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DO SPILLOVERS MATTER WHEN ESTIMATING

PRIVATE RETURNS TO R&D?∗

Markus Eberhardt Christian Helmers Hubert Strauss

ABSTRACT

A large body of literature on the estimation of private returns to R&D adopts the Griliches knowledge production

framework, ignoring the impact omitted spillover effects may have on consistent estimation. A separate body of

literature is primarily interested in the presence and magnitude of spillovers but imposes a rigid ad hoc structure

on the channels these can take, e.g. within-industry, within-country or determined by industry input-output

matrices. In this paper we adopt a common factor approach which accounts for R&D spillovers without imposing

any arbitrary structure on their nature and channels. At the same time we can account for other unobserved

common processes which may affect countries or sectors differentially, e.g. economic shocks or business cycles,

as well as heterogeneous evolution of TFP over time. Panel data from 12 industrial sectors of 12 OECD and EU

countries (1980-2005) is used to arrive at unbiased estimates of private returns to R&D. Our results indicate the

presence of substantial cross-sectional dependence in the residuals of the Griliches knowledge production function,

pointing to the presence of knowledge spillovers. Further, our estimations suggest that when ignoring the presence

of spillovers, R&D produces positive returns. However, when cross-sectional dependence is accounted for, we do

not find any convincing evidence for positive private returns to R&D. These results suggest that spillovers may

not be additively separable from own-R&D and need to be accounted for in the estimation even when the exclusive

interest lies in obtaining estimates for private returns to R&D.
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1 Introduction

Firms invest in R&D to achieve productivity gains through innovations resulting from their
investments.1 Thus from an aggregate economy perspective, R&D is seen as crucial in achiev-
ing productivity growth and has received an enormous amount of attention from policymakers,
academics, and the private business sector.2 As with any type of investment, investment in
R&D depends on its expected return — in absolute terms as well as relative to other inputs.
In addition, given the particular characteristics of knowledge, namely non-excludability and
non-exhaustability, private and social returns to R&D generally do not coincide. This differ-
ence between private and social returns to R&D has motivated a range of policy interventions
including direct subsidies and tax credit. From a policy perspective the question of the return
to R&D is therefore essential as R&D spending represents one of the few variables which public
policy can affect in the future (Griliches, 1979: p. 115).

Despite the crucial role of investments in R&D, national accounting does not record these
in a way that reflects their perceived relevance for productivity growth, although this situation
is about to change following an update of the System of National Accounts.3 But even once
R&D is accounted for in core national accounts, another important issue closely linked to R&D
will still remain unaccounted for: knowledge spillovers. There is a vast economic literature
attributing an eminent role to R&D in generating productivity gains and long-run growth owing
to the generation of spillovers (Romer, 1990; Grossman and Helpman, 1991).4 Notably, spillovers
account for the difference between social and private returns to R&D. If spillovers are closely
linked to R&D, the relevant question is whether the direct effect of R&D on productivity and
its direct returns can be estimated without also accounting for the spillovers it induces.

Considering the importance of the subject, it is not surprising that there is a substantial
number of empirical studies assessing the private and social returns to R&D at the country,
regional, industry and firm-level.5 A closer look at this literature reveals that the most widely
used approach is the ‘knowledge production function’ originally proposed by Griliches (1979). In
this approach R&D stock is added as additional input to a standard Cobb-Douglas production
function. The corresponding estimates are elasticities of output with respect to R&D which can
be converted into returns to R&D.6 In the original Griliches knowledge production function, any

1We focus entirely on R&D conducted by the business enterprise sector.
2We use the terms productivity and TFP interchangeably throughout this paper to describe the residual of a

production function.
3R&D is treated as an intermediate input for firms and as current consumption for governments and non-profit

organizations (Edworthy and Wallis, 2007). Following the changes to the System of National Accounts in 2008 it
is now recommended to treat existing and past R&D as an asset which is capitalized through ‘satellite accounting’.
The principal motivation for treating R&D expenditure as investment in National Accounting is to compute its
contribution to growth in real GDP.

4See Uppenberg (2009) for an overview of this literature.
5A comprehensive overview of earlier work can be found in Cameron (1996), while Hall, Mairesse and Mohnen

(2009) cover more recent studies. Recent relevant studies at the firm-level include Hall and Mairesse (1995),
Mairesse and Hall (1996) and Doraszelski and Jaumandreu (2009). At the industry-level, important contributions
include Griliches and Lichtenberg (1984) and Cameron, Proudman and Redding (2005). At the country-level,
examples are Nadiri (1980), Lichtenberg (1992), Coe and Moghadam (1993) and Verspagen (1997).

6Alternatively, returns to R&D can be obtained directly from using R&D expenditure albeit under certain
restrictive assumptions.
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notion of spillovers is neglected in the empirical specification, a practice maintained in the most
recent applications (see for example Doraszelski and Jaumandreu, 2009). In parallel to this,
there is a vast body of research concentrating on the contribution of spillovers to productivity,
imposing a rigid structure on the spillover channels in constructing ‘spillover variables’ based
on ad hoc assumptions (see Section 3.2). This research indicates the presence and importance
of spillovers within the production function framework.

This paper asks whether spillovers have to be accounted for within the Griliches knowledge
production function framework even when the interest lies exclusively in the estimation of private
returns to R&D. If spillovers are unobserved and go unaccounted in the empirical analysis,
their presence can lead to correlation between cross-sectional units. Spillovers can therefore be
regarded as omitted unobserved factors in the R&D variable as well as the error terms. If these
unobserved factors are correlated, the resulting estimates of private returns to R&D are biased
and inconsistent (Bai, 2009; Kapetanios et al, 2009).7

The dedicated knowledge spillovers literature, on the other hand, is unaware of the economet-
ric importance of accounting for cross-section dependence for consistent estimation and instead
concentrates on establishing the impact of spillover variables created based on ad hoc assump-
tions in a fashion akin to employing spatial weight matrices. This approach faces the question
of whether a statistically significant spillover variable indeed points to knowledge spillovers or
reflects data dependencies introduced by empirical misspecification of structural heterogeneity
across countries and sectors.

In this paper we adopt a more general common factor approach, which allows us to re-
main agnostic about the nature and channels of this relationship: our primary interest is in
establishing the private returns to R&D investment at the macro-level while accounting for any
unobserved heterogeneities including local or global spillovers (Costantini and Destefanis, 2009;
Kapetanios et al, 2009; Pesaran, 2009). To investigate this question empirically we use an unbal-
anced panel of 12 countries containing data for 12 two-digit manufacturing industries covering
the period 1980-2005. We find strong evidence for cross-sectional dependence and the presence
of a common factor structure in the data which we interpret as indicative for the presence of
knowledge spillovers. We then compare and contrast the estimates for a Griliches knowledge
production function across a number of different empirical specifications with inherently differ-
ent assumptions about error term independence (lack of spillover effects) as well as technology
homogeneity across countries and/or sectors. Our findings suggest that when spillovers in the
form of cross-sectional dependence are accounted for, private returns to R&D are at best modest.
In our view this finding is a strong indicator for the presence of spillovers and the indivisibility
of R&D from spillovers. If cross-sectional dependence due to knowledge spillovers and/or addi-
tional unobserved heterogeneity is present in the data, estimates of the output elasticity with
respect to R&D capital confound the direct effect of R&D on output with what in reality is a

7In order to address this issue, a spatial econometric approach would impose a specific structure on the spatial
association between countries and/or industries by means of a spatial weight matrix, where the relevant ‘space’
can be defined in many ways such as geographical, technological, or input-output-based. However, if this fails to
capture all of the cross-sectional dependence estimates remain biased.
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combined effect of own-R&D, spillovers and a host of other phenomena.8

The remainder of this paper is organized as follows: Section 2 discusses the theory underlying
the Griliches knowledge production function which is at the heart of the literature. Section 3
discusses the theory on knowledge spillovers as well as their empirical measurement. Section
4 introduces the dataset used for our analysis and provides descriptive statistics. Section 5
contains a description of the estimation approach taken and Section 6 presents the empirical
results. Section 7 concludes.

2 The Knowledge Production Function

The output elasticity with respect to R&D (and thus the private returns to R&D) are commonly
estimated adopting a version of the the Cobb-Douglas production function framework. Griliches
(1979) assumes an augmented production function with value-added Y as a function of standard
inputs labor L and tangible capital K as well as the additional input ‘knowledge capital’ R

Y = F (L,K,R) (1)

The functional form of F (·) is assumed to be Cobb-Douglas, which implies that knowledge
capital R is treated as a complement to the standard inputs. According to Griliches, the level
of knowledge capital is a function of current and past levels of R&D expenditure

R = G[W (B)R&D] (2)

where W (B) is a lag polynomial with B being the lag operator. Equation (2) describes the
so-called knowledge production function: the functional relation between knowledge inputs and
knowledge output.9 Griliches then writes (1) as

Y = ALαKβRγeλt+ε (3)

where A is a constant, t is a time index capturing a common trend and ε is a stochastic error
term. α, β, γ and λ are parameters to be estimated. Equation (2) can be substituted into
Equation (3) to obtain output directly as a function of present and past R&D expenditure
(Hall, 1996). In order to obtain an estimable equation, we take logarithms and use subscripts i

8In this paper, we focus on the standard Griliches knowledge production function rather than attempting to
find an alternative and possibly more adequate specification accounting for both own-R&D and spillover effects
which we leave for future work.

9Crepon et al. (1998) stress the point that not innovation input (R&D) is supposed to affect productivity,
but innovation output. In common with a large number of empirical studies, Crepon et al. (1998) use patents
as a measure for knowledge output. This however seems too narrow a measure, since knowledge output can also
assume many other forms; for example it can be embodied in new products or capital goods, or disembodied in
managerial practices which are not patentable. Since R&D is underlying these different innovative outputs, it may
be a better and more comprehensive measure of innovation than restricting the analysis to patented innovations.
At the same time, R&D may not even be broad enough because it only accounts for formal institutionalized forms
of innovative effort.
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and t to denote cross-sectional units and time respectively:

yit = ψ + αlit + βkit + γrit + λt+ µi + eit (4)

where lower case letters denote logarithms of the inputs in Equation (2) and λt is a time-specific
effect that is assumed to be constant across countries and sectors. eit is an error term which
contains random shocks in the relation described in Equation (2) as well as (3). Equation (4)
contains a measure for R&D capital stock, rit, instead of a lag polynomial of R&D expenditures.
We discuss below how R&D capital stock (R) can be constructed from R&D expenditures
(R&D). In order to account for cross-section unit-specific effects that remain constant over
time, we have also introduced µi into (4). The coefficient γ measures the joint contribution of
R&D to productivity and to output prices of industry i. γ therefore indicates the elasticity of
R&D capital, i.e., γ = ∂Y

∂R
R
Y . Accordingly the gross private rate of return can be obtained as

ρG = γ YR . The net rate of return consequently is ρN = ρG− δ where δ is the depreciation rate of
R&D capital. Note that so far we have not ruled out the shock eit to be correlated with current
input levels although we require it to be normally distributed and homoskedastic.10

In principle, Equation (4) is estimated without imposing any a priori parameter restrictions.
If further analysis of the unobserved productivity residual is intended Total Factor Productivity
(TFP) is ‘backed out’ in a second step imposing the estimated input parameter values. The
validity of this approach rests on the assumption of perfectly competitive factor markets, full
capacity utilization, as well as the absence of spillover effects — the latter is econometrically
represented by the cross-sectional independence of error terms eit, inputs and output in Equation
(4) (Section 3 discusses these issues in more detail). In the growth accounting framework as laid
out by Jorgenson and Griliches (1967), Jorgenson, Gollop and Fraumeni (1987), and Jorgenson,
Ho and Stiroh (2005), the additional assumption of constant returns to scale is imposed on
the input parameters. Under this additional assumption, output growth is equal to the income
share-weighted growth of inputs and productivity. Once R&D is included in the production

