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Summary 
According to international law, straddling fish stocks should preferably be managed 
cooperatively through regional fisheries management organizations (RFMOs). This 
paper analyzes the stability and success of these organizations through a game in 
partition function form based on the classical Gordon-Schaefer bioeconomic model. A 
comprehensive analysis of the economic and biological fundamentals that influence the 
success of coalition formation is provided. The results show that the larger the number 
of fishing states that compete for the fish stock the higher would be the relative gains 
from full cooperation, but the lower is the likelihood of large RFMOs being stable. It is 
also shown that the success of coalition formation is positively correlated with the 
degree of production cost asymmetry among fishing states and negatively with the 
overall level of efficiency. 
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1. Introduction 

The 1982 UN Convention on the Law of the Sea (UN, 1982) brought forth the regime of 200 

nautical miles coastal state Exclusive Economic Zones (EEZs), which revolutionized the 

management of world capture fisheries. However, an important aspect was not effectively 

addressed by the 1982 UN Convention, namely the management of fisheries resources to be 

found both within the coastal state EEZ and the adjacent high seas, where the resources are 

subject to exploitation by so called distant water fishing states. These fishery resources are 

commonly referred to as straddling fish stocks2. 

Such fish stocks, which account for about 20 per cent of the worlds capture fishery harvests 

(Munro et al. 2004), were subject to heavy overexploitation in the decade following the 

advent of the 1982 UN Convention. This led to further action by the UN in the first half of the 

1990s, resulting in a supplement to the 1982 UN Convention in the form of an international 

agreement, popularly known as the 1995 UN Fish Stocks Agreement (UN, 1995). Under this 

agreement, straddling fish stocks are to be managed, on a region by region basis, by Regional 

Fisheries Management Organizations (RFMOs), having as members all coastal states and 

distant water fishing states claiming to have a “real interest” in the relevant fish stocks (UN, 

1995, Article 8). Examples of such RFMOs are provided by the Northwest Atlantic Fisheries 

Organization (NAFO), and the Northeast Atlantic Fisheries Commission (NEAFC).  

Under the terms of the 1995 UN Fish Stocks Agreement, only those states, which are 

members of a given RFMO, or which agree to abide by its conservation and management 

measures, are to have access to the fishery resources under the governance of the RFMO (UN, 

1995, Article 8(4)). However, the cooperative efforts of RFMOs have frequently been under-

mined by the fishing activities of non-members, in their exclusive economic zones or in the 
                                                 
2  This broad definition includes what, in the terminology of the Food and Agriculture Organization 

of the United Nations (FAO), is called highly migratory fish stocks (mainly the six major tuna 
species). According to Munro et al. (2004) there is no meaningful difference between straddling 
fish stocks and highly migratory fish stocks as far as economic analysis is concerned.  
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high seas, in contravention of the RFMOs’ management regimes. These practices are usually 

labeled as unregulated fishing. While there is general consensus that unregulated fishing is 

morally reprehensible, it has not, in the past, been entirely clear what members of a RFMO 

can do to suppress it.  

Since membership in RFMOs is voluntary, straddling fish stocks can be regarded as common 

pool resources shared between RFMOs’ members and non-members. Thus, the level of par-

ticipation and the stability of these organizations in effectively mitigating overfishing are key 

issues on the management of straddling fish stocks. These issues have mainly been addressed 

using game theory. For instance, Kaitala and Munro (1997), based on the classical dynamic 

fisheries bioeconomic model (Clark and Munro, 1975), study the threat to cooperative agree-

ments posed by prospective new members by comparing the charter members’ payoffs under 

a cooperative solution and under complete non-cooperation. Hannesson (1997) and Tarui et 

al. (2008) analyze the prospects of achieving full cooperation through threat of punishments 

using dynamic games. Empirical studies on the prospects of cooperative agreements have also 

been undertaken, e.g. by Kennedy (2003) and Lindroos (2004).  

Recently, the partition function approach has been applied to study coalition formation in 

fisheries (e.g. Pintassilgo, 2003, and Pham Do and Folmer, 2006). The advantage of this 

approach is that it captures externalities across players compactly and allows one to analyze 

also the formation and stability of subcoalitions. This approach has been further applied in 

Pintassilgo and Lindroos (forthcoming) characterizing coalition formation in fisheries based 

on classical Gordon-Schaefer bioeconomic model, though they assume symmetric players. 

This assumption has also been adopted by Kwon (2006) who obtained similar results using a 

dynamic bioeconomic model. 
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In this paper, we extend the analysis of Pintassilgo and Lindroos (forthcoming), by relaxing 

the assumption of symmetric players.3 Our main contribution is twofold. Firstly, we provide a 

comprehensive analysis of the economic and biological fundamentals that influence the 

success of coalition formation in straddling stock fisheries, e.g. the price of fish, the level and 

asymmetry of production costs, the number of players, the intrinsic growth rate of the stock 

and the carrying capacity of the ecosystem. Secondly, we generalize and qualify results 

obtained for symmetric players. By adopting a probabilistic approach over the parameter 

range, our analysis is more general than previous studies, which either assumed only two 

types of players (Hannesson, 1997, and Lindroos, forthcoming), or considered a particular 

parameter set in a deterministic empirical setting (Kennedy, 2003, and Pintassilgo, 2003). 

The paper proceeds as follows. The model, comprising the bioeconomic and the coalition 

formation model, is presented in section 2. Then, the two-stage fishery coalition game is 

analyzed backward. In section 3, assuming some coalition formation has taken place in the 

first stage, we analyze how economic and biological fundamentals effect the fish stock levels 

and the payoffs of fishing states and hence their incentive to participate in RFMOs. In section 

4, we analyze the stability of coalitions in the first stage and determine the overall success of 

coalition formation. Finally, section 5 summarizes our main results, discusses its policy 

implications and points to future research issues. 

2. The Model 

2.1 The Bioeconomic Model 

The bioeconomic model is based on the classical Gordon-Schaefer model (Gordon, 1954). 

Due to its simplicity, this model has been frequently used for game-theoretic analyses of 

internationally shared fish resources (e.g. Ruseski, 1998, and Lindroos, forthcoming). It 

                                                 
3  The assumption of symmetric players is widespread in the literature on coalition formation based 

on the partition function approach, not only on international environmental treaties but also in the 
context of various economic problems (see e.g. Bloch 2003, and Yi 2003 for an overview). 
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captures the relation between the fish stock, X, the harvest of an individual player i, iH , with 

the set of players { }1N ,...,n=  representing n different fishing states, and the fishing effort 

exerted by player i, iE , by the following three equations: 

( )
1

n

i
i

dX G X H
dt =

= −∑     (1) 

( ) 1 XG X rX
k

⎛ ⎞= −⎜ ⎟
⎝ ⎠

    (2)  

i iH qE X=     (3) 

where r  denotes the intrinsic growth rate of fish, k  the carrying capacity of the ecosystem 

(and thus the equilibrium level of X  in the absence of harvesting), and q  the catchability 

coefficient, which constitute the parameters of the model, and t  denotes time. 

According to (1), the variation of the stock in time is the difference between the stock growth 

and total harvest. Stock growth is described by the logistic function (2). This inverted U-

shaped function implies that stock growth increases up to a maximum value, often referred to 

as the maximum sustainable yield, which occurs at the stock level 2
k . Beyond this level, 

growth decreases until the stock reaches the carrying capacity of the ecosystem k . This 

captures the phenomenon that for low levels of fish stock growth is high, but once the fish 

population starts to compete for food, growth decreases until a level is reached at which the 

population stabilizes at the carrying capacity of the ecosystem. The harvest function (3) 

indicates that the harvest of each player increases with the catchability coefficient and the 

stock level (both facilitating harvesting) as well as the fishing effort. The fishing effort can be 

seen as a physical measure of the inputs devoted to harvesting, such as days spend at sea. 
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The steady stock level is given by 0dX
dt =  in (1). Upon substitution of (2) and (3), the 

steady state or equilibrium stock level can be expressed as function of the total fishing effort 

that is constant through time: 

1

n
*

i
i

kX r q E
r =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  .    (4) 

This indicates the negative relation between the equilibrium stock and players’ total fishing 

effort, 
1

n

i
i

E
=
∑ . It also illustrates the common pool problem of fisheries: the stock decreases 

with the individual fishing effort of each fishing state, iE . This externality problem is also 

evident by considering the economic rent or payoff of fishing state i, iΠ , which is defined as: 

i i i ipH c EΠ = −     (5) 

where p  is the price for fish and ic  the individual cost per unit of effort of player i .  

