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The Maximal Payoff and Coalition Formation in Coalitional Games

Summary

This paper first establishes a new core theorem using the concept of generated payoffs:
the TU (transferable utility) core is empty if and only if the maximum of generated
payoffs (mgp) is greater than the grand coalition’s payoff v(N), or if and only if it is
irrational to split v(N). It then provides answers to the questions of what payoffs to split,
how to split the payoff, what coalitions to form, and how long each of the coalitions will
be formed by rational players in coalitional TU games. Finally, it obtains analogous
results in coalitional NTU (non-transferable utility) games.
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1. Introduction

In cooperative game theory with transferable utilities (TU), the previous literature has
focused on the question of how to split the grand coalition’s payoff. This paper begins by
asking a fundamentally different question: Is it always rational to split the grand coalition’s
payoff? If the answer is no, then in what games is it irrational to split the grand coalitional
payoff?

The paper provides conclusive answers by exploring the possibility that players could
achieve payoffs higher than the grand coalition’s payoff, denoted as v(N). Such exploration
leads to the maximum of generated payoffs (mgp) for coalitional TU games and leads to the
equivalence among three arguments: i) it is irrational to split v(N); ii) mgp is greater than
v(N); and iii) the core of the game is empty. In other words, core existence in coalitional TU
games can be understood by the rationality of splitting v(N), in addition to the known result
that it is balanced (Bondareva [1962], Shapley [1967]) and that its v(N) is greater than the
minimum no-blocking payoff (mnbp, Zhao [2001]). Because game theory is the study of
players’ rationality, and because it is irrational to split v(N) in games with an empty core, the
equivalence between empty core and the irrationality of splitting v(N) suggests the need to
modify previous studies on splitting v(N), which has far-reaching implications for future
research in cooperative game theory. In particular, it suggests that future research on core
enlargements (such as stable set, bargaining set, etc.) should focus on partition function
games, because such non-core splits of v(N) violate players’ rationality in coalitional games.

The discovery of new generated payoffs allows us to answer four other (perhaps more
important) questions: What payoffs will be split? How will the payoff be split? What
coalitions will be formed? and How long will each of the coalitions be formed by rational

players in coalitional TU games? Briefly answering these questions (in order), players will



split the game’s maximal payoff (mp), defined as the larger of v(N) and mgp; the set of stable
splits of mp is equal to the core if it is rational to split v(N) (i.e., mgp <v(N)) and equal to the

optimal set for mnbp if otherwise (i.e., mgp>v(N)); players will form coalitions in those
minimal balanced collections that generate the game’s mp; and each coalition in the formed
collection will be formed for a length or percentage of time determined by the collection’s
unique balancing vector.

Finally, the paper obtains analogous results in coalitional non-transferable utilities
(NTU) games. Due to the generality of non-transferable utilities, some of the NTU results
are weaker than the corresponding TU results. In particular, the irrationality of choosing
from the grand coalition’s payoff set is only sufficient for an empty NTU core, although the
irrationality of splitting v(N) is both necessary and sufficient for an empty TU core.

The rest of the paper is organized as follows. Section 2 reviews the known core
results, section 3 studies the generated payoffs and reports a new core theorem, and section 4
studies the maximal payoff and establishes the coalition formation theory. Section 5 obtains
analogous results in coalitional NTU games, section 6 concludes, and the appendix provides

the proofs.

2. Description of the Problem

This section reviews the concept of the core and its known existence results in

coalitional TU games. Let N = {1/, 2, ..., n} be the set of players, and %= 2" be the set of all

coalitions. A TU game in coalitional form (or characteristic form), given below,
(1) I'={N, v(-)},
is a set function v. &7 —R: with v(&) = 0, which specifies a joint payoff v(S) for each

coalition S € A. We use a lowercase v in v(-) to define the above TU game (1), and an



uppercase ¥ in V(-) to define coalitional non-transferable utility (NTU) games in section 5.

A payoff vector is any x = (x;,..., x,) € R%, with x; as player i’s payoff for each i e N.
Let X(v(N)) = {xe R} | Ziyx; = v(N)} denote the set of payoff vectors that are splits of v(N),
which is often called the preimputation or preimputation space (see Maschler [1992] for
surveys). Given Sew, a split x eX(v(N)) is unblocked by S if it gives S no less than v(S) (i.e.,
Ziesxi 2v(S)), and it is in the core (or a core vector) if it is unblocked by all S= N. Denote the
set of all core vectors for the game (1) as
(2) c(l) ={xe X(v(N)) | Zicsx; 2>v(S) for all § =N}.

We use a lowercase ¢ in ¢(7) to denote TU core and an uppercase C in C(I) to
denote NTU core in section 5. Given the game (1), Bondareva (1962) and Shapley (1969)
showed that its core is non-empty if and only if it is balanced. A balanced game is defined
below.

Given a collection of coalitions 8 = {7}, ..., T;} and a player ieN, the subset of
coalitions that include i as a member is B (i) = {Te 8| iT}. Bis a balanced collection (or
balanced) if it has a balancing vector, which is a k-dimensional positive vector w e RE. such
that 27.gywr= 1 for each ieN. A balanced collection can be interpreted as a balanced

assignment for assigning » students into £ (/< k < n) Internet chat rooms (i.e., coalitions or
discussion groups). Suppose that each student has one unit of total connection time (= 100
minutes) and could simultaneously join several chat rooms through several connections (i.e.,
by simultaneously logging onto several computers).