10If the data required to construct R&D stocks is not available and returns to R&D are the primary concern,
R&D expenditure can be used to recover ρG = γ Y

R
directly, albeit under the strong assumption of zero depreciation

of R&D capital such that 4R = R&D. This can be seen more clearly by first-differencing Equation (4) to obtain

4yit = α4lit + β4kit + γ4rit + λ4t+4eit (5)

where 4rit = rit − rit−1 = ln

[
R&Dt + (1− δ)Rt−1

Rt−1

]
= ln

[
R&Dt
Rt−1

+ (1− δ)
]
' R&Dt

Rt−1

for δ approximately zero. This implies that γ4rit can be replaced by ρG R&D
Y

in Equation (5) since ρG
Rt−1
Yt

R&Dt
Rt−1

=

γ R&Dt
Rt−1

= γ4r. Hence, levels of R&D intensity, i.e. R&D expenditure divided by value-added, are used instead

of the R&D capital stock. Note that when using R&D capital, the output elasticity wrt R&D is assumed to
be constant, whereas under the specification used to directly estimate private returns, the rate of return is the
constant parameter. While the approach in Equation (5) dispenses with the construction of R&D stocks, it
nevertheless does not dispense with the problem of choosing a depreciation rate for R&D because the coefficient
ρG is an estimate of gross returns to R&D. Hence, to obtain net returns, the depreciation rate has to be subtracted
from gross returns. Hall (2007) notices that using the formulation in Equation (5) to obtain gross returns to R&D
leads to an underestimation of the true gross return. The magnitude of the bias depends on the ratio of growth
of the R&D stock and the sum of R&D growth and the depreciation rate. Considering this problem and the
fact that we have data on R&D capital stocks, we only estimate Equation (4) instead of adopting the approach
described in Equation (5).
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function, it is unclear whether the restriction of constant returns should be imposed on the
aggregate production function, as knowledge is expected to lead to increasing returns (Romer,
1990). Moreover, both approaches make the assumption that all cross-sectional units have the
same production function (parameter homogeneity), which may appear to be restrictive.

3 Cross-sectional Dependence and Spillovers

3.1 Knowledge Spillovers

Arrow (1962) pointed out that knowledge is distinct from the traditional production factors
labor and physical capital. The distinguishing features are (i) non-excludability, i.e., other actors
cannot be excluded from accessing and using the knowledge produced by the original source and
(ii) non-rivalry or non-exhaustability of knowledge, i.e., if one actor uses some specific knowledge,
the value of its use is not reduced by other actors’ use. These two distinguishing features lead to
the third characteristic of knowledge, as pointed out by Griliches (1979), namely the fact that
we do not deal with one closed industry, but with a whole array of firms and industries which
borrow different amounts of knowledge from different sources according to their economic and
technological distance from them (Griliches, 1979:103). Hence, knowledge spills over to other
actors which do not pay the full cost of accessing and using the knowledge. This also implies
that this phenomenon must not be confounded with targeted knowledge transfer, e.g. technology
transfer to multinational corporation subsidiary plants. The process of knowledge transmission
from one actor to another without deliberate action, is commonly referred to as ‘knowledge
spillovers’. As pointed out by Keller (2004), this also implies that the return to investments in
knowledge is partly private and partly public.11

3.2 Incorporating Spillovers in the Knowledge Production Function

Given the fundamentally unobservable character of knowledge spillovers, directly quantifying
their magnitude is a difficult task. To overcome this problem, empirical work on knowledge
spillovers proposes a myriad of different spillover measures including approaches based on In-
put/Output tables (Wolff, 1997; Keller, 2002), patent citations (Jaffe, Trajtenberg and Hender-
son, 1993), human capital based measures (Breschi and Lissoni, 2001; Almeida and Kogut, 1999;
Agrawal, Cockburn, and McHale, 2003), research cooperation (Cassiman and Veugelers, 2002;
Abramovsky, Kremp, López, Schmidt, and Simpson, 2005), distance to technology frontier (Ace-
moglu, Aghion and Zilibotti, 2006; Griffith, Redding, and Van Reenen, 2004), so-called ‘spillover
pools’ which quantify R&D activity in related industries (Basant and Fikkert, 1996; Griffith,
Harrison and van Reenen, 2006) and measures of technological proximity (Jaffe, 1986; Bloom et

11Note that we are interested only in ideas borrowed by research teams of industry i from the research results of
industry j (Griliches, 1979:104), i.e., knowledge spillovers in the form of knowledge moving from one industry to
another. This is a distinct spillover concept from inputs that contain some form of externality if they are priced
below their true quality price. This kind of spillover has been labeled ‘rent spillovers’ by Griliches (1979) and is
not further discussed here. See Branstetter (2001) for a more detailed exposition of Griliches’s argument.
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al., 2005; Conley and Ligon, 2002; Orlando, 2004). The notion that knowledge spillovers are of
great importance for productivity is a common thread through this myriad of approaches.

3.2.1 Standard Approaches

Within the production function framework, the most common approach in the literature to allow
for spillovers is to compute TFP based solely on standard inputs labor and physical capital —
commonly imposing constant returns to scale — and then in a second step to assume that TFP is
a function of the knowledge stock within the sector or country and some measure of spillovers:12

TFPit = g

(
Rit,

N∑
k

Rkt

)
(6)

where Rit denotes the R&D stock within sector i and Rkt with i 6= k and i = 1, ..., N denotes
spillovers received from all other sectors. Equation (6) is estimated as:

tfpit = ψ + γrit + χ
N∑
k

rkt + eit (7)

where lower case letters denote logarithms and eit is a stochastic shock. Note that Equation (7)
assumes that spillovers affect TFP linearly as captured by the corresponding parameter χ.

In the approach described above, cross-sectional units are correlated exclusively because of
correlation in R&D stocks rit across units. Once spillovers are accounted for by the

∑N
k rkt term,

cross-sectional units are assumed to be independent which implies independence of eit across
units. Note that Equation (7) is commonly augmented with fixed effects and time dummies
to purge additional correlation across cross-sectional units. However, this is only sufficient to
eliminate any additional cross-sectional correlation under the assumption that the unobserved
causes of cross-sectional dependence affect all cross-sectional units in the same way.

Importantly, in order to compute the spillover term
∑N

k rkt in Equation (7), considerable
structure is imposed on the cross-sectional dependence that spillovers are assumed to represent:
the spillover variable is usually constructed as a weighted sum of cross-sectional units’ R&D. This
approach allows for a different effect of all other cross-sectional units’ R&D on sector i through
different weights but comes at the cost of rigid structure based on somewhat ad hoc assumptions.
In order to avoid such restrictions, a novel alternative is to accept the unknown nature of cross-
sectional spillovers (as well as other unobserved heterogeneities) and to adopt a multifactor
error structure, where cross-sectional dependence is assumed to arise from unobserved common
factors.

12See for example Griffith et al. (2004) who compute TFP using an index-number approach derived from
the translog production function. Using the index number approach appears particularly appropriate when
measurement error is small (van Biesebroeck, 2007). O’Mahony and Vecchi (2009) estimate TFP in a first step
by estimating a Cobb-Douglas production function including R&D among inputs and then regress the resulting
TFP measure on their spillover variables.
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3.2.2 Unobserved Common Factor Framework

The unobserved common factor approach relies on latent factors in the error term as well as
the regressors to account for cross-sectional dependence. Emerging from the panel time series
literature over the recent years this approach has been primarily applied to macro panel data
(Coakley, Fuertes and Smith, 2002; Pesaran, 2004; Coakley, Fuertes, and Smith, 2006; Pesaran
2006; Pesaran and Tosetti, 2007; Bai, 2009; Eberhardt and Teal, 2009b; Kapetanios et al, 2009).

The common factor approach regards cross-sectional dependence as the result of unobserved,
time-varying omitted common variables or common shocks that affect each cross-sectional unit
differently. Cross-sectional dependence leads to inconsistent estimates if regressors are correlated
with the unaccounted common variables or shocks (Kapetanios et al, 2009). According to the
common factor approach, the error term as well as right-hand-variables are assumed to contain a
finite number of unobserved factors which can have a different impact on cross-sectional units.13

Therefore, the error term is regarded as a linear combination of common time-specific effects
with heterogeneous ‘factor loadings’ and an i.i.d. error term.14

To see the implications of cross-section dependence, rewrite the knowledge production func-
tion in Equation (4) omitting fixed effects and denoting the vector of inputs as X:

yit = ψ + β′Xit + εit (8)

Note that we impose parameter homogeneity in the impact of observables for convenience of
exposition. The structure of cross-sectional dependence is now described as

Xit = χift + uXit (9a)

εit = ϕift + µi + λt + uεit (9b)

where uXit ∼ iid(0, σ2
Xi) and uεit ∼ iid(0, σ2

εi). ft contains a fixed number of unobserved common
factors. The fact that regressors as well as the error term share a common factor implies that
if the factor loadings are non-zero, estimating (8) without accounting for ft produces biased
and inconsistent estimates (see Eberhardt and Teal, 2009b and Bond and Eberhardt, 2009 for
a detailed discussion). This means that in the presence of spillovers of the form given in (9a)
and (9b) estimation of a standard empirical model as given in Equation (4) results in biased
and inconsistent estimates. Coakley et al (2006) provide a set of Monte Carlo simulations to
illustrate this point.

In order to test for the presence of such cross-sectional dependence, Pesaran (2004) proposes
an extension of the Breusch and Pagan LM test for samples with large N and small T , which
is based on the pairwise correlation coefficient of residuals obtained from ignoring the potential

13As detailed below, the setup is restricted to a finite number of ‘strong’ common factors (e.g. global shocks)
but accommodates an infinity of ‘weak’ common factors (e.g. local spillovers). Since common factors are by
construction orthogonal to each other the former assumption is easily justified: a change in the number of factors
over time would represent an explosion in the variance of the observed variables made up of strong factors over
time — a feature we do not observe in the data.

14Note that the error term may also display spatial dependence (Pesaran and Tosetti, 2007).
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presence of cross-sectional dependence. For unbalanced panels, the test statistic of the the
Cross-Section Dependence (CD) test is given by

CD =

√(
2

N(N − 1)

)(N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂ij

)
(10)

The pair-wise correlation coefficient ρ̂ij is defined in an unbalanced panel setting as

ρ̂ij = ρ̂ji =

∑
t∈Ti∩Tj (eit − ēi)(ejt − ēj)√∑

t∈Ti∩Tj (eit − ēi)
2
√∑

t∈Ti∩Tj (ejt − ēj)
2

(11)

where eit is the OLS residual ignoring cross-sectional dependence. Ti denotes the set of years
for which time series observations of the variables are available for unit i. The corresponding

number of elements in the set is denoted by #Ti and hence ēi =
∑
t∈Ti∩Tj

eit

#(Ti∩Tj) . Tij = #(Ti ∩ Tj)
is the number of observations used to estimate the correlation coefficient between the series
of cross-sectional units i and j. Under the null hypothesis, eit and ejt are independently and
standard normally distributed and serially uncorrelated, i.e. H0 : ρij = ρji = cov(eit, ejt) = 0
∀i 6= j. The alternative hypothesis is consequently HA : ρij = ρji 6= 0 for some i 6= j. As shown
in Pesaran (2004) for each i 6= j and for Ti > k + 1 (with k being the number of inputs) and
Tij > 3 it holds that

√
T ρ̂ij

T⇒ N(0, 1). This implies that for N → ∞, the CD test statistic is
standard normally distributed.