By allowing for different costs per unit of fishing effort, we relax the assumption of 

symmetric players. The subsequent analysis will stress that this extension leads to 

fundamental different results. 

Substituting (3) into (5), *
i i i ipqE X c EΠ = − , illustrates the fact that the revenue of player i, 

*
i iR pqE X= , is a function of the stock, which, as already pointed out, is a negative function 

of the fishing effort of all states according to (4) and hence 0i

jj ì
E

Π
≠

∂ <
∂∑ . Total cost of 

player i is given by i i iTC c E= .4  

                                                 
4  It should be noted that total cost can also be expressed in terms of iH  instead of iE , 

= i i
*i

c HTC qX , in which case it is a strictly convex function of harvest iH . Then the externality 
problem shows up in the cost function where the cost of player i is an increasing function of the 
harvest of the other players as this reduces the stock *X  and hence 0

≠

∂ <
∂∑

i

jj ì
H

Π  where 
= − i i

*i i
c HpH qXΠ . 
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2.2 The Coalition Formation Model 

We assume that a RFMO is established with the purpose of managing and conserving a given 

straddling fish stock. Participation in a RFMO is open to all nations as reflected by Article 

8(3) of the UN Fish Stocks Agreement. Moreover, states which decide against membership in 

a RFMO, cannot be prevented from harvesting. 

In order to capture these features, we chose from the set of coalition formation games the 

single coalition open membership game due to d’Aspremont et al. (1983), which has been 

frequently applied in the literature to analyze international environmental agreements (e.g. 

Carraro 2000 and Finus 2003 for an overview). In the first stage, players decide on their 

participation. Those players that join the RFMO form the coalition and are called members, 

those that do not join are called non-members and act as singletons. Note that the decisions in 

the first stage lead to a coalition structure { }1( n m )K S , −=  where S  is the non-empty set of m  

coalition members, { }1m ,...,n∈ , and 1( n m )−  is the vector of n m−  singletons. Given the 

simple structure of the first stage, a coalition structure is fully characterized by coalition S . In 

the second stage, players chose their economic strategies which are fishing efforts in our 

bioeconomic model. In each stage, strategies (participation and fishing effort) form a Nash 

equilibrium. The game is solved backward for the subgame-perfect equilibrium. 

In the following, we analyze the fishing game according to the sequence of backward 

induction. We start by analyzing the second stage, assuming that a coalition has been formed. 

Subsequently, we move to the first stage and analyze the stability of the RFMO. 

3. The Second Stage of Coalition Formation 

3.1 Preliminaries 

In the second stage, given a coalition structure { }1( n m )K S , −=  formed in the first stage, the 

vector of equilibrium fishing efforts, *E , must satisfy the following inequality system:  
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S* S* S S*
i ii S i S
( E ( S ), E ( S )) ( E ( S ), E ( S ))Π Π− −

∈ ∈
≥∑ ∑       SE , i S and∀ ∈  

    (6) 
S* * j* S* j*

j j j j( E ( S ),E ( S ),E ( S )) ( E ( S ),E ( S ),E ( S ))Π Π− −≥      jE , j S∀ ∉  

where SE  is the fishing effort vector of coalition S , SE−  the effort vector of all states not 

belonging to S , jE  the fishing effort of non-member j S∉ , and jE−  the fishing vector of all 

other non-members of S.5 Asterisks denote equilibrium strategies. From (6) it is evident that 

equilibrium fishing efforts depend on coalition S  (and on the parameters of the model which 

have been omitted for convenience). Since for every coalition S  there is a unique fishing 

vector *E ( S )  as we show below, we can simplify notation by denoting the payoff or worth of 

coalition S  by S ii S
( S ) ( S )Π Π

∈
=∑  and the payoff or worth of a non-member by j S ( S )Π ∉ . 

Thus, we define a partition function Π  such that it assigns a single real number S ( S )Π  to 

coalition S and real numbers j ( S )Π  to every singleton j S∉ : : S ( S )Π Π =6  

S j( ( S ), ( S ))Π Π .  

Note that (6) implies that *E ( S )  is derived as a Nash equilibrium between coalition S (which 

de facto acts as a meta player; Haeringer 2004) and the n-m singletons to which we refer as 

coalitional Nash equilibrium. This is to distinguish it from the Nash equilibrium which is 

identical to the coalitional Nash equilibrium fishing vector if coalition S comprises only a 

single player, S { i }= . If coalition S comprises all players, S N= , the coalitional Nash 

equilibrium fishing vector corresponds to the global optimum. In the following, however, we 

will refer to coalitional Nash equilibrium fishing efforts, stock and payoffs simply as 

equilibrium fishing efforts, stock and payoffs, respectively, when no misunderstanding is 

possible. 

                                                 
5  We use superscripts for vectors and subscripts for individual strategies. 
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In order to determine the coalitional Nash equilibrium for payoff function (5), we solve the 

following maximization problems: 

( )
S S i i i ii S i SE

Max ( S ) ( S ) pH c EΠ Π
∈ ∈

= = −∑ ∑    i S∀ ∈     (7) 

( )
j

j S j j jE
Max S pH c EΠ ∉ = −    j S∀ ∉  .    (8) 

Since the marginal revenue of the fishing effort is equal for all members, only the coalition 

member with the lowest unit cost, which we denote by min
Sc , will harvest.6 Consequently, 

denoting the fishing effort of that player by SE  and using (3) and (4), we derive: 

( ) ( )

( )

11 1
2 2

0 1

min min
S j j S

j S j S
S

min
j S

j S

r rb E if E b
q q

E
rif E b
q

∉ ∉

∉

⎧ − − < −⎪
⎪= ⎨
⎪ ≥ −
⎪⎩

∑ ∑

∑
    (9) 

( ) ( )

( )

11 1
2 2

0 1

j s k s k j
k j S k j S

j

s k j
k j S

r rb E E if E E b
q q

E
rif E E b
q

≠ ∉ ≠ ∉

≠ ∉

⎧ ⎛ ⎞
− − + + < −⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎪ + ≥ −⎪⎩

∑ ∑

∑
  (10) 

where 
min

min S
S

cb
pqk

=  and j
j

c
b

pqk
= . These parameters are usually referred to as “inverse 

efficiency parameters” (Mesterton-Gibbons, 1993) because they increase with the cost per 

unit of effort ic  and decrease with the price p and the catchability coefficient q. They always 

lie in the range [ ]0 1; .7 

                                                 
6  In order for all coalition members to harvest, one would have to depart from the assumptions of 

the Gordon-Schaefer model. Possible modifications include a harvest-effort elasticity below one 
in equation (3) or the assumption of limited fishing capacities. 

