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ABSTRACT
This paper applies portfolio-theory optimisation 

concepts from the field of finance to produce an 

expository evaluation of the 2020 projected EU-BAU 

(business-as-usual) electricity generating mix. We 

locate optimal generating portfolios that reduce cost 

and market risk as well as CO2 emissions relative to 

the BAU mix. Optimal generating portfolios generally 

include greater shares of wind, nuclear, and other non-

fossil technologies that often cost more on a stand-

alone engineering basis, but overall costs and risks 

are reduced because of the portfolio diversification 

effect. They also enhance energy security. The benefit 

streams created by these optimal mixes warrant current 

investments of about €250 – €500 billion. The analysis 

further suggests that the optimal 2020 generating 

mix is constrained by shortages of wind, especially 

offshore, and possibly nuclear power, so that even 

small incremental additions of these two technologies 

will provide sizeable cost and risk reductions.
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Shimon Awerbuch

Efficient electricity generating portfolios  
for Europe: maximising energy security  

and climate change mitigation

1.  Least-cost vs. portfolio-based approaches in generation planning

Traditional energy planning in Europe and the United States focuses on finding the least-cost 
generating alternative. This approach worked sufficiently well in a technological era, marked 
by relative cost certainty, low rates of technological progress, and technologically homogenous 
generating alternatives and stable energy prices (Awerbuch 1993, 1995a). However, today’s 
electricity planner faces a broadly diverse range of resource options and a dynamic, complex, and 
uncertain future. Attempting to identify least-cost alternatives in this uncertain environment is 
virtually impossible (Awerbuch 1996). As a result, more appropriate techniques are required to find 
strategies that remain economical under a variety of uncertain future outcomes.

Given the uncertain environment, it makes sense to shift electricity planning from its current 
emphasis on evaluating alternative technologies to evaluating alternative electricity generating 
portfolios and strategies. The techniques for doing this are rooted in modern finance theory – in 
particular mean-variance portfolio theory.� Portfolio analysis is widely used by financial investors to 
create low risk, high return portfolios under various economic conditions. In essence, investors have 
learned that an efficient portfolio takes no unnecessary risk to its expected return. In short, these 
investors define efficient portfolios as those that maximise the expected return for any given level 
of risk, while minimising risk for every level of expected return.

Portfolio theory is highly suited to the problem of planning and evaluating electricity portfolios 
and strategies because energy planning is not unlike investing in financial securities where financial 
portfolios are widely used by investors to manage risk and to maximise performance under a variety 
of unpredictable outcomes. Similarly, it is important to conceive of electricity generation not in 
terms of the cost of a particular technology today, but in terms of its portfolio cost. At any given 
time, some alternatives in the portfolio may have high costs while others have lower costs, yet over 
time, an astute combination of alternatives can serve to minimise overall generation cost relative to 
the risk. In sum, when portfolio theory is applied to electricity generation planning, conventional 
and renewable alternatives are not evaluated on the basis of their stand-alone cost, but on the basis 
of their portfolio cost – that is: their contribution to overall portfolio generating cost relative to their 
contribution to overall portfolio risk. Portfolio-based electricity planning techniques – pioneered 
by Awerbuch and Berger (2003), Berger (2003), Awerbuch (2000a), Humphreys and McLain (1998), 
Awerbuch (1995), and Bar-Lev and Katz (1976) – thus suggest ways to develop diversified generating 
portfolios with known risk levels that are commensurate with their overall electricity generating 
costs. Simply put, these techniques help identify generating portfolios that can minimise a society’s 
energy cost and the energy price risk it faces. 

This also has important security of energy supply implications. Although energy security 
considerations are generally focused on the threat of abrupt supply disruptions (see for instance 
European Commission 2001), a case can also be made for the inclusion of a second aspect: the risk 
of unexpected electricity cost increases. This is a more subtle, but equally crucial, aspect of energy 
security. Energy security is reduced when countries (and individual firms) hold inefficient portfolios 
that are needlessly exposed to the volatile fossil fuel cost risk.

�  �Mean-variance portfolio theory (MVP), an established part of modern finance theory, is based on the pioneering work 
of Nobel Laureate Harry Markowitz 50 years ago.  For a recent contribution see Fabozzi et al. (2002). 

Spencer Yang
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The purpose of this paper is to describe a portfolio optimisation analysis that develops and evaluates 
optimal and efficient EU electricity generating mixes for 2020, in an environment of uncertain CO2 
prices. These optimal portfolio mixes are designed to minimise expected generating cost and risk 
– while simultaneously enhancing energy security – and they can be used as a benchmark for 
evaluating electricity generating strategies aimed at minimising CO2 emissions. A key finding of the 
analysis is that compared to the projected 2020 EU business-as-usual (BAU) electricity generating 
portfolio, there exist optimal and efficient portfolios that are less risky, less expensive, and that 
substantially reduce CO2 emissions and energy import dependency.

In developing these results, we proceed as follows. Section 2 sets out the main principles of the 
portfolio-based approach to electricity-sector planning. Section 3 describes the data needed for 
applying such an approach and how we have compiled and estimated them. Using these data, 
Section 4 identifies optimal EU electricity generating portfolios for 2020 and it presents key features 
of these portfolios. Section 5 probes deeper into some of the findings, highlighting the role of 
nuclear energy, the scope for minimising CO2 emissions, the economic consequences of real-world 
technology constraints, and the effects of carbon pricing. Section 6 summarises, concludes, and 
stresses the potential and limitations of our analysis. 

Optimal portfolio 
mixes are designed 

to minimise expected 
generating cost and risk, 

while simultaneously 
enhancing energy 

security.

Optimal portfolio 
mixes are designed 
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generating cost and risk, 
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security.

Box 1.  Electricity generating costs, risks, and correlations 

Electricity generating cost and returns

Portfolio theory was initially conceived in the context of financial portfolios, where it relates 
expected portfolio return to expected portfolio risk, defined as the year-to-year variation of 
portfolio returns. This box illustrates portfolio theory as it applies to a two-asset generating 
portfolio, where the generating cost is the relevant measure. Generating cost (€/kWh) is the 
inverse of a return (kWh/€), that is, a return in terms of physical output per unit of monetary 
input. 

Expected portfolio cost 

Expected portfolio cost is the weighted average of the individual expected generating costs for 
the two technologies:

(1)  Expected portfolio cost = ( ) ( )2211 CEXCEX + ,

where X1 and X2 are the fractional shares of the two technologies in the mix, and E(C1 ) and E(C2 ) 
are their expected levelised generating costs per kWh. 

Expected portfolio risk

Expected portfolio risk, E(σp ), is the expected year-to-year variation in generating cost. It is also a 
weighted average of the individual technology cost variances, as tempered by their covariances:

(2)  Expected portfolio risk = E(σp ) = 211221
2

2
2

2
2

1
2

1 2 σσρσσ XXXX ++ ,

where: X1 and X2 are the fractional shares of the two technologies in the mix; σ
1 and σ

2
 are the 



EIB  PAPERS           Volume12  N°2   2007            11

2.  Portfolio-based approach to electricity sector planning 

2.1  Portfolio optimisation basics applied to electricity sector planning

Portfolio theory was developed for financial analysis to locate portfolios with maximum expected 
return at every level of expected portfolio risk. Box 1 reviews the basics of this theory and explains 
how this paper applies it to electricity generation mixes. An important point to note here is that in 
the case of electricity generating portfolios, it is more convenient to optimise portfolio generating 
costs as opposed to portfolio returns (see Awerbuch and Yang 2007 and Awerbuch and Berger 
2003). This choice does not affect the results and conclusions presented in this paper.

Expected portfolio generating cost is the weighted average of the individual technology costs. 
The expected risk of an electricity portfolio – that is, the expected year-to-year fluctuation in 
portfolio generating cost – is a weighted average of the risks of the individual technology costs, 
tempered by their correlations or covariances. Each technology itself is characterised by a portfolio 
of cost streams, comprising capital outlays, fuel expenditures, operating and maintenance (O&M) 
expenditure, and CO2 costs. It follows that for each technology, risk is the standard deviation of the 
year-to-year changes of these cost inputs.

In the case of electricity 
generating portfolios, 
it is more convenient 
to optimise portfolio 
generating costs as 
opposed to portfolio 
returns.

In the case of electricity 
generating portfolios, 
it is more convenient 
to optimise portfolio 
generating costs as 
opposed to portfolio 
returns.

standard deviations of the holding period returns of the annual costs of technologies 1 and 2 as 
further discussed below; and ρ

12
 is their correlation coefficient. 

Portfolio risk is always estimated as the standard deviation of the holding period returns (HPRs) 
of future generating cost streams. The HPR is defined as: HPR=(EV–BV)/BV, where EV is the ending 
value and BV the beginning value (see Brealey and Myers 2004 for a discussion on HPRs). For fuel 
and other cost streams with annual reported values, EV can be taken as the cost in year t+1 and 
BV as the cost in year t. HPRs measure the rate of change in the cost stream from one year to the 
next. A detailed discussion of its relevance to portfolios is given in Berger (2003).

