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0. Introduction

The option pricing model by Black and Scholes (1973) and the term structure model
by Ho and Lee (1986) are among the most influential models of capital market theory.
While Black/Scholes consider stock option prices under the assumption of a constant
deterministic interest rate, Ho and Lee were the first to model the term structure of
interest rates as a stochastic object where the initial term structure concides with the
empirically observed one. Whereas the original Ho/Lee–paper used a binomial setting,
Heath/Jarrow/Morton (1990) could describe the limit behaviour of that model which
implies normally distributed interest rates. The present paper will show that a properly
enriched Black/Scholes–model and the in–the–limit Ho/Lee–model are natural compa-
nions such that an option pricing model results which is compatible with Ho/Lee term
structures. The method we use is stochastic discounting. We assume the economy’s as-
set prices to be governed by a lognormally distributed stochastic discount factor which
implies a term structure compatible to the limit case of the Ho/Lee model. If we assume
that the stock price at maturity is lognormally distributed we can show that the stock
price follows a geometric brownian motion as it is assumed in the classical Black/Scholes–
world. The combined model – consisting of the term structure and the stock price process
– will be called the Black/Scholes – Ho/Lee–model. Given this model it is an easy task to
compute prices for European style derivatives as, e.g., call options on such a stock. The
resulting option pricing formula is a natural extension of the Black–Scholes–formula.

The paper is organized as follows: In the following section 1 we set out the basic mo-
del of the discount factor and show that it in fact implies the Ho/Lee–kind of term
structures, including the forward rate process which is constantly the starting point in
Heath/Jarrow/Morton type of models. Subsequently, in section 2 we construct a stock
price process which is compatible both, to the Black/Scholes model and the term struc-
ture model developped in section 1. Section 3 relates the model parameters to empirically
observables. Section 4 contains the theory of derivative pricing which allows to value Eu-
ropean style derivatives on the stock in the presence of stochastic (term structures of)
interest rates. In section 5 the general theory will be applied to European call opti-
ons; we will present a closed form option pricing formula which is closely related to the
Black/Scholes model. Section 6 is devoted to the pricing of futures contracts and pres-
ents a closed form representation for the futures price of a stock. In section 7 we will
make some concluding remarks on possible generalizations and on related literature.

1. The basic model and its implications for the term
structure

We consider an economy wherein the security prices are governed by a stochastic discoun-
ting factor. The basic randomness in the model consists of a probability space (Ω,A, µ)
and an increasing family {At | t ∈ R+} of σ–subalgebras of A. The stochastic discoun-
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ting factor is a positive stochastic process adapted to {At | t ∈ R+}. For any security
which pays the At–measurable random amount pt at time t, the price at time τ < t is
determined by the formula

pτ = E

(
Qt

Qτ

· pt
∣∣∣Aτ

)
(1.1)

provided that the security in question doesn’t pay any cash in the period ]τ, t[ (expec-
tation is to be taken with respect to the empirical probability measure µ).

We now specify the stochastic discounting factor as a particular function of n in-
dependent standard Wiener processes w = (w1, . . . , wn)T which generate the family
{At | t ∈ R+} of sub–σ–algebras. We assume

Qt = e−t·mt−st·α
T ·wt (1.2)

where mt and st are functions of time only and α ∈ Rn is a constant vector with
‖α‖ =

√
αT · α = 1.

In order to reflect the initial term structure of interest rates ρ0,t we have to impose the
condition

B0,t := e−t·ρ0,t = E(Qt) (1.3)

from which we immediately get

Qt = B0,t · e−
1
2 t·s

2
t−st·αT ·wt (1.4)

(for mt this means mt = ρ0,t + 1
2 s

2
t ).

For any point in time τ prior to t we can calculate

Qt

Qτ

=
B0,t

B0,τ
· e−

1
2 (t·s2t−τ ·s2τ )−st·αT ·wt+sτ ·αT ·wτ

i.e.
Qt

Qτ

=
B0,t

B0,τ
· e−

1
2 (t·s2t−τ ·s2τ )+(sτ−st)·αT ·wτ−st·αT (wt−wτ ) (1.5)

From (1.1) and (1.5) we can conclude the implied term structure model; for a zero–bond
maturing at t we get its price Bτ,t at τ (using (1.1))

Bτ,t = E

(
Qt

Qτ

∣∣∣Aτ
)

(1.6)
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i.e., using (1.5)

Bτ,t =
B0,t

B0,τ
· e−

1
2 (t·s2t−τ ·s2τ )+(sτ−st)·αT ·wτ · E

{
e−st·α

T ·(wt−wτ )
}

(1.7)

since wt − wτ and wτ are independent by the definition of Wiener processes.