7  This can easily be shown by noting that the equilibrium stock levels in the open access regime are 
given by OA min

S SX c / pq=  and OA
j jX c / pq= . These values are obtained by substituting (3) into 

(5) and setting profits to zero, as the open access regime is characterized by the dissipation of the 
economic rent. Thus, the inverse efficiency parameters can be written as min OA

S Sb X / k=  and 
OA

j jb X / k= . These ratios always lie in the range [ ]0 1;  as the equilibrium stock levels in open 
access lie between the minimum of zero (depletion of the stock) and a maximum of the carrying 
capacity of the ecosystem (no harvest), k . 
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From (9) and (10) it is evident that best reply functions are downward sloping with a slope 

less than 1 in absolute terms. Hence, fishing efforts are strategic substitutes in this fishing 

game. Considering only interior solutions and solving (9) and (10) simultaneously, the unique 

equilibrium fishing efforts (because best reply functions are contractions) are given by: 

( )
( ) ( ) ( ) ( )1

1 1
2 2

min
S S j

j S

n m r rE ( S ) b b
n m q n m q

∗

∉

− +
= − − −

− + − + ∑   (11) 

( )
( ) ( ) ( ) ( ) ( )1

1 1 1
2 2

min
j j S k

k j S

n m r rE ( S ) b b b
n m q n m q

∗

≠ ∉

⎡ ⎤− +
= − − − + −⎢ ⎥− + − + ⎣ ⎦

∑   (12) 

where n is the total number of players and m the number of RFMO members. In order to 

ensure strictly positive fishing efforts according to (11) and (12) all ib ´s must be strictly 

smaller than 1. Moreover, it can be show that a sufficient condition for strictly positive fishing 

efforts for all possible coalition structures is (see Appendix 1): 

( ) 1l l k
k l

b b b
≠

+ − <∑ , { }1l nb max b ,...,b=  .  (13) 

Considering that the ib ´s only differ because of different cost parameters, this essentially 

means that cost parameters cannot be too dispersed in an interior solution. That is, in our 

model the n players are active fishing states; other states simply do no fish as their costs are to 

high.  

Using (11) and (12), the total fishing effort (14) is given by: 

( ) ( ) ( )1 1
2

* * min
S j S j

j S j S

rE ( S ) E ( S ) E ( S ) b b
n m q

∗

∉ ∉

⎡ ⎤
= + = − + −⎢ ⎥− + ⎣ ⎦

∑ ∑  .                                   (14) 

Upon substitution of (14) into (4) the steady-state fishing stock level is obtained.: 

( ) ( )11 1 1
2

* min
S j

j S
X ( S ) k b b

n m ∉

⎡ ⎤⎛ ⎞
= − − + −⎢ ⎥⎜ ⎟− +⎢ ⎥⎝ ⎠⎣ ⎦

∑  .  (15) 

Finally, equilibrium payoffs of coalition S  and singleton j  (using (5)) are given by: 
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( )
( )

( )
2

2 1 1
2

* min
S S j

j S

rpkS n m b b
n m

Π
∉

⎛ ⎞
= − − + +⎜ ⎟

− + ⎝ ⎠
∑   (16) 

( )
( )

( )
2

2 1 1
2

* min
j S j S k

k j S

rpkS n m b b b
n m

Π ∉
≠ ∉

⎛ ⎞
= − − + + +⎜ ⎟

− + ⎝ ⎠
∑  . (17) 

We now turn to analyze some economic fundamentals of our model. 

3.2 Economic Fundamentals and Impacts of Different Coalition Structures 

In this section, we first look at some economic fundamentals in order to deepen our 

understanding of the bioeconomic model. Then we look at the effects on different players due 

to a change in the coalition structure. This will help to explain some of the results in section 4 

related to the incentives to form coalitions and their stability. The analysis presumes that 

some coalition has formed out of the 2n  possible coalitions in the first stage. 

We first analyze how exogenous changes of the parameters of the bioeconomic model affect 

the equilibrium fishing stock and the equilibrium payoffs of players. This leads to the 

following proposition.8  

Proposition 1: Impact of Parameter Variations 

A change of the parameters of the bioeconomic model ( min
Sc =unit cost of the RFMO, jc =unit 

cost of a non-member of the RFMO, p =price of fish, q =catchability coefficient, k =carrying 

capacity and r =intrinsic growth rate of the fish stock) has the implications summarized in 

Table 1. 

Table 1 about here 

The first five parameters in the first column of Table 1 may be viewed as those that determine 

the economic environment in which fishing states operate, and the last two as those that 

                                                 
8  As the proof of Proposition 1 only requires to study the signs of the derivatives it is not given 

here. It is available upon request from the authors. All other proofs are provided in the Appendix. 
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determine the ecological environment. There are at least three main results which we think 

should receive particular attention. 

1) The ecological implications – measured as a change of the equilibrium stock – are clear-

cut and are well in line with economic intuition. An increase in the unit cost of either the 

RFMO or a non-RFMO member leads to a downward adjustment of fishing efforts of the 

affected party. This primary effect dominates the secondary effect of an expansion of 

fishing efforts by non-affected parties and hence the aggregate fishing effort decreases and 

the fish stock increases. A uniform increase of all unit costs ic , a decrease of price p , and 

a decrease of the catchability coefficient q  makes fishing less attractive and hence will 

increase the equilibrium fish stock. An increase in the carrying capacity, k , and the 

intrinsic growth rate, r , imply on the one hand a higher “restoration capacity” of the 

ecological system and, on the other hand, higher incentives to expand equilibrium fishing 

efforts. In our setting, the first effect dominates the second effect in the case of k  whereas 

both effects cancel out for r . 

2) If the unit cost of the RFMO, min
Sc , or a non-member, jc , decreases, this has a positive 

effect on own payoffs but a negative effect on the payofss of all other players. This is 

because fishing efforts are strategic substitutes and all players compete for the fish stock. 

The net effect at the aggregate cannot be generally predicted, however is negative if all 

players are symmetric before the change of cost. Predictions are also possible if all unit 

cost increase equally as this affects all players negatively. 

3) It is striking, though not surprising, given the multiple channels through which exogenous 

changes of parameters affect equilibrium payoffs that no clear-cut predictions are possible 

for the other parameters (i.e. the effect may be positive or negative) if we do not impose 

any restriction on the type of asymmetry of players, except for the case of a change of the 

intrinsic growth rate r . This clearly underlines the fact that conclusions derived from the 
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assumption of symmetric players do not always carry over to the more general case of 

heterogeneous players. In the case of symmetric players, all effects are in line with 

intuition: a higher price, catchability coefficient, carrying capacity and intrinsic growth 

rate make fishing more attractive and hence have a positive effect on the payoffs of all 

players.  

The next proposition looks at the phenomenon known in the literature on fisheries as the “new 

entrant problem” (Kaitala and Munro, 1997, Pintassilgo and Costa Duarte, 2001, and 

McKelvy et al., 2003).  

Proposition 2: New Entrant Problem 

Suppose a new player i enters the fishing game such that the number of active players 

increases from n  to 1n' n= + .  

a) If the new player acts as a singleton, the equilibrium stock *X ( S ) , the equilibrium payoff 

of all current non-members *
j ( S ),Π  as well as the equilibrium coalitional payoff *

S ( S )Π  

decreases.  

b) If the new player joins coalition S , forming S S { i },′ = ∪  then the equilibrium stock level 

will decrease, * *
S S'X ( S ) X ( S ')> , the equilibrium coalitional payoff will increase, 

* *
S S'( S ) ( S ')Π Π< , and the equilibrium payoff of all non-members j S , S ′∉  will decrease, 

* *
j j( S ) ( S ')Π Π> , if the new member is more efficient than the most efficient player of 

coalition S , min
i Sb b ,<  and will leave them all unaffected otherwise ( min

i Sb b≥ ). 

The new entrant may be seen as a previously inactive fishing state which decides now to enter 

the “game”. This may be because the relative costs of fishing (i.e. opportunity costs) or 

absolute costs of this state have decreased, making fishing now attractive. This potential 

entrant increases the competition for the fish stock.  