Define an assignment as a pair (8, w) of chat rooms and opening times, where @ =
{T}, ..., Ti} is the set of chat rooms (7; # < all j), and for each T B, wr> 0 is the length (or

percentage) of time during which chat room 7" opens (i.e., it opens for 100xwr minutes). The
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set of chat rooms assigned to each student i is (i) = { T e B|i € T}, so i’s total participating
time is 2rcgowr.  Then, (B w) is a balanced assignment if 2rcgqwr =1 for all i. In words, a
balanced collection is a balanced assignment such that the total participation time for each
student is precisely 100 minutes. Now, the game (1) is balanced if Xr.swv(T) <v(N) holds
for each balanced @ with balancing vector w.

The equivalence between balancedness and the non-empty core was proved by
applying the duality theorem to the following linear programming problem (see Myerson
[1991], pp. 432-433, and Kannai [1992], pp. 360-361):1
3) Min {Zionx; | xeRY; Zics xi 2> v(S) for all S =N, and Zicvx; =v(N)}.

The minimum no-blocking payoff (mnbp) for game (1) is defined as
4) mnbp = Min {Zicnx; | xeRY,; 3 cs x; > v(S) for all S = N}.
The equivalence between v(N)> mnbp and non-empty core (Zhao [2001]) is a refinement of
the intuition that the core will be non-empty if v(N) is sufficiently large.2 One advantage of
the mnbp method is that it characterizes the core’s interior: the core has a non-empty
(relative) interior if and only if mnbp<v(N) holds.

Although the minimization problem (4) for mnbp differs from (3) only in that the

grand coalition’s constraint is removed, their duality results have completely different

1 Alternatively, it can be proved by applying the convex hyperplane separation theorem, which leads to the
duality theorem for (3). Because the objective of (3) is the constant v(N), its optimal and feasible sets are
identical, which coincides with the core. By the duality theorem, ¢(/) =& is equivalent to that the dual
problem’s objective is bounded by v(N), or that the game is balanced.

2 To see such intuition, let the vertical axis denote v(N), and fix all v(S), S=N. Now, start with a large v(N)
(so its core is non-empty) and keep reducing v(N). The core will eventually become empty after v(N) falls
below a critical value, which is equal to the above mnbp.



implications. As readers will see in the next two sections, the duality theorem for (4) not
only provides a new argument for core existence, but it also answers four other (perhaps
more important) questions: What payoffs will be split? How will the payoff be split? What
coalitions will form? and How long will each of these coalitions be formed by rational

players in our game (1)?

3. The Maximum of Generated Payoffs and a New Core Theorem

In what games is it irrational to split v(N)? Let us begin with an inessential game in
which v(N) < Ziwv(@i).3  Will rational players split v(N) in this game? The answer is no,
because players together are better off by splitting Zi-yv(i), instead of v(N).

Similarly, rational players will not split v(N) in games in which there is a partition A
such that vw(N) < gp(4) = Zscav(S), where gp(A) = Zs.v(S) is the payoff generated by the
partition A4 Moving further along this line of argument, we define the payoff generated by a
minimal balanced collection® and the mgp as below:

Definition 1: Given game (1) and a minimal balanced collection B with its unique
balancing vector w, the payoff generated by B is given by gp(B) = ZrcawrW(I), and the
maximum of generated payoffs (mgp) is given by
(5) mgp = mgp(l)= Max {gp(B) | B € B}, where

(6) B={B={T,, ..., Ti} INg B Bis a minimal balanced collection}

denotes the set of all minimal balanced collections.

3 We simplify v{i}) as v(i), v({1,2}) as v(12). Similar simplifications apply to other coalitions.

4 Such payoffs from a partition have been studied for other purposes. For example, Guesnerie and Oddou
(1979) and Sun et al. (2005) studied the c-core or C-stable set, and Zhou (1994) studied his bargaining set.

5 A minimal balanced collection is a balanced collection such that no proper subcollection is balanced. One
can show that a balanced collection is minimal if and only if its balancing vector is unique.



The definition considers only minimal balanced collections, because a non-minimal
balanced collection is the union of minimal balanced collections. To ameliorate the
conceptual difficulty in understanding how a balanced collection could generate the payoff

gp(B) =2rswrwvT), consider again the problem of assigning » students into & Internet chat

rooms, and treat each v(7) as the payoff per unit of time each chat room 7 receives from
advertisers, which also can be understood as the number of visits that T receives per unit of

time. Then, the total payoff generated by a balanced assignment (B, w) is equal to
gp(B) =2rswr V1), which is equal to the sum of individual payoffs under the equal-share

rule.6 The following example illustrates such generated payoffs and the irrationality of

splitting v(N) in games with mgp > v(N).

