same way as above, utilizing the rules for the Wishart distribution, it holds

that

σ̂2
c := cΣ̂c ∼ c′Σc

χ2
T −1

T − 1 = σ2
c

χ2
T −1

T − 1 ,

where σ2
c denotes the true return variance of the constant portfolio c.

Following again Frahm and Memmel (2010, Theorem 9), the distribution of D̂d(c)
can be derived as

D̂d(c) ∼
[
1 + d − 1

T − d
Fd−1,T −d

(
(D−1

d (c) − 1) χ2
T −1

)]−1
, (30)

where, as above, Fν1,ν2(λ) denotes a noncentral F -distribution with noncentrality pa-

rameter λ and ν1 and ν2 degrees of freedom in the nominator and denominator, respec-

tively.

Clearly, the bias correction is the same as for the estimated measure of diversification

for the equally-weighted portfolio.

4.3 Asymptotic Properties of the Estimator of Dd

Whenever a large number T of observations of asset returns is available for a fixed set

of d assets, or at least when the number of observations relative to the number of assets

is fixed, the asymptotic behavior of the measure D̂d(1
d
1) is of interest.

In the case of the naive portfolio, the asymptotic behavior of D̂d(1
d
1) in the case

where the number of observations grows to infinity is as expected, i.e., the estimator is

asymptotically unbiased.
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For fixed d and T −→ ∞, it holds that

D̂d

(1
d

1
)

∼
[
1 + d − 1

T − d
Fd−1,T −d

(
(D−1

d (1
d

1) − 1) χ2
T −1

)]−1

dist.−→ Dd

(1
d

1
)
.

(31)

The rather theoretical case T → ∞, d → ∞, T
d

→ Q < ∞ results in

D̂d

(1
d

1
)

dist.−→ (1 − 1
Q

) Dd

(1
d

1
)
.

This second result shows that whenever both, the number of observations and the num-

ber of assets grow in a constant proportion, the estimator stays asymptotically biased by

the factor (1 − 1
Q

). The bias in this case can be viewed as an heritage from the estimator

of the GMVP variance σ̂2, and needs to be taken care of whenever large investment

universes are under consideration, even if the number T of observations of historical

returns is large.

The asymptotic properties of the diversification measure for any constant portfolio

c are in exact analogy.

5 Testing for Variance and Diversification

Most of the tests given in this section are basic tests from the theory of univariate statis-

tics. For an investor caring about not exceeding some prespecified level of variance,

however, they might be useful instruments. Moreover, testing the variance of an equally-

weighted portfolio against the variance of the GMVP is not a standard method. Thus,

this section can be viewed as a toolbox for controlling and testing investment decisions.

5.1 Variance Tests

A comprehensive overview of some well-known statistical hypothesis tests for variances

is given. For all of these tests, let α denote some significance level, on which the tests

are based. Furthermore, it is assumed that the investor has historical return data of

length T at hand, from which he estimates the expected portfolio variance. Moreover,

the historical return data (R1, . . . , RT ) is assumed to stem from a multivariate normal

distribution, cp. (1).
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5.1.1 Naive Portfolio Variance

To test whether the variance σ2
d of the naive d-asset portfolio exceeds some constant

threshold value σ̄2, the following alternatives are to be tested:

H0 : σ2
d ≥ σ̄2

d vs. H1 : σ2
d < σ̄2

d.

The valid test statistic for this setting and its distribution under H0 is

Sd := (T − 1) σ̂2
d

σ̄2 ∼ χ2
T −1. (32)

Thus, to test the hypothesis whether the variance of a given portfolio exceeds σ̄2 on a

given confidence level α, H0 can be rejected whenever

Sd < χ2
T −1

−1(1 − α). (33)

A more interesting test for the investor who believes in naive asset allocation might

be as follows. He might ask wheter for his naive portfolio of d assets, has adding k more

assets to this portfolio and rebalancing the weights towards 1
d+k

1 a reducing impact on

its variance, or whether he can safely keep his portfolio of d assets.