If the new entrant does not join the RFMO and therefore behaves as a singleton, this has a 

negative impact on all current fishing states, regardless whether they have joined the RFMO 

or not (Proposition 2a). However, if the new entrant decides to join the RFMO, effects depend 
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on its production technology (Proposition 2b). If the new entrant is less efficient than the most 

efficient RFMO member, nothing changes. Of course, the fact that *
S ( S )Π  does not change 

simply means that current RFMO members have to share their rent with one more member 

which is not in their interest. However, the alternative that the new entrant remained outside 

their RFMO would decrease their total rent. Which of the two options is preferred by the 

current RFMO members is not clear, though not an issue at stake in the context of open 

membership as entry cannot be prevented. 

If the new entrant is more efficient than the most efficient current RFMO member, 

competition for non-RFMO members increases which decreases their rents. Again the net 

effect for current RFMO members is not clear (but again not relevant because of open 

membership) as they have to share a higher economic rent with one more player.  

We now study the impacts of an enlargement of the coalition for a given number of players 

n , i.e. if a non-RFMO member joins the RFMO. 

Proposition 3: A Non-member joins the RFMO 

Let there be n  players. Suppose a non-member j S∉  joins the RFMO such that 

S S { j }′ = ∪ . 

a)  

i) The equilibrium fishing effort of the RFMO will increase, * *
S SE ( S ) E ( S )′ ′< , as well as 

those of all non-RFMO members, * *
j S j SE ( S ) E ( S )′∉ ∉ ′< . The total fishing effort will decrease, 

* *E ( S ) E ( S )′>  and hence the equilibrium stock will increase, * *X ( S ) X ( S )′< . 

ii) The coalitional payoff will increase, * *
S S( S ) ( S )Π Π ′ ′< . The payoff of all non-members, 

k S ,S ,′∉  k j≠ , will also increase, * *
k k( S ) ( S )Π Π ′<  (Positive Externality Property – PEP). 

b) The aggregate payoff of those players involved in the merger will increase or decrease, 
* * *
S j S( S ) ( S ) ( S )Π Π Π ′ ′+ <>  (Superadditivity – SAD). 

c) The aggregate payoff of all players is strictly higher in the grand coalition, S N ,=  than in 

any other coalition. 
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The intuition of part a) i) is that if player j joins the RFMO, then there is one less free-rider or 

less competition for the fish stock. Due to negatively sloped best reply functions, the coalition 

as well as the non-members will adjust their fishing efforts upwards. At the aggregate level, 

this secondary effect is dominated by the primary effect that the new number will no longer 

exert non-cooperative fishing efforts. Consequently, starting from the singleton coalition 

structure and considering a sequence of mergers, the total equilibrium fishing effort will 

decrease and the equilibrium stock level will increase with the degree of cooperation. Thus, 

cooperation helps to internalize externalities. 

Building on this intuition, part a) ii) suggests that a higher degree of cooperation has a 

positive effect on the coalitional but also on non-members´s payoff. The latter effect is known 

in the literature on coalition formation as the Positive Externality Property (PEP) (Bloch 2003 

and Yi 2003). This effect is the most important driving force why the formation of large 

stable coalitions proves difficult in the context of a common pool resource as long as nobody 

can be excluded (Finus 2003). This problem is severe despite the fact that mergers increase 

the coalitional payoff, but – even more important – despite the fact that the total payoff of all 

players involved in the mergers may increase, a condition which has been called 

superadditivity (SAD), and referred to in part b).  

On the one hand, even if SAD holds, as long as the PEP-effect is stronger, which tends to 

occur for large coalitions, free-riding may still be attractive. On the other hand, the free-rider 

problem is intensified when SAD fails. This failure is not uncommon in coalition formation 

games and applies to many economic problems (see e.g. Eyckmans and Finus 2004 for an 

overview). Due to negatively sloped reaction functions the good intentions of the coalition 

members are obstructed by non-members.  

Finally, not surprisingly, part c) states that the aggregate economic rent in the grand coalition, 

corresponding to the global optimum, is strictly higher than in any other coalition. This 
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simply follows from the fact that by assumption the total rent over all players is maximized in 

the grand coalition (which proves the term “higher”) and the equilibrium effort vector *E ( N )  

differs in at least one element from any other coalition S N≠  (which proves the term 

“strictly”) as can be seen from equations (11) and (12). 

4. First Stage of Coalition Formation: Stability and Overall Success  

4.1 Preliminaries 

Section 3 clarified how the partition function assigns to every coalition S  a vector of payoffs 

or worth, S j: S ( S ) ( ( S ), ( S ))Π Π Π Π=6  in the second stage of the coalition formation 

process and how these values depend on the model parameters, on a new entrant or a non-

member joining the RFMO. Now we move on to the first stage, analyzing which coalitions 

are stable.  

In the first stage, participation strategies also form a Nash equilibrium. This is characterized 

by the absence of incentives to change the participation decision, both for RFMO members 

and non-members:  

Internal Stability: ( ) { }( )i iV S V S \ i i S≥ ∀ ∈         (18) 

External Stability: ( ) { }( )j jV S V S j j S≥ ∪ ∀ ∉        (19) 

where we assume that there is some valuation function (which has also been called per-

membership partition function; e.g. Bloch 2003) which maps the aggregate payoff or worth 

into valuations such that ( ) ( )S i S ii S
i N

( S ) S V SΠ Π ∉∉
∈

+ =∑ ∑ . This means that valuations add 

up to the total worth of the game and there are no resources outside it. 

The analysis based on individual payoffs, implied by the valuation function, requires some 

assumption about the sharing rule. Strictly speaking, though often neglected, this would even 

be true if we assumed equal sharing for symmetric players. Though it may seem obvious, this 
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is nevertheless an assumption. In the following, we show that for the present game the 

analysis can be based on very general assumptions.  

Firstly, let us concentrate on internal stability as this is the most important dimension when 

analyzing free-rider problems in our context. Assume that the coalitional payoff is only shared 

among its members, i.e. S ii S
( S ) V ( S )Π

∈
=∑ , and i S i S( S ) V ( S )Π ∉ ∉= . Using condition (18) 

and summing over all members of coalition S  we obtain: 

( ) { }( )S i
i S

S S \ iΠ Π
∈

≥∑  .  (20) 

Condition (20) has been termed potentially internally stability (PIS) by Eyckmans and Finus 

(2004). As already noted by Pintassilgo (2003), if PIS holds, then there exists some sharing 

rule which makes coalition S  internally stable. We can also conclude that, whenever PIS 

fails, internal stability fails regardless of the sharing rule. This suggests that internal stability 

can be analyzed without prior assumptions about the sharing scheme.  

Secondly, consider external stability in (19). Clearly, in an open membership it does make 

sense to look for a similar condition which could be called potential external stability. 

However, suppose we invoke the sharing scheme proposed by Eyckmans and Finus (2004) 

and Weikart (2005) which gives every player in coalition S  its free-rider payoff plus a share 

i ( S )λ  of the surplus of the coalitional payoff over the sum of free-rider payoffs ( S )Δ :  

{ }( ) ( ) { }( )i i i i
i S

V ( S ) S \ i ( S ) ( S ); ( S ) S S \ iΠ λ Δ Δ Π Π
∈

= + = −∑ ,  

                                                1ii S
( S )λ

∈
=∑ , 0i ( S ) , i Sλ > ∀ ∈  .  (21) 

It is easy to see that whenever condition (20) holds, i.e. coalition S  is PIS, then this sharing 

scheme makes S  internally stable, irrespective of weights iλ . If, on the contrary, coalition S  

is not PIS (hence 0( S )Δ < ), there are no weights that make S  internally stable. Moreover, 

(21) allows us to establish a direct link between internal and external stability: if coalition S  
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is not PIS, then all coalitions { }S \ i  for all i S∈  are externally stable, irrespective of weights. 

Consequently, both the sets of internally and externally stable coalitions (and hence the set of 

stable coalitions) are independent of weights. Moreover, it means that we can infer external 

stability from PIS. 