If the null of global cross-sectional independence is rejected at reasonable significance levels,
Pesaran (2006) suggests to account for cross-sectional dependence by using cross-section averages
of the dependent and independent variables, where cross-section averages are defined as ȳt =
N−1

∑N
i=1 yit and X̄t = N−1

∑N
i=1 Xit ∀t. To see why augmenting Equation (4) can account

for unobserved effects consider our pet-model in (8) in cross-section averages: given ēt = 0 we
obtain

ȳt = ψ̄ + β̄′X̄t + ϕ̄′f̄t (12)

which can be expressed as
f̄t = ϕ̄−1(ȳt − ψ̄ − β̄′X̄t) (13)

Hence, if ϕ̄ 6= 0, the unobserved common factors are captured by cross-sectional means of y
and X since f̄t

p→ ft as N → ∞. In order to account for heterogeneous impact of the ft across
panel members, Pesaran (2006) suggests to augment the pooled fixed effects estimator by cross-
section averages of the dependent and independent variables which can take different parameter
estimates for each panel member i and are regarded as proxies for the linear combination of
unobserved common factors. This allows the unobserved common factors to vary across cross-
sectional units and yields a consistent estimator even in the case when regressors are correlated
with the unobserved factors. This Common Correlated Effects Pooled estimator (CCEP) is then

10



given by

yit = ψ + β′Xit +
N∑
j=2

φjDj +
T∑
t=2

N∑
j=1

θ1i(ȳtDj) +
m∑
k=1

T∑
t=2

N∑
j=1

θ2i(X̄tDj) + eit (14)

where eit ∼ iid(0, σ2), ȳt and X̄t are cross-sectional means of the variables y and X for each t

assuming m observed regressors. The first three terms on the right-hand-side are just a stan-
dard fixed effects estimator and the next two terms capture cross-sectional dependence through
interaction terms of cross-section averages at time t and a set of N cross-section unit-specific
dummies denoted as D. The k + 1 interaction terms have dimension NT ×N . Pesaran (2006)
further develops a Mean Group variant of this estimators, where the regression equation for
each panel member is augmented with the cross-section averages for y and X. By construc-
tion this Common Correlated Effects Mean Group estimator (CCEMG) allows for technology
heterogeneity and differential impact of the unobservables across i.

Applications of the CCE estimators to estimating production functions are still relatively
limited. Eberhardt and Teal (2009a) investigate the implications of accounting for cross-sectional
dependence of TFP in an agricultural production function at the country-level for a sample of
128 countries over the period 1961-2002. They apply Pesaran’s CCE estimators and extend
them through combinations with various weight matrices to mimic a more restrictive spatial
association employed in spatial econometrics. Other empirical applications for estimators ac-
counting for cross-section dependence include production function estimation for Italian regions
(Costantini and Destefanis, 2009), trends for internal migration in Italy (Fachin, 2007), grav-
ity models of internal trade in the EU (Serlenga and Shin, 2007), the ‘natural resource curse’
and development (Cavalcanti, Modaddes and Raissi, 2009) and a host of studies investigating
Purchasing Power Parity (see Wagner, 2008).

4 Data

The data set comprises information on 12 manufacturing industries in 12 countries (Czech
Republic, Denmark, Finland, Germany, Italy, Japan, Netherlands, Portugal, Slovenia, Sweden,
United Kingdom, and the US) over a time period of up to 26 years from 1980 to 2005 — see
Table 1 for details.15 Unless indicated all of the results presented assume the country-sector as
basic level of analysis (panel group member i). The data used in the analysis is taken from a
number sources: the main source is the EU KLEMS data set.16 R&D expenditure is taken from
the OECD, GDP deflators come from Eurostat and the OECD.

We focus on 12 two-digit industries (SIC 15-37 excluding SIC 23) within the manufacturing
sector, as shown in Table 2. We exclude industry SIC 23 (Coke, refined petroleum products and
nuclear fuel) for which several countries do not report data.

15Note that we use data for Germany only after its reunification in 1990.
16See www.euklems.net.
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4.1 Variables

Most of the data in our analysis comes from the EU KLEMS database (release March 2008).
The EU KLEMS project produced an internationally comparable dataset on economic growth
and productivity for all EU member states as well as other large non-EU economies such as the
US and Japan, covering the period 1970-2005 for most countries. It contains output and input
measures, including a breakdown of input components (e.g. ICT capital, non-ICT capital etc.).
The KLEMS dataset has been constructed using data from national statistical offices which was
harmonized according to standardized procedures to guarantee comparability across countries.
The data is particularly useful for our purposes as it has been specifically created with a view
to conducting growth accounting exercises and productivity analysis.

All monetary variables in our data set are expressed in million Euros17 and are deflated to
1995 price levels using deflators either at the country or sector level. We use double-deflated
value-added, total number of hours worked by persons engaged and total tangible assets by
book value as our measures of output, labour and capital stock. R&D stock is taken from
KLEMS and extended to 2004 and 2005. In addition we construct the R&D capital stocks for
Portugal and Slovenia, following the method adopted by KLEMS. We provide more details on
data construction and the assumptions made in the process in the Appendix.

4.2 Descriptive Statistics

Figure 1 plots the ratio of R&D capital to physical capital over the 26-year period 1980-2005.
It shows that the ratio increased over time from around .26 in 1980 to .33 in 1990 to nearly
0.35 in 2005. The largest increases in relative size of R&D stocks and physical capital stocks
occurred between 1986 and 1988 as well as 2003 and 2005. The individual evolution of R&D
and physical capital stocks over this periods in Figure 2 reveals that the a comparatively lower
growth rate in the latter creates the seemingly steep rise in relative R&D capital importance
in the 1980s. Figure 3 shows box plots for value added as well as inputs across all countries
included in the sample in 2005. The graph provides evidence for large variation in the sample,
both across countries and within countries across sectors. Looking at the median by country, the
US leads the sample in terms of value-added while Japan achieves slightly larger R&D capital
stocks. To further investigate variation across sectors, Figure 4 shows box plots for the different
sectors for 2005. The graph reveals considerable variation across countries for all sectors and
inputs. The sectors with largest value-added are the high-tech industries Electrical and optical
equipment (ISIC 30-33) and Chemicals and chemical products (ISIC 24). We also provide plots
for value-added, physical and R&D capital stock deflated by the labour variable (million working
hours) in Figure 5 Finally, Table 3 contains some descriptives statistics for the data used in the
regression analysis.

In order to explore the presence of unobserved common factors in our data, we provide both
the proportion of variance accounted for by the first two principal components (PCs) of each

17Where necessary, data were converted from national currencies to Euros using 1999 exchange rates taken from
Eurostat. Only for Slovenia, the 2008 exchange rate was used.
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variable as suggested by Coakley et al. (2006) and the results of the Pesaran (2004) test for
the presence of cross-sectional dependence.18 Results in Table 419 provide strong evidence for a
factor structure in the data, especially in the two capital stock variables. The Pesaran (2004)
CD test has been suggested as a reliable test in the case of strong cross-section dependence
(Chudik et al, 2009), such as that of common factors considered here (see Moscone and Tosetti,
2009, for an overview of CSD tests). Results in Table 3 for variables in levels, first difference
and residuals for AR(2) regression carried out at the country-sector level reject cross-section
independence emphatically in all cases.

5 Estimation Strategy

5.1 Static Pooled Specification

We start by estimating the standard knowledge production function in Equation (4) using pooled
OLS (POLS) ignoring spillovers, thus assuming that the corresponding error term is standard
normal and i.i.d. The standard errors of our POLS estimates are computed using White’s
(1980) correction for heteroscedasticity. As discussed above, POLS estimates are unbiased and
consistent as long as we rule out the presence of cross-section unit-specific effects as well as
unobserved common factors that influence both the error term and the regressors. All pooled
estimators impose parameter homogeneity, thus assuming that the production technology is the
same in all sectors and across all countries — we will relax these assumptions below. In order
to test for autocorrelation, we implement the Arellano and Bond (1991) serial correlation test,
which does however assume cross-sectional independence.

As a second step, we implement a fixed effects (FE) estimator which accounts for cross-
sectional unit-specific effects — the units in this case being country-sectors. The FE estimator
yields consistent estimates when cross-sectional units have time-invariant unobserved character-
istics which are correlated with the regressors. We then add time-specific fixed effects, i.e. we
implement a two-way fixed effects (2FE) error component model which captures cross-sectional
unit-specific and time effects.20 If productivity parameters are homogeneous across country-
sectors and there are unobserved common factors with identical impact on all units (homo-
geneous factor loadings), then the 2FE estimates are unbiased and consistent. As shown by
Coakley et al. (2006), even if we allow for unobserved common factors that influence both the
error term and the regressors and influence cross-sectional units differently (heterogeneous factor
loadings), 2FE is still unbiased and consistent as long as χi and ϕi in Equation (9a) and (9b) are

18The PCs are linear combinations of the data that account for the maximal amount of the total variation. The
eigenvectors of the correlation matrix are the weights and the ordered eigenvalues over the cumulated eigenvalues
give the variance proportion. The first PC often turns out to have equal weights and is therefore close to the
cross-section mean of the data in each time-period.

19We present results from two different samples of different dimensions: PCA relies on balanced panels which
forces us to drop some of the countries from this procedure since the data overlap would otherwise reduce to a
mere handful of years. While the results cannot be claimed to extend to the country-sector series dropped, they
are nevertheless indicative of the factor structure in this type of data.

20This is equivalent to a 2FE estimator implemented by regressing (yit − ȳi − ȳt + ȳ) on (Xit − X̄i − X̄t + X̄),
where ȳi = T−1∑T

t=1 yit, ȳt = N−1∑N
i=1 yit, ȳ = (NT )−1∑T

t=1

∑N
i=1 yit and correspondingly for X.
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independent. A standard economic interpretation for the year fixed effects is that of a flexible,
common TFP evolution over time.

As an alternative to using 2FE, we first-difference (FD) the data to obtain a specification
using rates of change. As the FE estimator, the specification in first-differences purges time-
invariant unit-specific effects. The problem, however, is that in the presence of measurement er-
ror, the FD-OLS estimates may be even more downward biased than the FE estimates (Griliches
and Hausman, 1986).21 To account for common time effects, we also include year-specific dum-
mies, which were also shown to reduce the biasing impact of cross-section dependence (Bond
and Eberhardt, 2009).

As a first step to explicitly account for spillovers in the estimation we adjust the FE specifica-
tion to account for homogeneous cross-sectional dependence (CDFE).22 Using this specification
we account specifically for the presence of common factors, although the factor loadings are
restricted to be the same across units within the same time period. This is very similar to the
transformation carried out for the 2FE specification; if the assumption of homogeneous impact
of unobserved common factors is violated these models both create data dependencies in the
residuals introduced by the empirical misspecification.

Finally, we implement Pesaran’s pooled CCE estimator (CCEP) as detailed above. This
estimator allows for factor loadings to differ within the the same time period across cross-
sectional units and regressors.

