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Glossary

Axiomatic Approach: The attempt to uniquely characterize a solution
concept on a class of games by a set of mathematical axioms the interpreta-
tion of which is considered self�evident.

Bargaining Problem: An NTU-game where the only admissible coalitions
are singletons and the grand coalition.

Bargaining Sets: A class of solution concepts for NTU-games containing
only payo� vectors that are immune against admissible alternatives proposed
by coalitions as objections.

Coalitional Function: A mapping that assigns utilities or outcomes to
coalitions about which these coalitions can enter binding agreements.

Common Knowledge: The paradigm of a situation in which the players
can fully observe their opponents knowledge, their observations about ones
own knowledge etc. on arbitrary levels of hierarchy.

Cooperative Solution: A mapping that assigns utilities to players in view
of their bargaining and coalitional power as described by the coalitional func-
tion.

Cost Sharing: In Game Theoretical terms the application of solution con-
cepts of cooperative game theory towards the fair or equal distribution of
disutilities among cost generating divisions or sections of a �rm.

Equilibrium: A stable situation described in terms of strategies, payo�
vectors, or consumption decisions from which to deviate is not pro�table for
a player or a group of players.

Economy: A speci�cation of data thought to completely describe an eco-
nomic system thereby representing the exogeneous restrictions for economic
agents' interaction in markets.

Equivalence Principle: A class of results characterizing Walrasian (com-
petitive) equilibria of large economies as (elements of) game theoretic solu-
tions.

Evolutionary Stability: A property of strategies in a symmetric bimatrix
game assuring that a strategy is a best response to itself that moreover beats
other best responses as a response to them.

Extensive Form: The representation of a game describing a stochastic pro-
cess susceptible to the players successive actions and resulting in intermediate
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and �nal payo�s to them.

Fictitious Play: The prototype of learning models in a social context: In
a sequence of game repetitions each player chooses a strategy that is an
optimal response to an estimated mixed strategy combination of the other
players derived from observation of their past behavior.

Game: The paradigm of human competitive and cooperative interaction
calling for decisions (under uncertainty) of the players involved and resulting
in payo�s or outcomes for these players.

Game Form: A list of strategy sets for n players, interpreted as sets of
admissible messages, together with an outcome function associating with
any strategy pro�le an outcome interpreted as a social state.

Implementation: A simultaneous realization of a social choice rule by non-
cooperative equilibria for a whole class of games generated by a given game
form together with a family of preference pro�les.

Incentive Compatibility: A game form (or mechanism) is incentive com-
patible if it is direct, i.e. strategy sets are the sets of possible preferences or
types, and truth telling is the unique equilibrium.

Mechanism: A device processing signals of the players permitting to cor-
relate their announcements and resulting in a cooperative decision, thereby
possibly resulting in strategic behavior of players anticipating the structure
of this device. Sometimes the term is used as a synonym for �game form�.

Nash Program: A research agenda in game theory, initiated by John Nash,
that tries to characterize certain payo� vectors for players alternatively via
axiomatic cooperative solutions and via non-cooperative equilibria, thereby
making both approaches more transparent.

Normal Form: The representation of a game describing the strategic al-
ternatives available to the players and the payo� functions de�ned on these
alternatives. No binding agreements available.

Nucleoli: A class of (nonlinear) solution concepts based on a fair or equal-
izing assessment of complaints to be lodged by coalitions against proposals
for utility assigments.

Pareto E�ciency: The most popular axiomatic property of social outcomes
that makes any individual improvement impossible unless at least some other
persons are worse o�.

Revelation Principle: A group of results asserting that any social choice
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rule that can be implemented in Nash or Bayesian Nash equilibrium allows
for an alternative thruthful implementation in a direct game.

Social Choice Rule: A mapping associating with any admissible pro�le of
preferences on a set of social states a subset of this set interpreted as socially
desired.

Solution: A mapping associating with any member of a class of games some
set of feasible payo� vectors for the players.

Strategy: A complete plan of decisions for a player to be implemented
contingent to all possible states of nature, characteristics of the opponents,
their knowledge and intentions, at the same time respecting the possible
choice of strategies of the opponents.

TU�NTU Transferable versus nontransferable utility. Concepts attached
to cooperative games according to whether a universal medium of transfer
(�money�) is thought to be available or not.

Type: A state of nature describing the characteristics of a player, randomly
generated and in general (privately) observable to this player, thus allowing
him to infer conditional probabilities concerning the other players types.

Values: In Game Theoretical context a class of (linear) solution concepts
that re�ect a priory assessments or expectations of gains, mainly axiomati-
cally justi�ed.

Welfarism: An ideological position in welfare economics and social choice
theory claiming that social welfare depends in a society only on the utilities
of their individual members. Axiomatic bargaining models in the tradition of
Nash are welfaristic. In contrast, models with an underlying outcome space
representing a speci�c economic or social context are not.
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Summary

Game Theory describes human interaction involving con�ict, cooperation
and competition, the term Interpersonal Decision Theory is synonymous.
The term re�ects the fact that most essential features of this �eld are man-
ifested in parlor games. This topic-level treatment covers large parts of the
basic concepts and methods and sketches some �elds of recent applications.
The simultaneous occurrence of strategic, stochastic and dynamic phenom-
ena, the fundamental role of epistemic aspects like knowledge and informa-
tion and the impact of institutional and organizational structures make game
theoretic analysis a highly complex task.

In order to deal with various facts of social interaction di�erent forms of
strategic or cooperative game models have been developed. The Normal (or
Strategic) Form describes the strategic alternatives, the Extensive Form re-
�ects the evolvement of games in time as governed by players' successive
decisions during play. In particular, Repeated Games with Incomplete Infor-
mation describe iterated plays of the same randomly in�uenced game about
which the players receive asymmetric information. The Coalitional Form
describes power of coalitions.

Equilibria and solutions represent various approaches to solve games or to
describe stable, fair, expected or just likely payo�s of games.

In mechanism design an imperfectly informed planner with limited enforce-
ment power creates rules of a game that ensure that any potential population
of players by playing an equilibrium according to those rules ends up with a
socially desired state.

The Equivalence Principle deals with an important application of game the-
ory to large economies, where due to the dominating power of competition
distinct solution concepts asymptotically coincide with the Walrasian equi-
libria.

Recent applications of game theory to evolutionary biology and evolutionary
models of social systems and of learning are also brie�y sketched.

Finally, results from game theoretic analysis based on perfectly rational play-
ers are contrasted with laboratory experiments that have been performed
with real, hence at best boundedly rational, players.

A brief assessment of game theory as a part of Operations Research (or vice
versa) concludes.
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1 Introduction

Game Theory is a mathematical theory of socio�economic phenomena ex-
hibiting human interaction, i.e., con�ict and cooperation between decision
making individuals (the players). The theory is based on the structural pro-
cedures of mathematics and directed towards problems in various �elds of
applications.

An appropriate synonym is �Multipersonal Decision Theory�. The main
paradigms are those of strategic behavior, incomplete information, mutual
anticipation of actions, bargaining power, fairness and equity.

Game Theory approaches the problem of decisions for a group of individuals
under uncertainty, it deals with lack of information about the state of the
environment, the state of the interpersonal decision process and the state
of the opponents incentives and abilities. Hence, a probabilistic context is
inevitable. The states of nature as well as the strategic behavior of the players
involved are generally thought to be randomly in�uenced.

In addition, the mutual anticipation of opponents strategic behavior, the
mutual knowledge about the opponents knowledge and the recursive in�uence
of such kind of consideration on the state of knowledge as well as the resulting
strategic consequences are modeled; again they are thought to be randomly
in�uenced. This way an idea of �common knowledge� enters the scene.

Also, Game Theory focuses on aspects of cooperation, enforced by legal con-
tract or by long standing experience. It treats problems of fair distribution of
resources, acceptable outcomes to joint operations, the representation of bar-
gaining power and coalitional in�uence, the a priori expectation of gains to be
achieved from cooperative decisions. The power of coalitions and the result-
ing in�uence of individuals, principles of bargaining and axiomatic treatment
of solutions, complaints and threats, e�ciency and e�ectiveness, reputation
and learning are being discussed on a formal level.

The performance in strategic or cooperative situations (in �the game�) re-
quires an incentive. A version of utility theory is underlying most game
theoretical models. This implies that the individuals involved (the players)
are capable of expressing preferences with regard to the decisions at stake.
Thus, it is required that, for each player, there is a preference ordering or a
utility function de�ned on the set of decisions available to all players.

Given a player's incentives, he may have incomplete (and randomly in�u-
enced) information about the incentives, preferences, or utilities of his op-
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ponents. Indeed, Game Theory is capable of describing situations in which
players are uncertain about the game they are playing and the opponents
they are facing.

Game Theory is also concerned with clarifying the notion of rational behav-
ior. It does not explicitly so, but the concept appears implicitly formulated
in various attempts to �nd a �solution � of a game. Solutions more ore less
imply that the players achieve bene�ts by acting rationally on the basis that
everyone else behaves rationally as well.

Game Theory basically uses the language of Mathematics, it embraces the
analysis of structural relations due to mathematical thinking. Models are
formulated in precise de�nitions, theorems are stated and proved. The math-
ematical techniques vary through a great range, they involve linear algebra
and analysis, measure theory, probability and statistics, stochastic processes
and potential theory, partial di�erential equations, functional analysis, com-
binatorics, graph theory, optimization and more.

The main �elds of application can be found in economics. However, sociology,
political sciences, psychology, industrial organization, management science,
biology, warfare etc. are all open to the formulation and formal treatment
via games.

Within these various �elds Game Theory is set to, the formal mathemati-
cal treatment contains various degrees of rigor; descriptions of games may
be purely verbal and strategic behavior may be treated in a less rigorous
framework. Model builders have a tendency to more or less incorporate the
methods and the language of their respective �eld. In this context Game
Theory changes its appearance. Economists tend to a version that resembles
their way of thinking in the tradition or ideology of certain schools, biologist
use the language of evolutionary theory etc. In such a context, mathematical
rigor is sacri�ced against greater adherence to the methods and dogmas of
the particular �eld.

Historically, Game Theory developed along various di�erent lines of thought,
most of them rather disjoint. Mathematicians (in particular the french school
Laplace, De Moivre, Pascal ) considered the probabilistic aspects of
the casino. Daniel Bernoulli (1738) (motivated by Jean and Nicolas
Bernoulli) considered the St. Petersburg problem; he discussed not only
the probabilistic intricacies but also came up with an early version of utility
theory. This line was continued by Louis Bachelier (1901), who also
created the �rst version of Brownian motion representing the stock markets
�uctuation. Emile Borel contributed greatly to put probability theory
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into its present shape based on measure and integration. (1925-1939). But
he was surpassed by John von Neumann when he unsuccessfully tried to
solve the Min�Max Problem (1921).

The early economists Cournot (1838) and Bertrand (1889) discussed
oligopoly and developed a notion of strategy. Bertrand also treated the
game of baccarat. This line was continued by Edgeworth (1881), Zeuthen
(1930) and Stackelberg (1952). Edgeworth in addition started a line
of discussion leading to the cooperative approach.

At about 1713 (the same time that Jean and Nicolas Bernoulli report
to him the St. Petersburg Problem) De Montmort was also in connection
with J. (the Earl of) Waldegrave who analized a 2-person card game.
Here probabilities occur rudimentary re�ecting strategic behavior.

Warfare appears in context with strategic thinking. Clausewitz discusses
the battle �eld coolly from the strategic viewpoint. At the beginning of the
20th century some english engineers developed simple evader-pursuer models
which resemble di�erential games between airplanes.

The two decades between 1920 and 1940 re�ect the �nal attempt to view the
Theory of Games as a comprehensive �eld. Von Neumann's proof was based
on �xpoint theorems which in the mid-thirties where particularly developed
by Banach, Mazur, Ulam, Erdös, Steinhaus, Kuratowski . Ville
was the �rst to provide a proof based on a separation theorem.

Oskar Morgenstern met von Neumann when both men had to leave
Europe in the late thirties. They laid the the foundations of the �eld of Game
Theory with their seminal volume The Theory of Games and Economic Be-
havior, where they stressed the similarity between strategic and cooperative
behavior in the economic context as well as in parlor games. Random in�u-
ence was considered to be inevitable.

Due to these authors three versions of �the game� emerge. Games appear
in normal form (strategic form), in extensive form and in coalitional
form . The �rst two are close relatives, they constitute the basic paradigm
of Noncooperative Game Theory . The coalitional form is the basic
paradigm of Cooperative Game Theory .

The normal form, consists of a complete list of possible strategic alternatives
for each player. This way each player is assigned a strategy space . In addi-
tion, a payo� function is speci�ed for each player. Thus, any simultaneous
and independent choice of strategies (one by each player) results in a payo�
(a real number, a utility, a money term) to each player .
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The normal form is also referred to as the strategic form , in view of the fact
that it provides an overview over the strategic options available to a player.

It is one of the main tasks of the model builder to recognize �The Game�.
Given the data of a multipersonal decision problem of a possibly foggy and
unclear nature, one has to specify a normal form game which contains the
essential features and is �close� to reality.