Each individual technology actually consists of a portfolio of cost streams (capital, operating 
and maintenance, fuel, CO2 costs, and so on). Total risk for an individual technology – that is, 
the portfolio risk for those cost streams – is σ

T
. In this case, the weights, X1, X2, and so on, are the 

fractional share of total levelised cost represented by each individual cost stream. For example, 
total levelised generating costs for a coal plant might consist of ¼ capital, ¼ fuel, ¼ operating 
costs, and ¼ CO2 costs, in which case each weight Xj = 0.25.

Correlation, diversity, and risk

The correlation coefficient, ρ, is a measure of diversity. Lower ρ among portfolio components 
creates greater diversity, which reduces portfolio risk σp (with the notable exception discussed 
by Roques 2006). More generally, portfolio risk falls with increasing diversity, as measured by 
an absence of correlation between portfolio components. Adding a fuel-less (that is fixed-cost, 
riskless) technology to a risky generating mix lowers expected portfolio cost at any level of risk, 
even if this technology costs more (Awerbuch 2005). A pure fuel-less, fixed-cost technology, has 
σ

i = 0 or nearly so. This lowers, σp , since two of the three terms in equation (2) reduce to zero. This, 
in turn, allows higher-risk/lower-cost technologies into the optimal mix. Finally, it is easy to see 
that σp declines as  ρi , j  falls below 1. In the case of fuel-less renewable technologies, fuel risk is 
zero and its correlation with fossil fuel costs is zero too.
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Portfolio theory improves decision making in the following way. First, since the investor only needs 
to consider the portfolios on the so-called efficient frontier, rather than the entire universe of 
possible portfolios, it simplifies the portfolio selection problem. Second, it quantifies the notion 
that diversification reduces risk. For electricity planning, portfolio optimisation exploits the 
interrelationships (i.e., correlations) among the various technology generating cost components. 
Take for example fossil fuel prices. Because they are correlated with each other, a fossil-dominated 
portfolio is undiversified and exposed to fuel price risk. Conversely, renewables, nuclear, and 
other non-fossil options diversify the mix and reduce its expected risk because their costs are not 
correlated with fossil prices.

The portfolio diversification effect is illustrated in Figure 1, which shows the costs and risks for various 
possible two-technology portfolios. Technology A is representative of a generating alternative 
with higher cost and lower risk – such as photovoltaics (PV). It has an expected (illustrative) cost 
of around €0.10 per kWh with an expected year-to-year risk of 8 percent. Technology B is a lower-
cost/higher-risk alternative – such as gas-fired generation. Its expected cost and risk are about 
€0.055 per kWh and 12 percent, respectively. The correlation factor between the total cost streams 
of the two technologies is assumed to be zero. This is a simplification since in reality the capital and 
variable cost of PV will exhibit some non-zero correlation with the capital and variable cost of gas 
generation. 

Figure 1. Portfolio effect for illustrative two-technology portfolio

As a consequence of the portfolio effect, total portfolio risk decreases when the riskier technology 
B is added to a portfolio consisting of 100 percent A. For example, portfolio J, which comprises 90 
percent of technology A plus 10 percent B, exhibits a lower expected risk than a portfolio comprising 
100 percent A. This is counter-intuitive since technology B is riskier than A. Portfolio V, the minimum 
variance portfolio, has a risk of around 4 percent, which is half of the risk of A and one-third of the 
risk of B. This, however, illustrates the point of diversification.
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Investors would not hold any mix above portfolio V because mixes exhibiting the equivalent risk 
can be obtained at lower cost on the solid portion of the line. Portfolio K is therefore superior to 
100 percent A. It has the same risk, but lower expected cost. Investors would not hold a portfolio 
consisting only of technology A, but rather would hold the mix represented by K. Taken on a stand-
alone basis, technology A is more costly, yet properly combined with B, as in portfolio K, it has 
attractive cost and risk properties. Not only is the mix K superior to 100 percent A, most investors 
would also consider it superior to 100 percent technology B. Compared to B, mix K reduces risk 
by one-third while increasing cost by just 10 percent (€0.005 per kWh), which gives it a higher 
Sharpe ratio than other mixes.�  Mix K illustrates that astute portfolio combinations of diversified 
alternatives produce efficient results, which cannot be measured using stand-alone cost concepts. 
To summarise, portfolio optimisation locates minimum-cost generating portfolios at every level  
of portfolio risk, represented by the solid part of the line in Figure 1, that is, the stretch between V 
and B.

2.2  Portfolio-risk perspective vs. engineering-risk perspective

Having sketched the gist of the portfolio approach to electricity generation planning, it is useful to 
comment on the distinction between unsystematic (or firm-specific) risk, systematic (or market) risk, 
and risks usually considered in engineering approaches to analysing the pros and cons of alternative 
generation technologies.   

Finance theory divides total risk into two components: unsystematic risk that affects primarily 
the prices of an asset (these risks can be reduced through diversification) and systematic that 
affect the prices of all assets. Systematic risk refers to the risk common to all securities and cannot 
be diversified away (within one market). Within the market portfolio, unsystematic risk will be 
diversified away to the extent possible. Systematic risk is therefore equated with the risk (standard 
deviation) of the market portfolio.

In the case of generating technologies and other real assets, diversification and portfolio risk are 
frequently misunderstood. With some analysts adopting an engineering approach that strives to 
enumerate all conceivable risks, including those that do not affect overall portfolio risk by virtue 
of diversification.� Ignoring diversification effects in this manner, however, yields a portfolio risk 
estimate that is systematically biased upwards.

For example, year-to-year fluctuations in electricity output from a wind farm is an unsystematic 
risk and is probably not relevant for portfolio purposes since it is uncorrelated to the risk of other 
portfolio cost streams – though this unsystematic risk presents a potential risk to the owner of the 
wind farm. Certainly in the case of a large, geographically dispersed mix such as the EU generating 
portfolio, year-to-year wind resource variability can be considered random and uncorrelated to 
fossil fuel prices or other generating cost components. While it is possible to measure the standard 
deviation of the yearly wind resource at a given location, its correlation to the output of other wind 
farms across the continent (see Figure 2), or to many if not most other generating cost components, 
is arguably zero (that is, ρ

12
 = 0 in equation (2) of Box 1). Thus, wind variability at a particular location 

does not contribute significantly to portfolio risk.

� � Developed by Nobel Laureate William F. Sharpe, this ratio is a risk adjusted performance of an asset and is used to 
characterise how well the return of an asset compensates the investor for the risk taken.

� � For example, Jansen et al. (2006, p. 56) develop complex ad hoc procedures intended to produce a ‘transparent [and] 
comprehensive’ portfolio risk measure by attempting to enumerate and combine various random risks that might affect 
individual generators, but which cannot be expected to affect overall portfolio risk except possibly in the case of very small 
generating systems.
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From a portfolio perspective, there is another important point to consider. Operating costs for wind, 
solar, and other passive, capital-intensive renewables are essentially fixed, or riskless, over time. 
The finance-theory aspects of these fixed-cost, riskless technologies are developed in Awerbuch 
(2000b).� Perhaps more important is that these costs are uncorrelated to fossil fuel prices. This 
enables these technologies to diversify the generating mix and enhance its cost-risk performance. 
Given sufficient geographic dispersion in the wind resources, as would be expected in an EU-wide 
portfolio, the operating cost of a generating system with 30 percent wind will fluctuate less from 
year to year than a system with no wind.�

The idea that enumerating all conceivable unsystematic risks is misleading in the context of a 
generating portfolio study holds for other engineering variances – such as annual variations in 
attained fuel conversion efficiency for a particular gas plant. Some analysts (Jansen et al. 2006, for 
instance) choose to include this risk. Although such yearly efficiency fluctuations might change the 
accountant’s estimate of kWh generating costs at a given site�, it is reasonable to assume that risk is 
uncorrelated, making only small contributions to overall portfolio risk. 

Figure 2.  Onshore wind speed correlation by distance – United Kingdom

Source:	 Sinden (2005) 
Note:	� Showing 1,770 pairs of wind speed recording sites (surface wind speed), typically based on 30 years of data 

per pair.

� � Strictly speaking, in the case of capital costs, this statement holds only ex post, although, given the short lead times 
of renewables projects and the large proportion of manufactured components, construction-period risks for these 
technologies are low even ex ante. O&M costs for renewables arguably have the same portfolio risks as O&M costs for 
conventional technologies. However, because they represent a small share of total cost of renewable generation, their risk 
contribution is also small. This is further discussed in Awerbuch (2000). 