To this end, the alternatives are given by

H0 : σ2
d+k ≥ σ2

d vs. H1 : σ2
d+k < σ2

d, (34)

where σ2
d and σ2

d+k denote the variances of the naively allocated d-asset portfolio and

of the naive portfolio with k new assets added, respectively. In a survey paper, Zhang

(1998) gives the test statistic for the differences of the two variances and its distribution

under H0 as

t = σ̂2
d+k − σ̂2

d√
4(σ̂2

dσ̂2
d+k − σ̂2

d,d+k)/(T − 2)
∼ tT −2, (35)

where σ̂d,d+k is the sample covariance of the portfolios’ returns, and tT −2 denotes a

t-distribution with T − 2 degrees of freedom.

Thus, H0 can be rejected whenever t < t−1
T −2(1 − α).

A derivation of the test statistic (35) is given in Memmel (2004, Appendix 8). Seek-

ing a possibility to compare two empirical return variances σ2
i and σ2

j , Memmel uses the

fact that when two assets i and j have equal variances, their weight in a 2-asset global

minimum-variance portfolio equals 1
2 , respectively. With the finite-sample distribution

of the GMVP weights in the context of normally distributed asset returns at hand, the
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test is readily comprehensible. For further details, the reader might also be interested in

Kempf and Memmel (2006) or Frahm (2010).

5.1.2 GMVP Variance

In the same style as for the naive portfolio variance, the question arises whether the

d-asset GMVP return variance σ2 exceeds some prespecified benchmark σ̄2. The alter-

natives are given by

H0 : σ2 ≥ σ̄2 vs. H1 : σ2 < σ̄2,

for which the well-known test statistic is SGMVP := (T − 1) σ̂2/σ̄2, which under H0 is

χ2
T −d-distributed. Thus, to reject the null hypothesis, it must hold that

SGMVP < χ2
T −d

−1(1 − α).

Note the crucial role of d, the number of assets, in the critical value χ2
T −d

−1(1 − α).

5.1.3 Comparing the Naive Portfolio to the GMVP

Another interesting question to ask for an investor might be whether - in terms of vari-

ance - it is fruitful to allocate his wealth equally among d assets or to apply some vari-

ance minimization technique to historical data and to invest into the GMVP constituted

by these d assets. To this end, the alternatives

H0 : σ2 ≥ σ2
d vs. H1 : σ2 < σ2

d (36)

are tested, where, as above, σ2 denotes the variance of the d-asset-GVMP, and σ2
d de-

notes the naive d-asset-portfolio’s variance. As mentioned above, Kempf and Memmel

(2006) derive the finite-sample distribution for the GMVP weight vector by proving

that the weights of the GMVP can be obtained as the coefficients of an ordinary least

squares regression. Thus, the above test can be stated as the alternative whether the

regression coefficients significantly deviate from 1
d
. In turn, this question can be cast in

the well-known framework of testing the restricted regression model versus the original

model.

29



The test statistic for the above alternatives reads

Snaive
GMVP = T − d

d − 1

(
σ̂2

d

σ̂2 − 1
)

(37)

and, under H0, has a Fd−1,T −d-distribution.

As such, H0 can be rejected whenever

Snaive
GMVP < F −1

d−1,T −d(1 − α),

in which case a significant reduction in variance is obtained by allocating the d assets

according to the GMVP strategy.

5.2 Testing with the Measure Dd

With the finite-sample distribution of the measure of diversification Dd at hand, it is

possible to test whether a naively allocated portfolio attains a certain degree of diversi-

fication. For γ ∈ [0, 1], the alternatives are

H0 : Dd

(1
d

1
)

< γ vs. H1 : Dd

(1
d

1
)

≥ γ. (38)

Whenever H0 can be rejected, the investor can be confident that γ ·100% of diversifiable

risk is eliminated by naively allocating his wealth among his assets of choice.

Given the finite-sample distribution FD of the diversification measure for the case of

the equally-weighted d-asset portfolio as in (28), it is possible to calculate the appropri-

ate critical value F −1
D (1 − α) that must be exceeded in order to reject H0.

Even though these critical values cannot be obtained from a table, for they are a

mixture of two distributions, they can be simulated for any given γ. The value F −1
D (1 −

α) then depends on the diversification level γ to be tested as well as on the chosen

confidence level α.

6 Empirical Study

This section gives empirical results for the levels of variance measured in naively al-

located as well as minimum-variance portfolios. Also, the different measures of diver-

sification, as introduced in the preceding section, are evaluated on actual return data.