5.2 Dynamic Pooled Specification

The Arellano and Bond (1991) test statistics for our static specification in levels point to the
presence of serial correlation in the residuals in most of the models investigated. We therefore
assume an autocorrelated error term of the form eit = ρei,t−1 + εit. This expression for the error
term can be used to rewrite Equation (4) as an autoregressive distributed lag model of order one,
ARDL(1,1) where eit is still assumed to be an error component of the form eit = µi+νt+vit. We
estimate the dynamic model using OLS and country-sector fixed effects (FE) although Nickell
(1981) has shown that the FE estimator yields inconsistent estimates for finite T . To avoid such
bias, most commonly, the dynamic model is estimated applying the GMM estimators developed
in Arellano and Bond (1992) and Blundell and Bond (1998). These estimators are considered to
be attractive for two reasons: (i) they account for fixed effects µi by first-differencing the data,
and (ii) they provide internal instruments by exploiting lags of the endogenous variables to

21The error term in Equation (4) captures pure measurement error in all the variables included in the model.
However, if only inputs are measured with error, we expect a downward bias in the input coefficients, the well-

known attenuation bias. The standard attenuation bias formula for OLS is plim β̂OLS = β
(

σ2
x∗

σ2
x∗+σ2

u

)
where σ2

x∗

is the variance of the unobserved true input and σ2
u is the variance of the measurement error. If σ2

u 6= 0, β̂ is
biased and inconsistent with the downward bias being larger the larger σ2

u 6= 0. The attenuation bias worsens if
first-differences are used when the serial correlation in the true unobserved input measures is larger than serial
correlation of the measurement error. There is no standard solution to address measurement error but we hope
that by using EU KLEMS data, we avoid this problem as much as possible.

22This specification amounts to a transformation of the form yi − ȳi ∀t where ȳt = N−1∑N
i=1 yit is the cross-

section mean of variable y at time t (the transformation is also referred to as cross-sectional ‘demeaning’). The
same transformation is applied to all inputs X.
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address endogeneity. A problem, however, is that the number of instruments increases quadrat-
ically in the length of the time series.23 Roodman (2009) describes a number of problems that
arise from a large instrument count relative to the sample size, most importantly ‘over-fitting’.
If there is a large number of instruments for a small number of endogenous variables, the in-
strument set may over-fit the endogenous variables. This results in instruments failing to purge
endogeneous variables of their endogenous variation and yielding estimates biased in the direc-
tion of the pooled OLS results. Another issue concerns the estimation of the optimal weighting
matrix in the two-step GMM estimator as a high instrument count can lead to imprecise esti-
mates of the weighting matrix. This may lead to biased standard errors obtained in the second
step of the estimation although parameter estimates are still unbiased and consistent.24 A large
instrument count can also weaken the power of the Hansen (1982) test of the instruments’ joint
validity (Bowsher, 2002). Considering these concerns and given our cross-section dimension of
N = 143 and time-series length of T = 25 in the dynamic models, both consistency concerns
and large instrument counts are problematic. For comparative purposes we apply the Arellano
and Bond (1992) estimator (AB) as well as the Blundell and Bond (1998) estimator (BB) but
collapse the instrument matrix as suggested in Roodman (2009). Like the other pooled models,
static or dynamic, the AB and BB estimators assumes parameter homogeneity across panel units
— note that if this assumption is violated no instrument (internal of external) exists which can
satisfy both the conditions of validity and informativeness (Pesaran and Smith, 1995).

Sarafidis and Robertson (2009) show that the Blundell and Bond (1998) GMM estimator
yields inconsistent estimates for T fixed and N →∞ in the presence of cross-section dependence
in the error process. As in all previous models, we therefore indicate the CD test statistics by
Pesaran (2004) as these were shown to be valid in a dynamic panel setting. Yet, Pesaran’s CD
test may fail to reject the null of cross-sectional independence when factor loadings have zero
mean across panel units (Sarafidis, Yamagata and Robertson, 2009). Sarafidis and Robertson
(2009) suggest to include common time effects in the dynamic specification to reduce the bias of
the GMM estimator in the presence of cross-section dependence. The remaining bias depends on
the degree to which the effect of common factors differs across cross-section units. The intuition
is as discussed above that time-demeaning removes part of the cross-section dependence from
the error process.

5.3 Static Heterogeneous Specification

All of the above specifications assume that production technology is homogeneous across coun-
tries and sectors (or that the imposition of homogeneity does not affect the empirical estimation).
Eberhardt and Teal (2009b) develop the impact of parameter heterogeneity on empirical esti-
mation against the background of the cross-country growth literature, highlighting the adverse
effect of misspecification of parameter heterogeneity on estimation and inference. Our empirical
specifications considered include three variants:

23The number of elements in the estimated variance matrix of the moments is quadratic in the instrument
count, which implies it is quadratic in T .

24Windmeijer (2005) devised a small-sample correction for this downward bias of standard errors.
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• full heterogeneity: production technology can differ across countries and sectors;

• common production technology across countries within sectors; and

• common production technology across sectors within countries.

For the first of these we implement the Pesaran and Smith (1995) Mean Group estimator (MG),
which allows for technology heterogeneity across countries. Cross-section independence is as-
sumed, a linear trend term can capture country-sector-specific TFP evolution. Next up we
employ the same estimator to data in deviation from the cross-section mean (CDMG). This
allows for heterogeneous technology parameters but assumes that the unobserved common fac-
tors have the same impact in all country-sectors. Finally we employ the Mean Group variant of
the Pesaran (2006) CCE estimators (CCEMG), which allows for parameter heterogeneity in the
impact of observables and unobservables. For all three models we report the mean and robust
mean estimate of the country-specific technology parameters. The robust mean employs weights
based on the absolute residuals to reduce the impact of outliers on the mean estimate.25

For the heterogeneous country and sector technology specifications we employ POLS, 2FE
(FE with T − 1 year dummies, which is equivalent), CDFE and CCEP estimators to sector and
country subsamples respectively. In effect we are conducting country regressions in the former
and sector regressions in the latter. Conceptually these respresent halfway-houses between
the pooled and heterogeneous specification discussed above: given the data limitations in the
individual country-sector regressions it may be helpful for the data if we imposed somewhat
more structure on the production process, whereby either countries or industrial sectors share
the same production function. In an attempt to summarise the estimates from this exercise we
also report the averaged estimates across sectors and countries respectively.

Given the data limitations it is difficult to identify appropriate alternatives for the hetero-
geneous parameter case whilst accounting for cross-section dependence: alternative estimators
such as Bai (2009) or Bai, Kao and Ng (2009) estimate the unobserved common factors, which
requires ‘large N and T ’ — especially the latter is not given in this sample. There is also a
concern with these approaches that they rely too heavily on the correct determination of the
number of common factors present in the data Pesaran (2009): especially with regard to the
notion of spillovers, it should be pointed out that the method by Bai and Ng (2002) to detect
common factors is only appropriate for so-called ‘strong’ common factors (e.g. global shocks) in
the data and neglects any ‘weak’ common factors (e.g. local spillovers, say, between two coun-
tries but not on a wider scale). In contrast, the CCE estimators are able to deal with a fixed
number of ‘strong’ and an infinity of ‘weak’ common factors in the estimation since their impact
is accounted for through the cross-section averages — see Kapetanios et al (2009) and Pesaran
et al (2009) for more details. Finally, we cannot provide dynamic versions for the heterogeneous
specifications as the short time-series dimension leads to dimensionality problems.

25We use robust regression to produce a robust estimate of the mean — see Hamilton (1992) for details.
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6 Results

6.1 Pooled Models

Table 6 contains the results for POLS, FE, 2FE, CCEP, FD-OLS and FD-2FE when using a
static specification. We can see that the FE model which does not account for any common
factor — or indeed TFP growth over time — has a grossly inflated capital coefficient of around
.75, considerably larger than the POLS estimate of .5 and out of line with macro evidence
on factor income shares (Mankiw, Romer and Weil, 1992; Gollin, 2002). Once we allow for
unobserved common factors the parameter estimates are much more in line with the macro
data (2FE, CDFE, CCEP, FD-OLS). The standard CCEP estimator produces very sensible
parameter estimates; our concern regarding this specification is the rejection of residual cross-
section independence, the data property the estimator is intended to specifically address —
possible explanations for this outcome are empirical misspecification with regard to dynamics or
technology heterogeneity. We augment the CCEP estimator with a set of common year dummies
to take out further covariation in the data and the diagnostics on cross-section independence are
improved but at the expense of less precise parameter estimates. The FD-OLS estimator with
year dummies has similarly favourable diagnostics although there is more evidence of higher-
order serial correlation in the residuals (first order AR is to be expected).

In all models the coefficient on R&D capital stock is positive, albeit insignificant in our
preferred static pooled models in columns [6] and [8] — this could be the result of measurement
error interfering with a more precise estimation of the parameter coefficient (Hall and Mairesse,
1995). An explanation for the better performance of these estimator relates to the order of
integration of the variables: if any of the inputs and/or output are I(1) series, misspecifica-
tion can lead to nonstationary errors which may entail bias and certainly inefficiency. Most
importantly the standard t-statistics for parameter estimates in this case are unreliable and
tend to overstate their precision (Kao, 1999; Coakley et al, 2006; Bond and Eberhardt, 2009).
Determining the order of integration in a panel of relatively moderate T is challenging, despite
recent developments in the panel unit root testing literature. Our preliminary analysis (using
the Pesaran (2007) CIPS, detailed results not reported) suggests that all the levels regressions
with the exception of the CCEP are indeed subject to nonstationary residuals. The parameter
estimates on the year dummies for the FD-OLS model (not reported) are mostly positive and
statistically significant, implying (common) TFP growth of around 2 percent per annum in all
countries, which seems reasonable — similar computations are not possible for the CDFE or
CCEP models. It is important to note that in a variety of simulation setups we found the FD-
OLS estimator augmented with year dummies to be consistent and efficient despite the presence
of unobserved common factors with heterogeneous factor loadings (Bond and Eberhardt, 2009).
Note that we also estimated the static specification lagging the labor input variable two periods
to counter a possible transmission bias; although we find our results discussed above to remain
largely unchanged.26

26Endogeneity arises under the assumption that industries receive an industry-specific productivity shock each
period. Input choices are consequently based on these productivity realizations. If these shocks are observed
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It is also worth noting that the R-squared for all the above models is very high (.999 in the
CCEP models). This is a standard finding in macro panel data with a substantial time-series
element — this diagnostic statistic thus loses any power to describe models as providing a better
‘fit’ for the data and we therefore do not present this statistic in any of the following empirical
results.

Table 7 shows the results for OLS, FE, 2FE, AB, BB, CDFE and CCEP when using a
dynamic specification. Given the Arellano and Bond (1991) residual tests in the static models it
may be suggested that this represents the more appropriate empirical specification. The residual
serial correlation tests for the dynamic specifications broadly seem to support this choice. In
Panel (A) we do not impose any common factor restrictions arising from the ARDL(1,1) model;
implied long-run coefficients are computed and reported in Panel (B), using the Delta method
to establish standard errors. In Panel (C) the common factor restrictions are imposed and the
validity of this choice is tested (COMFAC, H0 imposition is valid). We begin our discussion with
the results in Panel (A): with the exception of the AB and CCEP estimates, the lagged dependent
variable carries very high coefficients, up to .98 in the POLS case, indicating high persistence in
the data and pointing to potential nonstationarity. In terms of common factor restrictions the
System GMM (BB) and CCEP models cannot reject their imposition — for all other models we
therefore have to concentrate on the results in Panel (B). POLS yields an extremely high long-
run output elasticity estimate for R&D, around .36, whereas this is insignificantly different from
zero in the FE and 2FE models. For CDFE the same coefficient estimate is quite high again, at
.16. Note that for all dynamic models the residual analysis for nonstationarity was fraught with
difficulty, and we could therefore not obtain conclusive results from this analysis. Turning to
the restricted models in Panel (C) we focus on the AB, BB and CCEP models. While the AB
results are difficult to interpret (most likely due to the nonstationarity of the variable series) the
BB yields a high lagged dependent variable estimate of .97. Labour and capital coefficients are
in line with those of the preferred static models while the R&D coefficient is insignificant. The
latter feature is more pronounced in the CCEP models, where long-run elasticities are almost
exactly zero in the CCEP with year dummies. CD tests suggest that the AB, BB and CCEP
with year dummies yield cross-sectionally independent residuals — in later versions of this paper
we will investigate the power of the CD test in this data dimensions and consider alternatives.

