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Abstract

We study (anti-) coordination problems in networks in a laboratory experiment. Partici-
pants interact with their neighbours in a �xed network to play a bilateral (anti-) coordination
game. Our main treatment variable is the extent to which players are heterogeneous in the
number of connections (neighbors) they have. Other network characteristics are held constant
across treatments. We �nd the following results. Heterogeneity in the number of connections
dramatically improves the rate of succesful coordination. In addition, even though there is a
multiplicity of Nash equilibria theoretically, a very sharp selection is observed empirically: the
most connected player can impose her preferred Nash equilibrium almost always and observed
Nash equilibria are such that all links are coordinated. As a second treatment variation we
let agents decide endogenously on the amount of information they would like to have and �nd
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1 Introduction

Coordination in networks is an important problem with implications for development economics
(Ray, 2007), technological standard-setting (Katz and Shapiro, 1986), �nancial regulation (Leitner,
2006) and corruption (Cheloukine and King, 2007) among many others. Understanding how network
structure impacts coordination is essential to both: designing networks such that desired outcomes
are achieved and being able to target the players in a network with most leverage on coordination
process.
Networks in real-life situations are often heterogeneous, i.e. not all agents will have the same

number of connections, nor will they be equally "central" in the network. One may wonder whether,
and if so how, such heterogeneity might a¤ect coordination. In development economics this question
is at the center of an old debate. Hirschman (1958) for example argued that subsidizing "leading"
individuals or industry sectors may be crucial for development if these players have leverage and can
trigger a transition to a more favorable equilibrium.1 Also governments and �rms can make use of
social networks to increase revenues by targeting certain people in the social network, who have more
in�uence on the outcome of the coordination process. (Galeotti and Goyal, 2009). Moreover under-
standing how heterogeneity a¤ects coordination in networks is also essential for designing interaction
structures within an organization or for industry regulation etc.
An important related question is how much information players need in order to coordinate. If

a certain network structure facilitates coordination only if all agents are fully informed about the
entire network structure, then this may be problematic. In real life agents will typically only have
local information about the network and increasing the amount of information they have may be
very costly. In addition it is unclear whether (boundedly rational) agents would actually know how
to make use of such additional information.
In this paper we study these problems systematically and ask the following questions: Do hetero-

geneous networks make it easier for agents to coordinate ?, Are more heterogenous networks more
likely to induce e¢ cient outcomes?, Who are the "important" players in the network that ensure
coordination?, Which players get a bigger share of the "pie" if coordination is successful?, How much
information is needed to ensure coordination?
To gain insight into these questions we let participants in an experiment interact in a 4� 4 game

which possesses features of coordination and anti-coordination both. Coordination refers to problems
where all agents have to take the same action and anti-coordination to situations where agents have
to choose di¤erent actions in order to reach a Nash equilibrium. More generally situations of anti-
coordination represent interactions where choices are strategic substitutes, i.e. where the incentives
of agents to choose a certain strategy decrease as more of their neighbors choose that strategy. Such
e¤ects typically appear in contexts such as congestion, pollution, oligopolistic (quantity) competition,
provision of public goods or when there are gains from di¤erentiation. There are many empirical
studies showing such e¤ects. A nice example are Foster and Rosenzweig (1995) who �nd evidence
that farmers tend to experiment less with new technologies if their neighbors experiment more. Note
that in many examples one can think of people simultaneously interacting each with a di¤erent subset
of the population. This makes networks the adequate tool to analyze interactions.
The main treatment variation in our study is the topology of the underlying network. Networks

are chosen in such a way that a number of characteristics (number of nodes, links, clustering, char-
acteristic path length, average degree etc.) are held constant, while heterogeneity in degree (the
variance in the number of connections) changes. As a second treatment variation we let agents either
decide endogenously on the amount of information they would like to see or provide them with full

1See also Ray (2007).
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information about the network.
We �nd the following results

1. Heterogeneity dramatically improves coordination in networks. Coordination is often ensured
by the most connected player in the network

2. Even though there is a multiplicity of Nash equilibria theoretically, a very sharp selection
is obtained empirically. In particular: (i) coordination is always such that all links are in
(bilateral) equilibrium (although theoretically this is not required for Nash equilibrium) and
(ii) the most connected players can impose their preferred Nash equilibrium almost all the
time.2

3. Local (endogenous) information about the network structure is as e¢ cient as full information
in ensuring coordination and yields the same selection of Nash equilibria.

We provide an explanation for these �ndings using information from our data set. The �rst result
is well explained with a theory of di¤erential adaptation of players with di¤erent connectivities, im-
plying that if there is high variance in connections, coordination cycles can be broken or even avoided
altogether. The reason is that highly connected agents will adjust actions rarely as a consequence of
changes in their neighbour�s choices, since the change in any given neighbour�s action has relatively
little impact on their payo¤s. This implies that highly connected agents will have a more stable best
response. Their neighbours, on the other hand, will tend to have few connections (since variance
is high) and hence will adjust quickly to changes in the highly connected players actions. Highly
connected players can emerge as leaders in the coordination process. This hypothesis is consistent
with the evidence on switching behavior in our data. The second result is best explained by the
use of local information together with di¤erential adaptation. In the treatments with endogenous
information highly connected players choose the "aggressive" action (leading to their preferred Nash
equilibrium) more often if they are informed about higher order neighbors. The reason is that only
in this case they realize that they are in a leading position in the network. Consistently with this
explanation less connected players choose the aggressive action less often if they know about higher
order neighbours. These e¤ects are strongly signi�cant. The third result is quite amazing. It shows
on the one hand that very local information is often su¢ cient to ensure quite succesful coordina-
tion, but also that participants are not able to use the additional information in the full information
treatment e¤ectively.
Our study is probably the �rst to show such a strong and signi�cant impact of the network

structure on the outcome of a (coordination) game.3 Cassar (2007) has studied Coordination in
2� 2 games in local, random and small world networks and has found that the tendency of agents to
coordinate to e¢ cient outcomes is slightly higher in small world networks than in others. She also
found that both higher clustering coe¢ cients and a shorter characteristic path length have a positive
impact on agents choosing payo¤ dominant actions. In our work we maintain both the clustering
coe¢ cient and the average path length constant across our networks and focus solely on the e¤ect
of heterogeneity. In Cassar (2007) on the other hand all networks are (a priori) homogeneous. More
importantly, though our main research question as well as the underlying game are di¤erent. Rather
than being interested in the e¤ect of network characteristics on e¢ ciency vs risk dominance we are
interested in the e¤ect of the network on coordination per se. In addition we study anti-coordination

2We say that a link is in equilibrium if the players connected through the link choose a actions which are mutual
best responses.

3There is some experimental work by Judd and Kearns (2008) and Charness and Corominas-Bosch (2007) on
bargaining games in networks.
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games rather than coordination games. There is also some relation to work by Choi et al (2009)
who study monotone games in networks, where the network mediates only information transmission.
They �nd evidence that the network structure may make some equilibria more salient than others.
Choi and Lee (2009) study preplay communication in coordination games where communication is
mediated through a network. My et al. (2001) study coordination problems with local vs global
interaction and �nd a slight tendency for local interaction to lead to more coordination on risk-
dominant outcomes.4

Anti-coordination games on networks have not been studied experimentally to our knowledge.
Cooper et al (1993) study the "battle of sexes game" with pairwise random matching and �nd that
coordination failure is very common, occurring in roughly 60% of the cases.
Theoretical literature on coordination games in networks possibly starts with Blume (1993) and

Ellison (1993).5 Anti-coordination games in networks have been studied theoretically by Bramoullé
(2007). He analyzes how many agents will choose a certain strategy in a network as it becomes
more advantageous and illustrates that the answer to this question di¤ers across networks.6 Anti-
coordination games in evolving networks have been studied theoretically by Bramoullé et al (2004).7

The paper is organized as follows. In Section 2 we summarize our research questions. In Section
3 we present the experimental design and in section 4 our main results. Section 5 is dedicated to a
discussion of our main results. Some graphs, tables and the experimental instructions can be found
in the appendix.