�  Sinden (2005) and Grubb et al. (2007) illustrate how geographic dispersion diversifies wind variability.
� � On an accounting basis, kWh generating cost is calculated by dividing annual capital charges plus operating costs 

by the year’s kWh output. Given a fixed capital charge and relatively fixed maintenance costs, therefore, annual wind 
output variability would cause year-to-year kWh costs to vary. Sunk capital costs are irrelevant in an economic sense, but 
fluctuations in periodic wind output might change the economic kWh cost estimate on the basis of avoided costs.
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3.  Data needed for computing optimal electricity generating portfolios

Applying portfolio optimisation to the EU generating mix requires the following inputs: (i) capital, 
fuel, operating, and CO2 costs per unit of output (kWh) for each generating technology; (ii) the 
risk or standard deviation of each cost component; (iii) the correlation factors between all cost 
components. The following sub-sections will address each input and the way they are used to 
identify optimal portfolios. A more detailed presentation of the data and estimation can be found in 
Awerbuch and Yang (2007).

3.1  Technology generating cost

Figure 3 shows levelised 2020 generating cost for various technologies based on TECHPOLE 
performance and cost data.� Fossil fuel costs reflect the most recent projections of the European 
Commission (European Commission 2006) and the International Energy Agency (IEA 2006).

As for the cost of CO2, a value of €35/t CO2 has been used. This can be interpreted as an expected 
market price of CO2, assuming that economic policies aimed at internalising the economic cost 
of CO2 emissions yield a market price of CO2 – for example, under the European Union Emissions 
Trading Scheme. Alternatively, in the absence of such policies, the cost of CO2 can be interpreted as 
the shadow price of CO2, estimated on the basis of the economic cost of CO2 emissions and of CO2 

abatement cost.� As for capital cost, this study assumes full capital cost recovery for new and already 
installed generating capacity. Although capital costs are sunk from an economic perspective, we 
assume that electricity producers set prices to recover their sunk costs. This assumption may not 
hold in day-to-day decision-making, but over time, producers cannot remain viable unless they 
recover their capital costs. Thus, a full-cost recovery approach is implemented for both existing and 
new plants.

As Figure 3 shows, a system integration charge is added to wind generation to compensate for 
‘intermittency costs’. This adjustment is necessary because wind is a variable-output technology. 
System integration is a complex issue. Many think of wind as intermittent, although there are very few 
times when wind output is actually zero (Sinden 2005 and Grubb et al. 2007). The existing electricity 
network organisation and protocols do require wind integration to have some extra level of backup 
capacity to balance the system when wind electricity output is reduced.� The costs have been 
quantified in multiple studies with similar results (Dale et al. 2004, DENA Grid Study 2005, and UKERC 
2006, for instance). Our analysis follows the results of the UKERC (2006) survey, which estimates the 
aggregate intermittency costs in the range of €7.5–€12 per MWh (£5–£8 per MWh) for 20 percent 
wind penetrations. Because intermittency cost estimates in Europe are somewhat lower (DENA Grid 
Study 2005, for instance, estimated cost at or under €10/MWh), we apply a system integration charge 
of €10/MWh. This analysis, however, does not include possible associated systematic risks that may 
become more significant for wind penetrations in excess of 20-30 percent.

� � TECHPOLE database, LEPII, University of Grenoble, CNRS. Fuel input cost, reflecting most recent projections of the European 
Commission and IEA are shown in Annex Table A1.

� � For example, in its cost-benefit analyses of energy sector projects, the European Investment Bank currently uses a baseline 
shadow price that rises from €25/t CO2 in 2007 to €45/t CO2 in 2030.

� � This being said, new electricity network protocols and information systems have even been proposed in order to exploit 
wind variability and obviate the need for standby reserve capacity (see – for instance – Awerbuch 2004 and Fox and Flynn 
2005). These proposals generally involve matching variable output wind to interruptible load applications to prevent both 
system balancing and/or backup generation.
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Figure 3.  2020 generating costs (€/MWh) for various technologies

Sources:	 Based on TECHPOLE database, LEPII, University of Grenoble; European Commission (2006), and IEA (2006). 
Note:	 Economic costs of CO2 assumed to be €35/t CO2.

3.2  Technology risk estimates

Table 1 summarises our technology risk estimates, expressed as the standard deviations of the 
holding-period-returns (see Box 1) based on historical data for each cost component.

Let us start with capital, or construction, cost risk. This varies by technology type and is 
generally related to the complexity and length of the construction period. A World Bank 
analysis covering a large number of projects estimates the standard deviation of construction 
period outlays for thermal plants (for instance, coal-fired power stations) at 23 percent and 38 
percent for large hydro plants (Bacon et al. 1996). For the purpose of our analysis, we apply 
the thermal plant value to the construction-period risk of nuclear plant (but we will consider 
alternative values in Section 5.1). To some extent, this is an arbitrary simplification. Many believe 
these risks are significantly higher. Others, however, believe such risks will resolve themselves 
with experience. The estimates for wind, gas, geothermal, and solar risk were determined from 
developer interviews as reported in Awerbuch et al. (2005). Construction cost risk of existing 
capacity was estimated at around zero percent. This suggests that ‘new’ vintage assets are 
riskier than old ones – for example, risks for a new, not yet constructed coal plant are greater 
than those for an existing coal plant.

Fuel cost risks have been estimated on the basis of historical (1980-2005) European fossil fuel import 
prices taken from an IEA database. Annual price observations were used because they eliminate 
seasonal variations that could potentially bias the results. In practice, electricity producers buy fuel 
through spot and contract purchases so that the cost of fuel in any calendar period is best measured 
as the total fuel outlays divided by total fuel delivered. The HPR standard deviations of fuel cost 
range from 0.14 for coal to 0.24 for oil. Obviously, renewable technologies and geothermal require 
no fuel outlays and there is thus no fuel cost risk.
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Table 1.  HPR standard deviations for generating technology cost streams (in %)

Construction Fuel O&M CO2

Coal 23.0 14.0 5.4 26.0

Oil 23.0 25.0 24.2 26.0

Gas-CC turbine 15.0 19.0 10.5 26.0

Nuclear 23.0 24.0 5.5 –

Hydro-large 38.0 0.0 15.3 –

Hydro-small 10.0 0.0 15.3 –

Wind 5.0 0.0 8.0 –

Wind-offshore 10.0 0.0 8.0 –

Biomass 20.0 18.0 10.8 –

PV 5.0 0.0 3.4 –

Geothermal 15.0 0.0 15.3 –

Source:	 Own calculation.
Notes:	� HPR ≡ holding-period-returns; for definition of HPR see Box 1; they measure the year-to-year fluctuation of the 

underlying cost stream; as a result, the standard deviation is expressed in % while the cost stream itself is measured 
in €/kWh; construction cost HPRs for existing capacities are not shown as they are estimated at about zero.

The risks of operating and maintenance outlays are difficult to estimate. Typically, estimates can be 
found in corporate records. But often, these records are not publicly available. Even if they were, 
maintenance policies may not keep the records in a format suitable for the analysis carried out here. 
In addition, companies design these records to promote overall corporate objectives, which can 
result in biased numbers. For example, during periods of poor financial performance, corporate 
managers may choose to defer maintenance in order to meet specified corporate objectives 
– such as reducing O&M expense. Thus, maintenance outlays might be arbitrarily recorded as 
capital improvements and be depreciated over time. In the case of rate-regulated utilities, there 
is a significant incentive to charging these outlays to capital improvements because they earn a 
regulated rate of return.

The US Energy Information Agency and the Federal Energy Regulatory Commission databases 
maintain records covering every generator operated by a regulated utility. This data was used to 
estimate the HPR standard deviations for O&M costs (along with the correlations between these 
costs discussed in the next subsection). By using this data, we implicitly assume that the maintenance 
volatility for a large portfolio of generating assets in the United States will not differ materially from 
those that would be found for a similar European portfolio. As Table 1 shows, different technologies 
show different year-to-year fluctuations in maintenance outlays – ranging from 3.4 percent for 
photovoltaics to 24.2 percent for oil.10

This takes us to the risk associated with the last cost category, that is, the cost of CO2 emissions, 
which is relevant for fossil fuel technologies. As Table 1 indicates, the HPR standard deviation for 
CO2 has been estimated at 26 percent. The approach underlying this estimate will be presented 
next in the context of discussing the correlation between the cost of different fuels, the correlation 
between O&M costs of different technologies, and the correlation between the cost of fossil fuels, 
on the one hand, and CO2 cost on the other. A more comprehensive presentation of the technology 
cost and risk estimation can be found in Awerbuch and Yang (2007).

10 � In principle, the O&M cost category should include outlays for property taxes, insurance, and other non-maintenance 
categories. These would most likely exhibit lower risk and potentially dampen the results of Table 1. Because the focus in 
this paper is on CO2 risk, we did not pursue this O&M issue further.
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3.3  Correlation coefficients

We start here with a brief description of our approach to estimating the HPR standard deviation 
for CO2 and the correlation between CO2 cost and fuel prices. Our estimates are derived using both 
analytic techniques and Monte Carlo simulation. The analytic approach to estimating CO2 risk and 
correlation follows the spirit of Green (2006), who expresses CO2 price in terms of gas and coal prices. 
This relationship is used to derive the HPR standard deviation of CO2 as well as its correlation with 
fossil fuels. The Monte Carlo approach uses a series of simulations that provide a second set of CO2 
risk and fossil fuel correlation estimates. In the Monte Carlo analyses, we used the volatility and 
other trends from 18 months of actual data to simulate 20 years of trading. This and its correlation to 
coal, gas, and oil provides an estimate of annual risk factors for CO2.