For the normal form the basic �solution concept� is equilibrium . This is a
strategic situation (an n−tuple of strategies) with dominant stability proper-
ties. An equilibrium may re�ect versions of �rational behavior� and in some
case may be identi�ed with �optimal strategies�. In most games, however
(as in the real world), there is no �optimal behavior�, equilibria may (or may
not) exist in abundance and result in gains of greatly varying utility to the
players.

The extensive form was originally conceived to explain the �rules of the game�
(von Neumann�Morgenstern). Preferably one might think of a time-
structured (and stochastically in�uenced) process that is subject to repeated
actions of the players. Intermediate and �nal payo�s (or costs) are awarded
to the players. Decisions at an early state should, therefore, be regarded with
respect to the present reward and with respect to the future consequences.
The process as well as its history may not be fully observable. Players receive
private information concerning the state of the process and the choice of
actions of the opponents. Strategic behavior is to be de�ned according to
observations and the development of the process. This way, the extensive
form results in a normal form and is subject to the analysis thereof. Then
equilibrium can be recognized. The extensive form may provide the basic
environment, time structure and �rules of the game� but the normal form
provides the solution concept.

Turning to the cooperative or coalitional form , we �nd that the notion of
strategy is no more predominant. Rather it is the possibility of contracts
and cooperation which is preeminent. Binding agreements are thought to be
possible and enforceable. Thus, the power of coalitions and their in�uence on
the results of a bargaining process is the central topic. A cooperative game
is essentially a mapping assigning achievable utilities to coalitions. The task
here is to make inference from the power of coalitions to the potential of the
individuals. If we know the game, what will be the resulting possibilities,
options, expectations, gains to the players?

The �solution concept� of Cooperative Game Theory is the idea of Stable
Solution . While adherent to some idea of equilibrium, the cooperative ver-
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sion of stability is much more static. Stability of the results of bargaining and
cooperation, fairness and equity, the returns expected from cooperation, the
consequences of an argumentative process, a �nal distribution of utility to
the players achieved by agreement � these ideas are central to the coalitional
form.

Thus, the balance of noncooperative versus cooperative theory is made pre-
cise by discussing strategic behavior and equilibrium strategies versus the
power of coalitions and stable solutions.

In the detailed discussion, however, it turns out that the borderline is blurred.
There is noncooperative imitation of cooperation: the stabilizing forces of
reputation and punishment that appear in repeated games tend to exhibit
elements of cooperation; the agency enforcing contracts can be replaced by
the pressure of mutual punishment sustaining equilibrium. On the other
hand, cooperative theory incorporates elements of strategic behavior. If un-
certainty prevails about the opponents motivation, their preferences and the
game one (thinks one) is involved, then mechanisms enter the scene. These
are devices representing agreements dependent on private observations or
knowledge of the players. As these observations cannot be veri�ed indepen-
dently, players may start to behave strategically with respect to the revelation
of their information or their strategies. This sets the individuals involved in
a noncooperative game after the contract has been agreed upon.

Some game theorists hold that cooperative theory is not an �independent�
topic; in a sense all cooperation should be explained as resulting from strate-
gic behavior. This view may be extended to a position opposed to cooper-
ative theory at all. Another view, however, is that the idea of the �game�
is something Platonic: the paradigm of human competitive and cooperative
interaction in the presence of incentives and mutual dependence. Various
shapes of this idea materialize, some of them in a precise and mathemati-
cally rigorous form.
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2 Foundations of Noncooperative Game The-

ory

2.1 The Normal Form

The following formal de�nitions are meant to explain the basic and funda-
mental topics of Noncooperative Game Theory.

A noncooperative n−person game in normal form is a 2n-tuple

Γ = (S1, . . . , Sn;F 1, . . . , F n). (1)

with the following ingredients. Si (i = 1, . . . n) denotes the set of strategies
of player i. This a complete list of decisions available to the player; at this
stage the details of strategic behavior cannot be distinguished. Each F i is a
real valued function de�ned on the Cartesian product S := S1 × . . . × Sn

of the strategy spaces. F i denotes the payo� to player i, depending on the
strategies chosen by all players. The choice of a strategy n-tuple is made
simultaneously and independently. When preparing his choice each player is
not aware of the opponents intentions. However, communication may take
place in advance; a discussion of the merits and demerits of strategy n�tuples
may well precede the actual choice of strategies.

ANash equilibrium is an n-tuple s̄ ∈ S such that deviating is not pro�table
for a player provided his opponents stick to their choice. Formally:

F i(s̄) ≥ F i(s̄1, . . . , si, . . . , s̄n), (si ∈ Si; i = 1, . . . , n). (2)

A priori nothing is said about the establishment of an equilibrium; however,
the inherent stability of an equilibrium situation may prevent a player from
leaving it. The existence of equilibria requires a basic set of mathematical
assumptions, generally the strategy spaces should be (contained in) topo-
logical vector spaces and the payo� functions should be quasi�concave and
continuous. The standard procedure is to construct the best reply correspon-
dence which is a mapping assigning to each n−1-tuple of a players opponents
the set of maximizers of his payo�. A �xed point theorem (Kakutani, Ky
Fan) provides a Nash equilibrium. The one �rst to establish the concept was
John F. Nash.

If these conditions fail to apply (e.g.,if the strategy sets are �nite), then the
game may be extended in various ways. The mixed extension randomizes
the strategic choice of strategies. Assume that, on each strategy set Si,
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there is de�ned a σ-algebra Pi of measurable sets. The probabilities on
Pi are called mixed strategies . This way player i now chooses a random
mechanism which generates his original �pure strategies� (the elements of Si).

Given an n-tuple of mixed strategies, the product measure, say σ = σ1 ⊗
. . . ⊗ σn re�ects the (stochastically) independent choice of strategies. The
expectation F̄ i(σ) =

∫
F i(s)σ(ds) is used to re�ect the payo� to player i

at this n-tuple of mixed strategies. Now, if Mi denotes the set of mixed
strategies of player i, then we have de�ned a noncooperative n-person game
in the sense of (1); this is

Γ̄ = (M1, . . . ,Mn; F̄ 1, . . . , F̄ n), (3)

the mixed extension of Γ.

With a suitable structure on the strategy spaces, there is a topology on
the mixed strategy spaces (the w∗ -topology ) such that the functions F̄ i are
continuous and (multi)-linear with respect to the mixed strategies. This way
the above existence theorems can be employed to establish equilibrium in
mixed strategies.

Nash equilibrium in mixed strategies can be reinterpreted as follows: for any
player i, the n− 1-tuple of mixed strategies of his opponents are regarded as
his believes concerning the behavior of his opponents. A Nash equilibrium
constitutes consistent beliefs of the players concerning their randomized
choice of strategies.

The correlated extension is obtained by introducing a random experiment
(a probability space) resulting in private information of the players (i.e., there
are sub�elds of observable events for the players). A correlating strategy
for a player is a random variable, measurable with respect to his observable
events and resulting in strategies. If each player chooses such a correlating
strategy, the expected payo� for all player (from the composition of the
correlating strategies and the payo� functions of the original game ) is well
de�ned, hence we have a new normal form, the correlated extension . A
correlated equilibrium is a Nash equilibrium of the correlated extension.
Actually, the mixed extension can be embedded into the correlated one and,
for many purposes, su�ces to treat the relevant strategic aspects.

There is a host of applications of this model. It is used in oligopolistic compe-
tition and other descriptions of price setting mechanisms, statistics, market
entry problems, evolutionary biology, for auctions, principle agent problems,
inspection problems, insurance contracts, job assignment problems, tra�c
regulation, etc. In many cases the application of mixed strategies proves to
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be most successful.

2.2 The Extensive Form

The extensive form is a dynamic process admitting of control by n play-
ers. Stochastic in�uence is inherent in the system as well as in the strategic
behavior of the players. Tree games in which the process moves along the
edges of a graph are the favorite model in the literature. At each node a
player chooses the subsequent edge. There may be the possibility of imper-
fect or incomplete information: While the process moves the players may
not be aware of the state of the process and they may even not be aware
of the utilities and strategic possibilities of their opponents, for short, their
opponents' �types� (Harsanyi). We demonstrate the extensive form by a
general Markovian dynamic game written

Σ := (X,Y; K,K;Q, f, u, T ) (4)

Here, T is the horizon or duration of the process. X and Y are the state and
action spaces respectively Each of them is time�structured, i.e. X = X0 ×
. . .×XT etc. Q is a family of stochastic transition kernels governing the law
of motion. K again is a family of stochastic kernels generating signals (in
K) which can be observed by the players while the process moves. f is a
family of intermediate payo�s and u is a family of terminal payo�s. Assume
that there is a path (x, y) of temporal development in the state space X×Y.
Then the evaluation for player i is written

Ci(x, y) = ui(xT ) +
T∑
t=1

f it (xt−1, yt) (5)

Now, if (X,Y ) is a stochastic process moving in the state space then Ci ◦
(X,Y ) is a random variable the expectation of which evaluates the process.
Now, the distribution of the process is governed by the strategic behavior of
the players as follows.

Behavioral strategies are families of kernels, say Ai
t, which re�ect the

random choice of an action by player i at each instant t, depending on the
observable past (i.e. the stream of observable data of the process). The
composition of the behavioral strategies A and the law of transition re�ected
by Q generates transition kernels (Markovian or with a memory) on the
state space. Given an initial distribution µ on the initial states X0 there
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is, therefore, a measure (Markovian or re�ecting memory) on the paths of
the state space X ×Y, call it mA

µ . This distribution re�ects the stochastic
in�uence of behavioral strategies on the motion of the controlled process.
Therefore, we consider the payo� to player i resulting from A to be

Ciµ
A = ECi ◦ (X, Y ) = EmA

µ
Ci =

∫
Ci(x, y)dmA

µ (x, y). (6)

Now, Ciµ
• is a function on the product space of behavioral strategies, say

A = A1 × . . . × An. This way we have constructed the normal form
generated by Σ (and µ) which is

ΓΣ,µ = (A1, . . . ,An;Ciµ
• , . . . , C

nµ
• ). (7)

Now the whole apparatus of Nash equilibrium analysis may be employed.

2.3 Strategies, Equilibria, Re�nements

Strategic behavior of players can also be modeled by pure strategies (the
choice at each stage is deterministic) or mixed strategies (probabilities or
�mixtures� over the pure ones). Then di�erent normal forms occur. Be-
havioral strategies are appropriate in a wide range of games. This is due
to Kuhn's Theorem which states that (with perfect recall , i.e., consis-
tent memory) behavioral strategies generate the same distributions as mixed
strategies.

Perfect recall may be violated if the formal structure of memory represented
for a player is in some sense inconsistent. An inconsistent memory structure
is the topic of a new branch of information based Game Theory (the absent
minded driver (Rubinstein)): What can one say about strategic behavior if
players (or automata) forget systematically essential details of the past? Or if
they are in a wider sense non�rational (governed by bounded rationality )?

The temporal structure of stochastic games or tree games permits re�nements
of the equilibrium concept. Nash equilibria are subgame perfect (Selten),
if the equilibrium property prevails in every truncated tail game (in the �nite
context they are obtained by backwards induction). However, tail games or
subgames are well de�ned only with complete or perfect information. With
imperfect information the construction of a posteriori probabilities for the
state of the process may be conditioned on informations which, at equilib-
rium, have zero probability. This is solved by various versions of perturbing
the game so as to enable Bayesian posteriors to be computed. Sequential
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equilibrium (Kreps�Wilson) therefore consists of pairs of strategies and
�beliefs�. Perfect equilibria (the �rst and basic concept due to Selten) is
a close relative. Other versions (e.g., stable equilibria due to Kohlberg�
Mertens) enhance the scene. There is a peculiar connection between this
kind of stability concept, equilibrium selection, and the shape of the equilib-
rium correspondence manifold of the normal form generated by Σ.

The information structure of a game has intensively in�uenced research.
Harsanyi pointed out that incomplete information (uncertainty about the
type of other players) and imperfect information (uncertainty about the state
of the process) are more or less the same. Mertens�Zamir constructed the
appropriate belief spaces such that an in�nite number of hierarchies about
knowledge of each others knowledge etc. can be formally constructed.

Aumann established the idea of common knowledge which formalizes mu-
tual knowledge about mutual knowledge again with in�nite hierarchies. It is
important that when a game is being played all players are informed about
the game, all players are informed about the fact that all players are informed
about the games, all players... etc. As this topic extends into epistemo-
logical questions (partially of philosophical nature) aspects of formal logic
become more and more important for Game Theory. The construction of
belief spaces, hierarchy of beliefs, learning and knowledge about learning are
fascinating topics of the theory.