Example 1 (Internet Assignment Problem): n= 3, v(1) = v(2)= v(3)=0, v(12) =
v(23) =v(13) =v(123)= 81000. The five minimal balanced collections (excluding {N}) are
the four partitions and Bs = {12, 13, 23} with a balancing vector {0.5, 0.5, 0.5}. By (5), mgp

= gp(Bs) = $1500. The revenue of opening the grand chat room N = {1,2,3} for 100 minutes

is 81000, and the revenue of opening each of the two-member chat rooms for 50 minutes is
mgp = $1500 > v(N) = $1000. Hence, it is irrational to split v(N) = $1000 in this game,
because they could split mgp = $1500.

Readers could treat Example 1 as the voting game after dividing each v(S) by 1000
and could predict that a player will form an alliance with each of the other two players for

half of the time. This can be completed through a dynamic or virtual process in which a

6 Under the equal-share rule, each student i T receives v(7)/|T| per unit of time by participating in chat
room 7. Because each chat room 7' in @ is opened for wy units or percentage of the time, i’s payoff from (3,
w) is equal to v(i,8) = Zrapwr v(T)/|T], and the sum of these payoffs are %y v(i,B) = ZivZresow(T)/|T| =
2reawrZierv(DNT| = 2Zreawrv(T) = gp(B).



player is able to spend one half of his life before (or after) the game or spend two halves of
his life simultaneously. Although imaginative, such a process is consistent with empirical
evidence. In China’s three-kingdom period (220-280 A.D.), for example, two players (Wei
and Wu) lived long before the famous three-kingdom game was played.

Denote the maximal (or optimal) set for the above (5) as B, given below:
@) By=By(I) ={BeB| gp(B)= mgp} = Arg-Max{gp(B)| BeB}.
For each maximal collection 8B, with its unique balancing vector w, it will generate the
game’s mgp when each Te® is formed for wr units (or percentage) of the time.

Note that computing the above mgp is not an easy task for a large », because the
number of minimal balanced collections is much larger than the Bell number (i.e., the
number of all partitions).” However, as shown in Theorem 1 below, one can obtain mgp by
solving the simpler minimization problem (4) instead of solving (5), because the two
problems are dual to each other.

Theorem 1: Given game (1), the maximization problem (5) for mgp is dual to the
minimization problem (4) for mnbp, so mgp = mnbp holds.

Theorem 1 is proved in the appendix. Theorem 1 leads directly to three equivalent

core theorems given below:

Theorem 2: Given game (1), let its core, mnbp, and mgp be given in (2), (4), and (35),
respectively. Then, c(I) # & is equivalent to each of the following three claims:

(i) the game is balanced (Bondareva [1962], Shapley [1967]);

(ii) mnbp(T)<v(N) (Zhao [2001]); and

7 Peleg (1965) provides an algorithm for finding all minimal balanced collections. The Bell number (i.e., the
number of all partitions) is the sum of Sterling numbers of the second kind. Forn = 1, 2, ..., 10, their Bell
numbers are, respectively: 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975.



(iit) v(N) 2 mgp(T).

To summarize, there are now three necessary and sufficient empty-core arguments:
the game is unbalanced, v(N) is below mnbp, and it is irrational to split v(N). This indicates
that previous results for splitting v(N) will be irrational whenever the core is empty, and it
suggests the need to modify all previous studies on splitting v(N), including the more than 10
chapters on core and values in the handbook of game theory (Aumann and Hart [1992]). In
particular, it suggests that future research on core enlargements (such as stable set,
bargaining set, etc.) should focus on partition function games, because such splits of v(N) are

outside of the new core (see next section) that is always non-empty in coalitional games.

4. The Maximal Payoff and Coalition Formation in Coalitional TU Games

The previous section shows that rational players will not split v(N) in games with an
empty core. Then, what payoffs will rational players split in games with an empty core? We

propose that they will split the maximal payoff defined below:

Definition 2: The maximal payoff (mp) for game (1) is given by

(8) mp = mp(l) = Max {mgp, v(N)},
where mgp = mgp(T) is the maximum of generated payoffs given in (5).

It is straightforward to see that mp = v(N) if ¢(I) =&, = mgp > v(N) if ¢(I) = &
Because it is rational to split v(N) = mp if ¢(I) # &, and mgp = mp >v(N) if ¢(I) = &,
rational players will always split a game’s maximal payoff given in (8), and this answers the
question of what payoffs will be split. As shown in Example 1, our three students will split
the game’s maximal payoff of mp = $1500, instead of v(N) = $1000.

Next, consider the question of how to split the maximal payoff. Let the optimal set for



mnbp in (4) be denoted as Y given below:

9) Y = Y(I) = Arg-Min{Zinx; | x €R,,, s x; > v(S) for all S=N},

which is the set of splits of mgp (i.e., 2x; = mnbp = mgp) that possibly can be blocked only
by the grand coalition &, because each x e Y(7) satisfies the rationality for all =N and all 3
eB. Given xe Y(T), its stability falls into the following three cases:

Case 1. mgp > v(N), or ¢(I)= <. In this case, x is stable against all deviations,
because no coalition S (including N) or any minimal balanced collection @ can block it.

Case 2. mgp = v(N), or ¢(I) = @ and Int ¢(I) = &, where Int ¢(T) is the (relative)
interior of the core. In this case, x also is stable against all deviations, because Y(7) = ¢(7).