Both methods provide a range of estimates of CO2 risk and correlations. We compared the analytical 
and Monte Carlo results and performed various sensitivity analyses to test the reasonableness 
and robustness of these estimates. The HPR standard deviation for CO2 that we use in the portfolio 
optimisation model (26 percent) is shown in the last column of Table 1.11 The CO2 cost/fuel cost 
correlation coefficient used in the portfolio optimisation is shown in the second-last column (or row) 
of Table 2 below.

As can be seen from these correlation coefficients, there is a negative correlation between CO2 and 
coal prices and a positive correlation between CO2 and gas. This is the expected result. Intuitively, as 
gas becomes more expensive, electricity generation shifts to coal, putting upward pressure on CO2 
prices – be they market prices or shadow prices. Conversely, rising coal prices shift generation to 
gas, which emits about half as much CO2. As a result, the price of CO2 falls with rising coal prices.

Table 2 also shows the correlation coefficients for the various fuels, indicating a positive correlation 
between fuels – with the notable exception of biomass. Although the data used for this analysis do 
not obtain a negative fuel correlation for nuclear, a number of researchers (Awerbuch and Berger 
2003 and Roques 2006) find a negative correlation between nuclear and fossil fuels, suggesting a 
greater diversification potential than that resulting from our analysis.

The estimated O&M correlation coefficients are shown in Table A2 in the Annex.

Table 2.  Fuel and CO2 HPR correlation coefficients

  Coal Oil Gas Uranium CO2 Biomass

Coal 1.00 0.27 0.47 0.12 -0.49 -0.38

Oil 0.27 1.00 0.49 0.08 0.19 -0.17

Gas 0.47 0.49 1.00 0.06 0.68 -0.44

Uranium 0.12 0.08 0.06 1.00 0.00 -0.22

CO2 -0.49 0.19 0.68 0.00 1.00 0.00

Biomass -0.38 -0.17 -0.44 -0.22 0.00 1.00

Source:	 Own calculation.

11 � While our CO2 risk estimates are statistically robust, it is important to note that they are based on just 18 months of CO2 
trading. Because the results of the CO2 risk and correlation estimates were relatively consistent over various unrelated 
estimation procedures, we are relatively confident in applying them to the analysis.
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3.4  Total technology cost and risk 

The previous sub-sections described the cost and risk inputs for the various generating technologies. 
These are combined using equation (2) in Box 1 to produce a total HPR standard deviation for each 
technology, where the weights (X1, X2, … etc.) are given by the proportional values of the levelised 
cost components, that is, capital, fuel, O&M, and CO2 outlays.

Figure 4 shows the costs per kWh for each of the generating technologies in 2020 along with its 
risk, with the added assumption that CO2 costs €35 per tonne. For comparison, Figure 4 also shows 
the cost-risk combination of the projected EU 2020 BAU mix; in addition, it pictures two variants of 
the EU 2005 mix: one assuming CO2 cost of €15 per tonne and the other €35 per tonne. The former 
reflects the approximate price of CO2 in 2005 and the latter enables a direct comparison between 
the 2005 mix and 2020 BAU mix. This comparison shows that relative to the 2005 mix, the 2020 BAU 
mix slightly reduces electricity generating cost from 5.98 €-cents to 5.87 €-cents per kWh. This cost 
reduction is attained by increasing expected risk from 6.8 percent to 7.3 percent. Compared to the 
2005 EU mix, the 2020 BAU mix represents a cost-risk trade-off that few investors would make: a cost 
reduction of less than 2 percent would come with an increase in risk of almost 9 percent.

Figure 4.  Cost and risk of existing and new EU generating alternatives in 2020

Source:	 Own calculation.
Notes:	� Estimates for individual technologies and the EU 2020 BAU mix are based on a CO2 emission cost of €35/t CO2.  

For comparison, the Figure shows the actual EU 2005 generation mix for €35/t CO2 (EU 2005*) and for €15/t CO2  
(EU 2005). See text for details.

The results also show that compared to existing vintages, new vintages exhibit lower cost and larger 
risk (in Figure 4, new vintages lie to the southeast of existing vintages). The cost decline is because 
new-vintage technologies increase energy efficiency and, thus, lower cost. For example, electricity 
produced by new coal plants cost 5.8 €-cents per kWh, which is 1.2 €-cents less than for existing coal 
plants. Risk for new vintages increases because the construction-period risk of existing vintages are 
sunk or zero while new generating assets yet to be constructed are exposed to construction-period 
risk. The largest differences between the new and existing vintages show up in capital-intensive 
technologies such as nuclear, wind (especially offshore), and geothermal. 
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Not unexpectedly, the inclusion of CO2 charges increases the generating cost of fossil alternatives 
relative to non-fossil technologies. CO2 prices also increase the risk of the fossil alternatives to the 
extent that the HPR risk of the CO2 exceeds the HPR risk of the fossil fuel. As shown in Table 1, the 
HPR standard deviation for CO2 is 26 percent as compared to 14 percent for coal fuel and 19 percent 
for natural gas fuel. Observe that with €35/t CO2, the standard deviation of existing coal technology 
rises from 5.6 percent to 10.7 percent, while the risk of existing gas generation increases much 
less from 14.3 percent to 15.7 percent (see Table 3). The increase for new coal is also smaller than 
for existing coal because the risk of new coal includes the construction-period risks, reducing the 
fractional share of CO2 outlays (that is, the weight of CO2 outlays in equation (2) of Box 1).12 

Table 3.	 The effect of CO2 costs on coal and gas generating cost-risk

CO₂ cost per tonne

€0.00 €15.00 €35.00

Cost
(€/MWh)

Risk
(%)

Cost
(€/MWh)

Risk
(%)

Cost
(€/MWh)

Risk
(%)

Coal 3.8 5.6 5.1 6.2 6.9 10.7 

Coal – New 3.3 11.7 4.3 10.3 5.8 12.3 

Gas-CC 4.0 14.3 4.6 14.9 5.3 15.7 

Gas-CC – New 3.8 14.7 4.3 15.2 4.9 16.0 

Oil 8.2 20.2 9.2 18.8 10.6 17.8 

Oil – New 8.0 20.8 8.7 19.3 10.2 18.3 

Source:	 Own calculation.

In the case of oil-fired electricity generation, the HPR fuel price risk is 25 percent (slightly lower than 
CO2). Because of the low correlation between CO2 and oil (0.19 as shown in Table 2), the inclusion of 
CO2 charges reduces overall risk of this technology as the proportional weight of CO2 outlays rises as 
a share of total costs.

The general outcome is that our 26 percent estimate for the CO2 HPR risk and our estimated CO2-
fossil fuel correlations, along with the addition of CO2 charges, do not significantly raise total HPR 
risks of new fossil generating assets and in some cases lowers them. This is contrary to widely held 
beliefs. Of course, higher CO2 risk estimates (or higher correlation with fossil fuels) will affect even 
new assets to a greater extent.

4.  Portfolio optimisation of EU electricity generating mix

4.1  Efficient multi-technology electricity portfolios – an illustration 

As previously stated, the aim of this study is to evaluate whether there exists feasible 2020 
generating mixes that are ‘superior’ to the 2020 EU-BAU mix by virtue of reducing risk or the cost of 

12 � Note that the risk for new coal decreases slightly as CO2 costs move from €0 to €15 per tonne; this is undoubtedly caused 
by the negative correlation between CO2 cost and coal prices. As CO2 cost rise to €35, however, the magnitude of the price 
overwhelms the negative correlation, and overall risk rises again. 
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producing electricity. To prepare for the interpretation of the results of our portfolio optimisation 
model, it is useful to offer a general illustration of possible results.

Figure 5 shows an infinite number of different generating mixes that could meet the 2020 
electricity needs with a unique mix of the various technology options. The different portfolios 
all have different cost-risk as represented by the blue dots. Interestingly, technology shares do 
not change monotonically in any direction in Figure 5 so that two mixes with virtually identical 
cost-risk characteristics (that is, two mixes located close to each other in cost-risk space) can have 
radically different technology generating shares. Indeed, Awerbuch and Berger (2003) show 
that costs and risks of the EU generating mix projected for 2010 are virtually identical to a mix 
consisting of 100 percent coal. Likewise, radically different mixes can have nearly identical cost-risk 
characteristics, that is, they could be virtually co-located in the risk-cost space. The intuition for this 
is straightforward: there are many ways to combine ingredients in order to produce a given quantity 
of salad at a given price.

Figure 5.  Feasible region and efficient frontier for multi-technology electricity portfolios

The blue curve (PNSQ) is the so-called efficient frontier (EF), the locus of all optimal mixes. There are 
no feasible mixes below the efficient frontier, and along it, only accepting greater risk can reduce 
cost. The blue-dot mixes in Figure 5 are sub-optimal or inefficient because it is still possible to 
reduce both cost and risk by finding mixes on the efficient frontier by moving below or to the left. 
As we will show below, the 2020 EU-BAU mix lies above the efficient frontier.