The mathematical intricacies of stochastic games in the most general sense
are also enhanced by the information problem. Stochastic games in the
proper sense were originated by Shapley (complete information). The ques-
tion of the existence and shape of equilibria in the general stochastic game
with incomplete information is still an intriguing matter. Repeated games
with incomplete information constitutes the topic treated most extensively.
The details can be found in Section 6.
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3 NTU-Games

3.1 The Coalitional Function

Within the framework of Cooperative Game Theory the notion of strategy
loses importance. As the players are capable of binding agreements, they may
commit themselves to certain actions which result in joint utilities for coali-
tions. These actions may well be strategies in an underlying noncooperative
game (an idea basically favored by von Neumann�Morgenstern). But
as the agreement or contract can be enforced by some supervising agency,
there is less room for strategic behavior.

A contract between members of a coalition includes a speci�c agreement
concerning the distribution of utility which results from the joint venture.
Usually there will be a great deal of alternatives a coalition can strive for.
The model consists of comprehensive lists of utility vectors available to each
feasible coalition. While bargaining the players will not only look to the
possible achievements of a coalition which is presently being discussed. They
will also look to the payo� vectors of other coalitions and they will argue
with their outside options de�ned thereby. Therefore, the agreement �nally
reached, whether inside the grand coalition or some smaller subcoalition,
eventually re�ects all options and possibilities available to the various coali-
tions evaluated with respect to the players.

The formal description is provided as follows. A Cooperative Game With-
out Side Payments or for short an NTU-Game is a triple (I,P,V ). Here,
I is the set of players (frequently assumed to be �nite, e.g., I = {1, . . . , n}).
P is a system of subsets of I which is interpreted as the collection of feasible
coalitions . Finally V : P → P(Rn) is the coalitional function . This
function assigns to every coalition a set of utility vectors. Certain regularity
assumptions are imposed upon the function V in order to render it feasible
for a �game�. For instance, as coalition S usually can assign utilities only to
its members, it makes sense to assume V (S) ⊆ Rn

S. Also it is assumed that
V (S) is comprehensive , that is utility can be freely disposed of (formally: ev-
ery vector dominated by an element of V (S) belongs to V (S)). In addition
some version of boundedness from above ensures that utility is not unlimited
available. Convexity assumptions also are quite common.

The economic context provides various examples. E.g. if
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E = (I,X, (ui)i∈I , (a
i)i∈I), (1)

is an exchange economy represented by a set of agents, a commodity space,
and a family of utility functions on commodities for each player, then we can
construct the corresponding NTU-Game. For each coalition we collect all the
utilities available by mutual exchange. Formally the market game V = V E

is given by

V (S) =

{(
ui(xi)

)
i∈S xi ∈ X (i ∈ I),

∑
i∈S

xi =
∑
i∈S

ai

}
(S ∈ P) (2)

or, more technically, the comprehensive hull of this set (i.e., we admit free
disposal of utility). Thus, coalition S can attain all utilities for its members
that can be obtained by reallocating the commodities within this coalition.
Market games obviously establish a close connection between Game Theory
and General Equilibrium Theory (see Section 4.)

Within the context of NTU-Games, the class of bargaining problems is ob-
tained by admitting only the grand coalition I and the singleton coalitions
{i}, (i ∈ I). Thus, players can either join in the grand coalition or be on
their own. Observe that it su�ces to specify two data in order to de�ne a
bargaining problem: the set U := V (I) of utilities available to the grand
coalition and the maximal utility ui that can be achieved by player i ∈ I. A
bargaining problem is, therefore, de�ned by a pair (u,U ), the status quo
point and the feasible set .

The most important class of games is generated by admitting side pay-
ments . Imagine that, within each coalition, the players are entitled and
capable of exchanging utility on a universal scale so that a unit of utility can
be transferred from one player to another one without changing the nature
of its value. More precisely, whenever x ∈ V (S) holds true, i is a player
in S and ε is a small quantity of utility, then we assume that the vector
(x1, . . . ,xi − ε, . . . ,xj + ε, . . . ,xn) is an element of V (S) as well. It turns
out immediately that every V (S) is necessarily of the form

V (S) =

{
x

n∑
i=1

xi ≤ v(S).

}
(3)

Here, v(S) is a real number, the utility assigned to coalition S. Obviously the
function V is speci�ed once the function v : P → R is de�ned. Therefore,
we call the triple (I,P,v) a cooperative game with side payments, with
transferable utility, or for short a TU-Game .
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3.2 Solutions

We now turn to solution concepts . A solution in the general sense describes
outcomes of the bargaining process. This may involve varying vantage points.
A solution may represent an evaluation of the bargaining power of players
deduced from the game, it may respect fairness considerations or principles
of equity, expected gains in some (vaguely de�ned) stochastic environment,
or results of a speci�ed procedure involving arguments, counter arguments,
objections and counter objections. Solutions may also be de�ned as the result
of a noncooperative game which is based on the data of the cooperative
game and represents a bargaining process. A Nash equilibrium of such a
game may result in a solution of the cooperative game. The interpretation
of this noncooperative Nash equilibrium may furnish a justi�cation of the
cooperative bargaining solution resulting. All this can be formalized within
the proper context.

The number of solution concepts is considerable, their esteem is greatly at
variance among game theorists. There is, however, agreement that solutions
have to prove their merits by the results they yield on a su�ciently rich class
of games. Formally, a solution concept is a mapping, point valued or set
valued, de�ned on some class V of NTU-Games. If the set of players I is
�xed, then

ϕ : V→ R
I or φ : V→ P(RI) (4)

de�nes a solution . That is, for every game there is an assignment (or a set
of assignments) of utility to each player �resulting� from the game.

Solution concepts should exhibit certain appealing properties expressed by
conditions or axioms. Ideally, they are uniquely de�ned by an appropriate
set of axioms, this is the axiomatic approach . Procedural approaches,
de�nitions by extension of �natural� or �canonical� concepts, solutions based
on the economic tradition or the more mathematical approach via invariance
properties are also common.

Let us shortly mention solution concepts for bargaining problems which are
suitably called bargaining solution . A bargaining solution obeys standard
axioms: as a mapping on (a subclass of) bargaining problems it commutes
with permutations of the players (i.e. the names of the players are irrele-
vant). It commutes with positive a�ne transformation of RI , i.e., follows
a transformation of the scale. Frequently it is Pareto e�cient . That is, at
the evaluation of a �xed game, eventually no player can strictly improve
his outcome unless another player su�ers. Finally, one requires individual
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rationality : no player accepts less than he can achieve by his own e�orts.

In general it needs a speci�cally de�ned further axiom in order to gener-
ate a uniquely de�ned bargaining solution. The historically �rst and basic
approach is provided by the Nash solution . The decisive axiom is called
�Independence of Irrelevant Alternatives�. It determines an outcome on the
Pareto surface of the feasible set maximizing the coordinate product (rela-
tive to the status quo point's coordinates). Further solutions are the Kalai�
Smorodinsky solution (uniquely characterized by a weak monotonicity
axiom) and the Maschler�Perles solution (de�ned by superadditivity).

Meta Bargaining Theory and Bargaining with Incomplete Information are
modern extensions of the traditional Bargaining theory.

The �rst one strives to deal with the problem of choosing between various
concepts of bargaining theory on the basis of axiomatic or procedural treat-
ment. In the context of incomplete information, players are not fully informed
about certain characteristics of their opponents. These characteristics may
describe the preferences or endowments of other players. There may be a
common prior concerning the distribution of such characteristics and a sin-
gle player gets some private information (re�ected by a chance move at the
beginning of the bargaining process or the like) concerning his own data. For
short, each player knows his own �type� and has a priori probabilities about
the opponents' types. Agreements may be registered with respect to certain
types of mechanisms , i.e., mappings generating decisions in dependence of
all players' announcements of their types. Now, the way to announce (and
possibly misrepresent) one's type is dictated by strategic behavior. Hence,
there appears a noncooperative n�person game, the equilibria of which may
correspond to incentive compatible mechanisms. The study of such mecha-
nisms, axiomatic treatment etc. is the relevant topic within this �eld (see
also Section 5).

Solution concepts for general NTU�games are mainly discussed after the
fashion of the TU�concepts. We therefore postpone the discussion of this
topic.
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4 TU-Games

4.1 Classi�cation of Games

A cooperative game with side payments or, for short a TU-game is
formally represented by a triple (I,P,v). Here, I is the set of players ,
P ⊆ {S | S ∈ I} is the collection (usually a �eld) of feasible coalitions ,
and v : P → R, v(∅) = 0, is the �characteristic� or coalitional function
(frequently referred to as �the game� as well). For most of our discussion
we assume the player set to be �nite, we use I = {1, . . . , n}. Also, P can
be viewed to be the power set of N , i.e., all coalitions are admitted for
cooperation. Intuitively, a coalition S ∈ P by agreeing to a contract about
cooperation can achieve (or is awarded) a worth or value v(S). This worth
is a monetarian or utilitarian quantity, all players see it on a universally
accepted scale and arbitrary quantities of this medium can be transferred
by some (unidenti�ed) mechanism between the players. In view of these
simplifying assumptions, the theory of TU-games is extensively developed.

In addition, TU�games have been applied in the contest of cost sharing ,
which is rather a topic of industrial organization. Here, coalitions my be
subsidiaries or divisions of a company or, more generally, groups of cost
generating factors. The coalitional function describes the cost generating
structure. Thus it assigns �disutilities� (costs, expenses) instead of utilities.

Concrete interpretations of the nature of a TU-game may depend on the
context but also on the mathematical nature of the set function v. For the
sake of this discussion we assume that v is nonnegative.

An additive set function m on P is, for �nite player set I tantamount to
vector m ∈ Rn via

m(S) :=
∑
i∈S

mi (S ∈ P)

Within the framework of Cooperative Game Theory additive set functions
(or measures ) are meant to represent distributions of utility. As a game,
they are �trivial� or �inessential� as cooperation does not improve a coalitions
worth: for disjoint coalitions S, T ∈ P we have m(S) +m(T ) = m(S ∪ T ).

The situation changes when we consider superadditive games characterized
by the de�ning inequalities m(S) +m(T ) ≤ v(S ∪ T )(S, T ∈ P, disjoint ).
In such games the formation of coalitions is worthwhile as the total gains
increase, thus players can expect to achieve a larger share of utility by coop-
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eration.

A subclass of superadditive games is provided by the class of balanced
games . Call a system of coalitions S ⊆ P balanced if there is a set of
positive coe�cients (cS)S∈S such that∑

S∈S

cS1S = 1I (1)

holds true. We interpret the coe�cients as an �intensity� to operate a coali-
tion with. Hence, a balanced system is a collection in which the players are
running the various coalitions with reduced intensity instead of joining in the
grand coalition.

A game v is called balanced (Shapley�Bondareva) if, for any balanced
system S ⊆ P and corresponding coe�cients (cS)S∈S it follows that∑

S∈S

cSv(S) ≤ v(I) (2)

holds true. Verbally: it pays o� to join within the grand coalition as there
is no better way to achieve the same utility by splitting into any balanced
system and running the respective coalitions with a reduced intensity.

Next, a game is totally balanced if all restrictions v|S to coalitions S ∈ P are
balanced. The totally balanced games are formally equivalent with market
games Debreu, Vind, Aumann, Shapley�Shubik . Thus, they can be
constructed as originating from a side payment or TU exchange economy
or market. In such a market a coalition is permitted to transfer utility by
reallocating its goods freely in order to achieve maximal joint utility. A
coalitional function appears which is indeed totally balanced. Formally, if E

is de�ned as in (1), then analogously to (2) the coalitional function v = vE

is given by

v(S) = max

{∑
i∈S

ui(xi) xi ∈ X (i ∈ I),
∑
i∈S

xi =
∑
i∈S

ai

}
(S ∈ P) . (3)

Furthermore, totally balanced games appear as LP�games (Owen). If a
(positive) linear programming setup L = (A, b, c) is speci�ed by an input�
output matrix A, a vector valued measure of resources b and an objective
function given via a vector c, the resulting LP�game is represented by a
function v = vE via

v(S) = v(A,b,c)(S) = max
{
cx | x ∈ Rm

+ , Ax ≤ b(S)
}
, (S ∈ P). (4)
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That is, a coalition may pool its resources and use the production process
represented by the matrix A optimally in order to obtain the worth of joint
production.

A further representation of totally balanced games can be obtained by seeing
them as MIN�games . These are the minima of �nitely many (σ−) additive
functions, say λ1, . . . ,λr via

v(S) =
∧{

λ1, . . . ,λr
}

(S) (S ∈ P). (5)

This way, totally balanced games appear to be glove games (Shapley): a
minimum of each resource (left hand gloves / right hand gloves) determines
the amount of utility (pairs of gloves) a coalition can achieve. Remarkably,
all these classes are technically equivalent. There are actually more repre-
sentations generating totally balanced games, e.g., as games on graphs ( max
�ow � min cut setups, Kalai�Zemel).

A nice (proper) subclass of totally balanced games is provided by convex
games (Shapley). Within this setup one discusses set functions with in-
creasing marginal worth : the marginal contribution of a player i to a coalition
S, say v(S ∪ {i} − v(S), increases with increasing coalitions. In such games
the incentive to form large (the grand) coalitions is particularly compelling.
In the cost sharing context (if we reverse the sign or consider the di�erence
of an additive and a convex set function) we obtain concave cost structures
which nicely concur with decreasing returns to scale.