Case 3. mgp < v(N), or Int ¢(I) # & In this case, x is clearly unstable because it
violates the grand coalition’s rationality (i.e., 2x; = mgp <v(N)).

The above discussions indicate that the set of stable splits of mp is equal to the
optimal set Y(7) if mgp = mnbp > v(N), and the core if mgp = mnbp <v(N).

Finally, consider the question of what coalitions will be formed. Because rational
players will split the game’s maximal payoff, coalitions formed by rational players will
support the maximal payoff. By the above properties of mp, rational players will form the
grand coalition if v(N) > mgp = mnbp and the minimal balanced collections in By in (7) if
v(N) < mgp = mnbp. The unique balancing vector for the formed minimal collection
answers the question of how long will each of these coalitions be formed.

The next theorem summarizes the above answers.

Theorem 3: Given game (1), let its mgp and mp be given in (5) and (8), ¢*=
c*(I) = @ denote the set of rational splits of mp, and B = B'(I) # denote the set of stable

collections that will be formed. Then, the following three claims hold:

10



(i) rational players will split the maximal payoff mp = mp(T);
(ii) the set of rational splits of mp is given by

c(l) if v(N) = mp(I);

Y(I) if v(N) < mp(1);

where c(I) and Y(I) are given respectively in (2) and (9),; and

(10) (D) = {

(iii) the set of stable collections of coalitions that will be formed is given by

{N} if v(N) = mp(I) > mgp(I);
(12) B'(1) = AN}UBy(I) if v(N) = mp(I) = mgp(D);
By (1) if v(N) <mp(I) = mgp(T);

where By(T) is given in (7); and for each B €B’(I) with its unique balancing vector w, each

coalition T eB will be formed for wr unit (or percentage) of the time.

Observe that ¢*(7) = & always holds, so there always exists a split of the maximal

payoff that is unblocked by any coalition or any balanced collection. It might be useful to

call ¢*(7) in (10) the new core as compared with the old core ¢(7) in (2). In the old core,

players split v(N) and only rule out deviations by each coalition, whereas in the new core,
players split the maximal payoff and rule out not only deviations by each coalition, but also
simultaneous deviations by each minimal balanced collection. In the Internet assignment
game of Example 1, our three students will form each of the two-member chat rooms for 50

minutes and each will receive $500; such a split is stable against all possible deviations.
5. Extension to Conational NTU Games

This section answers the questions of what subset of payoffs from which players will
choose, how players choose a payoff vector, what coalitions will form, and how long each of
these coalitions will be formed in coalitional NTU games. Due to the generality of non-
transferable utilities, some of these NTU results are weaker than the corresponding TU

results. In particular, conditions for a non-empty NTU core are only sufficient but not
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necessary.

A coalitional NTU game, or an NTU game in characteristic form, is defined as
(12) I'={N, V()},
which specifies a non-empty set of payoffs, V(S)cR’, for each Se; where R’ is the
Euclidean space whose dimension is the number of players in S and whose coordinates are
the players in S. For each Se %, let the (weakly) efficient set of V(S) be given as

AV(S) ={yeV(S) | there isno x e V(S) such that x>>y},
where vector inequalities are defined as below: x >y < x; 2>y, alli; x>y < x>yand x
#y,and x >>y &x; > y;, all i.

Scarf (1967b) introduced the following two assumptions for (12): (i) each V(S) is
closed and comprehensive (i.e., yeV(S), ueR’ and u <y imply ueV(S)); (ii) for each S,
{eV(S)|y:= V(i)>0, all i S} is non-empty and bounded. It is useful to note that V(i) =
Max {x; | x;eV(i)}. One can check that part (ii) is satisfied in Example 2 (given after
Definition 3 in this section). Under these assumptions, each 2V(S) is closed, non-empty, and
bounded from above.

Given Se 9V, a payoff vector u e R is blocked by S if there is y e V(S) such that y >>
us (i.e., useV(S)\V(S)), or in words, if S can obtain a higher payoff for each of its members
than that given by u. A payoff vector ueJV(N) is in the core if it is unblocked by all S = N,
so the core of (12) can be given as
(13) C() ={uedV(N) | useV(S)\oV(s), all S=N }.

We now define the concept of a balanced NTU game (Scarf [1967b]) geometrically.

For each S =N, let ¥(S) = V(S)xR =R’ denote the n-dimensional cylinder with 7(S), where

12



R™ = [lnwsR'. Then, the set of payoffs generated by a minimal balanced @, and the set of

generated payoffs can be defined as below:

Definition 3: Given a minimal balanced B € B, the payoffs generated by B and the

set of generated payoffs in (12) are given, respectively, as

(14) GP(®) = (¢ v(S) cR', and
(15) GP=GP(I) = ,Y,GP(®),

where B is the set of minimal balanced collections (excluding N) given in (6).
Note that (14) becomes GP(B) = [[ss V(S) when @ is a partition. Similar to the TU

case, (15) covers only minimal balanced collections because non-minimal ones are the
unions of minimal ones. Readers are encouraged to visualize the generated payoffs in

Example 2 below, whose non-negative parts are illustrated in Figure 1.