Thirdly, as Carraro et al. (2006) prove, given sharing scheme (21), every stable coalition 

cannot be enlarged by coalition members persuading non-members to join through the use of 

transfers. The intuition is simple. If coalition S  is stable, every coalition S { j }∪ , for all 

j S ,∉  is not PIS which is a necessary condition for this strategy to be successful. 

Summarizing, by assuming the general sharing scheme in (21) we determine the largest stable 

coalitions. We can neglect transfers between the RFMO and outsiders earmarked to enlarge a 

coalition. Checking PIS allows to infer internal and external stability and hence stability. PIS 

always holds for the trivial coalition structure in which all players behave as singletons 

( )1m =  as no player can deviate further. For all other cases ( )2m ≥ , PIS-condition (20) has 

to be analyzed. Using equilibrium payoffs (16) and (17), this condition can be written as: 

( ) ( )
2 22

min min3 1 1 1 2
2 S j i S k

j S i S k i S

n m n m b b n m b b b
n m ′

′∉ ∈ ≠ ∉

⎛ ⎞ ⎛ ⎞− +⎛ ⎞ − − + + ≥ − − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑   (22) 

where { }S S \ i′ =  and min
Sb ′  is the lowest b in coalition S ′ . The interesting aspect of this 

condition is that, for a given number of players n , and coalition size m , potential internal 

stability only depends on the vector ( )1,..., nb b b=  where we may recall that i
i

cb pqk= , 

0 1ib≤ ≤ .  

In the case of symmetric players, Pintassilgo and Lindroos (forthcoming) have shown that 

(22) can only be satisfied if and only if 2n m= = . Thus for any larger number of players only 

the singleton coalition structure is stable. Hence, it is important to test whether this also holds 

in the context of asymmetric players. As we do no want to impose any restriction on the 
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asymmetry of players (except that parameter restriction (13) must hold for an interior 

solution), we have to resort to simulations which are described in the next section. 

4.2 Simulation Method 

4.2.1 Introduction 

The use of simulation methods in the stability analysis of fisheries and international 

environmental agreements was recently introduced in the literature (Kronbak and Lindroos 

2006). Also Dellink et al. (forthcoming) analyze stability of agreements reducing greenhouse 

gases in the context of uncertainty, using Monte Carlo simulations to estimate the probability 

of a given coalition being stable, which they call stability likelihood.  

This paper also estimates the stability likelihood of different coalition structures. Furthermore, 

we compute indexes that measure the success of coalition formation. For this it is assumed 

that the inverse efficiency parameters are uniformly distributed, ( )0 1ib U ,∼ , { }1i ,...,n∀ ∈ . 

We opt for this distribution because of its simplicity and the fact that it is completely defined 

by the parameter range. An algorithm for Monte Carlo simulations is programmed using the 

software package Matlab, incorporating the restriction of strictly positive fishing effort (13). 

The simulation of the vector b  was repeated whenever the restriction was violated. 

4.2.2 Stability Likelihood 

According to (22), internal stability of a m -size coalition, for a given number of players n, is 

completely determined by the vector b . Simulating a large number of vectors b  allows to 

estimate the probability of a random m -size coalition being internally stable, i.e. its internal 

stability likelihood (ISL), hereafter denoted by θ . This parameter as well as the other 

following probabilities are estimated through the “sampling proportion”. In the case of ISL, 

this is ˆ Y
nsimθ =  where nsim  denotes the number of simulations and Y  the number of times 
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a random m -size coalition is internally stable in those simulations. This is an unbiased 

estimator and also the maximum likelihood estimator for θ .  

A total of 50,000 simulations are undertaken. As the standard deviation of the estimator is 

given by ( ) ( )1ˆ
nsim

θ θ
σ θ

−
= , the maximum value is only ( )ˆ 0.002σ θ � , which occurs for 

0 5.θ = . Furthermore, generally, the central limit theorem applies to θ̂  and hence it follows 

approximately a normal distribution.9 Therefore, the maximum margin of error for confidence 

intervals can be computed. For instance, the maximum margin of error of a 95% confidence 

interval is only about 0.004. Hence, the high number of simulations guarantees a very low 

margin of error for the estimated probabilities.  

The probability of a random m -size coalition being externally stable, i.e. its external stability 

likelihood (ESL), was also estimated. As pointed out in section 4.1, external stability is linked 

to internal stability through sharing scheme (21). Hence, coalition S  is externally stable if all 

coalitions S { j }∪  are not PIS, i.e., the surplus ( S { j })Δ ∪  is negative. Since PIS and hence 

the surplus only depends on the vector b , it is possible to determine directly external stability 

for each vector. Following the same procedure to estimate ISL, ESL of a random m -size 

coalition was estimated as the proportion of externally stable coalitions over all samples. 

Finally, the probability of a random m -size coalition being stable, i.e. its stability likelihood 

(SL), is estimated as the proportion of coalitions that are simultaneously internally and 

externally stable in the simulations. 

                                                 
9  Using the rule of thumb that ( ) 5nsim θ >  and ( )( )1 5nsim θ− >  (Lind et al. 2005), it applies for 

all θ  in the range [ ]0 0001 0 9999. ; . . 
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4.2.3 Overall Success Indexes 

We consider two relative welfare measures. The first is called the Social Gain Index (SGI) 

and is a measure of the relative gain from cooperation that could be obtained if the grand 

coalition formed and is defined as follows: 

( )
( ) ( )( )

( )
1

1
n

i n
i

N
SGI b,n

N

Π Π

Π
=

−
=

∑
 

where ( )NΠ  represents the aggregate payoff of the grand coalition and ( )( )
1

1
n

i n
i

Π
=
∑  the 

aggregate payoff when all players are singletons. 

As the vector b is simulated over a uniform distribution, the expected value of this index, 

( )E SGI( n ) , is estimated as the average over all samples:  

( )
( )( )

1

nsim

SGI b ,n
SGI n

nsim
==
∑
A

A
 

where nsim  represents the number of simulations. 

The second index is called the Closing the Gap Index (CGI) and is a measure of the relative 

gain from cooperation obtained by stable coalitions. It is a measure of how much stable 

equilibria succeed in closing the gap between full cooperation and no cooperation. For a given 

stable coalition ( )*
jS  this index is defined as: 

( )( )
( ) ( ) ( )( )

( ) ( )( )
1

1

1

1

*
j

j

n
* *
j i j i nS

i S i*
j n

i n
i

S S

CGI S b ,n
N

Π Π Π

Π Π

∉ =

=

⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠=
−

∑ ∑

∑
 . 

Assuming that all stable equilibria are equally likely, for a given vector b , the average CGI  

index can be computed as the average of the values obtained for each equilibrium: 
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( )
( )( )

1

nsc( b )
*
j

j

CGI S b ,n
CGI b,n

nsc( b )
==
∑

 

where ( )nsc b  represents the number of stable coalitions for a given vector b . Finally, the 

expected value of CGI , ( )E CGI( n ) , is estimated as the average value over all generated 

samples: 

( )
( )( )

1

nsim

CGI b ,n
CGI n

nsim
==
∑
A

A
 . 

Both ( )SGI n  and ( )CGI n  are the natural estimators of the expected values of both indexes 

as they are unbiased and the maximum likelihood estimators. Furthermore, the high number 

of simulations used (nsim=50,000) guarantees a low standard deviation of these estimators. 

4.3 Simulation Results: Base Case 

In this section, we analyze simulation results of what we call the base case. That is, each 

element of the vector b  is uniformly distributed in the range [0;1]. Table 2 displays the 

estimates of internal stability likelihood for 2 to 10 players. Recall that the singleton coalition 

is stable by definition. Hence, all diagonal elements in Table 2 show probability 1. 

Table 2 about here 

Result 1 

For a given number of players, n , internal stability likelihood decreases with the number of 

coalition members, m. 