The expectation term in (1.7) amounts to

e
1
2 s

2
t ·αT ·α·(t−τ)

which yields by the norming condition ‖a‖2 = αT · α = 1

Bτ,t =
B0,t

B0,τ
· e

1
2 τ(s2τ−s2t ) · e(sτ−st)·αT ·wτ (1.8)

Inserting (1.8) into (1.5) one gets

Qt

Qτ

= Bτ,t · e−
1
2 s

2
t (t−τ)−st·αT ·(wt−wτ ) (1.9)

In terms of interest rates we get
(
recall that

B0,t

B0,τ
= e−(t−τ) 0ρτ,t defines the forward rate

0ρτ,t
)

ρτ,t = 0ρτ,t + 1
2 τ

s2
t − s2

τ

t− τ
+

st − sτ
t− τ

· αT · wτ (1.10)

which is the term structure process implied by the discounting factor process (1.2).

Taking the limit t ↓ τ we obtain the process of the instantaneous interest rate

ρτ,τ = ρτ = 0ρτ,τ + τ · sτ · ṡτ + ṡτ · αT · wτ (1.11)

A simple further calculation leads to the forward rate process

τρt := − lim
∆t→ 0

1
∆ t
· log

(
Bτ,t+∆t

Bτ,t

)

i.e.
τρt = 0ρt + τ · ṡt · st + ṡt · αT · wτ (1.12)
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The forward rate process is the starting point in models which are based on the Heath/
Jarrow/Morton–approach.

The specification
sτ = s̄ · τ

yields the limit form of the Ho/Lee–model:

ρτ,t = 0ρτ,t + 1
2 s̄

2 · τ · (t+ τ) + s̄ · αT · wτ (1.13)

and
ρτ = 0ρτ,τ + τ 2 · s̄2 + s̄ · αT · wτ (1.14)

Inserting (1.14) into (1.13) leads to

(ρτ,t − 0ρτ,t) = 1
2 s̄

2 · τ(t− τ) + (ρτ − 0ρτ,τ ) (1.15)

which is the limit form of the Ho/Lee–model (Wilhelm (1999)).

The special case of a constant function st = s̄ obviously implies a situation with deter-
ministic interest rates. In this deterministic case (st = s̄) one has

ρτ,t = 0ρτ,t and ρτ = 0ρτ,τ (1.16)

for all τ < t, i.e. all future spot rates equal their corresponding forward rates as seen
from point in time 0.

2. The stock price model

We now introduce a stock whose terminal wealth at time t is given by

St = S0 · et·µ+σ·βT ·wt (2.1)

where S0 denotes the stock’s price at point in time 0, µ and σ are some constant real
numbers and β denotes a constant n–vector with ‖β‖ = 1. Using equation (1.1) and the
discounting factor (1.9) we are now able to calculate the stock price Sτ at any point in
time prior to t.

It must hold

Sτ = E

(
Qt

Qτ

· St
∣∣∣Aτ

)
(2.2)
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and, particularly
S0 = S0 · E

(
Qt · et·µ+σ·βT ·wt

)
(2.3)

i.e.
E
(
Qt · et·µ+σ·βT ·wt

)
= 1 (2.4)

We rewrite (2.1) a little bit and arrive at

St = S0 · et·µ+σ·βT (wt−wτ ) · eσ·βT ·wτ (2.5)

for any τ < t. Combining (2.5) and (1.9) we get

Qt

Qτ

· St = S0 ·Bτ,t · eσ·β
T ·wτ+t·µ− 1

2 s
2
t (t−τ)+(σ·βT−st·αT )·(wt−wτ ) (2.6)

Taking the conditional expectation with respect to Aτ yields

Sτ = E

(
Qt

Qτ

· St | Aτ
)

=

= S0 ·Bτ,t · et·µ−
1
2 s

2
t (t−τ)+ 1

2 ‖σ·β−st α‖
2·(t−τ)+σ·βT ·wτ (2.7)

