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Abstract
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1 Introduction

The study of computational complexity in hedonic coalition formation games,

or simply hedonic games, has a short history, although these issues in coopera-

tive and non-cooperative game theory are being gradually recognized. Maybe

the reason is that the formal model of a hedonic game was only recently in-

troduced (cf. Banerjee, Konishi, and Sönmez (2001) and Bogomolnaia and

Jackson (2002)). This model consist of a �nite set of players and a preference

relation for each player de�ned over the set of all coalitions containing the

corresponding player. The outcome of a hedonic game is a coalition structure

(i.e., a partition of the set of players into coalitions). A coalition structure

is called stable if there is no group of individuals who can all be better o¤

by forming a new deviating coalition. The core of a hedonic game is the

collection of all stable coalition structures.

Computational complexity issues related to hedonic games in a general

setting are studied by Ballester (2004). As shown by this author, the prob-

lem to decide whether a given hedonic game has a nonempty core is NP-

complete1. Cechlarová and Hajduková (2002, 2004) and Dimitrov, Borm,

Hendrickx, and Sung (2004) also elaborate on the computational complexity

of core related solution concepts for hedonic games but in a less general set-

ting, i.e., in games with some restrictions imposed on players�preferences. In

particular, Dimitrov, Borm, Hendrickx, and Sung (2004) consider preference

pro�les based on aversion to enemies that consitute a small subdomain of

the domain of additive preferences, and show that �nding a core member

for such games is NP-complete. The corresponding preference domains are

formally introduced in the next section.

1For an introduction to computational complexity, de�nitions of NP, NP-complete,
NP-hard, and a catalog of NP-complete problems, we refer to Garey and Johnson (1979).
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In this note we consider the problem of core membership testing for he-

donic games. Given a hedonic game and a coalition structure, the problem of

core membership testing is to decide whether the coalition structure belongs

to the core of the game. We show that this problem is co-NP complete when

players�preferences are additive. Indeed, the co-NP completeness is shown

by a reduction to hedonic games in which players�preferences are based on

aversion to enemies. Hence, the preference domain based on aversion to en-

emies turns out to have a referential role with respect to this computational

complexity issue.

2 Preliminaries

Let N = f1; : : : ; ng be a �nite set of players. A coalition is a nonempty

subset of N . For each player i 2 N , we denote by Ai = fX � N j i 2 Xg

the collection of all coalitions containing i. A collection � of coalitions is

called a coalition structure if � is a partition of N , i.e., all coalitions in �

are pairwise disjoint and
S
X2�X = N . We denote by CN the collection

of all coalition structures. For each coalition structure � 2 CN and each

player i 2 N , we denote by �(i) the coalition in � which contains i, i.e.,

�(i) 2 � \ Ai.

We assume that each player i 2 N is endowed with a preference �i

over Ai, i.e., a binary relation over Ai which is re�exive, complete, and

transitive. Moreover, we assume that the preference of each player i 2 N

over CN is purely hedonic, i.e., it is completely characterized by �i in such a

way that, for each �;�0 2 CN , player i weakly prefers � to �0 if and only if

�(i) �i �
0(i).

A hedonic game is a pair hN;�i of a �nite set N of players and a pro�le

�= (�1; : : : ;�n) of players�preferences. We denote by G the collection of
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all hedonic games. Let hN;�i 2 G. We say that a coalition X is a deviation

from a coalition structure � in hN;�i if X �i �(i) for each i 2 X. We say

that a coalition structure � is stable in hN;�i if no deviation from � exists,

i.e., for each coalition X, there exists i 2 X satisfying �(i) �i X. The core of

a hedonic game hN;�i, denoted by �(N;�), is the collection of all coalition

structures which are stable in hN;�i.

Let �= (�1; : : : ;�n) be a preference pro�le. We say that � is additive

if, for each i 2 N , there exists a function vi : N ! R characterizing �i in

such a way that, for all X; Y 2 Ai,

� X �i Y if and only if
P

j2X vi(j) �
P

j2Y vi(j).