Example 2: n = 3, V()= {x;| x; <1}, i =1, 2, 3; V(12)={(x1, x2) | (x1, x2)<(3,2)},
V(23) = {(x2, x3) | (x2, x3)<(2,3)}, V(13) = {(x1, x3) | (x1, x3)<(2,2)}, and V(123) = V(N) =
{x|x;+tx+x3< 7}. For the five minimal balanced collections, ;= {1, 2, 3}, 8, ={12, 3}, B;
= {23, 1}, B, ={13, 2}, and Bs = {12, 13, 23}, their generated payoffs are: GP(B;) = {x|x<
(1,1,1)}; GP(By) = {x|x= (3,2,1)}; GP(B;) = {x|x=(1,2,3)}; GP(B,) = {x|x= (2,1,2)}; and
GP(B;5) = {x|x<(2,2,2)}.

Now, the NTU game (12) is balanced if

(16) GP(I)c V(N)
holds, where GP(T) is the generated payoffs in (15), or in words, (12) is balanced if for each

balanced B, ucV(N) must hold if ugeV(S) for all Se®. To understand a balanced game

geometrically, visualize that one is flying in a jet above the Rocky Mountains, and treat the

generated payoffs as peaks of the mountains and ¥(N) as clouds. Then, a game is balanced if

13



one sees only clouds (i.e., GP(I)c V(N), see Figure 2a) and unbalanced if one sees at least

one peak above the clouds (i.e., GP(I)z V(N), see Figure 2b).

Xs*
|
|
|
|
|
|
|

(1,1,1)

//

X1 //

e
& (a)GP(B:)

7N

X3

(d) GP(Bs)

o

(1,2,3)

X2
————>
(3,2,1)

e

X1 //
& (b) GP(B2)U GP(B3)

(2,1, 2)

X1 (3,2, 1)

K

e

(e) GP(B1)u GP(B2)u GP(B3) U GP(B4)

(2,1,2) ‘,l
| X2
P ———>
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Figure 1. The generated payoffs in Example 2, where B,= {1, 2, 3},
B, = {12, 3}, B3 = {23, 1}, B4 = {13, 2}, and Bs = {12, 13, 23}.

X1 745,0,0)
(a) A balanced game 3

(3,2,0 c=(3,21)

(b) An unbalanced game

Figure 2. Balanced and unbalanced games.

Figure 2a shows V(N) and the generated payoffs in Example 2. Because one sees

only clouds, the game is balanced. Let V(N) be reduced to ¥ (123) = {x|x;+x,+x;<5} and all
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other V(S) remain unchanged. Then, as shown in Figure 2b, because the three peak points «,
b, and c are above the clouds or the simplex X(5) = {x € Rj| Zx; = 5}, the game now becomes
unbalanced.

Note that the minimal balanced collection 85 = {12, 13, 23} in Example 2 generates
new payoffs that are outside of those generated by the four partitions (i.e., the unit cube next
to /2, 1, 2] and on the same level; see the difference between [e] and [f] in Figure 1). Similar
to Example 1, players could achieve such new generated payoffs in GP(®B;) by forming each
of the two-member coalitions for half of the time. Needless to say, it is the discovery of such
new generated payoffs (or the maximum of generated payoff in Example 1) that gives rise to
the coalition formation theory introduced in this paper.

Definition 4 below extends the concept of mnbp in (4) to minimum no-blocking
frontier (MNBF), and mgp in (5) to (weakly) efficient generated-payoffs (EGP). Recall that
a payoff vector u is unblocked by S if useV(S)\AV(S) or if uc[V(S)\V(S)] xR R, where

superscript C denotes the complement of a set. Let
(17) UBP = UBP(I) = SQN{[V(S)\O”V(S)]CXR*S}CR”,

denote the set of payoff vectors that are unblocked by all § #N. Then, the core or (13)

becomes C(7)=2JV(N)NUBP, and the concepts of MNBF and EGP can be defined below.

Definition 4. Given game (12), let its GP and UBP be given in (15) and (17). Let
MNBF denote its minimum no-blocking frontier and EGP its efficient generated-payoffs.
Then, MNBF and EGP are given by

(18) MNBF = MNBF(I') = { yeUBP | 3 no x € UBP such that x<<yY}, and
y y

(19) EGP=EGP(I)=GP(I)={yeGP| 3 no xe GP such that x>>y}.

By (18), MNBF is the lower boundary or the minimum weakly efficient set of UBP.
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Any payoff vector on (or above) this boundary is unblocked by all S=V, this is analogous to
the TU result that any solution of (4) given in (9) is unblocked by all § = N. By (19), EGP
is the upper boundary of GP. It will be irrational to choose any yeV(N) if y is below this
boundary; this is analogous to the TU result that it is irrational to split v(N) < mgp. Let

(20) Z = Z(I) = MNBF EGP

denote the set of unblocked and efficient generated-payoffs. The next theorem shows that Z

# 7 always holds, which is the NTU counterpart of mgp = mnbp in Theorem 1.

Theorem 4: Given game (12), let Z = Z(T) be given in (20). Then, Z # <.

It is straightforward to see that EGP* = {{1, 2, 3}, {2, 2, 2}; {3,2,1}} in Example 2.8
One can check that none of these three vectors is blocked, so MNBFHEGP = < holds in the
example.