More precisely, the estimators for Dd, D+
d and NEnt/d are tested on equally-weighted

portfolios.
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The broad basis of S&P500 constituents are considered, which have been obtained

from the CRSP database. For each year between 1965 and 2009, all constituents with a

continuous return history of 120 months were downloaded, yielding a maximal number

d of assets between 335 (in 1965) and 461 (in 1983).

Despite these large numbers of available assets, one must keep in mind that esti-

mation of the covariance matrix becomes meaningless for practical purposes once the

number of assets exceeds the number of monthly observations of returns. Even for the

case d < T , the variance estimated for the GMVP turns to be highly unreliable as d

approaches T , cp. Section 2.

After having retrieved the data from CRSP, the monthly asset returns are converted

into excess returns using the 3-month treasury bills for the corresponding month. The

interest data for the calculation of excess returns are obtained from the Federal Reserve

System (2010).

6.1 Evolution of the Naive Portfolio Return Variance over Time

Figures 6 and 7 show the average variances of the naively allocated d-asset-portfolios

plotted against d, with d ranging between 2 and 40.

For each period’s end, 1965 and 2009, and for each d between 1 and 40, a total

number of 100 naively allocated d-asset portfolios are built. The constituents of each of

these portfolios are drawn randomly from the S&P500 stocks of the respective period.

The average variance σ2
d belonging to each period is computed as the simple average of

these 100 d-asset portfolios’ individual variances. Afterwards, the theoretically correct

model (4) for normally distributed asset returns,

σ2
d = α + β

1
d

+ ε,

is fitted to the data for each period.

The asymmetric confidence intervals displayed around the variance estimate are due

to its χ2-distribution, see (5). Both figures show that on average, the decomposition

model (4) for the equally-weighted d-asset portfolio return variance gives a good fit, as

supported by large R2 for both regressions.

Another well-documented fact in finance literature is the time-varying basic level of

return variation. When comparing the two decades, this fact can also be reconfirmed.

In the 10-year-period ending 1965, this basic level is 1.4%, while in the period ending

2009, it amounts to about 3.3%.
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Figure 6: Variance of the naive d-asset portfolio in 1965
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traditional estimator σ̂2
d = 1

d21Σ̂1

regression σ̂2
d = 1.4+ 4.1 1

d , R2 = 1.00

95% confidence interval for σ̂2
d

Average return variance of naively allocated d-asset portfolios plotted against d. In line with the theory,
the average variance quickly drops towards some basic level of variance. S&P500 constituents from 1965
are used to randomly build equally-weighted portfolios of size d, for d between 1 and 40. The data used
for the variance estimation consists of 120 monthly excess returns.

Figure 7: Variance of the naive d-asset portfolio in 2009
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d
, R2 = 1.00

95% confidence interval for σ̂2
d

Average return variance of naively allocated d-asset portfolios plotted against d. In line with the theory,
the average variance quickly drops towards some basic level of variance. S&P500 constituents from 2009
are used to randomly build equally-weighted portfolios of size d, for d between 1 and 40. The data used
for the variance estimation consists of 120 monthly excess returns.
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Figure 8: The average naive 40-asset portfolio return variance
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Average basic level of return variance of naively allocated portfolios over the last 5 decades. The estimates
are obtained using 120 months of excess return data for each year. For example, the variance estimate for
1965 is obtained using the excess returns from Jan 1956 through Dec 1965.

The evolution of the basic levels of the average estimated basic levels of variation

for naively allocated portfolios for the years 1965 - 2009 is shown in Figure 8. The

methodology used to obtain the variance estimates as well as the confidence bounds is

the same as for Figures 6 and 7.

6.2 Evolution of the GMVP Return Variance over Time

For growing portfolio sizes d, the average estimated variance of the GMVP can be

expected to be decreasing. As the estimated GMVP is the result of an optimization

process, see (7), the estimated variance of a (d+1)-asset GMVP must be smaller than

that of the GMVP without the additional asset.

Even though, as pointed out in (11), the estimated variance is heavily biased, espe-

cially when the effective sample size Q = T
d

is small, see also Figure 1. Thus, the gap

between the average estimated return variance of the d-asset GMVP and its unbiased

counterpart increases for growing d.