2 Research Questions

Our �rst question is whether and how heterogeneity helps coordination in networks. Let us elaborate
on this question a little. In homogeneous networks all players a priori have the same impact on the
outcome, whereas in very heterogeneous networks, there are few players who might have a bigger
impact on overall play than others since they are linked to more people. Whether they do so depends
obviously on the learning (decision) rules agents use. In standard theory with fully rational agents
(or more precisely common knowledge of rationality) heterogeneity should not make a di¤erence per
se. Also, a priori, the e¤ect might go in either direction. On the one hand highly connected agents
may be able to break coordination cycles.8 On the other hand "errors" by highly connected players
will propagate more easily in the network.

Question 1 (Coordination) Does heterogeneity a¤ect coordination to Nash equilibrium ? Is coor-
dination better in homogenous networks or in heterogenous networks ?

A second question that arises is whether in heterogeneous networks agents are more or less likely
to coordinate on e¢ cient outcomes rather than risk-dominant ones. If the well connected players
exert a higher in�uence on the network than other players, this question essentially reduces to the
question whether they are more likely to choose e¢ cient or risk-dominant actions (and what others
believe they will do).

4See also Corbae and Du¤y (2002) or the survey by Kosfeld (2004).
5Other papers include Morris (2000) Alos-Ferrer and Weidenholzer (2008), Jackson and Watts (2002), Goyal and

Vega Redondo (2005) and Hojman and Szeidl (2006).
6See also Ahmed and Elgazaar (2000). Szabó and Fáth (2007) provide an extensive survey of the literature on

evolutionary games on graphs.
7Their model has been tested by Berninghaus, Ehrhardt and Ott (2008).
8Obviously any agent also in a homogenous network can break a coordination cycles if a su¢ cient number of people

agrees that he/she should do so.

4



Question 2 (E¢ ciency) As the network becomes more heterogenous, are agents more or less likely
to coordinate on e¢ cient equilibria ?

As we mentioned before agents preferences are typically not aligned in Anti-Coordination prob-
lems, implying that di¤erent players will prefer di¤erent equilibria. One may ask whether more highly
connected agents are aware of their in�uence on the coordination process and hence whether they
are more often able to impose their preferred Nash equilibrium. If highly connected agents realize
their importance in the coordination process one may expect such an e¤ect.

Question 3 (Distribution) In heterogenous networks, do agents of higher degree get a bigger share
of the pie, i.e. can they impose their preferred Nash equilibrium ?

Answering questions 2 and 3 can give us a lot of insight into selection if the network game has
multiple Nash equilibria. Knowing which selection will obtain is important information for both the
designer of a network as well as for a planner who wants to target central agents in a network, since
coordination may not be the only goal of the designer.
An equally important question relates to the amount of information players need to know or to

be able to use to ensure coordination. This is our �nal question.

Question 4 (Information) How much information about the network is needed to ensure e¢ cient
coordination ?

In order to answer these questions we chose the following design of our experiment.

3 Design

The experiment was conducted between May and September 2009 at Maastricht University using
the software Z-tree (Fischbacher, 2007). 224 students participated in one of the treatments N-1, N-2,
N-3, R-1, R-2 or R-3. In all treatments participants played the symmetric two player game depicted
in Table 1 with their neighbors in the network.9

A B C D
A 20; 20 40;70 10; 60 20; 30
B 70;40 10; 10 30; 30 10; 30
C 60; 10 30; 30 10; 10 30;40
D 30; 20 30; 10 40;30 20; 20

Table 1: The Game.

Each player had to choose the same action against all her neighbors and payo¤s in each round are
given by the average payo¤ obtained in all the games against the neighbors.10 This is the interesting
case to study in networks, since if participants were allowed to choose di¤erent actions for their
di¤erent neighbors, there would essentially be no network e¤ects. The game was repeatedly played
for 20 rounds.
Our game is well suited to study our questions, since it involves elements of both coordination

and anti-coordination. Equilibria (A,B) and (B,A) are e¢ cient while there is a sense in which actions

9The game was presented to all participants as if they were row players (see the Instructions in the Appendix).
10We chose to pay average payo¤s rather than total payo¤s to prevent too high inequality in payments among our

participants.
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Figure 2: Treatment N-2

C and D risk dominant. (C maximizes payo¤s if neighbours choose randomly according to a uniform
distribution and D is the maxmin choice). Hence there is an element of coordination on either e¢ cient
or risk-dominant behavior. There is clearly also an element of Anti-Coordination, since within each
subset fA;Bg � fA;Bg and fC;Dg � fC;Dg each player has an equilibrium which she strongly
prefers and all Nash equilibria are such that the two players have to choose di¤erent actions.
The three treatments N-1, N-2 and N-3 di¤ered only in the topology of the underlying network.

An equilibrium in a network game (in our experiment of 8 players) is obtained whenever all players
choose an action that is a best response to whatever their neighbours choose. All our networks N-1,
N-2 and N-3 are such that many pure strategy equilibria exist. Still, it is clear that coordinating a
network of 8 players on any one of the many possible equilibria is di¢ cult, especially since players
have con�icting interests. We will describe the Nash equilibria in detail at the beginning of Section 3.
Both the game and the networks were chosen in such a way that (i) there are many pure strategy Nash
equilibria and hence coordination is possible but not obvious, (ii) players have con�icting preferences
about these Nash equilibria, (iii) all networks have the same number of Nash equilibria and Nash
equilibria are "qualitatively similar" across all networks and (iv) networks are comparable in terms
of their characteristics except for the degree of heterogeneity.
The three networks corresponding to our treatments N-1 to N-3 are depicted in Figures 1-3.
The networks were chosen in such a way that starting from the homogeneous network, the circle,

heterogeneity in degree is varied while other network characteristics are kept constant. Table 2
summarizes some characteristics of these networks. k denotes degree and �2(k) the variance in
degree. The characteristic path length of a network is the average length of the shortest path
between any two agents and the betweenness of an agent/node measures the share of shortest paths
that pass through her. The average betweenness is the average of the betweenness measures across
all nodes. Betweenness is often used to measure the centrality of a node in the network. We consider
two measures of heterogeneity in degree. One obvious candidate is certainly the variance in degree
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Figure 3: Treatment N-3

�2(k) =
P8

i=1(ki � k)2. This measure of heterogeneity, though, neglects the network structure to a
certain extent in that it does not account for correlation between neighbour�s degrees. For example it
may be possible that variance is very high in one part of a network but very low in another part of the
network. Hence as a second measure we use the minimal variance across all (non-trivial) partitions of
the network. Consider partitions G of N s.t. (i) each g � G is connected and (ii) card(g) � 3;8g 2
G.11 Then we can de�ne this second measure as �2min = minG

�
ming2G

P
i2g(ki � k)2

�
.

N-1 N-2 N-3
number of players 8 8 8
number of links 8 8 7

average degree k 2 2 1:75
�2(k) 0 8 16:5
�2min 0 2 0:68
charact. path length 2:14 2:21 2:21
clustering coe¤. 0 0 0
average betweenness 0:42 0:40 0:37
variance betweenness 0 0:21 0:21

Table 2: Network Characteristics.