From ‖σ · β − st α‖2 = σ2 − 2σ st · βT · α + s2
t we finally get

Sτ = S0 ·Bτ,t · et·µ+ 1
2 (σ2−2σ st·βT ·α)·(t−τ)+σ·βT ·wτ (2.8)

Setting τ = 0 we arrive at (2.4) and find from (2.8)

ρ0,t = µ+ 1
2(σ2 − 2σ st · βT · α) (2.9)

so, ultimately, the stock price process is given by

Sτ = S0 · eρ0,t·t−ρτ,t(t−τ)− 1
2 τ(σ2−2σ st·βT ·α)+σ·βT ·wτ (2.10)

or
Sτ = S0

Bτ,t

B0,t
· e−

1
2 τ(σ2−2σ st·βT ·α)+σ βT ·wτ (2.11)

Combining (2.8) and (2.5) we can write St in terms of Sτ which yields

St =
1
Bτ,t

Sτ · e−
1
2 (t−τ)(σ2−2σ st·βT ·α)+σ·βT (wt−wτ ) (2.12)
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This representation of the stock’s terminal wealth will be used in subsequent sections.

(2.10) constitutes a consistent stock price model which is compatible with the term
structure (1.10) and the stochastic discounting factor (1.2).

As a test, we specify the model for a constant function st = s̄; we know from (1.10) that
a non-stochastic interest rate structure with

ρτ,t = 0ρτ,t

prevails; since we have
Bτ,t

B0,t
=

1
B0,τ

from (1.8), then, the stock price model reduces to

Sτ =
S0

B0,τ
· e−

1
2 τ(σ2−2σ s̄·βT ·α)+σ·βT ·wτ (2.13)

which is the basic assumption in the original Black–Scholes world when ρ0,τ is assumed
to be constant and β is adjusted to meet the condition

ρ0,τ = ‖σ β − s̄ α‖2

In this Black/Scholes case there is only source of risk in the stock price.

In the general case, there are two sources of risk in the stock price: the interest rate ρτ,t
which follows (1.10), and the term βT ·wτ . The interest rate itself is a linear function of
αT · wτ . The two basic sources of risk βT · wτ and αT · wτ are correlated by

E
(
(βT · wτ ) · (αT · wτ )

)
√

var(βT · wτ ) ·
√

var(αT · wτ )

=
E
(
βT · wτ · wTτ · α)

τ · ‖β‖ · ‖α‖
= βT · α

We summarize our construction as follows: The stock price follows a lognormal process
of the form

Sτ = S0 · eρ0,t·t−ρτ,t(t−τ)− 1
2 τ(σ2−2σ st·βT ·α)+σ·βT ·wτ (2.14)

where the term structure of interest rates follows the following gaussian process
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ρτ,t = 0ρτ,t + 1
2 τ ·

s2
t − s2

τ

t− τ
+

st − sτ
t− τ

αT · wτ (2.15)

The combined model ((2.14) and (2.15)) will be called the Black/Scholes–Ho/Lee model
although (2.15) is more general than the limit form of the Ho/Lee-model.

3. The process parameters

With the price process (2.14) and the term structure model (2.15) in mind it seems
natural to ask how the parameters in (2.14) and (2.15) are related to empirical facts.

Lets’s have a look on the (instantaneous) interest rate process (1.11), first. It is easily
seen that

var(ρτ+∆τ − ρτ | Aτ ) = (ṡτ+∆τ )2 ·∆τ

holds. Hence, the function sτ is determined by the instantaneous conditional variance of
the spot rate process:

lim
∆τ → 0

var(ρτ+∆τ − ρτ | Aτ )
∆τ

= ṡ2
τ (3.1)