A further subclass of cooperative games deserves a separate discussion be-
cause it is important in the political rather than in the economical context.
The class of simple games consists of functions v : P → {0, 1}. The in-
terpretation is not so much that coalitions may win a unit or not. Rather
the idea is that a coalition S with v(S) = 1 is winning and all others are
losing coalitions. Simple games are used to describe group decisions in po-
litical bodies, parlaments, committees. Special simple games are directed
games characterized by a canonical procedure to impose an ordering on the
bargaining power of the players. A player is stronger than another player if
his marginal contribution to every coalition exceeds the one of his opponent.

Simple games that admit of a representation by voting strength, i.e. voting
games , are of particular interest. Such games are given my an additive
set function m ≥ 0 representing the distribution of votes over the players
(parties in a parliament) and a majority level α. A coalition is winning if its
combined voting power exceeds α. The coalitional function v = vα is thus
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given by

v(S) =

{
1 if m(S) ≥ α
0 if m(S) < α

(
S ∈ P

)
. (6)

It is easily seen that voting games are directed: a representation naturally
induces an ordering of the voting power. (consistently, as players may be
equivalent).

The representation of a voting game is by no means unique: the same coali-
tional function obviously may result from a host of pairs (m, α). A traditional
subclass which admits essentially of a unique representation is given by the
homogeneous games (von Neumann�Morgenstern). Call a represen-
tation (m, α) homogeneous if every minimal winning coalition has the same
voting power. Then the set of players disintegrates into three characters :
dummies , sums , and steps . A dummy has no marginal contribution to
o�er to any coalition. A sum is a player who, in a minimal winning coali-
tion, can be replaced by smaller players (hence, his weight is the sum of
the weights of smaller players). Everyone else is a step. Now the unique
(�minimal�) representation (Ostmann) is essentially obtained by assigning
0 to the dummies and 1 to the smallest non dummy (who is a step). Then,
recursively, sums are awarded a canonical sum of the voting power of smaller
players. With steps, this canonical sum is exceeded by 1.

Within the political context, the computation of a coalitional function result-
ing from the ballot taken from a (huge) population is called assignment or
apportionment . Essentially, the votes assigned to the parties by an election
de�ne a coalitional function, the procedure by which the distribution of votes
in the parliament is de�ned (based on the election results) assigns another
coalitional function to the parties. In the political context the procedures
named d'Hondt, Hare, Imperiali, Danish, and others perform such a task.
Frequently, the coalitional function is not preserved, a problem sometimes
resulting in �paradoxical� assignment of votes. (The �Alabama paradox�).
If the population game happens to be homogeneous, then the computation
of the minimal representation can also be seen as apportionment � and of
course this always preserves the coalitional function by de�nition.

4.2 Solutions

Having described various classes of games and a possible environment in
which to apply such classes, we now turn to solution concepts . The idea to
�solve� a game in the context of Cooperative TU�Game Theory is tantamount
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to assign additive set functions to games. An additive set function yields an
award, utility or monetarian value to each player. Thus, if W is a class of
games and A denotes additive functions, then

ϕ : W→ A or φ : W→ P(A) (7)

denotes a solution concept. This it not at variance with the de�nition pro-
vided by (4) as (for a �nite set of players) additive set functions are essentially
vectors of RI .

Again, point valued and set valued versions are being considered. The most
universal set valued solution concept is the core . . Given a coalitional
function v, the core of v is the set C(v) of all additive functions dominating
v with the same total mass. Intuitively: all distributions of utility of the
grand coalition (i.e. Pareto e�cient distributions) which cannot be objected
against by smaller coalitions on the grounds that they could do better by
cooperating within their own ranks. Formally we have

C(v) :=
{
a ∈ A a(S) ≥ v(S) (S ∈ P), a(I) = v(I)

}
. (8)

The core is nonempty if and only if the game is balanced; hence a further
characterization of balanced games occurs. As we have seen, a balanced game
implies a certain pressure towards organization in the grand coalition and the
existence of a nonempty core tells us that �organization� may be seen as to
award players in an fashion not to be contested by smaller coalitions: the core
is a concept of stability. Totally balanced games thus admit of a nonempty
core for the subgame of every coalition. The various manifestations of totally
balanced games may be re�ected by appropriate properties of the core: in
a TU market game the payo� obtained in a Walrasian Equilibrium (of the
exchange economy used for representation) is a core element. In an LP�
game, the shadow prices of the grand coalition applied to the vector valued
measure of initial assignments yields a core element (a close relative of the
Walrasian equilibrium). In a MIN�game the convex combination of those
measures featuring minimal total mass (of the grand coalition) yields a core
element (again, this version is related to the Walrasian equilibrium).

Convex games have a particularly nice core: the extreme points (geometri-
cally speaking) are being obtained by �bandwagon processes�: coalitions form
successively by one player joining and receiving his marginal contribution un-
til the grand coalition is achieved (Shapley).

Mass phenomena are studied in the framework of large games. By these
slogan we mean that either limiting theorems are stated with respect to
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increasing (markets�, LP�) games obtained by repeating the characteristics
of the players. Or else, one considers games on a continuum of players ( I
is a measurable space, P is a σ−algebra of measurable sets, and v is a
function de�ned on P (usually non atomic)). Equivalence theorems state the
coincidence of solution concepts for �large games�. E.g., to say that the core
is �equivalent� the Walrasian equilibrium for large games means that the core
shrinks toward the equilibrium payo� (the shadow price distribution) when
the market (and the resulting game) is properly replicated. Or, in the non
atomic context, the statement means that the equilibrium payo�s (the dual
solutions) are the only ones surviving in the core.

By contrast, the core is usually the improper concept for the discussion of
simple games. Here, the core is empty unless there are veto players and if
those are present, the core is not very decisive.

Historically the �rst set valued solution concept is the vNM�Stable Set
(von Neumann�Morgenstern solution) This is a (not necessarily unique) set
of imputations (i.e.,measures x with x(I) = v(I),x({i}) ≥ v({i}), i ∈ I)
with the property of external stability and internal stability . The construc-
tion is much more sophisticated, the class of games admitting of such solu-
tions is as yet not speci�ed. However, traditionally zero�sum homogeneous
games (even with multiple levels) admit of such solutions ( von Neumann�
Morgenstern). For convex games, the core is the only vNM�Stable Set
(Shapley) and, more recently, this has also been established for large (non
atomic) exact MIN�games (i.e., all measures in the representation having the
same total mass). (Einy, Holzman, Monderer, Shitovitz ). For non-
exact MIN�games (in particular large ones, the non atomic context) vNM�
solutions can be established predicting cartelization in such games (convex
combinations of normalized measures absolutely continuous to the repre-
sentations), provided the representation is �orthogonal� ( Rosenmüller�
Shitovitz).

The �rst point valued concept to be mentioned is the Shapley value (Shapley).
It cannot always be seen as a �solution� but rather represents an �expected
payo��, �average marginal contribution�, or �power index� for players facing
a game. There is a closed formula which, for any given v, assigns

Φi(v) =
1

n!

∑
{S i∈S}

(s− 1)!(n− s)!
n!

(
v(S)− v(S − {i})

)
(9)

to player i ∈ I (s := |S|, n := |I|).) On the other hand, the Shapley value
admits of a unique set of axioms de�ning it (Pareto e�ciency, additivity,
covariance with renaming the players by a permutation, and zero assignment
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for dummy players). It can also be seen as the unique extension of the
uniform distribution de�ned as a solution for �unanimous� simple games.
The Shapley value also obeys an �equivalence principle�: for large market
games it converges towards the core.

There is an extensive version of the Shapley value for large or, more precisely,
non atomic games, the Aumann�Shapley value. Basically, the player set
is a measure space as above and one considers set functions of bounded vari-
ation as �games� . On certain subspaces of such kind of games there exists a
mapping assigning to each game a (σ−) additive measure and obeying cer-
tain axioms which generalize the �nite version. A value does not exist on all
bounded variation games but typically on the subspace generated (with re-
spect to the bounded variation norm) by polynomials of non atomic measures,
on absolutely continuous games, etc. (Aumann�Shapley). The theory of
the Shapley value is now a new �eld extending classical functional analysis in
considering measure�valued functionals with certain invariance properties.

A value theory exists for countably many players as well, however, it is less
developed as certain pathologies prevent the generalization.

A further family of solutions is provided by nucleolus type concepts ( Schmeidler).
in order to obtain the nucleolus (very generally speaking) , one lists the ex-
cesses

e(S,x,v) = v(S)− x(S)

(�reasons to complain� ) for any imputation x in a (weakly) decreasing order,
say

θ(x) := (. . . , e(S,x,v), . . . ). (10)

Then the nucleolus ν is the unique imputation such that θ(•) is lexicograph-
ically minimal, i.e.

θ(ν) �lexic θ(x) for all imputations x. (11)

Thus, the largest complaints against a proposed solution are minimized, then
the second largest, etc.

The modi�ed nucleolus or modiclus ψ lists bi�excesses

e(S,x,v)− e(T,x,v)

and proceeds accordingly (Sudhölter). The modi�ed version involves the
dual game which re�ects the preventive power derived from the original game.
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We are not in the position to describe the abundance of solution concepts
available. The Kernel and Bargaining Set (with a great many variations)
are de�ned in the spirit of the nucleolus but emphasize di�erent versions of
bargaining. Objections and counterobjections are raised by the players and
a stability is achieved when arguments are in balance (Davis�Maschler,
Peleg). Axiomatizing many solution concepts (like the core, the nucleolus
and many others) has recently been successful on a large scale by applying
the construction of reduced games (Peleg, Sobolev).

The discussion of solution concepts for NTU�games is based on the results
in TU�territory. A general approach is to strive for a generalization of TU
concepts. The core of an NTU game accordingly can be de�ned as the set of
Pareto e�cient payo�s of the grand coalition such that no smaller coalition
can improve upon. As payo�s are individual (not to the coalition) in the
NTU context, the term �improve� has to be clari�ed (all players are strictly
better o� or one player is strictly better o� and all the others do not lose).

For the Shapley value, the way to extend the concept to NTU framework
is not unique and involves �xed point procedures. (Shapley, Aumann,
Hasanyi, Kalai�Samet, Hart�Mas-Colell ) Nucleoli can be de�ned
after a discussion of the version of excess one wants to apply. The Bargain-
ing Set and Kernel allow for various modi�cations (Granot�Maschler,
Zhou). Thus, with NTU games in general, solutions concepts are less canoni-
cally de�ned; they are extensions of the TU�concepts and di�er in the various
approaches.
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4 The Equivalence Principle

4.1 Walrasian Equilibrium

The concept of a competitive or Walrasian equilibrium is deeply rooted in
the history of game theory and its in�uence on the development of game
theory cannot be overstated. Moreover there are several interesting struc-
tural relations between the Walrasian equilibrium and di�erent solution and
equilibrium notions of game theory. Nevertheless the Walrasian equilibrium
is not a game theoretical concept, it rather describes equilibrium states of
economic systems, brie�y, economies. There are various models with di�er-
ent levels of complexity to describe an economy. An economy is de�ned as a
list of date describing the set of agents in the society, the set of possible con-
sumption bundles in a vector space of commodities and the agents' economic
characteristics like initial endowments of commodities, sets of technologi-
cally feasible production plans, shares of agents in production possibilities
and agents' preferences over commodities or, more generally, over allocations
of commodities.

The case of an exchange economy E as de�ned before is particularly promi-
nent because of its role in the development of economic theory and due to
the fact that it represents many important features of more general economic
systems. Preferences over commodity bundles are usually described by tran-
sitive, complete continuous binary relations. These are often assumed to have
in addition some monotonicity or convexity property. Though such prefer-
ences are representable by utility functions u it is the purely ordinal aspect
which underlines most of the economic analysis. Di�erent utility represen-
tations generated from u by order preserving mappings from R to R do not
in�uence most parts of standard economic analysis.

Like in Game Theory also in Economic Theory one is interested in the results
of interaction of agents or markets. A fundamental di�erence lies in the
fact that in contrast to Game Theory neoclassical competitive Equilibrium
Theory assumes agents to be price takers and thereby explicitly precludes
strategic interaction. Rather than regarding other agents' decision processes
price takers just take prices as given and maximize their preferences on the
budget sets which they determine by evaluating their initial endowments with
the given price system.

To make the idea of a competitive market equilibrium precise consider a �nite
set I of agents with initial endowments ai ∈ X = R

`
+ and preferences repre-
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sented by utility functions ui : X −→ R for all i ∈ I. Abbreviate (ui)i∈I and
(ai)i∈I by u and a respectively. A mapping x : I −→ X, a 7−→ xi is called an
allocation for E. The allocation x is called attainable for the coalition
S ⊂ I if

∑
i∈S x

i =
∑

i∈S a
i, it is attainable if it is attainable for I. A large

economy with many agents is de�ned in an analogue way as an Aumann
economy i.e. a mapping E : (I,B(I), λ) −→ R

`
+ × U : i 7−→ (ai, ui) ≡

(a(i), ui) where U is a space of continuous utility functions endowed with
some suitable topology, I is the closed unit interval with its Borel-σ-algebra
of admissible coalitions and the Lebegue (probability) measure λ. An attain-
able allocation is in this context an integrable map x : I −→ R

`
+ such that∫

I
x(i)dλ =

∫
I
a(i)dλ. Rather than counting agents now sets of agents are

measured. And instead of adding up their consumptions to total market con-
sumption now integration determines mean or average market consumption.