As can be seen from Table 2, all the networks are very similar in terms of most network char-
acteristics, with the exception of our heterogeneity measures, the variance in degree �2(k) and the
minimal variance across non-trivial partitions �2min. Network N-3 is much more heterogenous than
network N-2 which is in turn much more homogenous than N-1 according to �2(k) but in terms
of �2min N-2 is more heterogenous than N-3 (than N-1). Naturally the heterogeneity in degree also
induces some heterogeneity in betweenness and there are slight di¤erence in the average betweenness
across networks as well in the variance in betweenness (where the di¤erence is mostly between N-1
and the other networks). Hence another question we can ask is whether it is mostly the di¤erence
in degrees or in betweenness which will drive our results. Overall these networks are well suited to
study our research questions described above.
To be able to interpret our results more easily we wanted to control for the amount of information

participants use. Hence in treatments N-1 to N-3 we did not simply provide them with all the
information about the network, their neighbors actions and payo¤s but we asked them at the end
of each round which information they would like to obtain. They could choose to have information
about the identity, actions and/or payo¤s of their �rst-order, second-order, third-order and/or fourth-
order neighbors. Each piece of information had a small cost of 1 ECU (experimental currency unit).
Requesting information about the network had a cost of 10 ECU, since this information is permanent

11If a subset of players is not connected, then the variance within this subset is meaningless. The second condition
ensures that there are at least three players in a subset, since variance for two players is trivial.
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and was also permanently displayed to the participants once they had requested it. In treatments
R-1, R-2 and R-3 there was no information request stage and all the information was displayed all
the time to all participants. Other than that R-1 coincides with N-1, R-2 with N-2 and R-3 with
N-3.
Controling for the amount of information participants have about the network has two advantages.

First it helps us to understand and interpret our data much better. And second it addresses our last
research question about the amount of information needed to coordinate.
Finally, the fact that we also wanted to investigate information search was one motovation to use

networks of 8 players. In smaller, more stylized, networks most participants have only �rst-order
neighbours and hence it is not possible to investigate information search in a meaningful way. The
larger the network, though, the harder it is to achieve coordination for the participants and the
noisier our data will become.
The experiment lasted between 60-90 minutes and participants earned between 7,70 and 16,90

Euros with an average of 11,40 Euro.

4 Results

Before we start to describe our experimental results, we would like to describe the set of (one-shot)
Nash equilibria in the three networks more formally.

Claim (Nash equilibria) Irrespective of the network N-1, N-2 or N-3

(i) there are four pure strategy NE-pro�les where all links are in NE,12

(ii) there are no additional pure strategy equilibria where all players choose the "e¢ cient" actions,
A or B and

(iii) there are eight more pure equilibria where some players choose C and some D.

Proof. Appendix.
The claim shows that all of our networks have the same number and structure of Nash equilibria.

Hence standard theory does not lead to di¤erent predictions for these networks. Note also that
coordination cycles are equally possible in all networks if agents learn e.g. via myopic best responses.
On the other hand the claim shows that there is a large multiplicity of equilibria, which means that
theory makes only weak predictions about the outcome of the network games.13 The actual behavior
we observe in the experiment, though, eliminates this multiplicity. As we will see below, out of the
12 theoretically possible (one-shot) Nash equilibria we only observe one or two empirically. We will
now proceed to present our experimental results and we will give an explanation for them in Section
5.

4.1 Coordination

Let us start with the �rst research question concerning coordination. Since it is easily possible in
a network of eight players that one or two players make mistakes, we consider three measures for
coordination to NE in order to account for this possibility. Our measures are the percentage of cases
(across the last 5 rounds) in which the entire network is in Nash equilibrium (NE) and the percentage

12All equilibria are explicitly described in the Appendix.
13Standard re�nements do not remove this multiplicity. Also if we assume e.g. that agents learn via myopic best

responses and then consider stochastic stability, the multiplicity of stochastically stable states remains.
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of cases (also across the last 5 rounds) in which the entire network would be in Nash equilibrium if
one (two) players changed their action, denoted by NE-1 (NE-2). The results are presented in Tables
3a and 3b.

N-1 N-2 N-3
NE 0:12 0:32 0:24
NE-1 0:28 0:71 0:40
NE-2 0:36 0:89 0:72

;

R-1 R-2 R-3
NE 0:13 0:46 0:13
NE-1 0:13 0:67 0:53
NE-2 0:40 0:87 0:73

Tables 3(a,b): Percentage of successful coordination in last 5 rounds.

The table illustrates that coordination is much better in heterogenous networks than in the homo-
geneous network N-1. In fact the rate of successful coordination is twice as high in N-3 than in
N-1 and almost three times higher in N-2 compared to N-1. All treatment di¤erences are pairwise
highly signi�cant across N-1, N-2 and N-3 (Mann-Whitney, p < 0:0001). The di¤erence between
NE-1 in N-1 and R-1 is marginally signi�cant (p = 0:0864). Other di¤erences between N-1 and R-1
or di¤erences between N-2 and R-2 as well as between N-3 and R-3 are not statistically signi�cant.
(Mann-Whitney, p > 0:2865 (p > 0:3413; p > 0:1987)).

Result 1 Coordination to Nash equilibrium is signi�cantly better in the heterogenous network N-2
than in N-3 and signi�cantly better in N-3 than in N-1.

If we look at the measures NE-1 and NE-2 coordination in the heterogeneous networks (especially
N-2) is impressive with around 80% of networks coordinated in the last 5 rounds. Note also that
deviations of a single player from NE need not always represent errors. In one network N-2 we
observed for example that starting from the NE where player 4 chooses D (and all links are in NE),
player 4 sometimes started to switch to B for some rounds, possibly to induce a transition to the
e¢ cient NE. No other player reacted though for three rounds and player 4 switched back to D.
A �rst conclusion from this data is that our more "local" measure of the variance �2min describes

the relevant heterogeneity better than the simple variance �2(k). We will present a more detailed
explanation of Result 1 in Section 5.1. Note that network N-2 can be obtained from N-3 by rewiring
the link 5 ! 4 to 5$ 3 and adding the link 5$ 6: An interesting implication of Result 1 is hence
that a designer facing network N-3 may even want to add a link to improve coordination. (Of course
our result suggests that adding the link 5 $ 6 will not be necessary but rewiring 5 $ 4 to 5 $ 3
will be su¢ cient.
Figures 4-6 show the percentage of coordination over time. The �gures illustrate clearly the dif-

ference in coordination rates across the three networks.14 The �gures also show that the coordination
failure in N-1 seems persistent, i.e. not simply a matter of the speed of convergence. Of course it
cannot be ruled out that convergence would occur after "enough" periods in N-1, but from an empir-
ical point of view this di¤erence is semantic. Convergence which occurs only after a very large period
of time is (i) not interesting for policy and (ii) not empirically distinguishable from non-convergence

14The graphs for R-1 and R-2 look similar (to N-1 and N-2) and are available upon request. Convergence can also
be studied by comparing the switching rates across the treatments. The concave shape of the cumulative distribution
functions in Figure 9 for N-2 and Figures A-1 and A-2 for N-1 and N-3 illustrate that switching rates decline over
time.
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if the time needed for convergence is longer than the duration of institutions.

Figure 4: Coordination to Nash equilibrium (NE) over time.

Figure 5: Coordination to Nash equilibrium (NE-1) over time.
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Figure 6: Coordination to Nash equilibrium (NE-2) over time.

As mentioned above the fact that a network is in Nash equilibrium does not imply that a Nash
equilibrium of the two player game needs to be played along all links.15 We consider as a second
measure the percentage of links in Nash equilibrium across the last �ve rounds of play and �nd a
qualitatively similar pattern.

N-1 N-2 N-3
% of links in NE 0:55 0:74 0:72

The treatment di¤erences between N-1 and the other treatments are pairwise highly signi�cant
(Mann-Whitney, p = 0:0056 (N-1 vs N-2) and p = 0:0038 (N-1 vs N-3)). The di¤erence between N-2
and N-3 is not. Interestingly, thus, we �nd that given this measure coordination is not worse in N-3
than in N-2. We will give an explanation of this fact below.
Note also that - given that players choose uniform randomly either of two actions - the probability

for a link to be coordinated on a NE is 50%. A binomial test rejects the hypothesis that 50% of links
are coordinated in the last 5 rounds for N-2 and N-3 (p < 0:000001) but not for the homogenous
network N-1 (p = 0:137367). Hence coordination in the homogenous network is not much better than
if all players did choose randomly among two actions. (As we will see in the following subsection
90% of choices in N-1 are only either C or D).