Result 1 compares probabilities within columns. This shows that free-rider incentives increase 

with the coalition size. According to Proposition 3, an increase of the coalition size produces 

two opposite effects on the coalitional surplus, which is the difference between the coalitional 

payoff and the sum of the free-rider payoffs. On the one hand, the coalitional payoff increases 

with the number of RFMO members, though the aggregate payoff of those players involved in 
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the enlargement may not necessarily increase, i.e. superadditivity may fail to hold. On the 

other hand, it also increases the sum of free-rider payoffs, both because of a higher number of 

potential free-riders in the enlarged coalition, and an increase of the free-rider payoffs of the 

original members due to the positive externality effect. The results show that this second 

effect is stronger. Note that the case of 2n =  is an exception. In this particular case saying 

that the grand coalition is potential internal stability is equivalent to saying that the grand 

coalition generates a strictly higher aggregate payoff than in any other coalition (Proposition 

3c). 

Result 2 

Internal stability likelihood of a coalition with m n k= −  members, 0 1k { ,...,n },= −  

decreases with the number fishing states n.  

Result 2 compares probabilities within rows. From Table 2 it is evident that the probability of 

the grand coalition being internally stable decreases with the number of players. Already for 

seven players internal stability likelihood is zero in the example. In other words, for a not too 

small number of fishing states it is very unlikely that a stable RFMO comprises all members 

(as internal stability is a necessary condition for stability). However, also for smaller 

coalitions the likelihood of internal stability decreases with the number of fishing states. This 

may be interpreted as follows: the more intense is the competition for the fish stock, the more 

unlikely it is that a RFMO of particular size is internally stable. 

Comparing rows for a given number of coalition members m n k= −  can be related to the 

“new member problem” mentioned in Proposition 2b. Accordingly, when a new entrant joins 

the coalition, this increases or leaves the coalitional payoff unaffected and decreases or leaves 

the payoff of the singletons, and also free-riders, unaffected. Nevertheless, theoretical 

predictions about internal stability are not straightforward for at least two reasons. Firstly, 

even if the coalitional payoff increases it has to be shared with one more member. Secondly, 

even if the free-rider payoffs of the original coalition members decrease, there is now one 
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more potential free-rider and hence the sum of free-rider payoffs may increase. According to 

the simulations, the sum of free-rider payoffs increases more than the coalitional payoff 

causing internal stability likelihood of a coalition with m n k= −  members to decreases with 

n . 

Turning now to external stability (see Table 3) we notice that this is basically the mirror 

image of internal stability. This is due the link between internal and external stability 

introduced by the general transfer scheme (21).  

Table 3 about here 

Result 3 

For external stability Results 1 and 2 are reversed. 

For a given number of players, external stability likelihood increases with the number of 

players (comparison within a column). That is, it becomes less attractive for non-RFMO 

members to join the RFMO. Furthermore, for a given number of singletons, k , external 

stability likelihood increases with the number of players, n (comparison within rows). 

Finally, simulation results on stability, which comprises both internal and external stability, 

are displayed in Table 4. As internal stability decreases within a column from the top to the 

bottom entry and decreases within a row from the very left to the very right entry (see Table 

2), and just the opposite holds for external stability (see Table 3), it is not surprising that the 

regular patterns observed above in Tables 2 and 3 are not found in Table 4. Nevertheless, the 

results in Table 4 can be summarized as follows. 

Table 4 about here 

Result 4 

For a sufficiently large number of fishing states (e.g. 5n ≥ ) the stability likelihood of a 

RFMO with a significant number of fishing states (e.g. 3m n≥ − ) is small and tends sharply 

to zero as n  increases. 
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This result confirms an observation already made for internal stability: in the presence of a 

sufficiently fierce competition for the fish stock, the formation of a RFMO of a size that can 

make a noticeable difference to the overfishing of the stock is very unlikely. Only in fisheries 

characterized by few harvesting states, i.e. two or three, is the formation of a stable RFMO 

involving all states a likely outcome. This is compactly summarized by our two indexes (see 

section 4.2 for a definition). On the one hand, the estimates of ( )E SGI( n ) , ( )SGI n , 

measuring the relative difference between the global optimum (i.e. full cooperation) and the 

Nash equilibrium (i.e. no cooperation) increase with the number of fishing states. In other 

words, the more states engaged in fishing, the more prompting would be the need for 

cooperation. On the other hand, with an increasing number of fishing states the success of 

cooperation declines as measured by the estimates of ( )E CGI( n ) , ( )CGI n . In the next 

section we will test the robustness of this conclusion.  

4.4 Simulation Results: The Asymmetry and Efficiency Effect 

In this section, we analyze two effects: the asymmetry and the efficiency effect. In order to 

isolate the effect of asymmetry, we run simulations for different ranges of each element of the 

uniformly distributed vector b  (implying different standard deviations) but with the same 

expected value: ( )iE b . Given the definition of i ib c
pqk

= , the larger its standard deviation, 

the more states differ in terms of unit production costs ic . A representative example includes 

the estimates of ( )E SGI( n )  and ( )E CGI( n ) , for 0 2ib .=  (no asymmetry), [ ]0 1 0 3ib . ; .∈  

and [ ]0 0 4ib ; .∈  for all i N∈  in Table 5. The result can be summarized as follows. 

Result 5 

For given number of players 2n >  and ( )iE b , ( )E CGI( n )  increases with the range of the 

parameters ib , i.e. the degree of asymmetry. 

Table 5 about here 
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This result suggest that the success of coalition formation is positively correlated with the 

degree of cost asymmetry among fishing states. The significance of this result gains even 

more momentum by recalling from section 4.1 that in the case of symmetric players no 

RFMO would be stable for 2n > . Hence, as long as 2n > , CGI  would always be zero for 

symmetric players irrespective of the value of the parameters ib . In other words, asymmetry 

is not an obstacle but conducive to the stability and success of establishing a RFMO. 

The simplest explanation of this striking result is that with heterogeneous players the success 

rate of coalition formation can almost not be worse than in the benchmark case of symmetric 

players. A more elaborate explanation suggests that the larger the cost asymmetries, the larger 

are the gains from cooperation. Not only does the coalition internalize the externality within 

the RFMO (which also applies to symmetric players), but it also exploits the gains from a 

cost-effective allocation of fishing efforts (which increase with the degree of cost asymmetry). 

Due to sharing scheme (21), these gains transform into more successful coalitions.10 

In order to isolate the effect of efficiency, we run simulations for different ( )iE b  but with the 

same range (and hence same standard deviation). The higher ( )iE b , the lower the overall 

efficiency. Table 5 shows estimates of ( )E SGI( n )  and ( )E CGI( n )  for a representative 

example: [ ]0;0 2ib .∈ , [ ]0 2;0 4ib . .∈  and [ ]0 4;0 6ib . .∈ , implying that ( )iE b  increases from 

0.1 to 0.3, reaching finally 0.5. The results can be summarized as follows. 

Result 6 

For a given number of players 2n > , and given range of the parameters ib , ( )E CGI( n )  

increases with ( )iE b , i.e. the level of inefficiency. 

                                                 
10  This explanation has been pointed out to us by H.-P. Weikart. See also Weikart (2005). 
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According to this result the lower the efficiency level, or equivalently the higher the ( )iE b , 

the higher ( )E CGI( n ) . Given that i ib c
pqk

= , a uniform increase of this parameter for all 

players can be due to a uniform increase in the unit cost ic , a decrease in the price p, the 

catchability coefficient q or the carrying capacity of the ecosystem k. According to 

Proposition 1, a change of these parameters in this direction reduces the total fishing effort as 

fishing becomes less attractive. Hence, competition for the fish stock is lower, making it 

easier to form larger stable coalitions. Finally, looking at Tables 4 and 5 together shows a 

robust result.  

Result 7 

For a given range of the parameters ib , ( )E SGI( n )  increases and ( )E CGI( n )  decreases 

with the number of players. 