Our pooled regression results for the static and dynamic models thus provide some evi-
dence that accounting for cross-section dependence in the data leads to estimates for the output
elasticity of R&D which are close to zero. In contrast to this, standard static FE or 2FE estima-
tors suggest considerably higher and statistically significant coefficients, pointing to substantial

only by firms within the industry, but remain unobserved by the econometrician, standard OLS estimation suffers
from biased and inconsistent estimates if inputs are not mean-independent from the omitted productivity variable
(Marshak and Andrews, 1944). Contemporaneous correlation between input choices and the productivity shock
is more likely to be present for inputs that adjust quickly. Commonly, labor is assumed to adjust quickly relative
to physical capital which is accumulated over time, which points to a (stronger) bias of the labor coefficient. The
microeconomic literature has proposed a range of estimation procedures to deal with the transmission bias at the
firm level (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves and Frazer, 2006; Greenstreet,
2007; Blundell and Bond, 2000). Except for the Blundell and Bond (2000) approach, none of the micro-estimators
appears to be appropriate for the estimation of an aggregate industry-level production function.
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private returns to R&D.

6.2 Heterogeneous Parameter Models

We now turn to empirical models which allow for some degree of technology heterogeneity across
sectors and/or countries. Table 8 presents results for the Mean Group-type estimators which
are all based on country-sector level regressions — we now report the Pesaran et al (2009) t-
statistic in brackets for each average coefficient and for comparative purposes also the Pedroni
(1999) panel t-statistic. For each model we present two sets of results, namely simple and robust
averages — the latter will be less affected by outliers and can be thought of as akin to median
regressions. The capital coefficient collapses for the Mean Group models, which do not account
for cross-section dependence in any way. It seems that in this model the linear trend (constant
TFP growth) captures most of the variation in the data, to the detriment of capital and R&D
stock. The CDMG model, which imposes a common impact of unobserved common factors,
yields sensible technology coefficients, however the parameter on the R&D capital stock seems
implausibly large. In this model over 70 percent of country-sector regressions reject constant
returns to scale and there is some evidence of nonstationary residuals (as in the MG model).
The CCEMG model provides mean capital and labor coefficients of .3 and .55 respectively,
with the R&D stock coefficient insignificant. The robust mean is somewhat less precise for
the capital coefficient. However, like in the pooled model case the Pesaran (2006) MG-type
estimator strongly rejects cross-section independence in the residuals — as do the other two
models. Other diagnostics seem to favour the CCEMG over the CDMG result: error normality,
small(er) share of regressions residuals with a low Durbin-Watson d, and somewhat stronger
evidence of stationary residuals.

Tables 10 and 11 present results from sector-level and country-level regressions for the POLS,
2FE, CDFE and CCEP models. Individual country- or sector-regression results can be seen to
be imprecise or even nonsensical at times (e.g. capital coefficients in excess of unity). The
heterogeneity introduced does not imply that each country- or sector-result can be seen as
a reliable estimate or test statistic: as Pedroni (2007, p.440) explains, this interpretation is
hazardous, since the “long-run signals contained in [limited] years of data may be relatively
weak”, such that one should refrain from country- or sector-specific policy implications unless
the single time-series analysis for this specific country is deemed reliable. However, previous
empirical analysis averaging over individual country regressions has frequently found that while
country/sector estimates or tests where widely dispersed and at times economically implausible,
averages represented very plausible results (Boyd and Smith, 2002; Baltagi et al, 2003). Our
findings for the averaged sector- and country-regressions are summarized in Table 9, where we
present the robust means from the 12 sector or country regressions next to those from the 143
(119 in the CCEMG case) country-sector regressions. It is notable that in the averaged country
regressions the capital coefficients are inflated across the board in comparison with those from
all previous results, with a parameter value of almost .8 in the CCEP case. Averaged sector
regressions are in general quite imprecise and small in magnitude — both of these results suggest
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that the heterogeneity in industrial production is inadequately captured if we concentrate on
sectors or countries alone, respectively. In most cases the coefficient on R&D is statistically
insignificant.

Overall the heterogeneous parameter results have not changed our conclusion from the pooled
models considerably, in that it seems that cross-section dependence plays an important role in
the determination of private returns to R&D and that once these are accounted for the output
elasticity wrt R&D is close to zero across a number of specifications. It is important to stress that
our focus here is on the average result: while individual sectors or countries display large and
statistically significant returns, the nature of our analysis requires us to focus on the averaged
result to ensure comparability with the pooled model results.

7 Conclusion

In this study we asked whether returns to R&D can be estimated in a standard Griliches-
type production function framework ignoring the potential presence of spillovers between cross-
sectional units. Finding an answer to this question is relevant considering the vast amount of
empirical work (a) implementing the Griliches-type production function under the assumption
of absence of cross-sectional dependence and (b) specifically investigating spillovers originating
from R&D.

Our results suggest the presence of a substantial amount of cross-sectional dependence in the
residuals of a standard Griliches-type knowledge production function. Within a static frame-
work, first-differencing the data and including a time trend eliminates the correlation among
cross-sectional units in the panel and thus accounts satisfactorily for cross-sectional dependence.
However, the coefficient associated with R&D falls considerably in magnitude relative to the
POLS estimates and loses its statistical significance implying zero private returns to R&D.
Within a dynamic setting, our preferred estimator, the Pesaran CCEP estimator, accounts for
cross-sectional dependence but produces an estimate of the coefficient associated with R&D
that is statistically not significantly different from zero. These findings suggest that conven-
tional approaches produce estimates of the output elasticity with respect to R&D and thus of
private returns to R&D that are positive and significant while model specifications account-
ing adequately for cross-sectional dependence produce R&D coefficients not different from zero
implying zero returns to R&D.

While our analysis sheds some light on the importance of spillovers for the estimation of
private returns to R&D, we do not recover a parameter associated with spillovers. Hence, we
cannot make any statement regarding the magnitude of social returns to R&D. If social returns
are the object of interest, more structure needs to be imposed on the nature of spillovers to be
able to recover the corresponding parameter within a spatial econometric framework. Any such
analysis thus involves necessarily the question of how to measure spillovers. We deliberately
avoided addressing this question by adopting an agnostic common factor approach in order to
escape the need to make somewhat ad hoc assumption on the by definition unobserved struc-
ture of spillovers. Yet, our results suggest that the commonly imposed ad hoc structure, i.e.,
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some weighted average of R&D conducted by units contained in the sample, may fail to account
for the cross-sectional dependence in the data which is generated by a complex interplay of a
range of unobserved factors. We, therefore, regard the search for an appropriate specification
of the knowledge production function, accounting for the true nature of cross-sectional inter-
dependencies as the main challenge in the investigation of returns to R&D - both private and
social.
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TABLES AND FIGURES

Figure 1: R&D Capital to Physical Capital Ratio 1980-2005
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Figure 2: Evolution of R&D and Physical Capital Stock (1980 = 100)
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Notes: The kink in 1991 is caused by Germany, a major innovator, entering our sample.
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Figure 3: Input Variation across Countries for SIC 2-digit Industries (2005)

Figure 4: Input Variation across SIC 2-digit Industries (2005)
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Figure 5: Labor-Deflated Input Variation across Countries & Industries
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Table 1: Sample makeup

Country obs share years CCEMG
CZE Czech Republic 84 3% 1999-2005
DNK Denmark 312 11% 1980-2005 X
FIN Finland 312 11% 1980-2005 X
GBR Great Britain 308 11% 1980-2005 X
GER Germany 180 6% 1991-2005 X
ITA Italy 312 11% 1980-2005 X
JPN Japan 312 11% 1980-2005 X
NLD Netherlands 312 11% 1980-2005 X
PRT Portugal 121 4% 1995-2005 X
SVN Slovenia 72 3% 2000-2005
SWE Sweden 156 6% 1993-2005 X
USA United States 312 11% 1980-2005 X

Notes: CCEMG refers to the countries included in the CCEMG regression.

Table 2: Industry descriptions

SIC Description: Manufacture of No. Obs.
15, 16 Food, beverages, tobacco 234
17, 18, 19 Textiles, textile products, leather and leather products 234
20 Wood and products of wood and cork 232
21, 22 Pulp, paper, paper products, printing and publishing 232
24 Chemicals and chemical products 234
25 Rubber and plastic products 223
26 Other non-metallic mineral products 234
27, 28 Basic metals and fabricated metal products 234
29 Machinery and equipment n.e.c. 234
30, 31, 32, 33 Electrical and optical equipment 234
34, 35 Transport equipment 234
36, 37 Manufacturing n.e.c. 234
Total 2,793

Notes: Sector SIC 23 (coke, refined petroleum products and nuclear fuels) is excluded from the analysis.

32



Table 3: Summary statistics

Mean Median Std. Dev. Min Max
Levels

Value Added (mio. Euro) 26288.9 7229.0 51444.2 104.4 782206.1
Labour (mio. hours worked) 869.6 292.4 1200.4 14.6 6611.9
Physical Capital (mio. Euro) 38295.3 10967.4 63149.6 241.6 459870.4
R&D Capital (mio. Euro) 12452.2 677.9 38980.6 0.3 328953.5

Logs
ln Value Added 8.832 8.886 1.765 4.648 13.570
ln Labour 5.722 5.678 1.573 2.684 8.797
ln Physical Capital 9.298 9.303 1.724 5.487 13.039
ln R&D Capital 6.679 6.519 2.608 -1.157 12.704

Differences
4 ln Value Added 0.019 0.016 0.074 -0.412 1.081
4 ln Labour -0.014 -0.012 0.044 -0.269 0.185
4 ln Physical Capital 0.022 0.018 0.033 -0.134 0.297
4 ln R&D Capital 0.036 0.031 0.065 -0.128 0.790

Notes: These descriptive statistics refer to the sample for N = 143 country-sectors (12 countries), which in
levels contains n = 2, 793 observations, average T = 19.5 (range 1980-2005).