4.2 E¢ ciency

Table 4 lists action choices across the last 10 periods of the experiment for the di¤erent treatments.
The risk-dominant actions C and D are chosen in 90% (91%; 83%) of all rounds in treatments N-1,
N-2 and N-3. The di¤ering percentages of C and D choices in the homogeneous network N-1 re�ect
the extent of coordination failure illustrated in the previous subsection. In treatment N-3 the e¢ cient
actions A and B were chosen more often than in N-1 and N-2. A Mann-Whitney test rejects the
hypothesis that the distribution of e¢ cient vs non e¢ cient choices are equal in N-3 and N-1 (N-2)
(p = 0:0330; p = 0:0043). There are no signi�cant di¤erences between N-1 and N-2 (Mann-Whitney,
p = 0:5964).

15Table A-3 in the Appendix shows some Nash equilibria where this is not the case
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N-1 N-2 N-3
A 0:04 0:04 0:09
B 0:06 0:05 0:08
C 0:37 0:45 0:35
D 0:53 0:46 0:48
C+D 0:90 0:91 0:83

;

R-1 R-2 R-3
A 0:05 0:00 0:06
B 0:13 0:03 0:06
C 0:33 0:46 0:37
D 0:49 0:51 0:51
C+D 0:82 0:97 0:88

Table 4: Distribution of Choices last 10 Periods

With respect to the full information treatments, e¢ cient actions were also chosen more often in
R-1 rather than in N-1. This treatment di¤erence is signi�cant (Mann-Whitney, p = 0:0040), but
there is no signi�cant di¤erence between N-2 and R-2 (Mann-Whitney, p = 0:1700) or between N-3
and R-3 (Mann-Whitney, p = 0:4322).
Also there are more e¢ cient choices in R-3 compared to R-2 (Mann-Whitney, p = 0:0016). All

other di¤erences among R-treatments are not signi�cant.

Result 2 In all treatments N-1, N-2 and N-3 agents mostly try to coordinate on risk-dominant
outcomes, but choose "e¢ cient actions" A and B somewhat more often in N-3 than in N-1 or
N-2 and in R-3 compared to R-2.

4.3 Which Nash equilibria ?

Despite Result 2 we also observe that if coordination occurs it is always on a Nash equilibrium where
all players choose risk-dominant actions. Such a conclusion though depends largely on the payo¤
matrix chosen and is hence to be enjoyed with care. Still we can make even stronger statements
regarding selection.
As mentioned above theoretically not all links need to be in Nash equilibrium in order to have

a Nash equilibrium of the network game. Theoretically there is quite some ambiguity. Empirically,
though, we observe strong regularities. In fact among those pro�les which were a NE in the last
5 rounds 100% where NE where all links are coordinated in all networks N-1, N-2, N-3 and R-2.
For the measure NE-1 the percentage is 100% (100%,80%,100%) for N-1 (N-2,N-3 and R-2) and for
NE-2 it is 100% (100%, 84%,100%). In R-1 we have only very few instances of convergence. In this
treatment 0% of NE (NE-1) were such that all links are coordinated and 67% of NE-2 were such that
all links are coordinated.

Result 3 In all treatments N-1, N-2, N-3 and R-2, if there is convergence to Nash equilibrium, then
participants coordinate always on a Nash equilibrium where all links are coordinated.

This is quite an amazing result which suggests that coordination to such equilibria is easier.
We will give an explanation for this fact in Section 5. We have narrowed down the multiplicity of
equilibrium outcomes that arises theoretically to only two Nash equilibria arising empirically. In
fact, as the following subsection shows, we can make even more precise predictions in heterogeneous
networks.16

16This has the caveat that e¢ cient equilibria may arise for di¤erent payo¤ matrices. This caveat does not apply to
Result 3, since changing the payo¤s for any particular action does not a¤ect how the di¤erent classes of equilibria are
ranked in terms of individual payo¤s (as long as no equilibria appear or disappear).
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4.4 Distribution

In this subsection we aim to answer our third research question, i.e. we would like to know whether
more connected agents can impose their "preferred" Nash equilibrium more often than others. To
these ends we have a closer look to which Nash equilibrium players coordinated in the heterogenous
networks. Conditional on being coordinated on a Nash equilibrium at all (or being coordinated except
for one or two players) we then have the following share of coordination on player 4�s preferred Nash
equilibrium.

N-2 N-3
NE 0:82 0:71
NE-1 0:78 0:80
NE-2 0:78 0:90

;

R-2 R-3
NE 1:00 1:00
NE-1 1:00 0:78
NE-2 0:93 0:82

(1)

Table 5: NE preferred by player with highest degree

The di¤erence between N-2 and R-2 is signi�cant at the 10% level (Mann-Whitney, p = 0:0725)
for NE, but all other pairwise treatment di¤erences are not signi�cant. This result is pretty amazing,
since it shows that the most connected players can impose their preferred Nash equilibrium most of
the time and in the case of full information even all the time. Together with the previous results this
allows us to make sharp predictions about the outcome of the game in spite of the large multiplicity
of Nash equilibria. This is most striking in the case of full information (R-2) where one particular
Nash equilibrium out of 12 possible equilibria is always observed. In N-2 and N-3 two Nash equilibria
are observed. In both risk dominant actions are chosen and all links are coordinated and in more
than 80% of the time the NE which player 4 prefers is observed.

Result 4 In the heterogenous networks N-2, N-3, R-2 and R-3 players coordinate (almost) all the
time on a Nash equilibrium preferred by the most connected player.

We will provide an explanation of this fact in Section 5. Note �rst, though, that this selection of
Nash equilibria is also re�ected in the payo¤s. The following table summarizes the average payo¤s
of participants in N-2 conditional on their position in the network 1,..8.

N-2 1 2 3 4 5 6 7 8
Payo¤s 647 734 673 694 739 637 622 585
(Std. Dev.) (54) (62) (51) (66) (77) (74) (70) (64)
R-2
Payo¤s 690 810 677 774 720 696 703 643
(Std. Dev.) (34) (80) (22) (12) (70) (47) (47) (27)

In network N-2, players 2 and 5 make the highest payo¤s. The distribution of payo¤s di¤ers
signi�cantly from that of player 1 (Mann-Whitney, p = 0:0356; p = 0:0381); player 3 (p = 0:0011; p =
0:0011), player 7 (p = 0:0105; p = 0:0113) and player 8 (p < 0:0001; p = 0:0001), but not from that
of players 4 (p = 0:2692; p = 0:2789) and 6 (p = 0:4906; p = 0:4892). The reason that players 2 and
5 make higher payo¤s is of course that their preferred Nash equilibrium is played more often. In
addition - unlike player 4 - they do not have the burden to "ensure" cooperation, as we will see in
Section 5.
In R-2, where coordination is even better, players 2 and 4 make the highest payo¤s. The distri-

bution of payo¤s for these players is signi�cantly di¤erent from that of all others (p < 0:0001) with
the exception of the comparison between player 4 and 5. Again the reason is that their preferred
NE is played all the time, but unlike in N-2 player 4 now does not su¤er so much from having many
neighbours since convergence is extremely quick in R-2.

13



N-3 1 2 3 4 5 6 7 8
Payo¤s 662 694 650 694 629 626 658 626
(Std. Dev.) (170) (46) (72) (64) (62) (55) (119) (49)

R-3 1 2 3 4 5 6 7 8
Payo¤s 720 810 696 725 633 640 633 653
(Std. Dev.) (168) (217) (36) (44) (25) (17) (40) (72)

In N-3 and R-3 it is Players 2 and 4 that make the highest pro�ts, but pairwise payo¤ di¤erences
in these treatments are not signi�cant probably due to worse convergence. (Mann-Whitney, p >
0:1167; p > 0:1828). Note that in both treatments N-3 and R-3 there is a much higher variance in
payo¤s for players 1 and 2 compared to other players. The reason for this, as we will see below is
that much of the mis-coordination in treatments N-3 and R-3 is actually due to players f1; 2; 3g in
this network.