A Walrasian equilibrium for an Aumann economy E is a pair (p∗, x∗),
consisting of a linear price functional p∗ on R` and an attainable allocation
x∗ for E such that for λ-almost all i ∈ I (which is the technical version of �for
all i�) x∗i maximizes ui(xi) on the budget set Bi(ai, p) := {xi ∈ R`+|p∗xi ≤
p∗ai}. The de�nition of Walrasian equilibria for a �nite exchange economy
is analogous.

The �rst existence theorem for a �nite economy due to Arrow and De-
breu made use of the construction of an abstract economy or generalized
game and of the existence proof of a social equilibrium for such a generalized
game due to Debreu. A generalized game is an extension of a normal form
game in such a way that every player in the game cannot freely choose his
strategy in his strategy space but is restricted to some proper subset of it
which varies in dependence of all other players' strategy choices. There may
exist, therefore, strategy pro�les which cannot be actually played because
some coordinates violate restrictions implied by other coordinates. Playa-
bility already requires some consistency of choices. Among the consistent
strategy pro�les social equilibria are de�ned exactly as Nash equilibria. A
Walrasian equilibrium can be seen as such a social equilibrium in a gener-
alized (non-cooperative) game. It was shown later by Schmeidler that
Walrasian equilibria of an economy may be even represented as Nash equi-
libria of some suitably designed normal form game. This result constitutes
a non-cooperative example of the Equivalence Principle , which requires that
two di�erent solution concepts single out always the same set of allocations
on a whole class of economies.
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4.2 Walrasian Equilibria and Cooperative Solutions

The �rst instance of an equivalence theorem was Aumann's Core Equiv-
alence Theorem stating the coincidence of Walrasian allocations and of
core allocations for Aumann economies. To state this result formally one
needs a de�nition of the core for an exchange economy. One way to proceed
consists in extending to NTU-games the solution concept of the core which
has been de�ned in SECTION 3.2 for TU-games. Then core allocations for
the economy are de�ned as those allocations that induce utility pro�les in
the core of the NTU-game V E induced by the economy E. Although order
preserving transformations of utilities induce transformed NTU-games also
these games' core utility payo�s are exactly those induced by the core of the
economy. An alternative approach followed in large parts of the literature
in economic theory is to argue directly in the economy rather than its in-
duced utility space. A very strong equivalence theorem is the Bargaining Set
Equivalence Theorem due to Mas-Colell from which Aumann's theorem
follows immediately.

Consider an Aumann economy E. Let x be an attainable allocation for E.
An objection of a coalition S ∈ B(I) to the allocation x is an allocation y
that is attainable for S and satis�es:ui(yi) ≥ ui(xi) for λ-almost every i ∈ S
and λ({i ∈ S|ui(yi) > ui(xi)}) > 0. A counter objection of a coalition
T ∈ B(I) to the allocation y is an allocation z that is attainable for T and
satis�es ui(zi) > ui(yi) for λ-almost every i ∈ T ∩ S and ui(zi) ≥ ui(xi) for
λ-almost every i ∈ T |S and λ({i ∈ T |S|ui(zi) > ui(xi)}) > 0. An objection
to which no coalition has a counterobjection is called justi�ed .

The Core of the economy E,C(E), is the set of attainable allocations to
which there is no objection. The Mas-Colell Bargaining Set MCB(E)
is the set of attainable allocations to which there is no justi�ed objection.
Moreover, denote by W(E) the set of Walrasian equilibrium allocations. Ob-
viously by de�nition one has C(E) ⊆ MCB(E). Also, for �nite exchange
economies as well as for Aumann economies W(E) ⊆ C(E) holds true. Hence
W(E) ⊆ C(E) ⊆MCB(E). NowMas-Colell's equivalence theorem states
for Aumann economies with monotonic preferences that W(E) = MCB(E).
An immediate consequence is Aumann's Equivalence Theorem, which asserts
W(E) = C(E).

While the set valued concept of the core re�ects some stability of the re-
sulting outcomes the value represents more the intuition of compromise or
average. Despite their di�erences, formally and regarding their intentions,
both concepts satisfy the Equivalence Principle. Value allocations may be
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distinguished according to whether exchange economies with (ordinal) prefer-
ences or with (cardinal) concave utility functions are considered and whether
an induced TU-game or NTU-game is analyzed. A �rst weak equivalence re-
sult for the Shapley TU-value and the utilities derived from Walrasian com-
petitive allocations in TU-markets was given by Aumann and Shapley.
After Aumann distinguished between ordinal and cardinal value allocations
he derived an equivalence theorem for Aumann economies between ordinal
value allocations, cardinal value allocations and Walrasian allocations. Being
based on di�erentiability assumptions this equivalence does not hold in the
same generality as core or bargaining set equivalence. Without di�erentiabil-
ity value allocations in Aumann economies are Walrasian but not vice versa
(Hart).

It is possible to axiomatize the set valued map from the class of Aumann
economies with uniformly smooth preferences which exactly singles out the
Walrasian allocations (Dubey and Neymann). Clearly the core, the value
and the Mas-Colell Bargaining set satisfy these axioms. The value equiva-
lence may be destroyed, however, when the Shapley value is replaced by the
Harsanyi value (Hart and Mas-colell).

4.3 Approximate and Weak Equivalence

The Equivalence Principle represented by the unique characterization of Wal-
rasian allocations in atomless economies by various important solution con-
cepts from game theory contains a remarkable insight. The strategic and
cooperative options of agents represented by the di�erent solution concepts
totally lose their impact on the allocation process under the dominating
power of perfect competition of many. Clearly, an atomless economy as well
as atomless games are only abstractions and the immediate question arises as
to what extent this equivalence remains approximately true when one goes
from a continuum model to a large �nite model. Historically the analysis of
large �nite economies preceeded even that of the continuum case. Already
1838 Edgeworth had argued that if a �nite exchange economy is replaced
by its n-fold replication, i.e. where identical copies of each agent appear, then
the set of allocations, now called core, shrinks to the set of Walrasian alloca-
tions if n tends to in�nity. This insight had been put into a rigorous theorem
by Debreu and Scarf in 1963. So Aumann's Core Equivalence Theorem
came as an elegant continuum version transmitting the same economic in-
sight. The question remained whether also for large economies more general
than the quite arti�cial replica economies an approximate equivalence would
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hold true. The �rst very general core limit theorem due to Bewley was
followed by several others in 1970. The �nal answer is a result due to An-
derson and to Dierker which con�rms the approximate equivalence and
even allows to estimate the competitive gap between Core and Walrasian
allocations for any given �nite economy.

The Core Equivalence Theorem for general Aumann economies correctly re-
�ects the fact that the gap between core allocations and Walrasian alloca-
tions converges to zero if the number of agents tends to in�nity. It does
not guarantee, however, that the core or the Walrasian allocations in such a
sequence of increasing economies converge to the core or Walrasian alloca-
tion of the limiting Aumann economy. C(E) and W (E) may be much larger
sets containing properly the sets C(En) and W(En) for the n-th economy in
the sequence. Only for regular economies with smooth preferences that have
only �nitely many locally constant Walrasian allocations, even the conver-
gence of the core and of the Walrasian allocations holds true. But neither
this strong nor the above weaker convergence property of the core turns out
to be true for the Mas-Colell bargaining set. Even in perfectly nice replica
economies an analogue to the core shrinking is not true. More speci�cally
the set of all individually rational Pareto optimal equal treatment allocations
not in the Mas-Colell bargaining set converges to the empty set in the Haus-
dor� distance (Anderson, Trockel and Zhou ). This result considerably
weakens the explanatory power of Mas-Colell's Equivalence Theorem.

The Core Equivalence Theorem has counterparts for several di�erent eco-
nomic scenarios. It holds true even for an in�nite dimensional function space
of commodities as was �rst shown by Bewley. If also the number of agents is
in�nite, a situation called �large square� by Ostroy, then depending on the
sizes of the commodity space and of the space of agents a core equivalence
can be proved if markets for all commodities are thick, i.e. on each com-
modity market enough agents are active to suppress via perfect competition
e�ective strategic interaction.

It is even possible to get (weak) core equivalence theorems for �nite economies.
This requires a special structure which allows to represent them by spe-
ci�c TU market games. Techniques and arguments akin to those leading to
core equivalence in �nite linear production games (Billera and Raanan,
Owen) then allow to prove �nite convergence of the core of the game to its
equilibrium utility payo� pro�le (Rosenmüller).
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4.4 The Nash Program

A weak approximate equivalence result between Walrasian equilibria and
Nash equilibria of derived noncooperative games in normal form di�erent
from Schmeidler's game is based on earlier work on noncooperative exchange
due to Shapley and Shubik. In these games quantities of commodities
build the strategy sets and the Nash equilibria are called Cournot equilib-
ria. For a sequence of increasing economies converging to an Aumann like
continuum economy it can be stated that in many situations Cournot equilib-
ria of the �nite economies converge to a Walrasian equilibrium of the limiting
continuum economy. The converse, namely that Walrasian equilibria of the
continuum economy are limits of Cournot equilibria holds true whenever the
Walrasian equilibria are regular.

One may interpret the Equivalence Principle in a broader sense. Then it
relates any two solution concepts on certain classes of economies or of games
to each other. An example for this is provided by what is called today the
Nash program. This term refers to Nash's contributions in which he tried
to support his cooperative bargaining solution as a strategic equilibrium of
some normal form game. It re�ects the intention to give axiomatic solution
concepts of cooperative game theory some solid basis by deriving it from
suitably modelled noncooperative strategic interaction. Several cooperative
solution concepts can be supported in a noncooperative way either by nor-
mal form games or by games in extensive form. The most popular example
is the alternating bargaining game due to Rubinstein, where some discount
rate devaluates the payo� during the course of the extensive form game.
If this discount rate is nearly negligable than the unique subgame perfect
equilibrium of this game approximates closely the Nash solution (Binmore,
Rubinstein and Wolinski). A direct support of the Nash solution as the
unique strict Nash equilibrium can be established via the interpretation of
an n-person bargaining game as a special economy whose unique Walrasian
allocation coincides with the Nash solution (Trockel). Most of the results
guaranteeing the support of a cooperative solution concept by equilibria of
noncooperative games can even be interpreted as mechanism theoretical im-
plementations . To achieve this goal an outcome space has to be available and
the cooperative solution concept must be representable by some social choice
rule. These concepts play a central role in the next section.
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5 Mechanism Theory

5.1 Historical Background

Although mechanism theory is now established as a part of game theory its
roots are laying in the theory of markets.

The idea of a mechanism originated from discussions in the 1930s concern-
ing the economic feasibility of socialism. Market versus planning mecha-
nisms were advocated in a by now famous debate between the economists
Friedrich von Hayek, Oskar Lange, Abba Lerner and Ludwig
Mises. Informational aspects of decentralization built the starting point for
a search for suitable mechanisms to organize an economy. But a class of
objects called �mechanisms� which could be compared as to their e�ectiv-
ity in organizing markets in a decentralized way was lacking. And despite
Koopmans' use of the term �allocation game� for the description of the
tatonnement in competitive markets or centrally planned economies neither
games nor mechanisms as technical terms in their present understanding were
used to formalize the problem. The �rst formal version of a mechanism was
that of an adjustment process . At each point of (discrete) time any of n
agents in the economy is supposed to send a message from a given message
set. This message is publicly observable as is the state of the economic envi-
ronment e = (e1, ..., en) that represents the exogeneously given economic data
like preferences, endowments or production possibilities. A set of response
functions f i, i = 1, ..., n determines the agents' messages at the next period of
time via mi(t+ 1) = f i(m(t), e), i = 1, ..., n, where m(t) = (m1(t), ...,mn(t))
denotes the agents' messages at time t.

The �rst version of a mechanism is a simple dynamic one which still lacks
any strategic features. Subsequently a static version was considered where
the f it where the same for all t and a stationary message pro�le m∗ satisfying
m∗(e) = (f 1(m1∗(e1)), ..., (fn(mn∗(en)) =: f(m∗(e)) represented a privacy
preserving equilibrium where for each agent knowledge of his own character-
istics and the message pro�le provides su�cient information for the choice of
his message. Still this veri�cation procedure had no strategic ingredients.