Theorem 4 is proved by a version of Scarf’s closed covering theorem (1967a) due to
Zhou (1994). Recall that EGP< V(N) holds in balanced games. By MNBF cUBP, Z=
MNBFNEGP = leads directly to C(I)= JV(N)NUBP =« in balanced games. Hence, our
proof of Theorem 4 implies a new proof of Scarf’s core theorem.

Now, consider the rationality of choosing a payoff vector from V(N). Similar to the
irrationality of splitting v(N) in TU games with v(N) < mgp, it will be irrational to choose
ue V(N) if V(N)c GP\AGP (i.e., if there is 8 € B and ve GP(®) such that v>>u), and rational
to choose ue V(N) if GPcV(N) (i.e., if the game is balanced). Using our geometric

interpretation, it is irrational to choose u < V(N) if one sees no clouds (V(N)c GP\A&GP) and

8 EGP* is the efficient set given by EGP* = {yeGP|3 no xeGP such that x >y} < EGP, which is a
refinement of the weakly efficient set EGP defined in (19).
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rational to choose u eV(N) if one sees no peaks (GPc V(N)).
However, unlike in TU games where either v(N) < mgp or v(N) > mgp holds, it is
possible in NTU games that neither V(N)c GP\A&GP nor GPc V(N) holds, or that one sees

both clouds and peaks. The existence of such unbalanced games with V(N)z GP\AGP is
what makes the following NTU core results weaker than the corresponding TU core results

in Theorem 2.

Theorem 5: Given I"in (12), let its core, GP and MNBF be given in (13), (15) and
(18) respectively. Then, the following three claims hold:

(i) C(I) =< if GPc V(N) (Scarf [1967b]);

(ii) C(I) =2 if V(N) ¢ GP\A&GP; and

(iii) C(T) # I & there exists x eJV(N) and y € MNBF such that x > y.

Comparing Theorem 5 with Theorem 2 leads to the following two differences and
one similarity between NTU and TU core results: i) balancedness is only a sufficient
condition for NTU core existence (Scarf [1967b]), and a necessary and sufficient condition
for TU core existence (Bondareva [1962], Shapley [1967]); ii) the irrationality of choosing
from V(N) is only a sufficient condition for an empty NTU core, whereas the irrationality of
splitting v(N) is a necessary and sufficient condition for an empty TU core; and iii) “V(N) has
a payoff vector on or above MNBF” is a necessary and sufficient condition for NTU core
existence, and “v(N) > mnbp” is a necessary and sufficient condition for TU core existence
(Zhao [2001]). As with the TU case, the irrationality of choosing ue V(N) < GP\A&GP
suggests the need to modify previous studies on NTU games with an empty core.

The NTU counterpart of a TU game’s maximal payoff in (8) is the following concept

of efficient payoffs:
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Definition 6. The set of efficient payoffs (EP) for our NTU game (12) is given by
(21) EP =EP(I)=0(GPWV(N))={yeGPUV(N) | 3 no xeGPUV(N) with x>>y},
where GP = GP(I) is the generated payoff given in (15).

Recall that players in a TU game will always split the maximal payoff defined in (8).
Similarly, players in a NTU game will always choose from the set of efficient payoffs
defined in (21). This answers the question of what subset of payoffs from which players will
choose.

Next, consider the question of how to choose a payoff vector from EP. Let
(22) Dy=DyI)={BeB| GP(®) € Z(I)}
denote the set of minimal-balanced collections that support Z() in (20). For each 8e D,
with its balancing vector w, it will generate the efficient generated-payoffs in GP(®B) € Z(T)
when each T'e® is formed for wr percentage of the time. As with the TU case, each payoff
vector ye Z(T) (i.e., ye GP(®) for some Be Dy) can possibly be blocked only by the grand
coalition N, because the payoff vector y satisfies the rationality for all S=N and all 8 €B.
Hence, ye Z(7) is stable if and only if ygV(N)\JV(N). It will be useful to consider the
stability of each y e Z(7) in the following three cases.

Case 1. V(N)c GP. In this case, it is impossible to have y eV(N)\GV(N), so y is stable
against deviations by all Sc N and all B¢ B.

Case 2. GPc V(N). In this case, y is unstable if y 2dV(N) (because it will be blocked
by N), and stable if y edV(N).

Case 3. V(N)z GP and GPz V(N). This case is what makes NTU results different

from TU results. The stability of y depends on whether C(7) = & If C(I) = &, y is stable
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because N can not block it (otherwise, C(7) = & holds); if C(I) = &, the stability of y is
similar to Case 2: y is unstable if yeV(N)\JV(N), and stable if y V(N)\JV(N). Note that
y e V(N) might not hold in Case 3, but it always holds in Case 2.

The above discussions indicate that the set of stable payoffs in EP is Z(I') in Case 1,
C(T) in Case 2, C(I) AZ(I)A[V(N)\V(N)]} in Case 3 with C(I) = &, and Z(I) in Case 3
with C(T) =&

Finally, consider the question of what coalitions will be formed. By earlier
arguments, rational players will choose from the set of efficient payoffs in (21), so coalitions
formed by rational players shall be either the grand coalition N or the minimal balanced
collections from Dy(7) in (22), which support those efficient payoffs in (21) that are also
stable. As with the TU case, the unique balance vector associated with each minimal

balanced collection answers the question of how long each of these coalitions will be formed.