Result 5 Players 2 and 5 make signi�cantly higher payo¤s than all others in network N-2 and
players 2 and 4 in R-2.

4.5 Information

To conclude this section let us have a look at what information agents asked for in treatments N-1
to N-3. Since there were no signi�cant di¤erences in information search across those treatments we
report aggregate data in the following graphs.17 Figure 7 shows the percentage of participants per
round that requested info about their �rst- (second-, third-, fourth-) order neighbours conditional
on having a �rst- (second-, third-, fourth-) order neighbour. Figure 8 shows the percentage of
participants per round that request information about their �rst- (second-, third-, fourth-) order
neighbours �actions again conditional on having a �rst- (second-, third-, fourth-) order neighbour.
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Fig. 7: Information about Neighbours
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Fig. 8: Information about Actions.

The vast majority of agents (> 90%) request information about who their �rst-order neighbours
are and most also want to know what their �rst-order neighbours chose in at least half of the rounds.
Out of those that do not check their neighbours actions still quite some check their own payo¤
and less than 10% of agents do not request any information at all. Around 45% of agents request

17Separate graphs per treatment are available upon request.
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information about their second-order neighbours in addition. There is a slightly decreasing trend in
the frequency with which participants check their neighbor�s action choices, which is consistent with
the fact that there is much less variation in choices over the last ten period compared to the �rst ten
periods and hence less can be learned from this information.
Note that a myopic best response learner should only be interested in the behavior of her �rst-

order neighbour. Forward looking agents should also look at the behavior of higher-order neighbours
depending on how forward-looking they are and what they believe about their neighbours�learning
rules.
Overall we can see that participants in the N-treatments rely mostly on local information about

their �rst or second order neighbours. The fact that very much the same behavior is observed in the
R-treatments as in the N-treatments provides strong evidence that participants are not able to use
higher order information e¤ectively. On the other hand we see that very local information (about
mostly �rst and sometimes second order neighbours) is su¢ cient to guarantee succesful coordination.

Result 6 Local (endogenous) information is as e¢ cient as full information in ensuring successful
coordination.

The fact that we are able to observe which information participants used, enables us to say
something more about the underlying reasons for our results. We will now proceed by studying
the data in more depth to explain the results we described above. We will start with our result on
Coordination.

5 Explanation and Discussion

5.1 Coordination

Our main hypothesis is that heterogeneity might help coordination, since it induces di¤ering adjust-
ment rates between highly connected players and less connected players. The reason is that changes
in any given neighbour�s action have a smaller e¤ect on payo¤s of highly connected agents. Fur-
thermore action changes of two di¤erent neighbours may cancel each other out. In this sense highly
connected agents face less strategic uncertainty and should display more stable best responses. In
order to gain more insight into whether this is the case, we look at the switching rates across di¤erent
players in our networks.
The following table shows the switching rates of players in network N-2. The �rst observation is

that - non-surprisingly - there are many more switches in cases where the network did not coordinate
on a Nash equilibrium. It can also be seen that players 4 and 6 switch actions less often than other
players and player 1 much more. Note that in particular the cases where coordination is successful
are characterized by player 4 switching much less than other players. Player 1 who is at the largest
distance of player 4 switches actions much more often than others. In general players seem to switch
actions less often if they are closer to player 4 or if they have more neighbors.

N-2 1 2 3 4 5 6 7 8
NE 8 7:2 6 4:4 6 5:1 7:3 6:4
no NE 13:5 11:5 9 9 9 8:5 6:5 10:5
overall 9:6 7:6 7 6 7:1 6 7:1 7:4

Table 6: Switching rates per network position in N-2.

This renders support to the theory that it is the agents with the higher degree which are able to
break coordination cycles, since they have more stable best responses. If the variance in degree is
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high than in addition the neighbors of the highly connected agents will have a smaller degree and
hence are more likely to adapt their action to the highly connected agents choice. This di¤erential
reaction to each others choices is what avoids or breaks coordination cycles.
In addition, if players do understand this e¤ect, then it can be exploited by the most connected

players to impose their preferred Nash equilibria. We will see in subsection 5.2 that some of this
seems to take place.
The following graph shows the cumulative distribution of action switches in network N-2. The

curves are normalized to player 1�s higher switching rates. What can be seen quite clearly from the
graph is that a) curves appear to be concave and b) the curve for player 4 (graphed thicker and
black) slows down earlier than that of other players. Hence, as could be expected, switches decrease
over time indicating convergence and secondly player four seems to "lead" convergence since her
switching rate declines earlier than those of other players on average.

Figure 9: Cumulative Distribution of Switches in N-2.

Why is coordination worse, though, in N-3 the network with the higher variance than N-2, but
with a smaller minimal variance across partitions of the graph ? If our explanation is correct, then
coordination should be much worse in the part of the network which has a smaller variance. Hence we
look in the following table at the percentage of time in the last 5 rounds in which the "homogeneous"
subset f1; 2; 3g and the "heterogeneous subset" f4; 5; 6; 7; 8g are in Nash equilibrium. Note that since
the �rst set is smaller we should expect a higher percentage of coordination there. Moreover if we
want to use the measure NE-1, the analysis becomes trivial in a line of three players. Hence we also
report coordination in the subset f1; 2; 3; 4g:

N-3 NE NE-1 NE-2
f1; 2; 3g 0:24 � �
f1; 2; 3; 4g 0:24 0:44 �
f4; 5; 6; 7; 8g 0:40 0:76 0:92

Table 7: Coordination in subgraphs N-3

Table 7 impressively illustrates the origin of the coordination failure in network N-3. While in the
subnetwork f4; 5; 6; 7; 8g the rates of successful coordination are as high (or even higher) as in N-2,
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coordination is much worse in the subnetwork f1; 2; 3g; even though it consists of 3 players only. The
table also illustrates that the subnetwork f1; 2; 3g is almost entirely responsible for the coordination
failure in network N-3 and fully responsible for the di¤erence between N-3 and N-2. This renders
strong support to our conjecture.
Note that this observation also explains why the percentage of links coordinated is not lower in

N-3 compared to N-2. Since the subgraph f4; 5; 6; 7; 8g is almost always coordinated, the number of
non-coordinated links is very small in N-3. In particular those cases which are not counted as Nash
equilibria even for the measure NE-2 often correspond to cases where most links are coordinated in
the subgraph f4; 5; 6; 7; 8g.
Finally inspection of Figure A-2 in the Appendix illustrates that while players 4-8 clearly switch

actions less often over time, no such trend can be made out for players 1-3 in treatment N-3. This
con�rms the results from Table 7.

Summary Successful coordination is driven by the most connected player displaying more stable
best responses, while her less connected neighbours adapt quickly to her choices. The most
connected player emerges as a "leader" in coordination. Coordination is best if the minimal
variance across connected subnetworks is high.

Why are (almost always) all links coordinated in NE ?
The fact that successful coordination requires some leaders and that players using local informa-

tion tend to adjust always to their neighbor which displays more stable behavior can also explain
why in the Nash equilibria which are empirically observed almost always all links are in NE. Suc-
cessful Coordination is characterized by some players emerging as leaders and others adjusting to
their behavior subsequently along the paths leading away from these agents. As an example consider
the only network N-1 in which coordination was successful. Switching behavior in this network is
depicted in Figure 10. The average number of switches was only 4.8 in this network and it can be
clearly seen from the graph that some leaders emerged who never switched actions starting from
round 3. In this network the leader was player 3 who was choosing action D.

Figure 10: Succesful Coordination in N-1.