Although an infinite number of possible generating portfolios lie on the efficient frontier we focus 
on four typical optimal mixes P, N, S, Q. Taking the 2020 EU-BAU mix as the benchmark, they are 
defined as follows:

• � Mix P is a high-cost/low-risk portfolio. It is usually the most diverse (see, for example, Stirling 1996 
and Awerbuch et al. 2006).
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• � Mix N is an equal-cost/low-risk portfolio, that is, it is the mix with the lowest risk for costs equal to 
that of the 2020 EU-BAU mix.

• � Mix S is an equal-risk/low-cost portfolio, that is, it is the mix with the lowest costs for a risk equal 
to that of the 2020 EU-BAU mix.

• � Mix Q is a low-cost/high-risk portfolio. It is usually the least diverse portfolio. 

The portfolio analysis does not advocate any particular generating mixes, but rather displays the 
risk-cost trade-offs across many mixes. Although it may turn out that solutions in the region of the 
2020 EU-BAU mix – for example, solutions between portfolios N and S – may be the most practical, 
we do not claim that our optimisation results help set technology targets for 2020. Rather, the idea 
is to highlight and quantify the trade-offs between generating mixes.

4.2  Efficient multi-technology electricity portfolios for 2020 – results 

The portfolio optimisation evaluates the 2020 EU-BAU mix shown in Figure 6 against two cases: 
‘Baseline’ and ‘Realisable’ case. These cases differ in the extent to which future technology 
choices are constrained because of upper (and lower) bounds, representing either maximum 
attainable deployment levels for each technology or maximum resource limits, as in the case of 
renewables such as wind or hydro (see Awerbuch and Yang 2007 for a more detailed discussion). 
The Baseline represents aggressive technology deployment levels that would likely be difficult to 
attain in practice. Its purpose is to help explore practical policy limits and identify policies that 
may be worth pursuing. The Realisable case, however, represents a set of upper technology limits 
that could be attained in practice given sufficiently focused policies and accelerated resource 
deployments. Table 4 shows Baseline case and Realisable case lower and upper limits for the 
share of alternative technologies in the overall generation mix. For each set of constraints, we 
compute efficient electricity generation mixes and analyse the level of CO2 emissions associated 
with them.

Figure 6.  2005 and 2020 EU-BAU generation mix (in TWh)

Source:	 European Commission (2005).
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Table 4.  Lower and upper technology limits (in % of electricity mix)

Baseline case Realisable case

Lower limit (%) Upper limit (%) Lower limit (%) Upper limit (%)

Coal 3 52 5 35

Gas-CC Old 5 16 10 16

Gas-CC New 0 50 0 20

Oil 2 8 2 5

Nuclear 15 52 15 33

Hydro 8 13 8 11

Biomass 2 22 2 13

PV 0 5 0 1

Geo 0 ½ 0 0

Wind-onshore 2 32 2 7

Wind-offshore 0 40 0 7

4.2.1  Efficient portfolios – Baseline case

This section discusses the 2020 Baseline optimisation results and compares their risk-return 
characteristics and CO2 emissions to those of the projected 2020 EU-BAU mix. The results indicate 
that the optimal Baseline portfolios minimise cost and risk and reduce CO2 emissions. This is shown in 
Figure 7, which illustrates the risk and return for the projected 2020 EU-BAU and for the typical optimised 
mixes under Baseline assumptions. The efficient frontier PNSQ shows the location of all optimal mixes.

The EU-BAU mix has an overall generating cost of 5.9 €-cents per kWh and a risk of 7.6 percent. By 
comparison, mix N, the equal-cost/low-risk mix, cuts risk nearly by half, to 3.4 percent. Alternatively, 
mix S, has the same risk as the BAU but reduces generating costs by 0.9 €-cents per kWh, which 
equates to an EU-wide cut in annual electricity outlays of €36 billion.13 

Figure 7.  Efficient frontier for 2020 electricity generation mix – Baseline case

Source:	 Own calculation. 
Notes:	 For CO2 cost of €35 per tonne.

13 � Based on an annual consumption in 2020 of 4,006 TWh (€0.009/kWh × 4,006 × 109kWh = €36bn).
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Mix P, the minimum-risk mix, reduces risk slightly relative to mix N. But this seems to represent an 
unattractive cost-risk trade-off over mix N. Similarly, mix Q, the minimum-cost mix, does hardly 
reduce cost relative to mix S, but comes with a noticeable increase in risk. It thus seems that in cost-
risk terms, the practical range of policy interest generally runs from mix N down to mix S.

Policy makers tend to view climate change mitigation as an objective that competes with cost 
and, indeed, it is widely believed that low-carbon electricity generation will increase cost. But 
such beliefs are based on stand-alone cost concepts. The Baseline results, however, show that in 
addition to reducing cost and/or risk relative to the EU-BAU mix, the optimal mixes also reduce CO2 
emissions, in contradiction to widely held beliefs that climate change mitigation policies inevitably 
increase cost.14 This is illustrated in Figure 8, which shows technology shares and portfolio risk on 
the left vertical axis, CO2 emissions on the right axis, and portfolio generating cost along the top of 
the graph. The low-risk mixes, P and N reduce annual CO2 to 199 million tonnes, which is 85 percent 
lower than emissions in the BAU mix (1,273 million tonnes of CO2). They accomplish this primarily by 
substituting wind for gas and coal. Indeed, the share of onshore wind is 32 percent, its permissible 
upper limit (Table 5). Mixes S and Q, the low-cost mixes, reduce CO2 emissions to 472 and 549 million 
tonnes, respectively, by incorporating larger shares of nuclear generation, which reaches its 52 
percent upper limit in both mixes. This result – that is, that optimal low-risk mixes increase wind 
shares relative to the BAU while optimal low-cost mixes increase nuclear – tends to hold for the 
Realisable case, too, as we will see next.

Table 5.  Optimal portfolio shares and CO2 emissions in 2020 – Baseline case 

EU-BAU Mix P Mix N Mix S Mix Q Technology bounds

Share in electricity generating (%) Lower
(in %)

Upper
(in %)

Coal 22 3 L 3 L 3 L 3 L 3 52

Gas-CC Old 16 5 L 5 L 5 L 5 L 5 16

Gas-CC New 13 0 L 0 L 19 27 0 50

Oil 3 2 L 2 L 2 L 2 L 2 8

Nuclear 22 22 22 52 U 52 U 15 52

Hydro 9 8 L 8 L 8 L 8 L 8 13

Biomass 6 4 3 2 L 2 L 2 22

PV 0 5 U 2 0 L 0 L 0 5

Geo 0 0 0 0 0 0 ½ 

Wind-onshore 6 32 U 32 U 9 2 L 2 32

Wind-offshore 1 19 23 0 L 0 L 0 40

CO2 emissions in million tonnes per year

1,273 199 199 472 549

Source:	 Own calculation. 
Notes:	 L and U indicate that technology share is at Lower or Upper bound; results for €35/t CO2.

14 � This is true only to the extent that the underlying generating costs shown in Figure 7 reflect all economic cost. However, 
since the costs shown in Figure 7 do not fully incorporate some economic costs such as investment grants that benefited 
some of these technologies (e.g., wind and nuclear), the resulting climate change mitigation may cost more than what 
Figure 7 suggests.
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Figure 8.  Technology shares, portfolio risk and cost, and CO2 emissions – Baseline case

Source:	 Own calculation. 
Notes:	 Results for €35/t CO2.

4.2.2  Efficient portfolios – Realisable case

To recall, compared to the Baseline case, the Realisable case considers technology deployment 
levels that can be attained by 2020, assuming focused policy efforts. This case incorporates upper 
bounds for renewables based on the ‘Realisable’ scenarios developed by Ragwitz et al. (2005), who 
estimate the realisable market potential for renewable energy technologies as “the maximum 
achievable potential, assuming that all existing barriers can be overcome and all driving forces are 
active” (Ragwitz, personal communication 2006). Compared to the Baseline case, the Realisable case 
has less latitude to search for optimal solutions because it is limited to a smaller feasible region. As a 
consequence, optimal Realisable mixes are costlier and riskier, and they emit more CO2 than optimal 
Baseline mixes.

Figure 9 shows the cost and risk results for the Realisable case (solid line). There are mixes on 
the efficient frontier that exhibit lower cost-risk than the projected EU-BAU mix. However, as the 
Realisable case is more constrained, the efficient frontier is shorter, riskier, and more costly relative 
to the Baseline. The tighter resource limits – particularly the penetration levels for onshore wind and 
nuclear – increase the cost of mixes S and Q and the risk of mixes P and N.