Yet, the availability of a concept of a mechanism led to several interest-
ing questions starting from the basic theorems of welfare economies. These
theorems state that perfectly competitive prices induce a Pareto e�cient al-
location and that any Pareto e�cient allocation may be induced by suitable
competitive prices in neoclassical economic environments. Now one could ask
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whether there are other decentralized mechanisms, more e�ective in terms
of information processing than the Walrasian tatonnement; or others de�ned
on larger economic environments than the classical one, that would lead to
Pareto e�ciency. Also other desirable properties like for instance fairness
or envy-freeness could replace Pareto e�ciency as a social goal to be im-
plemented by suitable mechanisms. Also an extension of interest from the
economic system to general social systems could be considered. A next step
towards our present day notion of a mechanism was, accordingly, the idea of
realizing a given social goal represented by some correspondence F through
an adjustment process and some outcome function h. Then h(m∗(e)) ∈ F (e)
determines the allocation on the basis of the stationary message pro�les.

It is the lack of incentive aspects that distinguishes this realization of so-
cially desired goals from implementation by a mechanism formalized as a
game form. The agents' behavior is prescribed here by the response function
rather than freely chosen on the basis of preferences and strategic decisions.
The inclusion of the important aspect of strategic choice of messages was
caused by Samuelson's sceptical attitude toward the Lindahl equilibrium,
the analogue of the Walrasian competitive equilibrium for economies with
public goods. He pointed to likely misrepresentation of preferences in the
special case that agents' messages are reports on their own preferences.

In today's terminology Samuelson claimed the incentive incompatibility
of the Lindahl equilibrium. Obviously, an adjustment process is not the
adequate concept for dealing with incentive problems. A natural approach
appears to be one via non-cooperative games: The sets of strategies for the n
agents (now players) are sets of preference relations on allocations including
their true preferences. This speci�c kind of game called direct revelation
game or just direct game allows to interpret a player's message as his lying
or telling the truth.

It turned out later that not only Samuelson was right, but that whenever
truth telling is a Nash equilibrium in a direct game it is even an equilib-
rium in dominant strategies. This means that truth telling, if it is consistent
with the Nash equilibrium, it is even optimal for each player independent of
whether the others tell the truth or lie. There are no truth telling equilibria
in direct games with public goods and, moreover, the same happens in classi-
cal private good exchange economies - provided the rules are designed in such
a way that truth telling is individually rational as well as Pareto e�cient.
Pareto e�ciency, which one has automatically when using dominance equi-
librium, has to be added as a desirable criterion when one is dealing with the
Nash equilibrium. The impossibility results in the framework of neoclassical
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private goods and public goods environments allowed for several possible re-
actions. Would the main picture change for large economies? Would similar
impossibility hold true in a social choice framework where the continuum of
allocations would be replaced as an outcome space by some �nite set?

Would a change of the employed equilibrium concept, i.e. Nash equilibrium
rather than dominance equilibrium lead to an improvement?

For neoclassical private goods economies it turned out that the incentive
to misrepresent preferences tends to zero when the number of agents in the
economy becomes very large. In public goods economies, on the contrary, the
incentives to misrepresent preferences increase with the number of agents.

5.2 Implementation of Social Choice Rules

In this section the focus is on social choice rules and their implementation
by equilibrium outcomes of suitable normal form games.

Let I = {1, ..., n} now be the set of players' positions, A be a non-empty set,
called outcome space and M i sets of possible messages mi among which a
player in position i may choose, i ∈ I.

The outcome space A represents all possible social states for a n-person
society. A social choice rule associates with any pro�le u = (u1, ..., un) of
utility functions ui : A −→ R a set of states considered as socially desirable
for a population represented by u. To formalize this idea, let U i be non-empty
sets of utility functions on A representing all admissible utility functions that
players in position i may have, i ∈ I.

Consider U ⊆ U1× ...×Un. A (point valued) mapping f : U −→ A is called
social choice function . A set valued mapping F : U −→ P(A) is called
social choice rule .

The planner's task is it to make sure that any population of rational agents
represented by some u ∈ U that obeys the rules designed by him automati-
cally realizes some social state in F(u). To formalize this idea one needs the
concept of a game form. For this one considers a map g : M1× ...×Mn → A
m := (m1, ...,mn) 7−→ g(m). Such a map is called an outcome function .
The list (M1, ...,Mn, g) is called game form or mechanism . Because of
the bijective association between (M1, ...,Mn) and M := Πi∈IM

i one de-
notes a mechanism alternatively also by (M, g). The following observation is
crucial for mechanism theory. For each admissible pro�le of utility functions,
i.e. for each u ∈ U , the mechanism (M, g) induces a game Γg,u in normal
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form de�ned by Γg,u := (M1, ...,Mn;u1 ◦ g, ..., un ◦ g). For obvious reasons
Γg,u is also denoted (M,u ◦ g).

Denote by NE(Γg,u) the set of Nash equilibria of Γg,u and the Nash equilib-
rium outcomes and payo�s for Γg,u respectively, NO(Γg,u) := g(NE(Γg,u))
and NP (Γg,u) = u ◦ g(NE(Γg,u)). Note, that in general the sets NO(Γg,u)
and NP (Γg,u) vary with u as does F(u).

The planner's design problem is it to �nd a g such that equilibrium behavior
in any game Γg,u with u ∈ U induces a socially desirable outcome. The notion
of Nash-implementation of a Social Choice Rule makes this idea precise.

A mechanism (M, g) Nash-implements a social choice rule F on the domain
U if NO(Γg,u) ⊆ F(u) for all u ∈ U .

There is some disagreement in the literature about whether this (weak) im-
plementation is the right concept or rather full implementation requiring
equality instead of only inclusion.

Notice, however, that NO(Γg,u) is not a satisfying non-cooperative solution
concept by its own. It rather collects all singleton-valued equilibria, each of
which is a solution concept and if played excludes simultaneous play of the
other equilibria. Therefore, consistent strategic behavior in the framework
of non-cooperative games can only result in some point in F(u) and never
cover all of F(u). However, in the case of weak but not full implementability
of a social choice rule one might want to understand why some points of
F(u) result from equilibrium behavior while others do not. In case of full
implementation this problem does not arise. For social choice functions both
notions of implementation coincide. Several contributions in the literature
are concerned with providing su�cient and necessary conditions for the Nash-
implementability of a social choice rule (see Mechanism Design ).

Replacing the concept of the Nash equilibrium by some of its re�nements like
dominance equilibrium, undominated Nash equilibrium, strong or strict Nash
equilibrium leads to the analogous notions of weak and full implementation.

5.3 The Revelation Principle

One of the most well known and most applied (group of) result(s) of mech-
anism theory is the Revelation Principle .

It is represented by some formal theorems ascerting for various notions of
equilibrium under varying assumptions versions of replacement of implement-
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ing mechanisms by direct mechanisms. The general value of this principle lies
in the fact the planner when looking for a suitable mechanism may restrict
his search to the much smaller family of direct mechanisms. The problem
with the Revelation Principle lies in the fact that in the class of situations
which allows its strongest and most satisfying version this leads to general
impossibility results, while in cases where it would be most helpful only such
versions hold true which have considerable drawbacks. This dichotomy con-
cerns dominance equilibria versus Nash or Bayesian Nash equilibria. Once
the equilibrium concept is �xed literally the same version of the revelation
principle can be stated. But clearly it's truth depends on the employed equi-
librium concept. While the dominance equilibrium by de�nition is unique a
game may have several Nash equilibria. Bayesian or Bayesian Nash equilib-
ria are Nash equilibria of normal form representations of so called Bayesian
games. In contrast to a standard normal form game where there is common
knowledge among the players about the data of the game including all play-
ers' payo� functions one may formalize strategic interaction in situations of
incomplete information about the characteristics of the fellow players. This
may be expressed by probability measures the players have on their coplay-
ers' characteristics. Now in this framework not only payo� functions but
also these probability distributions are part of players' characteristics. The
characteristics of a player are called his type .

Harsanyi's idea to model strategic scenarios under incomplete information
as Bayesian games with consistent beliefs , i.e. player's probability distri-
butions on all players' type space as marginals of the same a priori distri-
bution was consistently carried out by Mertens and Zamir and later by
Brandenburger. A sketchy description of a simple special case follows. A
Bayesian game B is given by a list (M1, ...,Mn, θ1, ..., θn, p1, ..., pn, C1, ..., Cn)
with the following interpretation:

M i and θi are player i's �nite action set and �nite type space, respec-
tively. There is some ϑi ∈ θi determining (pi, Ci) uniquely, i.e. (pi, Ci) ≡
(pi(ϑi), Ci(ϑi)). Here pi is a probability measure on Πn

j=1, j 6=iθ
j and Ci :

M1 × ... ×Mn −→ R is player i's payo� function. A strategy si ∈ Si is a
map from θ1× ...× θn into M i, i ∈ I. A Bayesian Nash equilibrium is a
strategy pro�le, which for every type of every player optimizes his expected
payo� given the other players' equilibrium strategies. In fact this is a Nash
equilibrium of a suitably de�ned normal form game ΓM,θ,p,C .

De�ne the functions C̄i : S1 × ...× Sn −→ R by C̄i(s1, ..., sn)
=
∑

ϑi∈θi
∫
θ−i

ui(ϑi)(s1(ϑ−1), s2(ϑ−2), ..., sn(ϑ−n))dpi.

Then a Bayesian Nash equilibrium of the Bayesian game de�ned above is a
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Nash equilibrium of the normal form game Γ = (S1, ..., Sn, C̄1, ..., C̄n). As any
Bayesian game has a normal form representation a Bayesian equilibrium may
be seen as a special Nash equilibrium. On the other hand, if there is common
knowledge among the players about all players' types then p1 = ... = pn

degenerates to a Dirac measure with total mass one on the true type pro�le.
Expectation building as in C̄i becomes trivial. Also every normal form game
allows representation as a Bayesian game with degenerate type spaces and
beliefs. In this sense any Nash equilibrium is a Bayesian Nash equilibrium.
It is this fact which has been employed by Repullo to establish versions of
the Revelation Principle for Bayesian as well as for Nash equilibrium.

The basic idea of the Revelation Principle is it to replace some game form
that implements a social choice rule, i.e. which has only socially desired equi-
libria, by a direct game form, where truthtelling constitutes an equilibrium.
Depending on the employed equilibrium concept, weak or full implementa-
tion, the number of equilibria and whether the social choice rule is even a
social choice function, one may derive results of di�erent generality under
the heading Revelation Principle. The power of this principle is very of-
ten overestimated as its di�erent versions are often not distinguished. For
a better understanding a second, weaker notion of implementation for di-
rect games is needed. Let F : U −→ P(A) be some social choice rule and
E some equilibrium concept. The direct mechanism (U, g) truthfully E -
implements F, if for each utility pro�le u ∈ U the strategy pro�le u′ ≡ u,
i.e. the truth is an E-equilibrium satisfying g(u′) ≡ g(u) ∈ F(u). Note
that truthful implementation in case of multiple equilibria is consistent with
other non-truthful equilibria having outcomes outside F(u). Moreover such
a non-truthful equilibrium may even Pareto-dominate the truthful one.

If in a direct mechanism implementing a social choice rule the E-equilibrium
is always unique then truthful implementation coincides with weak imple-
mentation. In this case the revelation principle is quite strong. In fact,
the E-equilibrium is then even in dominant strategies and the mechanism is
called incentive compatible . In the general situation, however, truthful E-
implementation is much weaker than E-implementation and it is more than
euphemistic to claim that restriction to a direct mechanism is possible with-
out loss of generality. Nevertheless the revelation principle �nds frequent use
in many applications of mechanism design like the theories of auction design,
contract design or voting.
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6 Repeated Games

6.1 Evaluations

The general stochastic game with in�nite horizon o�ers a host of new prob-
lems. Convergence of the payo�s can be established by either discounting or
averaging and both versions exhibit fascinating aspects.

The version with discounted evaluation

Ci(x, y) = (1− ρ)
∞∑
t=1

ρt−1f i(xt−1,yt) (1)

is thought to be much closer to the �nite game: after waiting su�ciently
long the payo�s in the tail game are so heavily discounted that they do not
bear relevant in�uence. This observation can be made precise and is the
basis to the �rst approach due to Shapley who established the value of a
stochastic zero sum game. Here every player observes a �nite set of matrix
games repeatedly played, the transition being Markovian.

The payo� indicated by the averaging evaluation

Ci(x, y) = lim
T→∞

1

T

T∑
t=1

f i(xt−1,yt) (2)

(with various de�nitions concerning the limiting procedure) o�ers the mod-
eling of a much more unsecure future. No essential payo� is contributed to
every �nite round of initial games. The essential payo�s will be achieved
in the far away future and the nearby present may be used for signaling,
agreements about contracts, punishments for violation of such contracts, in-
dication of regret and the like.

The transition between discounted versions and average versions technically
is manipulated by a �Tauberian Theorem�, which links the behavior of the
coe�cients of a power series with the limiting behavior of the corresponding
holomorphic function. This way Gilette established the �rst connection
between the values of the two types of stochastic games. The asymptotic
behavior of the value of the discounted game when the discount factor ap-
proaches 1 turns out to be the key to treating the average situation. The
value is algebraic in a neighborhood of the limit (Bewley�Kohlberg) and,
as a consequence, it turns out that the general stochastic zero sum game with
averaging evaluation has a value (Neyman�Mertens).
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6.2 Folk Theorems

For the non zero sum case the situation is more complicated. A �rst approach
is established by what is known as a �Folk Theorem� because the concrete
copyright is not easily established. According to this theorem one consid-
ers a bimatrix game in�nitely often repeated with average evaluation ( the
supergame ). It is not hard to see that the payo�s constitute the convex
hull of the bimatrix game's payo�s, meaning that the repeated game yields
the same payo�s as correlated strategies in the one shot game. The payo�s
resulting in the latter game can be interpreted as a bargaining problem (cf.
Section 3). Now it turns out that all the individually rational payo�s of
this bargaining situation can be obtained by Nash equilibrium payo�s of the
supergame.