In an analogous manner we analyse the stock’s rate of return log Sτ . Recalling (2.14) a
simple calculation shows that

var(log Sτ+∆τ − log Sτ | Aτ ) = ‖σ β − (st − sτ+∆τ )α‖2 ·∆τ

=
[
σ2 − 2σ(st − sτ+∆τ ) βT α + (st − sτ+∆τ )2

]
·∆τ

holds. Therefore we get (it is not hard to show that (3.2) must be valid for τ > t, too):

lim
∆τ → 0

var(log Sτ+∆τ − log Sτ | Aτ )
∆τ

= σ2 − 2σ(st − sτ )βT α + (st − sτ )2 (3.2)

as the instantaneous conditional variance of the stock return which is time–dependent
in contrast to the Black–Scholes–assumptions, unless sτ is a constant (i.e. the case of
deterministic interest rates). Therefore, it doesn’t make too much sense to talk about
“historical volatility”. In the Ho/Lee–case volatility looks like this
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σ2 + s̄2(t− τ)2

if βT α = 0 is assumed for sake of simplicity; this is quite an unsatisfactory behaviour.
If the model is to be fitted to a given time structure of volatility of the stock return στ ,
the volatility function sτ has to meet

sτ = st − σ · βT α +
√
στ − σ2(1− (βT α)2) (3.3)

where st may be chosen arbitrarily and, clearly, σt = σ holds.

Finally, the instantaneous correlation coefficient between the stock return and the inte-
rest rate ρτ,t is given by

rτ,t = sign (st − sτ ) ·
σ βT α− |st − sτ |
‖σ β − (st − sτ )α‖

(3.4)

From (3.1), (3.2) and (3.4) it is possible – at least in principle – to estimate or specify,
respectively, the interest rate related volatility function sτ , the stock specific volatility
parameter σ and the parameter βT α which reflects the correlation between the two
sources of risk which drive interest rates and stock prices. Again, the Black/Scholes–
world emerges if the interest rate is deterministic (i.e. st is a constant).

4. The pricing of derivatives

A European style derivative is defined by a characteristic function f which relates the
outcome of the derivative to the price of the underlying asset at maturity. Given such a
characteristic function we can calculate the current price of the derivative by the formula:

cτ = E

{
Qt

Qτ

· f(St) | Aτ
}

(4.1)

If we denote by
u := αT · (wt − wτ ) (4.2)

and
v := βT · (wt − wτ ) (4.3)

the random variables which determine the stochastic discount factor and the stock price
as seen from point in time τ , we may rewrite (1.9) to get
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Qt

Qτ

= Bτ,t · e−
1
2 s

2
t (t−τ)−st·u (4.4)

and rewrite (2.12) to get

St =
Sτ
Bτ,t

· e−
1
2 (σ2−2σ·st·βT ·α)·(t−τ)+σ·v (4.5)

Let ϕ(u, v) denote the common density function of u and v then we have (u and v are
jointly normally distributed, i.e. bivariate normal)

ϕ(u, v) =
1

2π(t− τ)
√

1− (βT · α)2
· exp

{
−1

2

1
1− (βT · α)2 ·

(u2 − 2 βT αu v + v2)
t− τ

}
(4.6)

The pricing equation (4.1) can now be stated as

cτ =
∞∫∫
−∞

Qt

Qτ

· f(St) · ϕ(u, v) · d u · d v (4.7)

where
Qt

Qτ

is given by (4.4) and St is given by (4.5); obviously cτ is a function of Sτ and

Bτ,t and, insofar, stochastic.

Since St, as seen from point in time τ , depends on v only, we may rewrite equation (4.7)
and come up with

cτ =
v=+∞∫
v=−∞

f(St)

 u=+∞∫
u=−∞

Qt

Qτ

· ϕ(u, v)d u

 d v (4.8)

In order to evaluate (4.8) we focus on the expression

A(v) =
1
Bτ,t

∞∫
−∞

Qt

Qτ

ϕ(u, v)d u (4.9)

first.

By a boring but rather simple calculation one obtains:
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A(v) =
1√

2 π
√
t− τ

· e−
1
2

1
t−τ ·(v+βT ·α·st·(t−τ))2

(4.10)

Using the standardized normal density

n(x) =
1√
2π
· e−

1
2 x

2

we get

A(v) =
1√
t− τ

· n
(
v + βT · α · st(t− τ)√

t− τ

)
(4.11)

which we call the valuation density. So, we get a general pricing formula for European
style derivatives which reads as:

cτ = Bτ,t ·
∞∫
−∞

f

(
Sτ
Bτ,t

· e−
1
2 (σ2−2σ·st·βT ·α)(t−τ)+σ·v

)
· A(v)d v (4.12)