For simplicity, by vi(X) we denote
P

j2X vi(j) for each i 2 N and for

each X 2 Ai.

Given an additive preference pro�le � and any two players i; j 2 N , we

say that j is a friend (enemy) of i if and only if vi(j) > 0 (vi(j) < 0); if

vi(j) = 0, and we say that j is a neutral coalitional partner of i. Finally, we

say that a preference pro�le � is based on aversion to enemies if� is additive,

and for each i 2 N , vi(�) 2 f�n; 1g with vi(i) = 1. Hence, restricting players�

preferences in such a way displays a situation in which each player i 2 N has

very strong enemies, very weak friends, and no neutral coalitional partners.

3 Core membership testing

In this section we study the problem of core membership testing formulated

as follows:

The Problem of Core Membership Testing (cmt)

Given: A hedonic game hN;�i 2 G and a coalition structure � 2 CN .
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Question: Is � 2 �(N;�)?

This problem belongs to the complexity class co-NP, i.e., the complexity

class containing the complements of the decision problems in the complexity

class NP. The complement of a decision problem is de�ned as the problem

with the �YES� and �NO� answer reversed. The complement of the cmt

problem can then be described as follows. Given a hedonic game hN;�i 2 G

and a coalition structure � 2 CN , and ask whether � 62 �(N;�), i.e., whether

there is a deviation X from � in hN;�i. This problem, the complement of

cmt, belongs to NP, because in polynomial time of n one can

(1) guess non-deterministically a coalition X,

(2) test deterministically whether X is a deviation from � in hN;�i, and

(3) the answer is �YES�if some coalition X is a deviation from� in hN;�i,

and otherwise �NO�.

Hence, the cmt problem belongs to co-NP.

Before we show that this problem is co-NP complete when players�pref-

erence are additive, let us �rst recall some properties of hedonic games with

preference pro�les based on aversion to enemies. For more details the reader

is referred to Dimitrov, Borm, Hendrickx, and Sung (2004). Let hN;�i 2 G

be a hedonic game with preference pro�le � based on aversion to enemies.

It is known that

� the core �(N;�) is always nonempty.

In order to describe the properties of core members, let us introduce some

terminology. Let H = (V;E) be a (undirected) graph, where V is the set

of vertices and E is the set of edges, i.e., each edge is a set consisting of
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two di¤erent vertices from V . A clique X in H is a subset of V such that

fi; jg 2 E for each i; j 2 X with i 6= j.

Let HhN;�i = (V;E) be a (undirected) graph with

� V = N , and

� E = ffi; jg � V j i 6= j and vi(j) = vj(i) = 1g,

and let � 2 CN be a core member, i.e., � 2 �(N;�). Then, it is known

that

� each X 2 � is a clique in HhN;�i.

Suppose X is not a clique in HhN;�i for some X 2 �. Then, vi(j) = �n

for some i; j 2 X, which implies that vi(X) < vi(i). Hence, X �i fig, and

thus, fig is a deviation from � in hN;�i. Therefore � 62 �(N;�).

Moreover, it is known that

� at least one of the largest cliques in HhN;�i belongs to �.

Suppose � does not contain any of the largest cliques in HhN;�i, and let

X be one of the largest cliques in HhN;�i. Then, for each i 2 X, we have

vi(X) = jXj > j�(i)j � vi(�(i)):

Hence, X is a deviation from � in hN;�i, i.e., � =2 �(N;�). It follows from

this property that the problem of �nding a core member of a given hedonic

game, with preference pro�le based on aversion to enemies, is at least as

hard as the problem for �nding a largest clique in a given graph, which is a

NP-hard optimization problem.

We are now ready to present our result.
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Theorem 1 The problem of core membership testing for hedonic games with

additive preference pro�le is co-NP complete.