Similarly, the confidence bounds for the true average variance become larger with

growing d, while the asymmetry of the confidence interval again is due to the

χ2-distribution of the variance estimator, see (10).
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Figure 9: Average return variance of the d-asset GMVP in 1965
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traditional estimator σ̂2 = (1′Σ̂−11)−1

unbiased estimator T
T−d

σ̂2

95% confidence interval for unbiased variance estimate

Average return variance of the d-asset GMVP plotted against d. The estimated average variance quickly
drops towards some low level of variance. Randomly selected S&P500 constituents from 1965 are used to
estimate the d-asset GMVPs, for d between 1 and 40. The data used for the variance estimation consists
of 120 monthly excess returns. The growing discrepancy between the variance estimates for higher d
stems from the bias which depends crucially on the portfolio size d.

Comparing the periods 1965 and 2009, as carried out in Figures 9 and 10, the ba-

sic levels of variation are different. While in 1965, a 40-asset GMVP had an average

estimated variance of 0.75%, the 2009 unbiased estimate is about 1.2%.

Figure 11 gives the estimated unbiased levels of the GMVP variance for all years

between 1965 and 2009.

6.3 Diversification of Naively Allocated Portfolios

The diversification measure (24) introduced in this paper relates the variance of a given

portfolio w, comprising of at most d assets, to the d-asset GMVP composed of the same

d assets.

Figure 12 shows the average values of D̂20(1
i
1), that is, the average degree of di-

versification of the naive i-asset portfolio as i is varied from 1 to 20. In spite of the

general perception that a portfolio with many constituents can be safely taken to be

well-diversified, it is apparent that for 20 assets, on average only about 40% of the re-

movable return variation is eliminated by allocating naively.

Also, it is observed that the diversification degree increases for growing i. This

is in line with the general perception of the fact that a portfolio concentrated on few

assets has an inferior diversification than a portfolio spread among more assets. Note,
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Figure 10: Average return variance of the d-asset GMVP in 2009
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95% confidence interval for unbiased variance estimate

Average return variance of the d-asset GMVP plotted against d. The estimated average variance quickly
drops towards some low level of variance. Randomly selected S&P500 constituents from 2009 are used to
estimate the d-asset GMVPs, for d between 1 and 40. The data used for the variance estimation consists
of 120 monthly excess returns. The growing discrepancy between the variance estimates for higher d
stems from the bias which depends crucially on the portfolio size d.

Figure 11: The GMVP variance evolution from 1965 to 2009
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Average basic level of return variance of the GMVP over the last 5 decades. The estimates are obtained
using 120 months of excess return data for each year. For example, the variance estimate for 1965 is
obtained using the excess returns from Jan 1956 through Dec 1965.
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Figure 12: Equally-weighted portfolios evaluated by D̂20 and D̂+
20 in 2009
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For each portfolio size i, the average measure of diversification of the naive portfolio is given. It relates
the variance of the i-asset naive portfolio to the return variance of the 20-asset GMVP. Estimation data
are 120 monthly excess returns from randomly chosen S&P500 constituents in 2009.

though, that in this case, comparison is always made to the 20-asset GMVP, and not to

the respective i-asset GMVP.

In Section 4, it was already mentioned that the GMVP estimator ŵGMVP used to

evaluate Dd might be restricted to carry positive weights only. This restriction is com-

mon to the private investor as well as to the manager of a mutual fund, and as such it

constitutes a more realistic benchmark to which a portfolio return’s variation should be

compared. As this has a heightening effect on Dd, the upper curve in Figure 12 shows

the average diversification when the measure D+
d is applied.

Nevertheless, even with this modification, the naive portfolio only uses less than half

of the diversification potential that exists among the assets.

Another interesting fact is displayed in Figure 13. The average value of diversifica-

tion of naively allocated 20-asset portfolios can be seen to lie between 30% and 50%,

with a sharp decline in the most recent years 2008 and 2009.
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Figure 13: Equally-weighted portfolios evaluated by D̂20 for 1965-2009
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For each year between 1965 and 2009, the average measure of diversification of the 20-asset naive port-
folio is given. It relates the variance of the 20-asset naive portfolio to the return variance of the 20-asset
GMVP, and to obtain an average value, this procedure is repeated 100 times. In each of these trials, 20
assets are selected randomly from the S&P500 in the respective year. Estimation data consists of 120
monthly excess returns for these assets.