To some extent this result is disappointing, as Nash equilibria do not even
yield Pareto e�cient payo�s, not to speak of a �solution�. The attempt to
improve upon this situation (Rubinstein) by introducing subgame perfect
strategies however, yields the same result.

6.3 Repeated Games with Incomplete Information

With incomplete information stochastic games are even more di�cult to ap-
proach. The �eld which is surveyed most extensively is the one of repeated
games with incomplete information. This technical term denotes a type of
game in which the players are facing an information structure which is es-
tablished by chance at the beginning of the game. We may think of a �nite
set of matrices (bimatrices), the games played in the various states of nature.
One of the states is chosen by chance and the corresponding game is then
being played repeatedly. In addition, there is an information matrix which
reveals certain data about the true matrix (the true game) according to the
actions chosen by both players. Both players observe these signals and they
may add certain messages of their own by playing certain �natural� sequences
of actions hinting towards their observations.

Given the chance moves the players may form priors concerning the true
game which can now be updated in view of the signals they receive from the
opponents.

For the zero sum case an essential result is presented by the vex�cav Theo-
rem (Aumann�Maschler, Mertens�Zamir ). Consider the value of the
expected game presented by the mixture of the states of nature. Now, when
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the distribution varies, the value of the expected game appears as a function
on the probability simplex. We may de�ne the lower convex envelope of this
function to be the largest convex function dominated by the value function.

The vex�cav Theorem states that the value of the repeated game exists if
the successive formation of lower convex and upper concave envelope of the
value function as described above commutes.

Again, for the non zero�sum game the situation is more di�cult to analyze.
As in the Folk Theorem, the idea of cooperation in the canonical bargaining
situation (with incomplete information) de�ned by the information structure
and the prior about the true game can be formulated. Again one strives
to establish connections between Nash equilibria of the repeated game and
individually rational payo�s of the cooperative game.

Cooperation is easily described: A mechanism in this context is given by
a set of correlated strategies each one conditioned on the announcement of
the players with regard to their observations. The corresponding payo� is
the expectation generated by the original distribution of the chance move
choosing a game and the observations resulting thereof. However, players
may choose to misrepresent their type, so we have to consider incentive com-
patible mechanisms in the context of a bargaining situation with incomplete
information (cf. Section 5) .

On the other hand certain types of Nash equilibria ( joint plan equilibria )
can be formulated in the repeated game. A joint plan is a triple consisting of
the following data. There is a set of �nite sequences of actions of each player
serving as signals. Next, there is a response kernel which stochastically yields
such signals depending on the players' observations. And �nally, there is a
contract which, depending on the joint signals, yields actions in the repeated
game.

It is rather obvious that a joint plan induces a mechanism: composing or
mixing the choice of signals with the contract which bases (correlated) ac-
tions on signals obviously constructs a correlated choice of actions based on
observations of signals, i.e., a mechanism in the above sense.

On the other hand, a joint plan can be implemented by a joint plan Nash
equilibrium of the repeated game in the following way. The equilibrium
yields the same payo�s as the mechanism which corresponds to the joint plan.
Also it generates the signals of the joint plan in the �rst stages of the game
(when played in equilibrium). Moreover, the distribution of the equilibrium
path of the process yields certain sequences of actions �agreed upon� the
frequencies of which are constructed in a way to imitate the correlations
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prescribed by the contract. Hence, the cooperative payo� resulting from
the plan via the induced mechanism is also achieved in the non cooperative
equilibrium implementing the joint plan.

An early result is due to Aumann�Maschler�Stearns and has been gen-
eralized by Sorin and later by Simon. Accordingly, in a 2-person game with
incomplete information on one side, there exists an incentive compatible joint
plan which is also individually rational and admits of a corresponding Nash
equilibrium.
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7 Evolution and Learning in Games

7.1 Introduction

One important strength of noncooperative game models lies in the fact that,
although equilibrium behavior of players is de�ned and of central concern in
the analysis, also non-equilibrium behavior is possible. The very de�nition
of a Nash equilibrium does by no means imply that it is realized in an actual
play of the game nor that persons playing that game have to act as rational
players. It is exactly this feature which allows it to analyze non-equilibrium
behavior and, in a dynamic context, convergence or divergence properties of
chosen strategy pro�les. Still in these cases the persons playing the game
choose, even if not necessarily in a rational, consistent or only purposeful
way, their strategies from given strategy sets.

Evolutionary biology in contrast uses the formal concept of a game, in static
as well as in dynamic models, in quite a di�erent way. Imagine some large
population of individuals (of some species) each of which is labeled with
some number i ∈ {1, ..., n}, which is interpreted to represent some type.
Now consider some n × n-matrix with entries aij, i, j = 1, ..., n. From the
point of view of standard game theory one can imagine a random device by
which two individuals, labeled i and j are selected from the population to
play the normal form bimatrix game, where i chooses one of n rows and
j chooses one of n columns as strategies. If i chooses h(i) and j chooses
k(j) the resulting payo� vector is (ah(i),k(j), ak(j),h(i)). Obviously, this game
is direct as the sets of strategies and of types coincide.

Now evolutionary biology deviates in two respects. First, the two chosen
individuals do not have any choice, they just are programmed to pick h(i) ≡ i
and k(j) ≡ j, i.e. to tell the truth about their labels. So they do not play
the game although this terminology is used in large parts of the literature.
Clearly, no outside observer seeing i and j picking h(i) = i and k(j) = j
could tell whether they play the game or follow some deterministic device.
Secondly, the interpretation of the payo�s is now di�erent. Rather than
money or utility now �tness is considered to be the medium of payment.

Fitness is a stylized index representing reproductive success. Frequently the
expected number of o�springs of an individual is taken to de�ne �tness, some-
times however more re�ned and detailed de�nitions are used. In a dynamic
context �tness payed out to some strategy increases the probability that an
individuum labeled by that strategy will be chosen to be thrown as a strategy
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into the next round of the game.

A probability measure on the population determines the distribution of la-
bels, from which the two �players� are drawn as a sample of size two. If this
measure is concentrated on one label evolutionary biologists are talking of a
monomorphic state of the population. Otherwise the state is polymorphic.
Selten and Hammerstein in their chapter Game Theory and Evolutionary
Biology of the Handbook of Game Theory stress the fact that a mixed strat-
egy admits a monomorphic and a polymorphic interpretation. In the context
described so far a mixed strategy is just a distribution over labels which are
strategies. So it can be seen as a polymorphic state of the population. But
one can obviously extend the framework sketched above by giving each in-
dividual a label which is a mixed strategy. The interpretation is that the
program which rules the individuals' behavior is not anymore deterministic
but stochastic. Now an individual is (characterized by) a mixed strategy.
In this framework a measure on the population de�nes a distribution over
labels, i.e. mixed strategies. Then a distribution concentrated on one mixed
strategy represents a monomorphic state.

The �rst formalization of evolutionary stability due to John Maynard
Smith and George R. Price has become the predominant concept of
evolutionary game theory. If the label of some individuum in a population
is meant to indicate some innate type of behavior then stability of this be-
havior type is de�ned as stability of the strategy that is representing it in
the bilateral game. Stability of a monomorphic population, i.e. of the only
type or label in the population is meant as immunity against the invasion of
mutants. In a polymorphic population this idea extends to immunity against
the invasion of mutants and perturbed versions of the incumbent type. Evo-
lutionary strategies can be characterized in a static normal form context as
well as in a dynamic context.

7.2 Evolutionary Stable Strategies

Although evolutionary stability is a dynamic concept it can be represented
in a normal form game. Let σ, σ′ be mixed strategies of the bimatrix game
described above, i.e. distributions on {1, ..., n}. Let A = (aij), i, j = 1, ..., n
denote the payo� matrix for the row player. His expected payo� from σ if
the column player is labeled σ′ is σAσ′.

Now a mixed strategy σ∗ is an evolutionary stable strategy (ESS) if for
all mixed strategies σ there is some ε̄ > 0 such that for all ε ∈ (0, ε̄]
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σ∗A[(1− ε)σ∗ + εσ] > σA[(1− ε)σ∗ + εσ]. (1)

This condition expresses the idea that after a monomorphic population rep-
resented by the mixed strategy σ∗ has been changed by invasion of a small
fraction of mutants programmed to play σ, still σ∗ is more e�ective than σ.
It is not hard to see that for an ESS σ∗ the pair (σ∗, σ∗) is a Nash equilibrium
of the symmetric game represented by A. Moreover, this Nash equilibrium
has an additional property. Every strategy σ′ 6= σ∗ that is an equally good
response to σ∗, i.e. that satis�es σ∗A σ∗ = σ′A σ∗, is necessarily a worse
response to σ′ than σ∗, i.e. σ∗ A σ′ > σ′ A σ′.

In fact, for any Nash equilibrium (σ∗, σ∗) with this additional property σ∗ is
evolutionary stable. As not every equilibrium strategy needs to be evolution-
ary stable the concept of an ESS de�nes a re�nement of the Nash equilibrium.
Unfortunately, in a non-neglible class of non-pathological games ESS do not
exist. A further drawback lies in the fact that the notion of ESS is de�ned
only for monomorphic states of the population. These insights led evolution-
ary biologists to an explicit dynamic analysis. In a dynamic discrete time
model the game described above is used repeatedly to determine the payo�s
of two individuals based on their strategy labels. The distribution over la-
bels, however, changes during time depending on the payo�s of the previous
round.

High payo�s to individuals turn into higher probabilities of their label to be
selected for the next round. If this idea is modelled rigorously it leads to a
dynamical system which is known as Replicator Dynamics . A correspond-
ing model can be built for continuous time. It can be shown that in the
framework sketched above any mixed strategy that is an ESS represents a
population state that is asymptotically stable with respect to the replica-
tor dynamics. This surprising result shows that the ESS de�ned in a static
monomorphic mixed strategy setting when interpreted as a population state
in a pure strategy population displays a polymorphic dynamic local stability.

7.3 Learning in Social Contexts

There are essentially two problems in social systems to which methods and
insights from evolutionary biology are applied. What evolutionary forces
lead to behavior and social states that are compatible with perfectly rational
interaction of players? And, if there are multiple equilibria, which ones are
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limit points of evolutionary processes? The �rst problem may be seen as
inducing search for a speci�c equivalence principle or, alternatively, as a
problem of evolutionary implementation of rational solutions. The second
problem falls into the realm of equilibrium re�nement .

Obviously, the extreme position of evolutionary biology that treats individ-
uals as programmed automata is not very useful and needs to be abandoned
in the context of social systems. Also the selection process can hardly be
based on payo�s re�ecting the number of o�springs. Rather behavioral pat-
tern like imitation, adaption, experimenting combined with learning should
determine the evolution. The prototype of learning models in a social con-
text is �ctitious play . It was independently introduced 1951 by George
W. Brown and by Julia Robinson as an algorithm for computing Nash
equilibria in certain classes of games. Each player in a certain round of a
game uses his observations of the frequencies of the other players' strategy
choices in the past as the basis for estimating their present mixed strategies.
Then he chooses a best reply to these. A game has the �ctitious play property
if every limit point of a sequence of strategy pro�les generated by �ctitious
play is a Nash equilibrium of that game. Convergence behavior of �ctitious
play has been analyzed in increasing generality by Robinson, Miyasawa,
Shapley and Rosenmüller . Robinson proved in 1951 that any �nite
zero-sum two-person game has the �ctitious play property. The same was
shown to hold true for every non-degenerate 2 × 2-bimatrix game in 1961
by Miyasawa. In 1971 Rosenmüller derived this result, as well as Shap-
ley's non-convergence result from 1964 for a class of 3× 3-bimatrix games,
from a more fundamental analysis of convergence behavior of �ctitious play
based on eigenvalue considerations. More recent results are due to Jordan
and to Monderer and Shapley in 1991 and 1996, respectively. Jordan
proved that for su�ciently dispersed priors �ctitious play does converge to a
Nash equilibrium. Monderer and Shapley established the �ctitious play
property for weighted potential games .

There are other classes of games in which Nash equilibrium appears to be
the natural solution, where, however, �ctitious play does not single it out.
Foster and Young provided a special coordination game, which they called
Merry-Go-Round Game where players follow �ctitious play in cyclic patterns
and never coordinate.