Hence three conclusions emerge: 1) successful coordination requires the presence of "leaders" who
display more stable behavior, 2) heterogeneity has such leadership emerge endogenously and 3) this
implies that there is a tendency in NE for all links to be coordinated.
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5.2 Information Search and "Hawk" Choices

A second observation we made is that the most connected agents are almost always able to impose
their preferred Nash equilibrium (See results 4 and 5). In this subsection we will evaluate two
candidate explanations. The �rst is that action D is simply perceived as the better response for a
more connected player, since it might be consistent with player 4 facing more or less risk than other
players. The second is that the most connected players realize their importance in the coordination
process and hence impose their preferred Nash equilibrium.
It is the second explanation which is strongly supported by our data. The minimization of risk

hypothesis seems not to work well. Let�s have a look at the di¤erence (in percentage points) between
action choices among players 4 and other players in the early periods 1-10.

"Player4-others" N-2 N-3 R-2 R-3
A �0:02 �0:05 0:00 �0:04
B 0:13 0:30 0:16 0:06
C �0:13 �0:09 �0:20 �0:13
D 0:02 �0:16 0:04 0:11

Table 8: Di¤erence in Choice between Player 4 and others in early periods (1-10)

In early periods players 4 do not choose D much more often than others, but they choose B much
more often than other players. Clearly choosing B is not consistent with an hypothesis that players
4 face more risk, since C obviously dominates B in terms of risk. One may sustain hence that players
4 actually face less risk than other players and hence are more willing to choose risky actions. If this
were the case, then it should also be true (to some extent) for player 3 in networks N-2 and R-2 at
least in early periods, since they have more neighbours than other players (except for player 4). We
compare hence action choices of player 3 in N-2 and R-2 to those of other neighbours of player 4.

"Player3-other Neighb." N-2 R-2
A �0:04 0:00
B �0:04 �0:03
C 0:23 0:11
D �0:15 �0:08

Table 9: Di¤erence in Choice between Player 3 and other neighbours of player 4 in periods 1-10

It can be seen that player 3, having more neighbours, does choose C more often in early periods
than other neighbours of player 4 what is consistent with the fact that C is perceived as risk-dominant.
(See our analysis of questionnaire data in subsection 5.6).
On the other hand, if the second explanation is right, than it seems that highly connected agents

should play D with higher probability if they do have information about second (or higher) - order
neighbors and hence realize that they have a higher degree than others. Without such information
C seems to be the more likely choice (especially in early periods) since it is risk-dominant and hence
one may expect coordination to an equilibrium where the most connected player chooses C. We
conducted a Spearman test to �nd out the correlation between the "hawkish" B- and D-choices and
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information search (about second neighbors). The results are presented in the following table

Player N-2 N-3
4 � = 0:2470��� � = 0:1701�

3 � = 0:0428 � = �0:0153
5 � � = �0:2200��
6 � = �0:4145��� � = �0:0116
7 � = �0:0749�� � = �0:4203���
8 � = �0:2256��� � = �0:1670�

Table 10: Correlation betw. "Hawk Choices" and Information Search by network position.

Table 10 clearly illustrates that those player 4 who are informed about second-order neighbours
and hence about the fact that they have a relatively higher degree than others choose D signi�cantly
more often than those who are not. On the other hand player 4�s immediate neighbours (with
the exception of Player 3) choose D signi�cantly less often if they are informed about second-order
neighbours and hence about their relatively lower degree compared to player 4. For player 3 we do
not �nd a signi�cant e¤ect which is probably due to the fact that player 3 herself has a relatively
high degree in N-2.
This result also means that agents are very well aware of the leading role highly connected agents

play in the coordination process. The highly connected players seem to use this knowledge to impose
their preferred Nash equilibrium while their neighbours are willing to "give in" more easily if they
are aware of the special role of player 4. We also checked whether the amount of coordination itself
in the last 10 periods is correlated to whether agents have information about their second order
neighbours and �nd no signi�cant e¤ects, which is consistent with the explanation given above. This
also means that the correlations identi�ed above are not simply a by-product of better coordination
in these cases.

Summary If the most connected players are aware of their importance for the coordination process
they tend to choose "hawkish" actions B and D signi�cantly more often. They are able to
impose their preferred Nash equilibria because of their leading role in the coordination process.
Di¤erences in risk cannot explain this phenomenon.

5.3 Information Search and E¢ ciency

In this section we try to explain some of our observed treatment di¤erences in e¢ ciency. Let us start
with the di¤erence we observe between N-3 and treatments N-1 and N-2. The �rst observation is
that 53% of the e¢ cient choices are made by players f5; 6; 7; 8g another 30% by players 3 and 4 and
only 17% by players 1 and 2. Hence players 3 and 4 choose e¢ cient actions almost twice as often as
players 1 and 2.
We can also correlate the choice of e¢ cient actions with information and we �nd no such corre-

lations in N-1 and N-2 (p > 0:1447), whereas in treatment N-3 we do �nd that those players that
ask for information about higher-order neighbors choose e¢ cient actions more often (� = 0:1406;
p = 0:0004). If we look at the same correlates by player, we �nd that those players 4 who are better
informed about higher order neighbors choose e¢ cient actions less often while other players choose
the e¢ cient action more often.

N-3 1 2 3 4
0:2448�� 0:6875��� 0:1898� �0:2224��
5 6 7 8
0:1729� 0:3025�� 0:2371�� 0:2199��
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Table 11: Correlation between E¢ cient Choice and Information Search in N-3.

Jointly this evidence suggests that the most connected player 4 tries to implement the e¢ cient
equilibrium sometimes, but the better she is informed about far away neighbours (such as player 1
and 2) the more often she chooses risk-dominant actions. Coordination to the e¢ cient action hence
seems to fail in the homogeneous subnetwork f1; 2; 3g. On the other hand the better informed the
peripheral players are the more likely they are to choose an e¢ cient action, because in this case they
observe (i) the central players 3 and 4 choosing e¢ cient actions more often and (ii) they realize that
player 4 has many neighbours and is hence (as our evidence demonstrates) more important for the
coordination process.
Similarly we �nd that agents in the homogeneous network R-1 choose e¢ cient actions somewhat

more often than in N-1, possibly, because of better information. In homogeneous networks more in-
formation may enhance the willingness of players to choose e¢ cient actions since less risk is perceived
by players. In fact there is a theoretical result by Alos-Ferrer and Weidenholzer (2008) showing that
a larger information radius makes it more likely that e¢ cient actions emerge in Coordination games if
players rely on a certain form of imitation learning. Our experimental analysis gives partial support
to this conclusion but suggests that it may depend strongly on the social network itself.
For network N-2 we can do the same type of analysis and �nd less clear-cut and only marginally

signi�cant results, which are likely due to the fact that fast convergence occurred in this network.

N-2 1 2 3 4
�0:0961� 0:0000 �0:1698�� �0:1419�
5 6 7 8
�0:3358�� 0:1400 0:1399� �0:00259

Table 12: Correlation between E¢ cient Choice and Information Search in N-2.

Overall it seems that (i) heterogeneity may help coordination to e¢ cient actions and that (ii)
more information enhances e¢ cient play if networks are homogeneous but not if networks are very
heterogenous. More research is needed, though.

5.4 Which network characteristics matter more ?

It is quite clear that if players use local information of the network only they are simply not aware
whether they or their neighbors have higher betweenness while (at least if they pay attention to
second order neighbors) they are well aware who has the higher degree. Of course this does not
imply that betweenness need not matter for coordination. It does imply, though, that coordination
can be improved if agents realize the fact that players with higher degree will switch less often, while
no such reasoning is possible regarding betweenness.
Let us investigate this question a bit further We ran a binary logit regression for a players

choice of either an "aggressive" or "Hawk" action (B or D) vs "Dove" actions (A or C).18 We
regressed on the following variables: a player�s degree k; her maximal distance from other players
and her betweenness.19 Note that all these characteristics are highly correlated. Hence we decided to
regress a players choice of "hawkish" action on any combination of those three and then ranked the
regressions according to (i) the Akaike information criterion and (ii) the share of variance explained
�. We restrict attention to the �rst two digits of � and no digits for the Akaike criterion and then

18We also ran multinomial logit regressions taking into account all options A;B;C and D. The regressions yield
similar results and are available upon request. In particular we �nd that a higher degree implies more D choices
(signi�cant at 1%-level), less A and less C-choices (signi�cant at 1%-level) and more B-choices (not signi�cant).
19Those measures can be found in the Appendix.
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compare regressions bilaterally according to these measures. We say a regression is better than
another regression if it is weakly better according to both criteria. This produces the following table
of "best" regressions.