Table 4: Principal Component Analysis

Panel A: Variables in Levels
lnY lnL lnK lnR all four

T = 9, N = 119
Variance expl. by 1st Component 0.592 0.603 0.858 0.805 0.706
Variance expl. by 2nd Component 0.167 0.233 0.091 0.125 0.155
Sum 0.760 0.836 0.948 0.930 0.862
T = 24, N = 84
Variance expl. by 1st Component 0.668 0.565 0.820 0.811 0.707
Variance expl. by 2nd Component 0.129 0.165 0.103 0.135 0.131
Sum 0.797 0.730 0.922 0.946 0.838

Panel B: Variables in First Diff.
∆lnY ∆lnL ∆lnK ∆lnR all four

T = 8, N = 119
Variance expl. by 1st Component 0.270 0.381 0.384 0.420 0.350
Variance expl. by 2nd Component 0.202 0.182 0.307 0.228 0.218
Sum 0.472 0.563 0.691 0.648 0.568
T = 23, N = 84
Variance expl. by 1st Component 0.233 0.227 0.253 0.389 0.187
Variance expl. by 2nd Component 0.116 0.144 0.188 0.120 0.155
Sum 0.349 0.371 0.441 0.509 0.342

Notes: For this approach we require a balanced panel across all sectors. We therefore employ two separate
datasets: one with T = 9 time periods, N = 119 country-sectors represents the ‘CCEMG sample. A second
sample maximises on the number of time-series observations T = 24 time periods, N = 84 country-sectors,
including only DNK, FIN, GBR, ITA, JPN, NLD and USA data.
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Table 5: Pesaran (2004) CD Tests

Panel A: Variables in Levels
ln Y ln L ln K ln R

avg ρ 0.22 0.24 0.51 0.32
avg |ρ| 0.59 0.59 0.79 0.77
CD 101.93 104.27 198.69 145.50
Panel B: Variables in FD

ln Y ln L ln K ln R

avg ρ 0.13 0.15 0.16 0.02
avg |ρ| 0.30 0.31 0.36 0.39
CD 53.17 58.70 62.44 11.57
Panel C: AR(2) residuals

ln Y ln L ln K ln R

avg ρ 0.10 0.11 0.08 0.04
avg |ρ| 0.32 0.32 0.33 0.30
CD 43.04 46.21 37.84 13.71

Notes: We present the average and average absolute correlation coefficients across the N(N − 1) sets of country
series. CD reports the Pesaran (2004) cross-section dependence statistic, which is distribution N(0, 1) under the
null of cross-section independence. In Panel C each of the four variables in levels is entered into a time-series
regression zit = π1,izi,t−1 + π2,izi,t−2 + πt,it+ π0,i + εit, conducted separately for each country-sector i. The
correlations and cross-section dependence statistic are then based on the residuals from these AR regressions.

Table 6: Static Production Functions

POLS FE 2FE CDFE CCEP CCEP FDOLS FDOLS
[1] [2] [3] [4] [5] [6] [7] [8]

ln Lit 0.412 0.382 0.608 0.612 0.600 0.610 0.544 0.641
[35.30]∗∗ [13.13]∗∗ [18.46]∗∗ [19.47]∗∗ [17.92]∗∗ [17.41]∗∗ [16.10]∗∗ [18.25]∗∗

ln Kit 0.529 0.748 0.492 0.553 0.282 0.117 0.511 0.309
[41.36]∗∗ [23.96]∗∗ [11.04]∗∗ [15.74]∗∗ [5.97]∗∗ [2.31]∗ [9.68]∗∗ [4.54]∗∗

ln Rit 0.096 0.114 0.062 0.082 0.099 0.065 0.122 0.041
[22.75]∗∗ [8.35]∗∗ [4.36]∗∗ [7.21]∗∗ [4.54]∗∗ [2.90]∗∗ [5.22]∗∗ [1.56]

Year dummies Included Implicit Included Included
CRS 0.00 0.00 0.00 0.00 0.69 0.00 0.01 0.91
AB Test AR(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AB Test AR(2) 0.00 0.00 0.00 0.00 0.78 0.79 0.03 0.01
Order of integration I(1) I(1) I(1) I(1) I(0) I(0) I(0) I(0)
CD test 24.37 15.34 -1.51 2.28 8.92 -0.99 34.66 -0.11
(p) (.00) (.00) (.13) (.02) (.00) (.32) (.00) (.91)
Observations 2793 2793 2793 2793 2793 2793 2650 2650
R-squared 0.97 0.99 0.99 0.99 1.00 1.00 0.24 0.32

Notes: Absolute t-statistics in brackets, constructed from White heteroskedasticity-robust standard errors. ∗, ∗∗ Indicate significance at
the 5% and 1% level respectively.
Abbreviations: FE — Fixed effects (country-sector dummies), 2FE — Two-way Fixed effects, CCEP — Pooled Common Correlated
Effects estimator, FD-OLS — OLS with variables in First Differences.
CRS: p-value for H0: Constant Returns to Scale (labour, physical capital and R&D capital). AB Test: Arellano and Bond (1992) test for
autocorrelation (p-values). The order of integration is determined using the Pesaran (2007) CIPS Test, full results available on request.
I(0) — stationary, I(1) nonstationary. CD Test: Pesaran (2004) test for cross-sectional dependence.
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Table 7: Dynamic Production Functions

POLS FE 2FE AB BB CDFE CCEP CCEP
[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Unrestricted model
ln Yi,t−1 0.975 0.927 0.928 0.745 0.928 0.925 0.488 0.467

[151.49]∗∗ [68.13]∗∗ [62.29]∗∗ [8.46]∗∗ [31.22]∗∗ [67.62]∗∗ [12.95]∗∗ [12.19]∗∗

ln Lit 0.671 0.762 0.673 1.073 0.610 0.632 0.587 0.603
[18.96]∗∗ [20.90]∗∗ [17.48]∗∗ [6.16]∗∗ [4.75]∗∗ [18.00]∗∗ [10.07]∗∗ [10.31]∗∗

ln Li,t−1 -0.661 -0.731 -0.623 -0.792 -0.634 -0.608 -0.349 -0.358
[18.69]∗∗ [20.25]∗∗ [16.51]∗∗ [5.60]∗∗ [5.17]∗∗ [17.61]∗∗ [5.73]∗∗ [5.85]∗∗

ln Kit 0.239 -0.002 0.037 -0.508 0.247 0.400 0.276 0.252
[3.61]∗∗ [0.03] [0.48] [1.85] [1.68] [10.20]∗∗ [2.87]∗∗ [2.58]∗

ln Ki,t−1 -0.234 0.046 -0.008 0.563 -0.182 -0.357 -0.102 -0.156
[3.58]∗∗ [0.64] [0.11] [2.07]∗ [1.32] [9.28]∗∗ [1.16] [1.77]

ln Rit 0.065 0.025 0.015 -0.213 0.007 0.163 0.000 -0.014
[2.43]∗ [0.85] [0.51] [1.58] [0.10] [8.72]∗∗ [0.01] [0.43]

ln Ri,t−1 -0.056 -0.024 -0.016 0.029 0.014 -0.151 0.040 0.039
[2.12]∗ [0.84] [0.57] [0.26] [0.21] [8.28]∗∗ [1.27] [1.17]

Year dummies included implicit included included implicit included
COMFAC 0.00 0.00 0.01 0.58 0.18 0.00 0.20 0.16
CRS 0.46 0.62 0.48 0.47 0.43 0.40 0.28 0.00
AB Test AR(1) 0.00 0.97 0.93 0.00 0.00 0.41 0.01 0.55
AB Test AR(2) 0.02 0.27 0.54 0.15 0.79 0.46 0.03 0.00
Sargan 0.00 0.00
Order of integration I(1)/I(0) I(1)/I(0) I(1)/I(0) I(1)/I(0) I(1)/I(0) I(1)/I(0) I(1)/I(0) I(1)/I(0)
CD-test -0.62 25.76 -0.73 -0.92 -1.47 7.31 7.76 0.37
(p) (.54) (.00) (.46) (.36) (.14) (.00) (.00) (.37)
Panel B: Long-run coefficients (unrestricted model)
Labour 0.418 0.437 0.700 1.102 -0.331 0.328 0.466 0.528

[4.31]∗∗ [3.20]∗∗ [3.95]∗∗ [2.19]∗ [0.76] [1.92] [5.61]∗∗ [5.46]∗∗

Capital 0.198 0.607 0.402 0.217 0.894 0.578 0.340 0.141
[1.33] [6.00]∗∗ [2.96]∗∗ [0.55] [2.86]∗∗ [3.66]∗∗ [3.54]∗∗ [1.12]

R&D stock 0.356 0.011 -0.023 -0.723 0.286 0.160 0.080 0.016
[4.16]∗∗ [0.19] [0.38] [2.36]∗ [1.96]∗ [2.29]∗ [1.96]∗ [0.40]

Panel C: Yi,t−1 & long-run coefficients (common factor restrictions imposed)
ln Yi,t−1 0.977 0.963 0.947 0.854 0.973 0.929 0.517 0.495

[190.40]∗∗ [121.72]∗∗ [80.58]∗∗ [17.11]∗∗ [55.82]∗∗ [75.71]∗∗ [14.84]∗∗ [13.93]∗∗

Labour 0.618 0.757 0.675 0.918 0.543 0.634 0.556 0.579
[18.34]∗∗ [20.93]∗∗ [17.54]∗∗ [6.23]∗∗ [4.38]∗∗ [18.23]∗∗ [10.21]∗∗ [10.66]∗∗

Capital 0.294 0.055 0.130 -0.385 0.299 0.391 0.289 0.197
[7.07]∗∗ [0.94] [2.09]∗ [1.70] [2.21]∗ [10.14]∗∗ [3.65]∗∗ [2.32]∗

R&D stock 0.138 0.043 0.030 -0.147 0.094 0.167 0.022 0.000
[6.76]∗∗ [1.63] [1.17] [1.14] [1.67] [9.07]∗∗ [0.77] [0.01]

Observations 2650 2650 2650 2507 2650 2650 2650 2650
R-squared 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Absolute t-statistics in brackets, constructed from White heteroskedasticity-robust standard errors. ∗, ∗∗ Indicate significance at
the 5% and 1% level respectively.
Abbreviations: FE — Fixed effects (country-sector dummies), 2FE — Two-way Fixed effects, AB — Arellano-Bond (1992) Difference
GMM (instrument count: xx), BB — Blundell-Bond (1998) System GMM estimator (instrument count: XX), CDFE — Cross-sectionally
demeaned FE, CCEP — Pooled Common Correlated Effects estimator, FD-OLS — OLS with variables in First Differences.
AB Test: Arellano and Bond (1992) test for autocorrelation (p-values). The order of integration is determined using the Pesaran (2007)
CIPS Test, full results available on request. I(0) — stationary, I(1) nonstationary. COMFAC: p-value for H0: Common factor restrictions
valid. CRS: p-value for H0: Constant Returns to Scale (labour, physical capital and R&D capital; applied to the long-run coefficients,
COMFAC imposed based on test result). CD Test: Pesaran (2004) test for cross-sectional dependence.
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Table 8: Static Production Functions: Country-sector averages

MG CDMG CCEMG
[1] [2] [3] [4] [5] [6]

Mean Robust Mean Robust Mean Robust
lnLit 0.407 0.614 0.634 0.610 0.554 0.641

[3.18]∗∗ [9.89]∗∗ [5.90]∗∗ [10.22]∗∗ [7.08]∗∗ [11.95]∗∗

lnKit -0.027 -0.049 0.332 0.343 0.282 0.178
[0.19] [0.52] [3.29]∗∗ [5.55]∗∗ [2.10]∗ [1.83]

lnRit 0.023 -0.022 0.182 0.163 0.057 0.053
[0.26] [0.40] [4.87]∗∗ [4.63]∗∗ [0.73] [0.96]

country trend 0.026 0.025
[3.52]∗∗ [7.55]∗∗

# of CS 143 143 143 143 119 119
obs 2793 2793 2793 2793 2637 2637
reject CRS: # (share) 57 (40%) 102 (71%) 46 (39%)
Panel t-statistics
labour 26.46∗∗ 34.10∗∗ 23.29∗∗

capital -0.69 26.67∗∗ 6.12∗∗

R&D -2.82∗∗ 20.31∗∗ 4.28∗∗

trend 36.99∗∗

sign. trend 87
Serial Correlation
Ljung-Box 485.0 (.00) 885.6 (.00) 97.0 (1.00)
Durbin AR(1) 1059.9 (.00) 1229.6 (.00) 799.9 (.00)
Durbin AR(2) 1010.5 (.00) 1344.8 (.00) 1010.5 (.00)
BGod AR(1) 848.1 (.00) 937.1 (.00) 668.5 (.00)
BGod AR(2) 932.7 (.00) 973.8 (.00) 776.7 (.00)
Durbin-Watson < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79
d statistic # 47 60 67 36 47 36
(in %) 33% 42% 47% 25% 39% 30%
Normality/Homosk
Cameron & Trivedi (joint) 370.5 (.00) 419.3 (.00) 327.1 (.00)
Residuals I(1)
no lags -19.60 (.00) -13.84 (.00) -28.51 (.00)
1 lag -5.50 (.00) -2.64 (.00) -22.63 (.00)
2 lags 3.63 (1.00) 6.54 (1.00) -10.20 (.00)
3 lags 12.74 (1.00) 15.63 (1.00) 2.18 (1.00)
CSD
Mean (abs) Correl. Coeff. .05 (.25) .01 (.26) .01 (.23)
CD statistic (p) 25.98 (.00) 4.91 (.00) 4.95 (.00)