The next theorem summarizes the above answers.

Theorem 6: Given game (12), let Z(T) and EP(T) be given in (20) and (21), C'=
C'(I) # & denotes the set of stable payoffs from EP(I), and D= D'(I) # & denotes the set
of minimal balanced collections that will be formed. Then, the following claims hold:

(i) rational players will choose from the efficient payoffs in EP(T);

(ii) the set of stable payoff vectors in EP(T) is given by

Cc() if GPcV(N);
(23) C(D) = C(DUZD)* if V(NN&GP: GP& V(N); C(T) = &
2D if V(N)& GP: GPz V(N): C(T) = & or if V(N)= GP;

where Z(I)* = Z(D A[V(N)\EV(N)IS, and C(I) is the core given in (13);
(iii) the set of stable collections of coalitions that will be formed is given by
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Ny if GPCV(N);
(24) D)=\ {NyDi(T) if V(N)z GP: GPZ V(N); C(I) # &

D)  if V(N)z GP: GPz V(N); C(I) = &, or if V(N)c GP;
where Dy(I)= {BeDy[)|GP(B) € Z(I)*}, Do) and Z(I)* are given in (22) and (23); and
for each B ED*(D with its unique balancing vector w, each coalition TeB will be formed for
wr unit (or percentage) of the time.

Observe that C"(I) = &always holds, so there always exists an efficient payoff that is
unblocked by any coalition or any balanced collection. Such difference between the new
core C'(I) in (23) and the old core C(7) in (13) is the consequence of the possible new
generated payoffs. In the old core C(7), players just choose from V(N) and only rule out
deviations by each coalition. In the new core C"(7), players choose from the game’s efficient
payoffs (including the possible new and higher payoffs) and rule out not only deviations by

each coalition, but also simultaneous deviations by each minimal balanced collection.

6. Conclusion and Discussion

The above analysis revealed the possibility that players in a coalitional game
sometimes could achieve better payoffs than the grand coalition’s payoffs by forming a
minimal balanced collection of coalitions. Our exploration of such opportunity led to the
concepts of maximal payoff (mp) and efficient payoffs (EP) in TU and NTU games, which
will be better than the grand coalition’s payoff whenever the core is empty.

In addition to the new core argument, the exploration led to the following four
conclusions: i) players will achieve the game’s mp (EP) in TU (NTU) games; ii) the set of
stable payoffs is equal to the core if the core is non-empty and is equal to the optimal set of
mnbp (the set of unblocked and efficient generated-payoffs) in TU (NTU) games if the core

is empty; iii) players will form those coalitions in a minimal balanced collection that support
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the game’s mp (EP) in TU (NTU) games; and iv) the unique balancing vector for the minimal
balanced collection determines the length (or percentage) of time in which each of the
coalitions will be formed.

The irrationality of achieving the grand coalition’s payoff in games with an empty
core suggests the need to modify previous results for splitting v(N) (or choosing from V(N)).
Among such a long list of future studies, readers are encouraged to investigate the properties
of the following values and refinements of the new core: i) modified Shapley value:
replacing v(N) with mp in Shapley (1953); i) modified nucleolus: replacing v(N) with mp in
Schmeidler (1969); iii) quasi-Shapley value: the vector in ¢*(7) that has the shortest distance
between c*) and the modified Shapley value; iv) modified dual nucleolus: the
lexicographical maximizer of the ascending excess vector on ¢*(7); and v) extensions of (i-

iv) to coalitional NTU games. Note that (ii-iv) are different core selections.

Appendix

Proof of Theorem 1: For each S=N, let es = (x;, ..., x,) '€ R,, be its incidence vector or the

column vector such that x; = 7/ ifieSand x; =0 if igS,and e = ey = (1, ..., 1)’ be a column
vector of ones. Then, the dual problem for the minimization problem (4) is the following
maximization problem:
(25) Max {Zs:nysv(S) | ys> 0 forall S=N; and Zs.yyses < e}.

We will show that (25) is equivalent to the maximization problem (5). First, we show
that the inequality constraints in (25) can be replaced by equation constraints.

Let Ay<e and y>0 denote the constraints in (25), where 4 = 4,.2" 2 = [es| S=N] is

the constraint matrix, and y is the (2"-2) dimensional vector whose indices are the coalitions.
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Let the rows of 4 be a,, ..., a,, and for each feasible y, let 7 = T(y) = {i| a;y <I} be the set
of loose constraints, so N\T = {i | a;sy =1} is the set of binding constraints.

If T(y) # & let z be defined as: zg = ys+(1- a;) if S = {i}, for each i €7, and z5 = ys
if §$={i} forall ie T. One sees that z > y and T(z) =<. Hence, for any y with T(y) = &
there exists z>0, Az= e such that 2. yysv(S)< Zsxnzsv(S). This shows that the feasible set of
(25) can be reduced to {z | z>0, Az= e}, without affecting the maximum value. So the
maximization problem in (25) is equivalent to the following problem:

(26) Max {Zs:nysv(S)| Ay =e,and y>0}.
Note that for each feasible y in (26), ®(y) = {S|ys> 0} is a balanced collection. Next,

we establish the one-to-one relationship between the extreme points of (26) and the minimal

balanced collections. Let y be an extreme point of (26); we will show that B(y) = {S|ys> 0} is

a minimal balanced collection.