"Hawk" (N-2) (N-3) (R-2)-a (R-2)-b (R-3)-a (R-3)-b
const. �0:38225 0:03964 �1:27245�� 4:88964��� �0:2702 1:6425

(0:48810) (0:41233) (0:80352) (1:6983) (0:4015) (1:3324)
k 0:34399� 0:18315 0:97704��� 0:37509��

(0:12189) (0:08923) (0:36101) (0:1391)
distance �1:38311��� �0:3570�

(0:49339) (0:1714)
betweenness

Akaike 1262 920 512 512 592 595
� 0:4290 0:3879 0:4439 0:4373 0:2528 0:2900

Table 13: panel data logistic Regression, prob. to choose B or D , ���1%;�� 5%;� 10%.

Due to the high correlation among explanatory variables the "best" regressions involve one explana-
tory variable only. In N-2 and N-3 a unique regression is better than all others, which is regressing
only on a player�s degree. In R-2 and R-3 regressing on a player�s degree and on the maximal distance
produces the same performance according to both measures.
This leads us to conclude that consistently with the use of local information only degree seems

to matter most in determining whether a player chooses "hawkish" actions.

5.5 Robustness

The robustness treatments R-1, R-2 and R-3 have shown that our results are robust to the amount
of information participants have. This is likely due to the fact that even if participants have full
information they e¤ectively take into account only the information they would request anyhow.20 In
addition in many real-life settings partial information is the relevant case.
Let us see whether those agents that did not check any information (in most of the rounds, i.e.

more than 10 times) received lower or higher average payo¤s than those that did. This can be an
indicator of whether it was worthwhile to look for information. Non-surprisingly we �nd that in
N-2 this is not the case (two sided Mann-Whitney, p = 0:5378), since in this network convergence
is very good.21 If we focus uniquely on the �rst �ve rounds of play (before convergence occurred)
there is a negative e¤ect of not searching information, though, which is signi�cant at the 5% level.
Hence it seems that (even though costs are small) there is a free-riding element to information search.
This seems not the main characteristic, though, as our evidence from N-1 and N-3 illustrates. In
N-1, where convergence to NE is very bad, we �nd that those agents which check information very
rarely make substantially smaller pro�ts (with an average of 27) than those which check information
regularly, which average 34:7. (Mann-Whitney, p = 0:0018). In N-3 we �nd a similar e¤ect. Not
searching information yields signi�cantly lower payo¤s especially across the �rst ten rounds (Mann-
Whitney, p = 0:0006). Overall hence we �nd that information search was worthwhile for participants
but that local information proved enough to ensure successful coordination.

20For more on this see Kovarik, Mengel and Romero (2009).
21Also we �nd no signi�cant di¤erences in information search among players with di¤erent network positions,

suggesting that the amount of search is largely non-strategic.

21



5.6 Questionnaire Data

In this last subsection let�s have a look at our questionnaire data, where we elicited risk attitudes.
Those date can serve as a check of whether are treatments were balanced in terms of risk attitudes and
whether we interpret the riskiness of actions in the same way participants do. We asked participants
three questions regarding their risk attitudes in a post-experimental questionnaire:

1. We toss a coin in the air. Choose one of the following options: (i) Receive 1000e; independently
of the outcome of the toss coin. (ii) Receive 2000 e if head turns up or 0e if tail turns up.

2. Choose between the two following options the one you prefer: (i) Play a lottery ticket, in which
you win 45e with probability 80%, or 0e with probability 20%. (ii) Receive 30e.

3. We toss a fair coin. Do you accept the following deal: If head turns up you get 150e, while if
tail turns up you loose 100e. Yes/No

Not a single one of our participants chose the coin toss in question 1, 48:5% of our participants
preferred the lottery in question 2 and 28:5% accepted the coin toss in question 3. We then categorize
our participants into three categories: the most risk averse participants, which chose the safe outcome
each time (r = 0), those that accepted one of the three lotteries (r = 1) and those that accepted two
lotteries (r = 2). The distribution across treatments of these types was as follows

N-1 N-2 N-3 R-1 R-2 R-3
r = 0 0:45 0:53 0:45 0:46 0:41 0:33
r = 1 0:38 0:31 0:38 0:30 0:38 0:33
r = 2 0:17 0:16 0:17 0:24 0:22 0:33

We �nd no signi�cant di¤erences in the pairwise comparison between treatments in the proportion
of "least risk averse" (r = 2) participants (Mann-Whitney, p > 0:2816) or "most risk averse" (r = 0)
participants (Mann-Whitney, p > 0:1217) with the exception of the comparison between N-2 and
R-1 for r = 0 (Mann-Whitney, p = 0:0462).
Next we check whether participants classi�ed as "most risk averse" (r = 0) choose the e¢ cient

(but more risky) actions A and B more or less often. The results can be found in the following table.

N-1 N-2 N-3 R-1 R-2 R-3 overall
�0:0170 0:0004 �0:0841�� �0:1401�� �0:0461 �0:0905�� �0:0515���

Clearly the results show that risk-averse participants choose the risky actions signi�cantly less often
overall. If we separate data per treatment, the e¤ect is only signi�cant in N-3 and R-1, which is
where e¢ cient actions where played more often. We also check whether those players 4 who are
classi�ed as "risk-loving" choose the risk-dominant action C more or less often and again we �nd
strong and strongly signi�cant results.

Player 4 N-2 N-3 R-2 R-3
r = 2 vs C � �0:2004�� �0:3350��� �0:1825
r = 0 vs C 0:1212 � 0:3050��� 0:1265

Since actions C and D are chosen with much higher probability in all treatments the e¤ect appears
much stronger here compared to the table above. Players 4 classi�ed as "risk-loving" choose action
C much less often. This illustrates that C is perceived as risk-dominant which is consistent with our
analysis in subsection 5.2. (In treatment N-2 all players 4 where classi�ed as r = 1 or r = 0). The
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opposite result is also true. Players 4 classi�ed as very risk-averse (r = 0). choose C much more
often than others. (Again in N-3 no player 4 was in this category).
Overall the results from the questionnaire show that we can be con�dent in the quality of our

data as well as in the fact that our de�nition of risky actions coincided with that of the participants.
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A Appendix

A.1 Network Characteristics
betweenness 1 2 3 4 5 6 7 8
N-2 14

56
26
56

36
56

38
56

21
56

21
56

14
56

14
56

N-3 14
56

26
56

34
56

38
56

14
56

14
56

14
56

14
56

maxdistance 1 2 3 4 5 6 7 8
N-2 4 3 2 3 3 4 4 4
N-3 4 3 2 3 4 4 4 4

Tables A-1 and A-2: Characteristics of network positions.
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A.2 Nash equilibria
NE N-1 N-2 N-3

(A,B,A,B,A,B,A,B)
(B,A,B,A,B,A,B,A)
(C,D,C,D,C,D,C,D)
(D,C,D,C,D,C,D,C)
(D,D,C,D,C,D,D,C)
(D,C,D,C,D,D,C,D)
(C,D,C,D,D,C,D,D)
(D,C,D,D,C,D,D,C)
(C,D,D,C,D,D,C,D)
(D,D,C,D,D,C,D,C)
(D,C,D,D,C,D,C,D)
(C,D,D,C,D,C,D,D)

(A,B,A,B,B,A,A,A)
(B,A,B,A,A,B,B,B)
(C,D,C,D,D,C,C,C)
(D,C,D,C,C,D,D,D)
(C,D,D,C,C,D,D,D)
(C,D,D,D,C,D,C,C)
(D,C,D,D,C,D,C,C)
(D,C,D,D,D,C,C,C)
(D,C,B,A,A,B,B,B)
(C,D,C,B,D,C,A,A)
(D,C,D,D,B,C,C,C)
(D,C,D,D,C,B,C,C)

(A,B,A,B,A,A,A,A)
(B,A,B,A,B,B,B,B)
(C,D,C,D,C,C,C,C)
(D,C,D,C,D,D,D,D)
(C,D,D,C,D,D,D,D)
(D,C,D,D,C,C,C,C)
(C,D,D,C,D,D,D,D)
(C,D,B,C,D,D,D,D)
(A,B,A,C,D,D,D,D)
(A,B,C,A,B,B,B,B)
(C,D,C,B,A,A,A,A)
(C,D,C,A,B,B,B,B)

Table A-3: Nash equilibria. The format is (a1;::; a8) where ai; i = 1; ::8 is the action of player i.
NE marked in bold have the property that all links are in NE.