That is, the larger the relative gap between social optimum and Nash equilibrium, 

( )E SGI( n ) , which increases with the number of players engaging in fishing, the lower is the 

relative average success of forming stable RFMOs. Hence, the paradox of the global 

commons, which has first been described for global emissions by Barrett (1994), also applies 

to international fisheries: whenever cooperation would be most needed, it achieves only little. 

5. Summary and Conclusions 

This paper analyzed the formation, stability and success of Regional Fisheries Management 

Organizations (RFMOs) in managing straddling fish stocks. For this the classical Gordon-

Schaefer bioeconomic model was linked a coalition formation model. In the first stage, 

fishing states decide whether to join the RFMO or to remain outside. In the second stage, 

RFMO members coordinate their fishing efforts whereas non-members behave non-
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cooperatively. The game is solved backward, requiring that strategies form a Nash 

equilibrium in each stage. A central and new feature of our model is the differences in unit 

costs of harvesting across fishing states.  

The effects of an exogenous change of the parameters of the model, as well as the number of 

players and the coalition size, on the fish stock and the payoffs of players − affecting their 

incentives to participate in a RFMO − could be derived analytically. In contrast, in analyzing 

the implications for stability and the overall success of RFMOs, it was necessary to rely on 

Monte Carlo simulations which showed a clear-cut and robust pattern. Among the many 

results forthcoming from the analysis, we would like to highlight three. 

1) The larger the number of fishing states that compete for the fish stock, the higher are the 

relative gains from full cooperation, but the lower is the likelihood that large RFMOs are 

stable and their relative success of closing the gap between full and no cooperation. The 

number of fishing states includes those currently actively engaging in fishing which may 

change if a previously non-active state decides either to join the RFMO or to behave non-

cooperatively. This paradox is due to the fact that RFMO members cannot exclude non-

members from harvesting the fish stock. RFMO endeavors are contradicted by non-members, 

as fishing efforts are strategic substitutes. The larger the RFMO, the more non-members 

benefit from the cooperative management efforts of the RFMO, which reduces their incentive 

to join the RFMO. This result is in line with empirical findings on the success of various 

RFMOs surveyed in Bjørndal and Martin (2007) who conclude (p. 35): “The larger the 

number of actual and potential players, the more difficult it is to achieve a cooperative 

solution, and the greater the incentive for some players to free-ride”. 

2) The higher the overall efficiency of all fishing states in harvesting, the lower the relative 

success of coalition formation. In our model, a high efficiency was related to either low unit 

production costs, a high market price for fish, a high catchability coefficient or a high 
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carrying capacity of the ecological system. All this makes fishing attractive; increasing the 

competition for the fish stock, but is detrimental to the formation of stable RFMOs that 

successfully manage to preserve the fish stock at high levels. This suggests that the rapid 

technological progress in harvesting straddling fish stocks that took place over the last two 

decades (High Seas Task Force 2006) may also have been pivotal for the difficulties in 

forming stable RFMOs. 

3) The higher the cost asymmetry among fishing states, the higher the relative success of 

RFMOs. This result only assumed a very general sharing scheme of the gains from 

cooperation and - to the best of our knowledge - has not been shown before. At first thought 

one would have expected that asymmetry would make coalition formation more difficult. 

However, it then became clear that cost asymmetries increase the potential gains from 

cooperation through a cost-effective allocation of fishing efforts. This potential is fully 

exploited in our model through the optimal sharing scheme that we applied. An important 

implication of this “optimistic” result is that cost asymmetries, e.g. between costal and distant 

water fishing states, may not be an obstacle to the formation of cooperative agreements but, 

on the contrary, can foster it. 

The overall conclusion is that, if the international fishing community does prove to be 

incapable of suppressing unregulated fishing, the outlook for the emerging RFMO regime is 

bleak. Our findings are in line with a recently released report by an international panel of 

experts on RFMOs, which states that “the success of international [fisheries] cooperation 

depends largely on the ability to deter free riding” (Lodge, et al., 2007, p. x) 

This paper opens at least two avenues for further research. Firstly, the model can be used to 

analyze in more detail institutional and legal measures to curb unregulated fishing. Secondly, 

the model could be generalized to a dynamic bioeconomic model which explicitly models the 

migration of the fish stock and extends asymmetry to other model parameters. 
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Appendix I: Derivation of Equations (11), (12) and (13) 

From (9) and (10), strictly positive fishing efforts imply: 

( )min 11
2 2S S j

j S

rE b E
q ∉

= − − ∑          (A1) 

( ) 11
2 2j j s k

k j S

rE b E E
q ≠ ∉

⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
∑  .        (A2) 

Summing (A2) over all j S∉  gives 

( ) ( )1
1 1j j S

j S j S

r n mE b E
q n m n m∉ ∉

−
= − −

− + − +∑ ∑  .      (A3) 

Substituting (A3) into (A1) and solving for SE  gives (11) in the text. Applying a similar 

procedure leads to (12) in the text. A sufficient condition for 0*
SE ( S ) >  in (11) and 

0*
j SE ( S )∉ >  in (12) is: 

1 1 0min
S j

j S
A ( n m )b b

∉

= − − + + >∑  

1 1 0min
j S k

k j S

B ( n m )b b b
≠ ∉

= − − + + + >∑  

respectively. Both conditions are assumed to hold throughout the paper and will be used 

frequently in the subsequent proofs. As we show below in Appendix III, *
SE ( S )  and *

j SE ( S )∉  

increase with the number of coalition members, m . Moreover, for 1m = , ∗ ∗=S jE ({ k }) E ({ k })  

and j lE ({ k }) E ({ k })∗ ∗>  if j lb b< . Thus, a sufficient condition for strictly positive fishing 

efforts of all players and for all possible coalition structures is derived by substituting 1m =  in 

B and replacing jb  by lb : 1 0l k
k l

B nb b
≠

= − + >∑  with { }1l nb max b ,...,b ,=  which is equivalent 

to (13) in the text. Hence, condition (13) is a sufficient condition for 0A >  and 0B >  to hold. 
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Appendix II: Proposition 2 

a) Assume a new player enters the game such that 1n n′ = + . Suppose the new player i  acts as 

a singleton, then m m′ = . Let 1* * *X ( S ) X ( S , n ) X ( S ,n )Δ = − + . Then, using (15) in the text: 

( ) ( ) ( ) ( ) ( )1 11 1 1 1 1 1 1
2 2

* min min
S j S j i

j S j S
X ( S ) k b b k b b b

n m n' m'
Δ

∉ ∉

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − + − − − − + − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− + − +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑
 
After some manipulation we derive: 

( )1 1* min
i S k

k i S
sign( X ( S )) sign n m b b bΔ

′≠ ∉

⎡ ⎤′= − − + − +⎢ ⎥
⎣ ⎦

∑  

where the term in brackets is condition 0B >  for 1n n′ = +  players and hence 0*X ( S )Δ > . 

Let 1* * *
S S S( S ) ( S , n ) ( S ,n )ΔΠ Π Π= − + . Then using (16) in the text: 

( )
( )

( )
( )

2 2

2 21 1 1 2
2 3

* min min
S S j S j i

j S j S

rpk rpk( S ) n m b b n m b b b
n m n m

ΔΠ
∉ ∉

⎛ ⎞ ⎛ ⎞
= − − + + − − − + + +⎜ ⎟ ⎜ ⎟

− + − +⎝ ⎠ ⎝ ⎠
∑ ∑

 

We find after some basic manipulations:  

( )1 1* min
S i S j

j S
sign( ( S )) sign n m b b bΔΠ

∉

⎡ ⎤
′= − − + + +⎢ ⎥

⎣ ⎦
∑  

where the term in brackets is 0B >  for 1n n′ = +  players from above and hence 0*
S ( S )ΔΠ > . 