6.4 Empirical Evaluation of the Different Measures

A comparison of the different measures of diversification introduced in Section 3 shall

be given now. Thus, leading Question 4 shall be answered, whether - empirically -

the measures are in line with the economic intuition that a d-asset portfolio comprising

assets from different sectors is more diversified than a d-asset portfolio comprising of

assets from only a few sectors.

For this purpose, the CRSP dataset of S&P500 constituents from 2009 will be used,

divided by sectors. Again, only companies with a continuous monthly return history

of at least 10 years are considered. Table 1 gives an overview of the sectors and the

number of assets grouped to each sector, given that they fulfill the constraint on their

return history.

The first comparison is related to two equally-weighted portfolios of sizes d = 10
and d = 20, respectively. While the 10-asset portfolio comprises of randomly selected

assets from each of the S&P500 sectors, the 20-asset portfolio comprises of the same

assets as the 10-asset portfolio plus again one randomly selected asset from each sec-

tor’s residual assets. Thus, both portfolios should be rather well-diversified. The actual

composition of the portfolios are given in Table 2. When applying the different mea-

sures of diversification to these portfolios, the obtained results are displayed in Table
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Table 1: S&P500 stocks grouped by sectors

S&P500 Sector Abbreviation Number of Assets

Consumer Discretionary CD 69

Consumer Staples CS 35

Energy EN 36

Financials FIN 68

Health Care HC 46

Industrials IND 57

Information Technology IT 64

Materials MAT 30

Telecommunications TEL 7

Utilities UTIL 34

total 446

Number of constituents of the S&P500 index at the end of 2009, grouped by sectors. The total number is
less than 500, as the requirement of a continuous monthly return history of at least 10 years is not met by
every company in the S&P500.

3. For an equally-weighted portfolio, the complement of the Herfindahl index (CHI),

defined by (12), yields the numbers 0.9 for the 10-asset portfolio and 0.975 for the 20-

asset portfolio as diversification indices. The reason is that this measure depends on the

weights of the assets, but not on their return characteristics.

The estimate N̂Ent of the measure introduced by Meucci (2009) shows large val-

ues of diversification for both portfolios. The fraction N̂Ent/d is introduced to make

Meucci’s index of portfolio diversification comparable to the other indices. As

0 ≤ NEnt ≤ d, it holds that NEnt/d takes on values between zero and one, and can

thus be interpreted as percentage of diversification achieved by some portfolio as mea-

sured by Meucci (2009).

The measure D̂+
d equals the extension of the measure D̂d introduced in Section 4, but

instead of using the estimated variance of the unconstrained GMVP in the nominator of

the definition of Dd, given by (24), it utilizes the estimated variance of the GMVP with

short sale constraint.

Finally, the variance of the two portfolios is reported in order to assess the absolute

reduction in variation of the portfolio returns. The shortcoming of the variance alone as

a measure of diversification was already discussed in Section 3.

As the portfolio is equally-weighted, the measure CHI does not contribute any more

information than the very number of its constituents already does.
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Table 2: Composition of the two equally-weighted portfolios

20-asset portfolio

Sector 10-asset portfolio

CD Gannett Inc Stanley Works

CS Procter & Gamble Co Pepsico Inc

EN Nabors Industries Ltd Baker Hughes Inc

FIN Kimco Realty Corp Morgan Stanley Dean Witter & Co

HC Bristol Myers Squibb Co Dentsply International Inc New

IND Norfolk Southern Corp Dover Corp

IT C A Inc Advanced Micro Devices Inc

MAT Airgas Inc Weyerhaeuser Co

TEL Verizon Communications Inc Centurytel Inc

UTIL Duke Energy Corp New Ameren Corp

Constituents of the equally-weighted portfolios. Both include assets from all S&P500 sectors effective
2009, indicated by the left column. The portfolios are equally-weighted on these assets.

Table 3: Resulting estimates for the diversification measures

Measure 10-asset portfolio 20-asset portfolio reduction (%)

CHI 0.9 0.975 −8.33
NEnt 8.247 14.545

NEnt/d 0.825 0.727 11.88
Dd 0.560 0.494 11.79
D+

d 0.591 0.533 9.81
Var 0.00325 0.00294 9.54

The different measures introduced in Section 3 as well as the proposed measures of diversification are
used for the evaluation of the equally-weighted portfolios described in Table 2. The percentage of reduc-
tion for NEnt is not reported as this measure is not normed.