Why do players not learn that they are trapped in cycles? This question
leads to the idea of adaptive learning where in fact players are less rational
and less informed than in �ctitious play. Peyton Young modelled a con-
text of short-sighted players with limited information and reasoning ability
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and a probabilistic error rate independent across the players as a Markov pro-
cess which he termed adaptive play . The basic ingredients are bounded by
rational reactions to predictions of other players' past behavior, that are esti-
mated from limited data and stochastically distorted. In their model of adap-
tive learning Foster and Young formulated an alternative stronger solution
concept termed stochastic stability . In contrast to the ESS a stochastically
stable equilibrium is even robust against persistent random perturbations.
In his book Individual Strategy and Social Structure Young develops an ex-
tensive theory of adaptive learning and relates stochastic stability to other
well known concepts of game theory like, for instance, risk-dominance, fo-
cal points or maximin contracts . Among several interesting results relating
adaptive learning and stochastic stability to the theories of bargaining and
of contract his characterizations of the Nash and of the Kalai-Smorodinsky
solutions as limits of stochastically stable payo� vectors are particularly re-
markable. They demonstrate that adaptive behavior of people can come
arbitrarily close to results which are predicted by axiomatic solutions from
standard game theory based on rationality assumptions on the players.

Another example for boundedly rational behavior leading to an established
rationality based outcome is due to Vega-Redondo. He shows that in
oligopolistic markets with n identical �rms involved in Cournot type quantity
setting competition a learning process combining elements of experimenting
and of imitating has as its long-run outcome the unique symmetric Walrasian
equilibrium.

These insights that repeated interaction of boundedly rational individuals
may produce outcomes compatible with standard rationality based game
theory support well the optimistic conclusions Vernon Smith was drawing
from various experiments as carried out in section 8.
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8 Experimental Games

8.1 Introduction

It should have become quite clear by now that game theory is not the uni-
�ed general theory of human interaction in groups or society. It is more a
collection of concepts, methods and modelling devices whose use and power
vary and depend on the speci�c problem and context. Common to all these
game theoretic models except evolutionary game theory is the fundamental
assumption of perfectly rational players. These have well de�ned goals, an
unlimited power of learning, reasoning, understanding and computing and
are assumed to use them in order to determine their decisions. Moreover in
many situations heroic assumptions on information processing abilities and
knowledge of players are made up to the extreme of common knowledge , that
was discussed earlier. Experimental games roughly are concerned with the
question to what extent game theory really describes and predicts human
behavior. Starting with the degenerate but nevertheless highly complex and
challenging theory of one person games or decision theory, where axioma-
tized models of consistent individual behavior like expected utility theory are
tested, almost all aspects of game theoretic modelling have been put on trial
in experiments. The design of experiments is an extremely sensible and ambi-
tious business. The experimenter has to make sure that the players following
precisely his rules actually play the game he has in mind. Moreover he must
be able on the basis of the results to cleanly separate di�erent possible causes
and explanations. However ingeneous several experimental devices may be,
the results cannot question game theory as a normative interpersonal deci-
sion theory. They only can possibly cast doubt on or even discredit it as
a descriptive theory with predictive power. In the following sections some
experimental results are brie�y presented and discussed.

8.2 Repeated Prisoners' Dilemma

Tradition has it that the �rst attempt to test game theory was a hundred fold
repetition of the Prisoner's Dilemma game played between the economists
Alchian and Williams in 1950. In this game two players have two strate-
gies each, namely observing or breaking a contract. If both break or both
observe they receive ten units or one unit of payo� each, respectively. If they
choose di�erent strategies the player who breaks receives twenty units, the
other one zero. To break is for both players a dominant strategy and con-
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stitutes the unique Nash equilibrium. Hence both players are condemned by
rationally playing the equilibrium strategy to forgo the Pareto dominating
and even Pareto e�cient payo� vector (10, 10)

Although mutual defection represents the unique Nash equilibrium of the one
shot normal form game the series of hundred plays showed mutual coopera-
tion in 60 instances as opposed to only 14 mutual defections. Similar behav-
ior was experimentally established by McKelvey and Palfrey about forty
years later. According to the Folk Theorem this behavior would be consis-
tent with equilibrium behavior in an in�nitely repeated Prisoners' Dilemma
game. In the �nitely repeated game, however, it contradicts rational behavior
because backward induction singles out consecutive mutual defection as the
unique subgame perfect equilibrium. A large experimental literature includ-
ing work by Rapoport and Chammah and by Selten and Stöcker has
con�rmed this basic result of deviating from game theory's rational equilib-
rium behavior as dictated by backward induction. More speci�cally, an end
e�ect has been systematically observed where players after many stages of
cooperation defected towards the end in accordance with the one shot game
equilibrium. Evidence here seems to lead to a falsi�cation of the rationality
assumptions implicit in the game theoretical model.

8.3 Coordination Games

An essentially unsolved problem of non-cooperative game theory is it how to
deal with multiple equilibria. A vast literature on re�nements has been de-
voted to the attempt by excluding �implausible� equilibria to restore unique-
ness. As it turned out all established re�ned equilibrium concepts, apart
from the extreme dominance equilibrium, are open to non-uniqueness. This
fact requires some kind of coordination between players and on the other
hand opens the door for building up reputation in repetitions of the game.
Experiments due to Schelling led to the insight that players have a sur-
prising ability to coordinate their behavior and to base their selection of an
equilibrium on shared senses of salience or prominence once they are in some
joint social context. Driving on the right hand side of the street is the focal
point equilibrium in most parts of the world, yet not everywhere.

Adding in a symmetric 2× 2-bimatrix game with two equilibria in the upper
left and the lower right corners for both players a third dominated strategy
should have no e�ect on the frequency by which one or the other equilibrium
is played. Nevertheless it has been shown in experiments that the speci�ca-
tion of the opponents' payo�s for the added third dominated strategies may



50 ? Section 8: Experimental Games ?

have dramatic consequences for the relative frequency of the choice of the
�rst equilibrium. High amounts which could be gained there seem to have
an impact.

Consider the purely symmetric game where the players' strategy sets are
{R1, R2} for the row player 1 and {C1, C2} for the column player 2 and the
payo� functions are given by F i(Rj, Ck) = δjk, i, j, k = 1, 2.

Despite game theory's inability to discriminate between the two equilibria
(R1, C1) and (R2, C2) experiments showed di�erences depending on the cul-
tural background of the players.

While a majority played (R1, C1), a group consisting of Chinese, Japanese
and Koreans was more attracted by (R2, C2). The training to read rows from
left to right might have created a salience for the majority when confronted
with the game in bi-matrix form, while for the minority group (R2, C2) might
have been more prominent. Experimenters' explanation here would be that
some characteristics of the players not caught by a rational-choice based game
model could be in�uencial for the outcome.

Another interesting insight from experiments comes from the observation
that in games with several Pareto ordered Nash equilibria frequently not the
Pareto optimal one was played. This hints to a serious coordination failure.
A remarkable observation in this context has been made in series of exper-
iments by Van Huyck, Batallio and Beil at Texas A & M University.
In �nite repetitions of some coordination game with multiple Pareto ranked
equilibria observed behavior never came close to the payo� dominant, i.e.
Pareto optimal equilibrium. But when the rights to participate in the game
were auctioned before and the successful bids were commonly known among
the players behavior always closely approximated the e�cient equilibrium.

8.4 Bargaining Games

The most popular approaches to bargaining games are the axiomatic coop-
erative one due to Nash and the non-cooperative alternate o�er model due
to Rubinstein. Both approaches have been exposed to experimental tests.
One of the fundamental di�culties in testing Nash's purely welfaristic model,
in which only players' utilities determine the solution, lies in the fact that
knowledge of the players' utilities is required. But these are not observable.
Roth and Malouf devised a clever method to overcome this problem by
arranging bargaining over distributions of lotteries. In the experiment the
distribution of lottery tickets determines with which probabilities a random
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mechanism attributes high or low prizes to players.

When the row player 1 gets 80 tickets and the column player 2 gets 20 the
consequence is that 1 has a 80% chance of winning his high prize and a 20
% chance of winning his low prize. Important is the fact that the high and
low prizes for the two players may be di�erent. As in the Nash model the
solution is independent of players' speci�c cardinal utility representations,
the experimenter may set each players' high prize equal to one unit and
its low prize equal to zero. Now, as players bargain over probabilities of
receiving rather than over utilities, the experimenters do not need to know
how much that is valued by the di�erent players. Formally, players negotiate
over how to divide the expected gain of one unit. The Nash solution selects
the allocation that maximizes the product of the expected gains, the so called
Nash product. This would require an equal division of lottery tickets.

According to Roth andMalouf the results in experiments centered around
two distributions when players knew their opponents' prizes.

One is the Nash solution, i.e. equal number of lottery tickets for both players,
the other one is the distribution that generated equal expected gains. So
experiments provide partial support for the Nash solution.

The experiments testing Rubinstein's subgame perfect equilibrium predomi-
nate in the more recent literature. Truncated versions of Rubinstein's game
were played by Güth, Schmittberger and Schwarz where, if no agree-
ment was reached in round k, for k = 1 the game became an ultimatum
game, in which both players lose unless an o�er is accepted. Although sub-
game perfect equilibria prescribe a solution where the o�ering player gets
close to everything, the average o�er in experiments was 33 %! These re-
sults induced the authors to doubt that the subgame perfect equilibrium has
predictive power in bargaining games.

Further experiments con�rmed the impression that experimental results were
in con�ict with the predictions that money is a good proxy for utility payo�
and that bargainers simply want to maximize their own incomes. They tend
to indicate falsi�cation of the joint hypothesis of expected payo� maximiza-
tion and of backward induction.

Several experiments conducted by Albers in the Institute of Mathematical
Economics in Bielefeld led him to the conclusion that prominence of numbers
used as payo�s systematically in�uence players' decisions and outcomes in
games.
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8.5 Optimistic Conclusion

Vernon Smith who is running experiments in one of the world's largest
experimental laboratories at the University of Arizona in Tucson comes after
an uncounted number of experiments in bilateral bargaining games, oligopoly
games, various sealed bid auctions and continuous double auctions to a sur-
prisingly optimistic and puzzling result.

In situations of complete and common information about other players' pref-
erences, which is the standard framework in which Nash equilibrium is con-
sidered the adequate solution concept for non-cooperative games, it has only
scarce empirical con�rmation.

However, in the more realistic context of repeated games with private incom-
plete information non-cooperative equilibria (and similarly Walrasian equi-
librium) have according to experiments a high predictive power. Similarly,
the experiments of Roth and Malouf on cooperative bargaining give a
strong support to the Nash solution in bargaining with private information.
Smith's irritating message is it that rational equilibrium and axiomatic bar-
gaining outcomes lack experimental support in situations where they can
be theoretically justi�ed and have high predictive power where this is not
the case. According to Vernon Smith �the theoretical problem that an
equilibrium of a model might be approximated without agent knowledge or
understanding of the model has important implications for the concept of
common knowledge that allegedly underlies contemporary game theory.�
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9 Concluding Remarks

In his book Choice and Consequence Thomas Schelling has a chapter
termed What is Game Theory . There he �nds that in contrast to economic,
statistical and decision theory �there is no accepted name for whatever the
�eld is of which �game theory� refers to the theoretical fontiers� like eco-
nomics, statistics or decisions. Despite several earlier developments described
in the Introduction the appearance of von Neumann's and Morgenstern's
book can be seen as the birth of Game Theory as a discipline. The au-
thors, a mathematician and an economist, re�ect perfectly the parent �elds
of the new discipline. 56 years later, when the recently founded Game The-
ory Society organized its �rst world congress �Game Theory 2000� in the
Spanish Bilbao more than 700 researchers from several �elds were a living
proof of the enormous impact and fast growth of game theory as a �eld that
had penetrated social sciences and found applications in biology, engineering
and systems design. The treatment of game theory in the EOLSS in eight
articles and this accordingly structured topic level survey does provide the
fundamentals of the �eld and stresses some speci�c developments that were
particularly important for the development of the discipline. It also hints to
interesting new developments in the analysis of and experiments on evolu-
tionary processes and learning in social systems that may turn out of value
for future global sustainable development.

In the EOLSS Game Theory justi�ably has been represented as one of the
topics of the theme Operations Research .

It should not be hided that many researchers meanwhile would insist on a
reverse relation, namely operations research as part of game theory. This
point of view is consistent not only because of the variety of mathematical
techniques employed but in particular under the aspect that any optimiza-
tion, decision or planning problem can either be seen as an instance of a
one-person game or, because of involved interpersonal interests and con�icts,
falls in a natural way into the realm of interpersonal decision theory.

For instance a problem of multicriteria decision making , a �eld quite popular
in Operations Research, can be modelled as a game where the various criteria
represent interests of di�erent players.

There are numerous subdivisions and �elds of applications in game theory
that are not even mentioned in the present treatment. The three volumes
of the Handbook of Game Theory edited by Robert Aumann and Sergiu
Hart carry the subtitle �with Economic Applications�. Despite this focus
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the Handbook contains some sixty articles trying to cover game theory.

Chapters on Psychology, Inspection Games, Di�erential Games, Power and
Stability in Politics, Game-Theoretic Aspects of Computing, Moral Hazard,
Patent Licensing, Strategic Analysis of Auctions and Search re�ect the enor-
mous variety of a vastly developing discipline.
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