Assume by way of contradiction that @(y) is not minimal, then there exists a balanced
subcollection B’ B(y) with balancing vector z. Note that ze>0 implies ys>0. Therefore, for
asmall >0 (e.g., 0 <t <%, and t <Min {ys/izs -ys| | all S with ys=zs}), one has

w=y—ty-z)20,w =y +ty-z) >0.
Ay =eand Az = e lead to Aw = e and Aw’ = e. Buty = (w+w’)/2 and w =w’ contradict the
assumption that y is an extreme point. So ®(y) must be minimal.

Now, let 8= {T, ..., T;} be a minimal balanced collection with a balancing vector z.
We need to show that z is an extreme point of (26). Assume again by way of contradiction
that z is not an extreme point, so there exists w = w’ such that z = (w+w’)/2. By w=>0 and

w’>(0, one has
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{S|ws >0} cB={S | zs >0}, and {S | ws >0} c B={S | z5 >0}.
The above two expressions show that both w and w’ are balancing vectors for some
subcollections of 3. Because ®is minimal, one must have w = w’ = z, which contradicts w =
w’. Therefore, z must be an extreme point of (26).

Finally, by the standard results in linear programming, the maximal value of (26) is
achieved among the set of its extreme points, which are equivalent to the set of the minimal
balanced collections, so (26) is equivalent to Max {Xs-sysv(S)}, subject to the requirements
that Nz 8 and 3 is a minimal balanced collection with the balancing vector y.  This shows

that (25) is equivalent to the maximization problem (5) for mgp, which completes the proof

for Theorem 1. Q.ED

Proof of Theorem 2: It follows from Theorem 1 and the known results in Bondareva

(1962), Shapley(1967), and Zhao (2001). Q.E.D

Proof of Theorem 3: The discussion between Definition 2 and the theorem serves as a

proof of the theorem. Q.E.D

Our proof for Theorem 4 uses the following lemma on open covering of the simplex
A =X(1) = {xe R} | Z;conx: = 1}

Lemma 1 (Scarf [1967a], Zhou [1994]): Let {Cs}, S=N, be a family of open subsets
of A that satisfy AN\{i}Z{x eA |x; = 0}ycCyy for all i eN, and CsnCs= A then there exists
a balanced collection of coalitions B such that Nsc3Cs # &,

Proof of Theorem 4: Let UBP be the set of unblocked payoffs in (17), and EGP be the
boundary or (weakly) efficient set of the generated payoff in (19). We shall first show that

UBPN EGP # .
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For each coalition S=N, let Wy = {Int V(S)xR}EGP be an open (relatively in
EGP) subset of EGP, where Int V(S) = V(S)\V(S) is the interior of V(S). For each minimal
balanced collection of coalitions 3, we claim that
(27) NseaWs= &
holds. If (27) is false, there exists ye EGP and y e Int V(S) xR™ for each Se 3. We can now
find a small # >0 such that y+zee Int V(S)xR™ for each Se @, where e is the vector of ones.
By the definition of (14) and (15), y+tee GP(B) = Nscs{V(S)xR*}= GP, which contradicts
ye EGP. This proves (27).

Now, suppose by way of contradiction that UBPH EGP = &. Then, EGP— UBPS,
where superscript C denotes the complement of a set. The definition of s and

UBP® = {nsA[V(S)\V(S)] 5RY = Usf{Int V(S) xR}

together lead to Cs.yWs= EGP, so {Ws}, S=N, is an open cover of EGP.

Because the set of generated payoffs is comprehensive and bounded from above, and
the origin is in its interior (by &V(i)>0, all i), the following mapping from EGP to A":

frx > x/2x;,

is @ homeomorphism. Define Cs = f(Ws) for all SC N, one sees that {Cs}, S=V, is an open
cover of A" = f(EGP).

For each ieN, JV(i)>0 leads to EGPN {xeR"|x; =0}c Wy, which in turn leads to
M=fxeA | x; = 0} = AEGPH {xeR" |x; =0}) = Cyy = fiWyy). Therefore, {Cs}, S=N, is
an open cover of A" satisfying the conditions of Scarf-Zhou open covering theorem, so there

exists a balanced collection of coalitions 3, such that N s.s,Cs = &, or that
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(28) NsesgWs # 2,
which contradicts (27). Hence, UBPN EGP = .

For each xe UBPNEGP, we claim xe MNBF. |If this is false, we can find a small
>0 such that x-reeUBP. Let Be B be the minimal balanced collection of coalitions such
that x € GP(B) = Nsca{V(S)xR™}. Then, x-te e Int V(S)xR™ for each S e ®, which

contradicts x-ze € UBP. Therefore, MNBFNEGP = UBPNEGP = <. Q.E.D

Proof of Theorem 5: It follow from the discussions preceding the theorem. Q.ED

Proof of Theorem 6: The conclusions follow from the discussions between Definition 6

and the theorem. Q.E.D
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