Notes: All parameter estimates presented are robust averages across N country-sectors. Absolute t-statistics in brackets,
following Pesaran et al (2009). ∗, ∗∗ Indicate significance at the 5% and 1% level respectively.
Abbreviations: MG — Pesaran and Smith (1995) Mean Group estimator, CDMG — Cross-sectionally demeand MG,
CCEMG — Pesaran (2006) Common Correlated Effects MG.
reject CRS: based on country-specific Wald test for H0 of Constant Returns to Scale (labour, physical capital and R&D
capital) — number of countries and share of sample rejecting H0 reported. Serial correlation tests report Fisher (1932)
statistics (p-values) except Durbin-Watson. dto. for Cameron and Trivedi (1991) test: H0 normal and homosked. residuals.
DW: Durbin-Watson test — # and share of panel units with > 1.79 (d < 1.23) — this is deemed to (be unable to) reject the
null of first order serial correlation (under the strong assumption of exogenous regressors). Other serial correlation tests: H0
of no serial correlation in the residuals. Residual I(1) tests following Pesaran (2007): H0 nonstationarity. CD Test: Pesaran
(2004) test for cross-sectional dependence (H0 independent residual series). Panel t-statistic following Pedroni (1999).
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Table 10: Production Function Estimates: Sector regressions

POLS [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
Food Tex&C Wood Paper Chem Plastic NonMet Metals MachEq ElecOpt Transp NEC

lnLit 0.457 0.269 0.347 0.445 0.293 0.280 0.377 0.526 0.415 0.353 0.544 0.521
[9.23]∗∗ [6.89]∗∗ [9.39]∗∗ [12.35]∗∗ [5.54]∗∗ [4.91]∗∗ [9.39]∗∗ [12.95]∗∗ [6.82]∗∗ [3.42]∗∗ [8.81]∗∗ [19.79]∗∗

lnKit 0.432 0.685 0.588 0.541 0.365 0.510 0.566 0.206 0.349 0.243 0.225 0.350
[7.51]∗∗ [15.20]∗∗ [18.87]∗∗ [13.67]∗∗ [7.08]∗∗ [9.45]∗∗ [13.18]∗∗ [4.30]∗∗ [7.01]∗∗ [2.17]∗∗ [5.14]∗∗ [11.38]∗∗

lnRit 0.236 0.071 0.126 0.085 0.353 0.199 0.106 0.280 0.275 0.388 0.226 0.144
[17.72]∗∗ [7.21]∗∗ [10.94]∗∗ [9.32]∗∗ [14.97]∗∗ [10.52]∗∗ [14.53]∗∗ [15.78]∗∗ [22.17]∗∗ [9.85]∗∗ [8.32]∗∗ [12.14]∗∗

CRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3
joint p 0.04 0.00 0.00 0.02 0.84 0.00 0.01 0.00 0.00 0.00 0.01 0.20
FE [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Food Tex&C Wood Paper Chem Plastic NonMet Metals MachEq ElecOpt Transp NEC
lnLit -0.287 0.612 0.495 -0.188 -0.340 0.091 0.388 0.167 0.421 -0.045 0.491 0.681

[3.14]∗∗ [9.02]∗∗ [5.56]∗∗ [1.38] [2.69]∗∗ [0.85] [7.30]∗∗ [1.17] [5.32]∗∗ [0.29] [4.54]∗∗ [9.41]∗∗

lnKit -0.072 -0.045 0.487 0.256 0.464 1.319 0.558 0.106 0.493 0.755 0.350 0.083
[1.07] [0.31] [4.52]∗∗ [3.33]∗∗ [3.02]∗∗ [13.20]∗∗ [6.39]∗∗ [1.11] [8.08]∗∗ [5.10]∗∗ [4.34]∗∗ [1.26]

lnRit 0.138 0.073 0.101 -0.039 0.467 -0.288 0.004 0.334 0.019 0.636 0.257 0.087
[3.20]∗∗ [3.10]∗∗ [7.63]∗∗ [1.06] [9.49]∗∗ [6.67]∗∗ [0.11] [5.82]∗∗ [0.51] [6.63]∗∗ [4.47]∗∗ [3.84]∗∗

CRS 0.00 0.00 0.00 0.66 0.20 0.00 0.00 0.03 0.00 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-2 1-3 1-3 1-3
joint p 0.19 0.56 0.23 0.00 0.05 0.03 0.32 0.13 0.36 0.05 0.01 0.13
CDFE [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Food Tex&C Wood Paper Chem Plastic NonMet Metals MachEq ElecOpt Transp NEC
lnLit 0.563 0.701 0.573 0.552 0.146 0.262 0.661 1.225 0.820 -0.142 0.909 0.891

[5.08]∗∗ [9.78]∗∗ [10.07]∗∗ [4.74]∗∗ [1.03] [2.86]∗∗ [12.10]∗∗ [14.68]∗∗ [10.27]∗∗ [0.78] [8.61]∗∗ [19.64]∗∗

lnKit 0.126 0.381 0.456 0.275 0.392 1.180 0.689 -0.038 0.450 0.945 0.240 -0.003
[1.16] [3.25]∗∗ [7.37]∗∗ [3.81]∗∗ [4.03]∗∗ [10.65]∗∗ [12.06]∗∗ [0.46] [7.47]∗∗ [8.31]∗∗ [3.52]∗∗ [0.06]

lnRit 0.241 0.052 0.090 0.105 0.545 -0.248 -0.043 0.140 -0.055 0.555 0.222 0.133
[4.57]∗∗ [2.08]∗ [6.89]∗∗ [3.91]∗∗ [10.36]∗∗ [7.07]∗∗ [1.36] [2.80]∗∗ [1.40] [5.34]∗∗ [4.82]∗∗ [8.73]∗∗

CRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-2 1-3 1-3 1-3
joint p 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
CCEP [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Food Tex&C Wood Paper Chem Plastic NonMet Metals MachEq ElecOpt Transp NEC
lnLit -0.390 0.549 0.685 -0.056 -0.267 0.205 0.253 -0.136 0.396 -0.035 0.366 0.608

[5.15]∗∗ [9.23]∗∗ [11.23]∗∗ [0.41] [3.26]∗∗ [1.71] [5.53]∗∗ [1.52] [5.53]∗∗ [0.28] [.31]∗∗ [7.65]∗∗

lnKit 0.024 0.026 0.373 0.404 0.380 1.350 0.810 0.443 0.544 0.919 0.446 0.180
[0.46] [0.19] [4.80]∗∗ [7.45]∗∗ [3.96]∗∗ [17.73]∗∗ [8.33]∗∗ [6.04]∗∗ [9.55]∗∗ [7.30]∗∗ [6.64]∗∗ [3.72]∗∗

lnRit 0.167 0.083 0.112 -0.044 0.510 -0.323 -0.017 0.326 0.042 0.574 0.258 0.087
[4.38]∗∗ [3.33]∗∗ [7.97]∗∗ [1.32] [11.86]∗∗ [6.79]∗∗ [0.45] [6.33]∗∗ [1.32] [6.36]∗∗ [4.82]∗∗ [3.78]∗∗

CRS 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3
joint p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
obs 234 234 232 232 234 223 234 234 234 234 234 234

Notes: Robust t-statistics in brackets. Abbreviations: POLS — pooled OLS (with year dummies), 2FE — two-way Fixed Effects, CDFE
— Cross-sectionally demeaned Fixed Effects, CCEP — pooled Common Correlated Effects.
CRS: Wald test for null of CRS in labour, capital and R&D (p-value reported). AB AR: Arellano and Bond (1991) Serial correlation test,
we report for which lags (1-3) the null of independent errors is rejected. ‘joint p’ for Cameron and Trivedi (1991) test: H0 normal and
homoskedastic residuals
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Table 11: Production Function Estimates: Country regressions

POLS [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
CZE DNK FIN GBR GER ITA JPN NLD PRT SVN SWE USA

lnLit 0.418 0.525 0.551 0.518 0.481 0.534 0.345 0.266 0.298 0.259 0.388 0.269
[7.25]∗∗ [14.69]∗∗ [14.45]∗∗ [13.24]∗∗ [15.27]∗∗ [21.17]∗∗ [7.31]∗∗ [8.03]∗∗ [10.83]∗∗ [6.81]∗∗ [9.11]∗∗ [5.36]∗∗

lnKit 0.476 0.448 0.463 0.595 0.460 0.411 0.638 0.816 0.461 0.484 0.512 0.735
[9.63]∗∗ [14.10]∗∗ [13.21]∗∗ [16.80]∗∗ [15.05]∗∗ [13.98]∗∗ [12.22]∗∗ [24.65]∗∗ [9.98]∗∗ [7.31]∗∗ [10.74]∗∗ [14.61]∗∗

lnRit -0.034 0.041 0.150 -0.005 0.080 0.035 0.014 -0.039 0.051 0.118 0.190 0.030
[3.09]∗∗ [4.26]∗∗ [7.34]∗∗ [0.58] [8.71]∗∗ [5.56]∗∗ [0.53] [3.80]∗∗ [2.49]∗ [7.01]∗∗ [9.04]∗∗ [2.00]∗

CRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1,3 1-3 1-3 1-3
joint p 0.02 0.00 0.00 0.23 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00
2FE [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

CZE DNK FIN GBR GER ITA JPN NLD PRT SVN SWE USA
lnLit 0.233 0.610 0.124 -0.002 0.396 0.346 0.959 -0.164 0.213 0.396 0.420 -0.084

[1.02 [12.31]∗∗ [2.19]∗ [0.03] [5.47]∗∗ [3.50]∗∗ [10.67]∗∗ [2.25]∗ [0.71] [3.39]∗∗ [1.38] [0.74]
lnKit 0.833 0.409 1.632 0.645 0.716 0.354 0.377 0.911 0.217 0.844 0.547 1.374

[6.78 [5.49]∗∗ [18.51]∗∗ [9.03]∗∗ [5.56]∗∗ [5.87]∗∗ [2.90]∗∗ [11.00]∗∗ [1.38] [8.16]∗∗ [3.48]∗∗ [7.94]∗∗

lnRit 0.200 0.140 0.028 0.273 -0.141 0.042 0.508 0.012 0.030 -0.066 0.495 -0.263
[2.14]∗ [4.36]∗∗ [0.90] [8.88]∗∗ [5.99]∗∗ [2.92]∗∗ [4.47]∗∗ [0.25] [0.49] [1.17] [5.18]∗∗ [4.23]∗∗

CRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1,3 1-3 1-3 1-3
joint p 0.02 0.00 0.00 0.23 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00
CDFE [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

CZE DNK FIN GBR GER ITA JPN NLD PRT SVN SWE USA
lnLit 0.366 0.685 0.110 0.114 0.509 0.622 0.980 0.464 0.482 0.841 0.453 0.323

[1.08] [9.43]∗∗ [1.90] [1.55] [8.83]∗∗ [12.86]∗∗ [8.19]∗∗ [7.98]∗∗ [2.17]∗ [4.75]∗∗ [1.64] [3.50]∗∗

lnKit 0.813 0.191 1.575 0.831 0.833 0.349 0.268 0.771 0.414 0.393 0.449 1.367
[3.27]∗∗ [2.78]∗∗ [15.86]∗∗ [12.88]∗∗ [12.89]∗∗ [8.76]∗∗ [2.20]∗ [10.74]∗∗ [2.97]∗∗ [2.18]∗ [2.97]∗∗ [8.59]∗∗

lnRit 0.118 0.114 -0.004 0.113 -0.066 0.057 0.093 0.075 0.090 -0.014 0.410 -0.202
[1.75] [3.50]∗∗ [0.16] [3.37]∗∗ [2.31]∗ [5.39]∗∗ [1.46] [2.49]∗ [1.95] [0.26] [4.91]∗∗ [3.60]∗∗

CRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AB AR 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3
joint p 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CCEP [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
global CZE DNK FIN GBR GER ITA JPN NLD PRT SVN SWE USA
lnLit 0.103 0.839 0.212 -0.066 0.374 0.256 1.058 -0.261 0.203 0.407 0.377 -0.003

[0.47] [11.43]∗∗ [4.12]∗∗ [1.53] [12.86]∗∗ [2.17]∗ [12.85]∗∗ [3.97]∗∗ [0.56] [3.40]∗∗ [1.35] [0.03]
lnKit 0.935 0.362 1.518 0.756 0.775 0.464 0.281 1.102 0.326 0.821 0.680 1.465

[8.56]∗∗ [5.99]∗∗ [17.18]∗∗ [10.73]∗∗ [10.70]∗∗ [12.46]∗∗ [1.94] [15.88]∗∗ [2.92]∗∗ [7.34]∗∗ [5.89]∗∗ [10.25]∗∗

lnRit 0.198 0.107 0.085 0.269 -0.112 0.065 0.508 0.043 0.020 -0.068 0.495 -0.122
[1.97]∗ [3.57]∗∗ [2.57]∗∗ [6.77]∗∗ [5.37]∗∗ [4.63]∗∗ [3.81]∗∗ 1.05] [0.30] [1.14] [5.37]∗∗ [2.19]∗

CRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00
AB AR -3 1-3 1-3 1-3 1-2 1-3 1-2 1-3 1 1,3 1-3 1-3
joint p 0.87 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.11 0.00 0.00
obs 84 312 312 308 180 312 312 312 121 72 156 312

Notes: Robust t-statistics in brackets. Abbreviations: POLS — pooled OLS (with year dummies), 2FE — two-way Fixed Effects, CDFE
— Cross-sectionally demeaned Fixed Effects, CCEP — pooled Common Correlated Effects.
CRS: Wald test for null of CRS in labour, capital and R&D (p-value reported). AB AR: Arellano and Bond (1991) Serial correlation test,
we report for which lags (1-3) the null of independent errors is rejected. ‘joint p’ for Cameron and Trivedi (1991) test: H0 normal and
homoskedastic residuals
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APPENDIX

A Variable construction

A-1 Output — Value added

We use value added as a measure of industry output mainly in order to achieve comparability
with the existing literature and because value-added is more closely related to profitability than
sales. EU KLEMS reports both gross output and intermediate inputs in current prices. We
therefore construct double-deflated value-added by subtracting real inputs from real output.
This practice is preferable over using single-deflated value-added, i.e. deflated nominal value-
added, as a measure for output, since it avoids the situation where differential price movements
across countries generate the false impression of productivity changes. EU KLEMS also provides
the necessary sector-level deflators which represents an advantage as for some sectors, expec-
tations of price changes would likely be different to the general level of inflation.27 This is an
important issue because if inadequate deflators are used, industry output may appear to grow
slower. Since this is most likely in sectors that are R&D-intensive, the contribution of R&D to
output growth would be underestimated (Hall, 1996).28

A-2 Labour input

As a measure of labor input, EU KLEMS provides the total number of hours worked by persons
engaged. The availability of such information is an advantage of EU KLEMS over other data
sets as usually the number of full-time equivalent employees has to serve as a proxy possibly ag-
gravating the problem of measurement error (see for example Hall and Mairesse, 1996; Wakelin,
2001).

A-3 Capital input

Ideally, a measure of current capital services instead of capital stocks, i.e., a flow measure instead
of a stock measure, should be used in productivity analysis (Jorgenson and Griliches, 1967).29

The EU KLEMS data set provides such a measure for capital services in index form. However,
since we do not have any data on R&D capital services, we prefer to use physical capital stocks
as a proxy for capital services.30 This is acceptable under the assumption that the quantity of
an asset held by a sector is proportional to the quantity of the corresponding service obtained
from that asset. For this to be the case, the aggregate of an industry’s capital holdings should

27Hall and Mairesse (1996) also show for sales as the output measure that usage of sector-level deflators increases
the elasticity with respect to R&D substantially for their sample of US firms. Their explanation is the hedonic
price index used in the US for the computing sector.

28At the same time, if quality improvements in inputs are not accounted for, the contribution of R&D to output
growth may be overestimated (see Griliches, 1992; Hall and Mairesse, 1995).

29The flow of productive services coming from the cumulative stock of past investments is called capital services
of an asset.

30Lichtenberg and van Pottelsberghe (1998) have shown that using an index is identical to using volumes in a
fixed effects specification. However, both approaches are different when using OLS.
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represent an average over the various different vintages and age groups of the capital employed
within the sector. That this assumption may approximately hold in practice is supported by
empirical work, for example, by Wallis and Turvey (2009) for the UK.

Capital input is measured as total tangible assets by book value recorded annually. EU
KLEMS provides several measures for tangible assets including total tangible assets, gross fixed
capital formation (GFCF), ICT assets, and non-ICT assets. We use total tangible assets and
deflate them using a sector level producer price index.

A-4 R&D expenditure and stocks

We use R&D stocks in our analysis. It is well known that R&D takes time to translate into
innovation and it is therefore the ensemble of past and current R&D expenditures that should
matter for productivity rather than merely current expenditure. At the same time past knowl-
edge also depreciates, hence, simply specifying lagged R&D expenditure levels to account for the
dynamic nature of R&D may be misleading. The combination of knowledge accumulation and
depreciation is also the underlying rationale for Equation (2) in the Griliches knowledge produc-
tion framework (see Section 2): the notion that more recent vintages of R&D investment matter
more for the knowledge stock than older ones is captured by the log polynomial specification.

EU KLEMS provides R&D stocks for 19 countries for the period 1980-2003. However, the
overlap with the available tangible capital stock data is not perfect leaving us with 10 coun-
tries for which both R&D stocks and physical capital data are available. In order to increase
the number of countries in the sample, we constructed R&D capital stocks for Portugal and
Slovenia for which R&D data is available. These R&D stocks were computed using the OECD
Analytical Business Enterprise Research & Development (ANBERD) data (update May 2009)
which only accounts for business enterprise R&D.31 EU KLEMS also uses ANBERD to construct
R&D stocks and we followed their methodology for Portugal and Slovenia applying the perpet-
ual inventory method (PIM) assuming that the R&D stock evolves according to the following
equation of motion:32

Rit = (1− δ)Rit−1 + R&Dit (15)

where R&D denotes real R&D flows and R the corresponding stock. In order to implement
equation (15), δ has to be determined. In line with EU KLEMS, we assume a depreciation rate
of 12 percent, which is slightly lower than the commonly assumed 15 percent (Hall and Mairesse,
1995; Hall, 2007). Moreover, the depreciation rate is assumed to be the same across sectors and
constant over time. As noted by Hall and Mairesse (1995), the actual rate chosen, however,
seems to be of little relevance for estimation. The reason is the same that also justifies the use

31ANBERD is an attempt undertaken by the OECD to correct for a range of difficulties that arise in working
with official R&D data including uneven coverage of sectors across countries, uneven methods of allocating R&D
in multiproduct firms to individual industries, confidentiality constraints to reporting of data (particularly in
smaller countries), classification issues, and notably differences in the treatment of the R&D services industry
(ISIC rev.3 Division 73) (OECD, 2009).

32PIM has been widely applied in the empirical literature to construct R&D stocks (see for example Hall and
Mairesse, 1995).
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of the following formula to compute the initial capital stock

Ri1 = R&Di0 + (1− δ) R&Di−1 + (1− δ)2 R&Di−2 + ...

=
∞∑
t=0

(1− δ)t R&Di−s = R&Di0

∞∑
t=0

[
1− δ
1 + gi

]t
=

R&Di0

δ + gi

(16)

where gi denotes the sector-specific growth rate of R&D capital stock. Contrary to other authors,
such as Hall and Mairesse (1995), we do not assume a value for gi but compute it using the
first seven years for which R&D expenditure is observed. As long as the growth rate and the
depreciation rate do not change dramatically within sectors over time, they will be captured by
sector-specific effects in any regression. Hence, the elasticity of output with respect to R does
not depend on the choice of δ.33

In addition to constructing R&D capital stocks for Portugal and Slovenia, we extended
the R&D stocks computed by EU KLEMS for all other countries to cover 2004 and 2005 as
well, using ANBERD data and PIM described above. We used GDP deflators as proxies for
R&D-specific deflators to obtain real R&D expenditures prior to computing the stock variables.
We acknowledge a potential measurement problem arising from this choice (see Edworthy and
Wallis, 2007) but at present no viable alternative data is available.

Despite efforts undertaken by the OECD to produce internationally comparable R&D data,
important differences across countries in their attribution of R&D across industries remain,
including data collection, changes in classification and annual data coverage (OECD, 2009). For
our data, the problem in international comparability arises from the fact that countries do not
report R&D data uniformly by product field but some rather by main activity. Countries also
differ in their treatment of R&D conducted in the ‘R&D services’ sector ISIC 73. Our set of
countries contains countries that follow either the product field or main activity approach, a
mixture of both or both: Denmark, Germany, Italy, Japan, Netherlands, Portugal, Slovenia and
the US follow the main activity approach. Whereas Finland, Sweden, and the UK follow the
product field approach. Only the Czech Republic reports data both by product field and main
activity. This difference in the allocation of R&D spending across industries still contaminates
cross-country comparability of R&D expenditures and stocks.34

Finally, note that in two cases R&D stocks represent the bottleneck in terms of data avail-
ability: for Slovenia, R&D capital stocks are only available from 2000 onwards and for the Czech
Republic only from 1999 onwards.

33Note that we carried out a robustness check of all our results where we excluded the first six years of data
which we had used to compute gi in order to reduce the effect that the assumption imposed on initial conditions
has on the value of the computed R&D stock. This reduces the sample size by a third to data from 1986-2005.
Our results are broadly robust to this sensitivity check.

34For a detailed discussion see Helmers, Schulte and Strauss (2009).

42


	EFR 2010-01
	Abstract
	1. Introduction 
	2. The Knowledge Production Function
	3. Cross-sectional Dependance and Spillovers
	4. Data
	5. EStimation Strategy
	6. Results
	7. Conclusion
	References
	Tables and figures
	Appendix