The measure N̂Ent/d ascribes high degrees of diversification to both, the 10-asset

portfolio and the 20-asset portfolio, with 82.5% and 72.7%, respectively. As expected,

the measures D̂d and its short sale constrained version D̂+
d yield much more conservative

estimates, as they relate the actual variance estimates to the respective GMVP variance

estimate. In that case, the measure states that for both portfolios, only 50% to 60% of

the diversification potential is exploited.

With regard to leading Question 4, it must be conceded that the measure Dd does

not express the wide-spread intuition that a portfolio of a large number of different
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Figure 14: Different measures applied to a one-sector portfolio
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The measures D̂d, D̂+
d and N̂Ent/d, applied to 10-asset equally-weighted portfolios, respectively. In a

row of 500 trials, d = 10 assets are randomly chosen from the constituents of the sector Health Care in the
2009 S&P500, and afterwards, the measures are estimated. While the difference between D d and D+

d is
small, and both measures on average yield 0.78, the measure N Ent attests a high degree of diversification
among the assets.

industries is automatically well-diversified. This is because when a portfolio comprises

stocks from a large number of industries, idiosyncratic shocks can better be smoothed

by allocating the stocks unevenly, according to some minimum-variance strategy.

Next, the effect of the measures on portfolios that are allocated equally among a

single sector of the S&P500 only is investigated, see Figure 14. For the measure NEnt,

astonishingly high degrees of diversification are estimated.

But also the estimators of the measures Dd and D+
d , which are rather conservative

as compared to NEnt, yield comparatively high numbers.

Of course, when comparing the results for the sector-wide diversified portfolio, and

for the average one-sector portfolios as in Figure 14, the results are contra-intuitive in

the sense that the sector-wide diversified portfolios should be assigned a higher degree

of diversification.

But as both types of portfolios are benchmarked differently, the 10-asset portfolio

from one sector only does not allow for as much reduction in the return variance as the

10-asset portfolio comprising assets from all sectors. Thus, the reduction by allocating

10 assets from one sector equally accounts for a larger reduction towards the lowest

possible variance among these assets than in the case where 10 assets are allocated from

10 different sectors.
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7 Conclusion

The measurement of volatility of portfolios, and even more of movements in entire fi-

nancial markets is of great interest for the investment industry. The focus of quantitative

portfolio optimization has shifted away from the traditional sample-based Markowitz

approach, and the estimation of means is often left to analysts who generate qualitative

forecasts based on forward-looking figures rather than on historical return data.

The fact that there is only little work available about how to measure the diversi-

fication effect itself, which is the basic tenet of Markowitz’s work, is surprising when

realizing that in recent years, minimum-variance strategies have gained attraction not

only from the researcher’s perspective, but also from the practitioner’s point of view.

This paper gives a comprehensive overview of previous approaches towards deter-

mining this quantity. The shortcomings of some of these approaches are pointed out,

and an own measure is introduced, relating the acutal portfolio risk to the minimal risk

that cannot be avoided when combining the given assets.

In the context of normally distributed asset returns, the problem of estimating this

measure is considered. Moreover, the finite-sample distribution of this measure, when

applied to the constant portfolio, is given, with the special case of the measure’s finite-

sample distribution when the diversification of an equally-weighted portfolio is exam-

ined.

Empirically, the validity of former studies on average diversification of the equally-

weighted portfolio and of the change of regimes of overall market volatility can be

reconfirmed. The basis for the empirical part is provided by monthly return data of the

S&P500 constituents from the last five decades.

For the recently advocated strategy of equally-weighted portfolios, see DeMiguel et

al. (2009a) or DeMiguel et al. (2009b), the presented study shows that the degree of di-

versification crucially depends on the assets chosen. When choosing assets with similar

return characteristics, like assets being allocated in the same sector, the measure yields

a satisfactory level of diversification. When investing into different sectors, historically,

only about 40% to 60% of the diversifiable risk is removed, indicated by the correspond-

ing values for D̂d. This fact is due to the possibility of allocating the assets according to

the minimum-variance rule, which results in drastically lower return variance.

Even for the setting where the equally-weighted portfolio return variance is related

to the variance of a short sale constrained minimum-variance portfolio, measured by

D̂+
d , the degree diversification potential for such portfolios can scarcely be judged to

have increased.
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