Proof. As already mentioned, the cmt problem belongs to co-NP. It su¢ ces

to show that this problem is co-NP hard. The co-NP hardness is shown

by a polynomial time reduction from a co-NP complete problem called the

clique problem, which is the complement of the clique problem. The

clique problem is de�ned as follows:

Clique Problem (clique)

Given: A graph G = (V;E) and a positive integer 2 � K � jV j.

Question: Does G contain a clique of size K?

Let (G;K) be an instance of the clique problem, i.e., G = (V;E) is

a graph and K is a positive integer such that 2 � K � jV j. De�ne a

hedonic game hN;�i as follows. Take N = f1; 2; : : : ; K � 1g � V to be the

set of players, and let n = jN j = (K � 1)jV j. For each (k; s) 2 N , the

preference �(k;s) of player (k; s) is characterized by the function v(k;s), which

is de�ned as follows: For each (`; t) 2 N ,

v(k;s)(`; t) =

8
<

:

1 if s = t;
1 if k = ` and fs; tg 2 E;
�n otherwise.

Observe that the transformation from (G;K) to the game hN;�i can be

done in O(jV j4) time. Hence, it is a polynomial time reduction. Moreover,

observe that players�preferences are, in fact, based on aversion to enemies.

Next, de�ne � = fXs j s 2 V g with Xs = f1; 2; : : : ; K�1g�fsg for each

s 2 V . Obviously � is a partition of N , i.e., � is a coalition structure. Also

notice that each Xs is a clique of size K�1 in HhN;�i, because v(k;s)(`; s) = 1
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for all k; ` 2 f1; 2; : : : ; K � 1g and for each s 2 V . In the following we show

that � 62 �(N;�) if and only if G contains a clique of size K.

(1) Suppose that G contains a clique Y of size K. Then, for each k 2

f1; 2; : : : ; K � 1g, fkg � Y is also a clique of size K in HhN;�i. Hence, each

fkg � Y is a deviation from �, and therefore � =2 �(N;�).

(2) Suppose � =2 �(N;�). Then there exists a deviation Z from �. Since

each Xs 2 � is a clique of size K�1 in HhN;�i, Z must also be a clique of size

at least K in HhN;�i in order to be a deviation from �. Let Z 0 be a subset

of Z of size K. Since Z is a clique in HhN;�i, Z
0 is also a clique in HhN;�i.

Then, by de�nition, we have either k = k0 or s = s0 for all (k; s); (k0; s0) 2 Z 0

with (k; s) 6= (k0; s0).

We show that k = k0 and s 6= s0 for all (k; s); (k0; s0) 2 Z 0 with (k; s) 6=

(k0; s0), i.e., Z 0 � fkg � V for some k 2 f1; 2; : : : ; K � 1g. Let (k; s) 2 Z 0.

Then, there exists (k0; s0) 2 Z 0 such that s0 6= s, because jZ 0j = K > K�1 =

jXsj, and thus, we have k
0 = k. We are done when K = 2. When K � 3,

there exists (k00; s00) 2 Z 0 such that (k00; s00) 6= (k; s) and (k00; s00) 6= (k0; s0).

When s00 = s, we have k00 6= k, and thus, we have k00 6= k = k0 and s00 = s 6= s0,

so that there is no edge between (k0; s0) and (k00; s00) in HhN;�i, and Z
0 cannot

be a clique in HhN;�i. The same argument hold when s
00 = s0. Hence, k = k0

and s 6= s0 for all (k; s); (k0; s0) 2 Z 0 with (k; s) 6= (k0; s0). i.e., Z 0 � fkg � V

for some k 2 f1; 2; : : : ; K � 1g.

Finally, since Z 0 is a clique of size K in HhN;�i and Z
0 � fkg � V for

some k 2 f1; 2; : : : ; K � 1g, we have fs; tg 2 E for each (k; s); (k; t) 2 Z 0.

Therefore, fs 2 V j (k; s) 2 Z 0g is a clique of size K in G.
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