For example, the cost of mix S rises by 0.3 €-cents/kWh (6 percent) relative to the Baseline. This 
increase in cost equates to an increase in total annual outlays by EU electricity consumers of  
€12 billion. This figure represents about 0.1 percent of the current GDP of the EU. To illustrate the 
impact of tighter technology deployment limits on risk: with less wind resource available, the 
optimisation cannot reach the low risk levels of the Baseline. For example, in mix N, lower limits for 
wind (in particular) increase coal and nuclear shares, thereby raising risk by some 60 percent, from 
3.3 percent in the Baseline case to 5.4 percent in the Realisable case. 
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Figure 9.	 Efficient frontier for 2020 electricity generation mix – Realisable case

Source:	 Own calculation. 
Notes:	 Results for €35/t CO2.

Compared to the Baseline case, the Realisable case is characterised by significantly lower shares of 
nuclear, wind, and – in some cases – new and existing gas-fired power plants (see Table 6 and Figure 10).  
This is driven by the lower upper technology bounds for most technologies, as can be seen by 
comparing the right-hand column of Table 6 to that of Table 5. Further, as Table 6 indicates, wind hits its 
upper limit in all the optimal Realisable mixes, while offshore wind hits the upper limit in the low-risk 
mixes P and N where offshore wind is required to balance and complete the mix. Nuclear is at its upper 
limit in all except mix P. The results of Table 6 suggest that additional deployment of these technologies 
could lower cost, risk, and CO2 emissions. As a comparison of the last row in Table 6 with the last row in 
Table 5 shows, the Realisable case reduces annual CO2 emissions at best by 548 million tonnes (mix S) 
while they might fall by as much as 1,074 million tonnes under Baseline assumptions (mixes P and N). 

Figure 10.  Technology shares, portfolio risk and cost, and CO2 emissions – Realisable case

Source:	 Own calculation. 
Notes:	 Results for €35/t CO2.

Cost: € / kWh

Risk: year-to-year standard deviation

Coal

New Hydro Small

Baseline EF

Wind
EU 2020
BAU Mix

Hydro-Large

Hydro-Small

Nuclear

New Wind

Geo

Mix P
Mix N

Mix S Mix Q

0 2% 4% 6% 8% 10% 12%

€ 0.07

€ 0.06

€ 0.05

€ 0.04

€ 0.03

Cost: € / kWh

Risk: year-to-year standard deviation

Coal

New Hydro Small

Baseline EF

Wind
EU 2020
BAU Mix

Hydro-Large

Hydro-Small

Nuclear

New Wind

Geo

Mix P
Mix N

Mix S Mix Q

0 2% 4% 6% 8% 10% 12%

€ 0.07

€ 0.06

€ 0.05

€ 0.04

€ 0.03

Optimal shares of 
nuclear hit their upper 

limit in all optimal mixes 
except one.

Optimal shares of 
nuclear hit their upper 

limit in all optimal mixes 
except one.

0%

10%

20%

30%

40%

50%

60%

6.1 5.9 5.9 5.3 5.3

Mix P Mix N EU BAU Mix S Mix Q

80%

100%

90%

70%

0

200

400

600

800

1000

1200

1600

2000

1800

1400

Biomass Wind-Offshore Wind-Onshore Hydro Geo Nuclear Oil Gas-CC New

Gas-CC Old Coal CO2 Emission (Mil-tonnes/Yr) Risk

G
en

er
at

in
g 

sh
ar

e

Cost (€-cents per kWh)

CO
2 (

M
ill

io
n 

to
nn

es
 p

er
 y

ea
r)

PV

0%

10%

20%

30%

40%

50%

60%

6.1 5.9 5.9 5.3 5.3

Mix P Mix N EU BAU Mix S Mix Q

80%

100%

90%

70%

0

200

400

600

800

1000

1200

1600

2000

1800

1400

Biomass Wind-Offshore Wind-Onshore Hydro Geo Nuclear Oil Gas-CC New

Gas-CC Old Coal CO2 Emission (Mil-tonnes/Yr) Risk

G
en

er
at

in
g 

sh
ar

e

Cost (€-cents per kWh)

CO
2 (

M
ill

io
n 

to
nn

es
 p

er
 y

ea
r)

PV



EIB  PAPERS           Volume12  N°2   2007            27

Table 6.  Optimal portfolio shares and CO2 emissions in 2020 – Realisable case

EU-BAU Mix P Mix N Mix S Mix Q Technology bounds

Share in electricity generating (%)
Lower
(in %)

Upper
(in %)

Coal 22 22 17 5 L 10 5 35

Gas-CC Old 16 10 L 11 15 16 U 10 16

Gas-CC New 13 0 L 0 L 20 U 20 U 0 20

Oil 3 2 L 2 L 2 L 2 L 2 5

Nuclear 22 29 33 U 33 U 33 U 15 33

Hydro 9 9 9 10 10 8 11

Biomass 6 13  U 13 U 2 L 2 L 2 13

PV 0 1 U 0 L 0 L 0 L 0 1

Geo 0 0  U 0  U 0  U 0  U 0 0 

Wind-onshore 6 7 U 7 U 7 U 7 U 2 7

Wind-offshore 1 7  U 7 U 5 0 L 0 7

CO2 emissions in million tonnes per year

1,273 981 825 725 836

Source:	 Own calculation. 
Notes:	 L and U indicate that technology share is at Lower or Upper bound; results for €35/t CO2.

Table 7 summarises the changes in technology generating shares and CO2 emissions for the typical 
optimal mixes relative to the 2020 EU-BAU. The low-risk mixes P and N show large percentage 
increases for nuclear, biomass, and wind, coupled with significant percentage reductions for gas, oil, 
and coal (in mix N only). The low-cost mixes S and Q show large percentage rises for gas, nuclear, and 
wind (in mix S), coupled with large reductions of coal, oil, and biomass.

Table 7.  2020 EU BAU electricity generation mix vs. optimal Realisable mixes

  Mix P Mix N EU-BAU Mix S Mix Q

Portfolio risk 5.3% 5.5% 7.6% 7.6% 7.9% 

Portfolio cost in €/MWh 61 59 59 53 53

% change from EU-BAU % change from EU-BAU

Annual CO2 -22% -35% 1,273m tonnes -45% -34% 

Coal 0% -22% 897 TWh -78% -57% 

Gas-CC -66% -61% 1,182 TWh +19% +22% 

Oil -31% -42% 104 TWh -42% -42% 

Nuclear +29% +50% 886 TWh +50% +50% 

Hydro -4% -4% 376 TWh +12% +8% 

Biomass +115% +115% 247 TWh -70% -70% 

Wind +85% +85% 303 TWh +67% +0% 

Other 265% -7% 12 TWh -7% -7% 

Total 4,006 TWh    

Source:	 Own calculation. 
Notes:	 Results for €35/t CO2.

The low-cost electricity 
mixes show large 
increases in the share 
of gas, nuclear, and 
wind, coupled with large 
reductions of coal,  
oil, and biomass.

The low-cost electricity 
mixes show large 
increases in the share 
of gas, nuclear, and 
wind, coupled with large 
reductions of coal,  
oil, and biomass.



28            Volume12  N°2   2007           EIB  PAPERS

In practice, the move from the 2020 BAU mix to the Realisable mix S is probably the most attractive 
of the realisable possibilities. If new policies were to redirect investment so that mix S is achieved, 
this would have the highly desirable effect of cutting annual electricity costs by €24 billion15 and CO2 
emissions by 548 million tonnes without changing risk.

However, other moves involving alternative risk choices are possible. For example, to the left of the 
2020 BAU mix in Figure 9 lies mix N. Compared to the BAU mix, mix N cuts the portfolio risk by about 
one-third while simultaneously reducing annual CO2 emission by 448 million tonnes, or 35 percent. 
This move produces no cost reductions and while CO2 reductions are not as large as when moving 
from the BAU to mix S, risk is significantly reduced. Obviously, comparing the risk-cost and CO2 

combinations of N against S requires knowledge of societal preference functions.

Over the long run, further technology deployment may make it possible to move closer to Baseline 
mix S from the BAU mix (or the Realisable mix S). The decline in CO2 emissions would be 46 percent 
higher (801 versus 548 million tonnes a year), accompanied by 33 percent greater cut in the EU’s 
electricity bill (€36 compared to €24 billion).

4.3  A summary of key results

The results in this section highlight the importance of focused technology deployment policies 
designed to move the EU generating mix away from the BAU mix and closer to electricity generating 
portfolios such as the Realisable mix S. This mix would reduce annual EU electricity cost by around 
€24 billion and annual CO2 emissions by more than 500 million tonnes. Taking annual electricity cost 
saving as perpetual and assuming an interest rate of 5-10 percent would justify investment today to 
the tune of €240-480 billion. 

A key finding is that the low-risk mixes (P and N) generally reduce fossil shares and increase wind 
and other non-fossil shares relative to the BAU mix, while the higher-risk/lower-cost mixes (S and 
Q) increase primarily nuclear along with gas, wind, and hydro electricity at the expense of coal and 
oil. There thus seems to be a dichotomy between wind and nuclear, suggesting that our analysis 
reinforces rather than solves the wide-ranging debate between pro-nuclear and pro-wind forces. 
However, this debate incorporates numerous additional considerations that are not reflected in 
our optimisation, including highly uncertain waste disposal management costs. The next section 
tries to shed more light on the role of nuclear power and other factors influencing the results of our 
portfolio analysis.