Substituting y =
v√
t− τ

and z = y + βT · α · st
√
t− τ yields

cτ = Bτ,t ·
∞∫
−∞

f

[
Sτ
Bτ,t

· e−
1
2 (σ2−2σ·st·βT ·α)(t−τ)+σ

√
t−τ ·y

]
· n
(
y + βT · α · st

√
t− τ

)
d y

= Bτ,t

∞∫
−∞

f

[
Sτ
Bτ,t

· e−
1
2 σ

2(t−τ)+σ·z·
√
t−τ
]
· n(z) · dz

= Bτ,t

∞∫
−∞

f

[
Sτ
Bτ,t

· e−
1
2 (z−σ

√
t−τ)2+ 1

2 z
2

]
· n(z) · dz (4.13)

which is ready to be applied to special cases.

5. European call options

As the standard example we consider an European call option on the stock S which
matures at time t at a striking price X. So the characteristic function reads as follows:

f(S) = max{S −X, 0} (5.1)
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It is convenient to define

d∗ =
log

(
X·Bτ,t
Sτ

)
σ
√
t− τ

+
1
2
σ
√
t− τ (5.2)

so that (4.13) can be rewritten in the following way:

cτ = Sτ

∞∫
d∗

e−
1
2σ

2(t−τ)+σ·z
√
t−τ · n(z)dz −Bτ,t ·X ·

∞∫
d∗

n(z)dz

= Sτ

∞∫
d∗−σ

√
t−τ

n(z)dz −Bτ,t ·X ·
∞∫
d∗

n(z)dz (5.3)

So we finally find the following option pricing formula:

cτ = Sτ ·
(
1−N

(
d∗ −

√
t− τ σ

))
−Bτ,t ·X · (1−N(d∗)) (5.4)

This formula coincides with the famous Black–Scholes–equation in spite of stochastic
(term structures of) interest rates.

6. Futures prices

The stochastic discounting factor (1.9) allows to derive what we have called the “futures
evaluator” elsewhere (see Wilhelm (1999)). Given a spot price process pt the futures
price will be denoted by Fτ,t which means the futures price of a contract written at time
τ to be delivered a time t. From Cox/Ingersoll/Ross (1981) we know that the following
relation holds:

Fτ,t = E

 Qt

Qτ

· e

t∫
τ

ρθ·dθ
· pt|Aτ

 (6.1)

or as a limit

Fτ,t = lim
h→ 0

E

 Qt

Qτ

· e
k−1∑
i=0

ρτ+i·h·h
· pt
∣∣∣Aτ

 (6.2)
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where k · h = t− τ holds. Since we have

e

k−1∑
i=0

ρτ+i·h·h
=

k−1∏
i=0

B−1
τ+i·h,τ+(i+1)h

and
Qt

Qτ

= lim
h→ 0

k−1∏
i=0

Qτ+(i+1)·h

Qτ+i·h

we may rewrite the coefficient of pt in (6.2) in the following way

k−1∏
i=0

[
Qτ+(i+1)·h

Qτ+i·h
· 1
Bτ+i·h,τ+(i+1)·h

]

By using (1.9) with τ 7→ τ + i · h and t 7→ τ + (i+ 1)h we get

k−1∏
i=0

[
e
− 1

2 s
2
τ+(i+1)h·h−sτ+(i+1)h·αT (wτ+(i+1)h−wτ+i·h)

]

= e
− 1

2

k−1∑
i=0

s2
τ+(i+1)h·h−

k−1∑
i=0

sτ+(i+1)h·αT (wτ+(i+1)h−wτ+i·h)
(6.3)

For τ = 0 we get in the limit

Vt := e

1
2

t∫
0

s2θ·dθ−
t∫

0

sθ·αT ·dwθ
(6.4)

which we call the futures evaluator since

F0,t = E(Vt · pt) (6.5)

holds.