A.3 Graphs

FigureA-1: Cumulative Distribution of Switches in N-1.
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Figure A-2: Cumulative Distribution of Switches in N-3.

A.4 Sample Instructions (Treatments N-1, N-2 and N-3)

Welcome and thanks for participating at this experiment. Please read these instructions carefully.
They are identical for all the participants with whom you will interact during this experiment.
If you have any questions please raise your hand. One of the experimenters will come to you and

answer your questions. From now on communication with other participants is not allowed. If you
do not conform to these rules we are sorry to have to exclude you from the experiment. Please do
also switch o¤ your mobile phone at this moment.
For your participation you will receive 2 Euros. During the experiment you can earn more. How

much depends on your behavior and the behavior of the other participants. During the experiment
we will use ECU (Experimental Currency Units) and at the end we will pay you in Euros according
to the exchange rate 1 Euro = 75 ECU. All your decisions will be treated con�dentially.

THE EXPERIMENT

In the experiment you are linked up with some other participants in this room, which we will
call your neighbours. You will play a game with your neighbours that we will describe below. Your
neighbours in turn are of course linked up with you, but (possibly) also with other participants in
the room. And their neighbours again are linked up with other participants and so on. . .
Note that your neighbours are not necessarily the participants who are located to your left and

right in the physical layout of the computer laboratory.
During the experiment, you will be able to �nd out how many neighbours you have as well as their

experimental identity, but not who they really are. This also means, of course, that your neighbours
will not know your real identity.
The experiment lasts for 20 rounds. In each round you play a game with each of your neighbours.

Your payo¤ in each round is the sum of payo¤s obtained in all the games with your neighbours.
Each round consists of three stages, which we will describe in detail below. Here is a summary:
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1. In the �rst stage you choose an action in the game. Note that you have to choose the same
action for all your neighbours.

2. In the second stage you can request information about your neighbours, your neighbours�
neighbours etc. . . the actions they chose in the past period and the payo¤ they obtained in the
past period, as well as about your own payo¤.

3. In the third stage, the information you requested is displayed on the computer screen.

We will now describe the di¤erent stages in more detail.

Stage 1 (Action Choice)

In the �rst stage you have to choose one action in the game, which is described by the following
table, which will be shown to you every time you choose an action.

A B C D
A 20,20 40,70 10,60 20,30
B 70,40 10,10 30,30 10,30
C 60,10 30,30 10,10 30,40
D 30,20 30,10 40,30 20,20

In the table your actions and payo¤s are given in dark grey and your neighbour�s actions
and payo¤s in light grey. The table is read as follows (dark payo¤s):
- If you choose A and your neighbour A, you receive 20
- If you choose A and your neighbour B, you receive 40
- If you choose A and your neighbour C, you receive 10
- If you choose A and your neighbour D, you receive 20
- If you choose B and your neighbour A, you receive 70
- If you choose B and your neighbour B, you receive 10
- If you choose B and your neighbour C, you receive 30
- If you choose B and your neighbour D, you receive 10
- If you choose C and your neighbour A, you receive 60
- If you choose C and your neighbour B, you receive 30
- If you choose C and your neighbour C, you receive 10
- If you choose C and your neighbour D, you receive 30
- If you choose D and your neighbour A, you receive 30
- If you choose D and your neighbour B, you receive 30
- If you choose D and your neighbour C, you receive 40
- If you choose D and your neighbour D, you receive 20

Note that your neighbour (light payo¤s) is in the same situation as you are. This means that for
your neighbour:

- If your neighbour chooses A and you A, your neighbour receives 20
- If your neighbour chooses A and you B, your neighbour receives 40
- If your neighbour chooses A and you C, your neighbour receives 10
- If your neighbour chooses A and you D, your neighbour receives 20
- If your neighbour chooses B and you A, your neighbour receives 70
- If your neighbour chooses B and you B, your neighbour receives 10
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- If your neighbour chooses B and you C, your neighbour receives 30
- If your neighbour chooses B and you D, your neighbour receives 10
- If your neighbour chooses C and you A, your neighbour receives 60
- If your neighbour chooses C and you B, your neighbour receives 30
- If your neighbour chooses C and you C, your neighbour receives 10
- If your neighbour chooses C and you D, your neighbour receives 30
- If your neighbour chooses D and you A, your neighbour receives 30
- If your neighbour chooses D and you B, your neighbour receives 30
- If your neighbour chooses D and you C, your neighbour receives 40
- If your neighbour chooses D and you D, your neighbour receives 20

Remember that you have to choose the same action for all your neighbours. Your gross payo¤s in
each round are given by the sum of payo¤s you have obtained in all games against your neighbours
divided by the number of neighbours you have.

Stage 2 (Information Request)

In the second stage you can indicate which of the following pieces of information you would like
to obtain
- the experimental identity of your neighbours
- the experimental identity of your neighbours�neighbours (2nd order neighbours)
- the experimental identity of your neighbours�neighbours�neighbours (3rd order)
- the experimental identity of your neighbours�neighbour�s neighbours�neighbours (4th order

neighbours)

Note that who is a neighbour of you does not change during the experiment. Hence once you
have asked for this information in some round, it will be displayed in all future rounds. Note also
that in order to receive information about your neighbours�neighbours�you �rst need to request
information about your neighbours etc... The cost of requesting each of these pieces of information is
10. You only have to pay this cost once. In addition you can request information about the following
items which (in principle) can change in every round.
- the actions chosen by your neighbours
- the actions chosen by your neighbours�neighbours
- the actions chosen by your neighbours�neighbours�neighbors
- the actions chosen by your neighbours�neighbour�s neighbours�neighbours
- the payo¤s obtained by your neighbours
- the payo¤s obtained by your neighbours�neighbours
- the payo¤s obtained by your neighbours�neighbours�neighbors
- the payo¤s obtained by your neighbours�neighbour�s neighbours�neighbours
- your own payo¤s

Obviously, in order to receive information about your neighbours (or neighbours�neighbours�)
actions or payo¤s you �rst need to request information about the experimental identity of your
neighbours (neighbours�neighbours) etc...The cost of requesting each of these pieces of this informa-
tion is 1 and you have to pay it each time you request this information anew. Your net payo¤s in a
round are your gross payo¤s minus the cost of the information you requested.

Stage 3 (Information Display)

The information you have requested in Stage 2 is displayed on the screen for 40 seconds.
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Control Questions

Before we start the experiment please answer the following control questions on your screen.

1. Assume you have only one neighbour. She chooses action B and you action D. Which gross
payo¤ will you get in this round?

2. Assume you have three neighbours and they choose action A, B and A. You choose action D.
Which gross payo¤ will you get in this round?

3. True or False: My neighbours change in every round of the game.

4. True or False: My neighbours face the same payo¤ table as I do.

5. True or False: My neighbours are those sitting in the cubicles to my left and right.
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