5.  An eclectic view on factors influencing optimal electricity mixes

 
5.1  The role of nuclear power

The nuclear cost estimates used for identifying efficient electricity portfolios do not account for 
the costs and risks of storing nuclear waste, which are essentially incalculable. CORWM (2006) 
recommends a lengthy, potentially decades-long process, involving interim waste storage in 
preparation for ultimate geological disposal. Although much of what is risky about nuclear seems 
to be a matter of expectations and is not necessarily always rational, countries may decide not to 
build new nuclear power stations – as is currently the case in Germany, for instance. Against this 

15  (5.9-5.3) €-cents/kWh x 4,006TWh.
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background, it is useful to test a policy of a nuclear moratorium – that is, no new nuclear – to see its 
effects on cost and risk of the EU portfolio mix. In principle, this can be done for the Baseline case 
and the Realisable case, but in what follows we will focus on the latter (for ease of comparison, we 
will call it the ‘benchmark’ Realisable case). In addition, we concentrate on generating mixes N that 
minimise portfolio risk for the cost of the 2020 EU-BAU mix and on mixes S that minimise portfolio 
cost for the risk of the 2020 EU-BAU mix. 

As Figure 11 shows, for mix S cost rises from 5.3 €-cents to 5.5 €-cents per kWh. For Mix N, risk 
stays approximately unchanged. The big change is in terms of additional CO2 emissions, where CO2 
emissions rise from 725 to 993 million tonnes (Mix S) and from 825 to 912 million tonnes (mix N). This 
is because for these portfolios, a good part (in mix N virtually all) of the drop in the share of nuclear 
is compensated for by fossil fuel-fired electricity generation.

Figure 11.  Technology shares, portfolio risk and cost, and CO2 emissions – sensitivity analyses

Source:	 Own calculation. 
Notes:	 Results for €35/t CO2.

In another sensitivity test, we have examined the impact of a change in risk of constructing and 
decommissioning nuclear power plants. To recall from Section 3, total generating costs of new 
nuclear power stations have been estimated at 4.1 €-cents/kWh, including decommissioning 
costs equivalent to 70 percent of the overnight plant construction cost of €1,710 per kW (see 
Figure 3). This makes nuclear attractive relative to other alternatives. It can be argued, however, 
that nuclear risk is understated because construction-period risk was arbitrarily set to the 
World Bank estimate for the construction-period risk of coal at 23 percent (Bacon et al. 1996). To 
account for this, we re-ran our scenarios several times, gradually increasing nuclear construction 
risk from 0.23 to 0.38. This raises total technology risk for nuclear from about 16 percent (see 
Figure 4) to 26 percent.

As can be seen from Figure 11, for the Realisable case (‘Higher-Nuc-Risk’), a higher risk level for 
nuclear capital costs has a relatively small effect on the optimal cost-risk combination, that is, 
mix N comes with only a marginal increase in risk relative to the benchmark Realisable case, 
while mix S is associated with only a small increase in portfolio generating costs (5.4 €-cents/kWh 
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instead of 5.3 €-cents/kWh). As expected, both portfolios have a lower share of nuclear – but the 
change is small because of the already tight upper and lower bounds for most technologies. It is 
interesting to observe that for the low-risk mix N, the share of renewables is virtually constant, 
with an increase in fossils making up for the drop in nuclear. As a result, CO2 emissions rise. As 
for the low-cost mix S, the decline in nuclear is associated with a decline in fossils and an increase 
in renewables, all in all resulting in lower CO2 emissions. The main reason why renewables become 
more important in mix S, but not in N, is that in the benchmark Realisable mix S, renewables 
– biomass in particular – are not as close to their technology upper bounds, whereas they are in the 
benchmark Realisable mix N.16

5.2  Efficient electricity portfolios that minimise CO2 emissions

We now turn to something that is not so much a sensitivity analysis, but – rather – a change in 
perspective: we want to identify the combinations of portfolio risk and portfolio generating cost 
(and the associated technology shares) that minimise CO2 emissions. For the Realisable case, the 
results are shown on the very right-hand side of Figure 11. Comparing them to the benchmark 
Realisable case suggests only a moderate decline in CO2 emissions: from 825 million tonnes per 
year to 782 million tonnes for mix N and from 725 million tonnes to 700 million tonnes for mix S. 
It is straightforward to illustrate that minimising CO2 emissions is most likely to be economically 
inefficient. As Figure 11 shows, for mix S, portfolio generating cost increase by 0.3 €-cents/kWh, 
implying an increase in annual electricity cost of €12 billion and, thus, carbon reduction cost of 
€480/t CO2 – a value way above current estimates of global warming damages.

Although not shown in Figure 11, results are very different when taking the Baseline case rather 
than the Realisable case as a benchmark. As shown in Awerbuch and Yang (2007), moving to the 
carbon-minimising mix S would cut CO2 emissions by 273 million tonnes, implying carbon reduction 
cost of €44/t CO2. Awerbuch and Yang (2007) also show that the risk-cost characteristics of the 
Baseline carbon-minimising portfolios are very similar to – in fact, slightly better than – those of the 
Realisable case shown in Figure 9 above. Though it is unlikely that Baseline technology penetration 
levels could be attained by 2020, this illustrates the significant benefits that could be achieved over 
a longer period by pursuing deeper penetrations of these technologies.

5.3  The effect of upper limits on technology shares

In Awerbuch and Yang (2007) we investigate in a more rigorous way the economic cost of the 
constraints that prevent the share of wind, nuclear, and gas to be larger than the upper limit of the 
Realisable case. Using linear-programming techniques, we show that easing these constraints and, 
thus, allowing technology shares to move towards the Baseline case, has considerable economic 
value. More specifically, for the realisable mix S we find that increasing the upper limit for the share 
of nuclear energy by 1 percentage point would result in portfolio cost savings equivalent to 46 percent 
of the lifetime generating costs of additional nuclear power stations. The comparable results for 
wind and gas are 21 percent and 8 percent, respectively. The results for wind could significantly 
and positively impact the current debate regarding development of an EU offshore ‘super-grid’ to 
connect diverse offshore wind sites. They also impact on the nuclear debate in a similar fashion.  

16 � A word of caution is appropriate. The sensitivity of results to changes in underlying assumptions about nuclear energy 
do not, and are not intended to, resolve the nuclear-renewables debate. Rather, they are meant to quantify and highlight 
some of the important factors.
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All in all, they indicate that failure to fully exploit the EU energy resource potentials needlessly raises 
generating cost and CO2 emissions. 

5.4  The effect of pricing CO2 emissions

So far, our analysis assumed a charge of €35 per tonne of CO2 emitted, which we interpreted as either 
a market price or a shadow price for carbon emissions. We will now investigate the effect of pricing 
CO2 emissions on the cost-risk characteristics of the 2020 EU-BAU mix and of efficient generating 
portfolios. In addition, we discuss the impact of carbon pricing on CO2 emissions. To keep things 
simple, we consider only the effect of moving from a carbon price of zero to one of €35/t CO2 and we 
concentrate on the BAU mix and mixes N and S in the Realisable case.17

As Figure 12 illustrates, portfolio risks and costs rise with rising CO2 prices. This is true for the BAU 
mix and the efficient electricity generating portfolios. For instance, the cost of the BAU mix increases 
by 23 percent or 1.1 €-cent per kWh (from 4.8 €-cents to 5.9 €-cents per kWh). The risk of that mix, 
however, rises a whopping 40 percent (from 5.4 percent to 7.6 percent), illustrating its considerable 
sensitivity to changing CO2 (and fossil fuel) prices. By definition, the share of each technology in the 
BAU mix and, thus, CO2 emissions do not change with a rise in CO2 prices. Clearly, it makes little sense 
to keep technology shares constant when CO2 prices rise.

On the contrary, with rising CO2 prices it is optimal to reduce the share of fossil fuels in electricity 
generation – as indicated by the amount of CO2 emissions, which is shown by parenthetical values 
next to the mixes in Figure 12. Since mixes P and N have lower shares of fossils than mixes S and Q, 
they have lower emissions at any given CO2 price. Absent CO2 charges, the Realisable mix N emits 
1,358 million tonnes of CO2 per year.18 As the CO2 price increases, optimal mixes are re-shuffled to 
minimise portfolios costs and risks. For a carbon price of €35/t CO2, emissions fall by almost 40 
percent to 825 million tonnes per year.