In the more general case (6.1) we get by a simple consideration

Fτ,t = E
{
Vt
Vτ
· pt

∣∣∣Aτ} (6.6)

It is now a rather easy task to calculate the futures price of the stock whose terminal
wealth at the delivery date t is given by (2.12) which we write in an appropriately
approximate form:

14



St =
Sτ
Bτ,t

· e
− 1

2 (t−τ)(σ2−2σ st·βT ·α)+σ·
k−1∑
i=0

βT (wτ+(i+1)h−wτ+i·h)
(6.7)

Applying (6.1) by using (6.3) we get

Fτ,t =
Sτ
Bτ,t

· e
− 1

2

[
(t−τ)(σ2−2σ st·βT ·α)+

t∫
τ

s2θ dθ

]

·E

 e

k−1∑
i=0

(σ βT−sτ+(i+1)h·αT )(wτ+(i+1)h−wτ+i·h)∣∣∣Aτ
 (6.8)

The expectation term becomes

e
1
2

k−1∑
i=0
‖σ β−sτ+(i+1)h·α‖2·h

which tends to

e

1
2

t∫
τ

‖σ β−sθα‖2 dθ
= e

1
2 σ

2(t−τ)−σ βT α
t∫
τ

sθ dθ+ 1
2

t∫
τ

s2θ dθ

as h tends to zero.

So we have

Fτ,t =
Sτ
Bτ,t

· e
σ·βT α(st(t−τ)−

t∫
τ

sθ dθ)
(6.9)

as the futures price of our stock. The exponential term in (6.9) makes the difference to

the forward price
Sτ
Bτ,t

. Both prices coincide, on the one hand, in the case of st being a

constant which implies deterministic interest rates; this is a well–known condition. On
the other hand, the two prices also coincide in the case of a zero–correlation between the
two sources of risk. (6.9) may serve as a starting point for the valuation of derivatives
on the futures price of a stock.
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7. Concluding remarks

The present paper has developed a model that incorporates the basic features of the
option pricing results of Black/Scholes and the theory of stochastic term structures
advanced by Ho/Lee. The method employed is stochastic discounting. We start from a
certain discounting factor that governs all asset prices in the economy and can specify all
ingredients one needs to characterize stock price and interest rate processes. In addition,
the advantage of the stochastic discounting approach is that the empirical probabilities
are directly used without shifting to an equivalent martingale measure. The discount
factor we use seems to be the most simple one which is able to produce such a rather
rich theory. On the other hand one might ask for generalization. A discounting factor of
the form

Qt = B0,t · e
− 1

2

t∫
0

‖s(t,θ)‖2 dθ−
t∫

0

s(t,θ)T dwθ
(7.1)

with a n–vector function s(t, θ) would be even more flexible while being more difficult
to use and to specify parameters: The reulting term structure process is given by

ρτ,t = 0ρτ,t + 1
2

1
t− τ

τ∫
0

‖s(t, θ)− s(τ, θ)‖2 · dθ

+
1

t− τ

τ∫
0

(
s(t, θ)− s(τ, θ)

)T
·dwθ (7.2)

which is an obvious generalization of (2.15). The instantaneous spot rate looks like this

ρτ = 0ρτ + 1
2

τ∫
0

∂
∂τ
‖s(τ, θ)‖2 · dθ +

τ∫
0

∂
∂τ
s(τ, θ)T · dwθ (7.3)

and the stock price process becomes:

Sτ = S0 ·
Bτ,t

B0,t
· e
− 1

2 τ

[
‖σ‖2−2 1

τ
σT ·

τ∫
0

s(t,θ)dθ

]
+σT ·wτ

(7.4)

if
St = S0 · eµ·t+σ

T ·wt (7.5)

is assumed. The process (7.2) adds some additional structure since it allows differentiated
correlations among interest rates of different maturities:

corr(ρτ,t , ρτ,t∗) =
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=

τ∫
0

[(
s(t, θ)− s(τ, θ)

)T
·(s(t∗, θ)− s(τ, θ))

]
dθ√

τ∫
0
‖s(t, θ)− s(τ, θ)‖2 dθ ·

√
τ∫
0
‖s(t∗, θ)− s(τ, θ)‖2 dθ

(7.6)

Furthermore, it is not hard to calculate a valuation density in the spirit of (4.10) in this
case, too. However, to keep things as simple as possible we do not follow this line further.

The present paper is related to the work of Milterson/Schwartz (1998) who derive, in
their gaussian case, results very similar to ours using the equivalent martingale approach
and the Heath/Jarrow/Morton methodology for modeling interest rates. The stochastic
discounting approach used in this paper has the advantage of keeping mathematics very
simple in the gaussian case and making direct use of empirical probabilities throughout
the computations.
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