Let us take a closer look at the effect of carbon pricing by considering mix S. In general, the change 
in portfolio costs and CO2 emissions is the result of two interrelated changes: a rise in CO2 charges 
and the re-optimisation of portfolio mixes in response to this rise. Considered in isolation, the 
increase in the CO2 price raises the cost of electricity from 4.4 €-cents/kWh (see Figure 12) by about  
1.3 €-cents/kWh. This increase reflects the cost of carbon (€35/t CO2 multiplied by 1,450 million 
tonnes of CO2) for a total electricity production of around 4,000 TWh. But as pictured in Figure 12, 
portfolio generating cost increase only by around by 0.9 €-cents/kWh to a total of 5.3 €-cents/kWh. 
The cost savings of around 0.4 €-cents/kWh are due to the portfolio re-optimisation triggered by the 
pricing of carbon. But the associated decline in the share of fossil fuels in mix S not only offsets, in 
part, the increase in electricity costs resulting from the pricing of carbon, it also lowers CO2 emissions 
from 1,450 million tonnes to 725 million tonnes.

17 � Results for carbon prices between zero and €35/t CO2 and for other efficient generating mixes (in both the Realisable case 
and the Baseline case) are discussed in Awerbuch and Yang (2007).

18 � It is worth pointing out that without carbon pricing, efficient portfolios that generate electricity at the same or lower cost 
than the BAU mix are more carbon intensive than the BAU mix (see the points that lie to the southeast of mix N on the 
‘CO2 = €0’ efficient frontier in Figure 12).
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Figure 12. � Efficient frontiers (€0/tCO2 and €35/tCO2) for 2020 electricity generation mix –  
Realisable case

Source:	 Own calculation.

Notes:	� Values in parentheses next to the mixes show annual CO2 emissions in million tonnes.  The 2020 EU-BAU emits 
1,273 million-tonnes per year.

6.  Summary and conclusions

This paper has presented a mean-variance portfolio optimisation analysis that develops and 
evaluates optimal (that is, efficient) EU electricity generating mixes for 2020. The results suggest that 
greater shares of non-fossil technologies, primarily nuclear or wind, can help reduce the cost and 
risk of the EU generating portfolio as well as its CO2 emissions. To illustrate, an efficient generating 
mix that we consider to be achievable by 2020 is estimated to cut annual EU electricity generating 
cost by €24 billion and CO2 emissions by 548 million tonnes. This mix thus produces perpetual 
annual benefits sufficient to justify current investments of up to €500 billion – which compares to an 
estimated EU investment of €900 billion in new electricity generation capacity needed by 2030. It is 
also shown that easing constraints on investment in nuclear and wind energy capacity would lower 
overall generating cost enough to offset 46 percent and 21 percent of the kWh costs of nuclear and 
wind generation. Against this background, policies designed to accelerate the deployment of key 
non-fossil technologies appear to be highly cost-effective.

Perhaps the single most important lesson of the portfolio optimisation analysis is that adding a 
fuel-less, fixed-cost technology (such as wind energy) to a risky generating mix lowers expected 
portfolio cost at any level of risk, even if the fuel-less technology costs more when assessed on 
a stand-alone basis. This underscores the importance of policy-making approaches grounded in 
portfolio concepts as opposed to stand-alone engineering concepts.

This is a tall order, since quantitative indicators in energy markets are primarily focused on stand-
alone performance. In contrast, financial markets provide a beta measure to help investors think in 
terms of portfolio performance. The lack of a similar measure in energy markets prevents some from 
embracing the energy planning portfolio optimisation approach.

EU BAU 
CO2 = €35/t

CO2 = €35/t

EU BAU 
CO2 = €0/t

2% 4%3% 6%5% 8%7% 10%9%

€ 0.060

P(1142)

N(1358)

S(1450) Q(1675)

Q(836)

S(725)

N(825)

P(981)

Cost: € / kWh

€ 0.055

€ 0.050

€ 0.045

€ 0.040

CO2 = €0/t

Risk: year-to-year standard deviation

EU BAU 
CO2 = €35/t

CO2 = €35/t

EU BAU 
CO2 = €0/t

2% 4%3% 6%5% 8%7% 10%9%

€ 0.060

P(1142)

N(1358)

S(1450) Q(1675)

Q(836)

S(725)

N(825)

P(981)

Cost: € / kWh

€ 0.055

€ 0.050

€ 0.045

€ 0.040

CO2 = €0/t

Risk: year-to-year standard deviation

Our analysis suggests 
that greater shares of 

non-fossil technologies, 
primarily nuclear or 

wind, can help reduce 
the cost and risk of the 

EU generating portfolio 
as well as its CO2 

emissions.

Our analysis suggests 
that greater shares of 

non-fossil technologies, 
primarily nuclear or 

wind, can help reduce 
the cost and risk of the 

EU generating portfolio 
as well as its CO2 

emissions.



EIB  PAPERS           Volume12  N°2   2007            33

Ironically this issue is akin to the practical problems that initially confronted Harry Markowitz’s 
portfolio approach. The new technique required massive analytic efforts (sans computers) to 
estimate the covariance of returns to each stock in the US market against every other stock. It was 
not until Sharpe and Lintner developed the Capital Asset Pricing Model (CAPM) to show that a single 
covariance with the market portfolio is sufficient (Varian 1993). Perhaps with further research, it may 
be possible to develop energy analogues that will enable a beta type measure to index the risk of 
particular generating technologies against a large generating mix such as the EU mix. This would 
provide a simple and expedient method for evaluating the costs and risks of individual technologies 
and their CO2 emissions.

Today’s dynamic and uncertain energy environment requires portfolio-based planning procedures 
that reflect market risk and de-emphasise stand-alone generating costs. Portfolio theory is well 
tested and ideally suited to evaluate electricity expansion strategies.19 It identifies solutions that 
enhance energy diversity and security and are therefore considerably more robust than arbitrarily 
mixing technology alternatives. Portfolio analysis reflects the cost-risk relationship (covariances) 
among generating alternatives. Though crucial for correctly estimating overall cost, electricity-
planning models universally ignore this fundamental statistical relationship and instead resort 
to sensitivity analysis and other ill-suited techniques to deal with risk. Sensitivity analysis cannot 
replicate the important cost inter-relationships that dramatically affect estimated portfolio costs 
and risks (Awerbuch 1993), and it is no substitute for portfolio-based approaches. The mean-
variance portfolio framework offers solutions that enhance energy diversity and security and are 
therefore considerably more robust than arbitrarily mixing technology alternatives.

This being said, we must be clear about the purpose and the limitations of the portfolio approach 
to electricity sector planning. The portfolio optimisation presented in this paper does not point to a 
specific capacity-expansion plan. Such outputs would require considerably more detailed models. 
The results presented here are largely expositional, but they demonstrate the value of portfolio 
optimisation approaches and suggest that capacity planning made on the basis of stand-alone 
technology costs will likely lead to economically inefficient outcomes.

Moreover, in deregulated markets, individual power producers evaluate only their own direct 
costs and risks when taking investment decisions. These decisions do not reflect the effects the 
producers’ technologies may have on overall generating portfolio performance. Wind investors, for 
example, cannot capture the risk-mitigation benefits they produce for the overall portfolio, which 
leads to under-investment in wind relative to levels that are optimal from society’s perspective. 
Similarly, some investors may prefer the risk menu offered by fuel-intensive technologies such 
as combined-cycle gas turbines, which have low initial costs. Given sufficient market power, gas 
generators may be able to externalise fuel risks onto customers. In effect, these investors do not 
bear the full risk they impose onto the generating mix, which may lead to over-investment in gas 
relative to what is optimal from a total portfolio perspective (a quantitative treatment of this issue is 
given in Roques 2006). All this suggests a rationale for economic policies in favour of technologies 
that bring diversification benefits.

19 � Other techniques have also been applied. For instance, Stirling (1996, 1994), develops maximum-diversity portfolios based 
on a considerably broader uncertainty spectrum. Though radically different in its approach, his diversity model yields 
qualitatively similar results.
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Annex 

Table A1.  Fuel cost inputs and economic cost of CO2.

Gas €4.8/Mbtu

Oil €41/bbl

Coal €44/tonne

CO2  €35/tonne

Uranium €6/MWh

Biomass €5.15/GJ

Table A2.  O&M correlation coefficients

Technology Coal Gas Nuclear Oil Hydro Wind Geo Solar Bio

Coal 1.00 0.25 0.00 -0.18 0.03 -0.22 0.14 -0.39 0.18

Gas 0.25 1.00 0.24 0.09 -0.04 0.00 -0.18 0.05 0.32

Nuclear 0.00 0.24 1.00 -0.17 -0.41 -0.07 0.12 0.35 0.65

Oil -0.18 0.09 -0.17 1.00 -0.27 -0.58 -0.06 -0.04 0.01

Hydro 0.03 -0.04 -0.41 -0.27 1.00 0.29 -0.08 0.30 -0.18

Wind -0.22 0.00 -0.07 -0.58 0.29 1.00 -0.28 0.05 -0.18

Geo 0.14 -0.18 0.12 -0.06 -0.08 -0.28 1.00 -0.48 -0.70

Solar -0.39 0.05 0.35 -0.04 0.30 0.05 -0.48 1.00 0.25

Biomass 0.18 0.32 0.65 0.01 -0.18 -0.18 -0.70 0.25 1.00
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