A similar procedure, letting 1* * *
j S j S j S( S ) ( S , n ) ( S ,n )ΔΠ Π Π∉ ∉ ∉= − +  and using (17) in the 

text, gives: 

( )1 1* min
j S i S k

k i S
sign( ( S )) sign n m b b bΔΠ ∉

≠ ∉

⎡ ⎤′= − − + + +⎢ ⎥
⎣ ⎦

∑  

where the term in brackets is 0B >  for 1n n′ = +  players and hence 0*
j S ( S )ΔΠ ∉ > . 
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b) Again, assume a new player enters the game such that 1n n′ = + . Suppose the new player i  

joins coalition S  such that S S { i }′ = ∪ , then 1m m′ = + . If min
i Sb b< , then min

S ib b′ =  and if 

min
i Sb b≥ , then min min

S Sb b′ = . Since  

( )
*

min

( ) 0
2S

X S k
b n m

∂
= >

∂ − +
 

and 2 2n m n m′ ′− + = − + , *( )X S  decreases if min
i Sb b<  and remains constant if min

i Sb b≥ . 

Considering (16) and (17) in the text, it is evident that the coalitional payoff increases and the 

payoff of a non-member decrease if min
i Sb b<  and both remain constant if min

i Sb b≥ . 

Appendix III: Proposition 3 

Consider n  players and a given coalition S  with m  members. Suppose a singleton player i  

joins coalition S  such that S S { i }′ = ∪  and hence 1m m′ = + . Denote min
Sb ′  the smallest kb  in 

coalition S ′ . Let * * *E E ( S ) E ( S )Δ ′= − . Then using (14) in the text: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
2 1

* min min
S j S j

j S j S

r rE b b b b
n m q n m q

Δ ′
′∉ ∉

⎡ ⎤ ⎡ ⎤
= − + − − − + −⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦

∑ ∑  . 

After some basic manipulations, we derive:  

( ) ( ) ( ) ( )( )1 1 2 1* min min min
S j i S S

j S
sign E sign b b n m b b bΔ ′

∉

⎡ ⎤
= − − − − − − + − + + −⎢ ⎥

⎣ ⎦
∑  . 

If min
i Sb b< , then min

i Sb b ′= . Replacing min
Sb ′  by ib  in the expression above, we have: 

[ ]*sign( E ) sign AΔ =  . 

If min
i Sb b≥ , then min min

S Sb b ′= . Replacing min
Sb ′  by min

Sb  in the expression above, we have: 

[ ]*sign( E ) sign BΔ =  .  
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Since 0A >  and 0B >  by assumption in Appendix I, 0*EΔ > . 

Subtracting 1
2 SE  on both sides of equality (A1) above, using the equilibrium values of 

variables and rearranging terms, we find: 

( )* min *( ) 1 ( )S S
rE S b E S
q

= − −  . 

From above we know that * *( ) ( )E S E S′> , min min
S Sb b ′≥ , { }S S i′ = ∪  and hence 

* *( ) ( )S SE S E S′ ′< . Applying a similar procedure shows that * *( ) ( )j S j SE S E S′∉ ∉ ′< . Finally, since 

the stock decreases with the total fishing effort, as this is evident from equation (4) in the text, 

* *( ) ( )X S X S′< . Taken together, this proves Proposition 3a, i. 

Consider now the payoffs and let * * *
S ,S S S( S ) ( S )ΔΠ Π Π′ ′ ′= − . Using (16) in the text, we find 

after some manipulation (proceeding along the same lines to sign *EΔ ):  

( ) ( ) ( )21 2 1 2* min min
S ,S S S j i

j S
sign( ) sign n m ( n m )b n m b b n m bΔΠ ′ ′

∉

⎡ ⎤
= − − + − + − + + − − +⎢ ⎥

⎣ ⎦
∑  . 

If min
i Sb b< , then min

i Sb b ′= . Replacing min
Sb ′  by ib  in the expression above, we have: 

( ) ( )( )( )21 1 1 1* min min
S ,S i S j S i

j i S
sign sign ( n m )b b b n m b bΔΠ ′

≠ ∉

⎡ ⎤⎛ ⎞
= − − + + + + − + − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑  . 

The first term in brackets is condition 0B > . The second term is strictly positive because 

n m>  (due to the assumption { }S S i′ = ∪ ) and the last term is positive by assuming 

min
i Sb b< . 

If however min
i Sb b≥ , then min min

S Sb b ′= . Replacing min
Sb ′  by min

Sb  in the expression above, we 

have: 
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( ) 1 1* min
S ,S i S j

j i S
sign sign ( n m )b b bΔΠ ′

≠ ∉

⎡ ⎤
= − − + + +⎢ ⎥

⎣ ⎦
∑  

where the term in brackets is condition 0B > . Thus, 0*
S ,SΔΠ ′ > . 

A similar procedure along the lines of signing *
S ,SΔΠ ′  (using conditions 0A >  and 0B > ), 

letting * * *
j S ,S j S j S( S ) ( S )ΔΠ Π Π′ ′∉ ∉ ∉ ′= −  would show that 0*

j S ,SΔΠ ′∉ > . Taken together, this 

proves Proposition 3a, ii. 

If superadditivity holds, then ( )* * *
S S i( S ) ( S ) ( S )Π Π Π′ ′ ≥ + , S S { i }′ = ∪ , i S∉ . Using (16) 

and (17) in the text, this implies: 

( )
( )

( )
( )

( )
( )

2

min
2

2 2
min min

2 2

1
3

1 1 1 1
2 2

S j
j S

S j i S k
j S k i S

rpk n m b b
n m

rpk rpkn m b b n m b b b
n m n m

′
′∉

∉ ≠ ∉

⎛ ⎞
− − + ≥⎜ ⎟

− + ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − + + + − − + + +⎜ ⎟ ⎜ ⎟

− + − + ⎝ ⎠⎝ ⎠

∑

∑ ∑
 

Dividing through by rpk , assuming symmetric players, this requires: 

( )
2

2 21 2 0
1

n mb
n m

⎡ ⎤− +⎛ ⎞− − ≥⎢ ⎥⎜ ⎟− +⎝ ⎠⎢ ⎥⎣ ⎦
 

or since 1 0b− >  

2 2 22 1.41
1 2 1

n m n m
n m
− + −

≥ ⇔ − ≤
− + −

�  . 

Hence if and only if 1m n= −  does superadditivity hold. This proves Proposition 3b. 

Proposition 3c has been proved in the text. 
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Table 1: Economic Fundamentals 

Parameter Stock 
*X ( S )  

Profit of S 
*
S ( S )Π  

Profit of j S∉  
*
j ( S )Π  

Total Profits 
* *
S j

j S
( S ) ( S )Π Π

∉

+∑

  gen. sym. gen. sym. gen. sym. 

min
Sc  + −  −  + + und. −  

jc  + + + k j≠ = +, 
j = −  

k j≠ = +, 
j = −  

und. −  

all ic  + −  −  −  −  −  −  

p  −  und. + und. + und. + 
q  −  und. + und. + und. + 

k  + und. + und. + und. + 

r  0 + + + + + + 
Legend: “gen.” stands for general which allows for heterogeneous players, “sym.” stands for 
symmetric players, + (− ) means an increase in this parameter (first column) has a positive (negative) 
effect on equilibrium levels in subsequent columns, and “und.” stands for undetermined effect. In the 
case of a change of min

Sc  and jc , symmetry means symmetry before the change. “all ic ” means a 
uniform change 0idc h= > . 

Table 2: Internal Stability Likelihood Estimates  

   Number of Players (n) 
   2 3 4 5 6 7 8 9 10 

n 1 0.777 0.345 0.103 0.022 0.004 0.001 0 0 
 n-1 1 0.826 0.417 0.147 0.037 0.007 0.001 0 0 
 n-2 – 1 0.646 0.273 0.080 0.019 0.004 0.001 0 
 n-3 – – 1 0.538 0.195 0.054 0.011 0.002 0.001
 n-4 – – – 1 0.466 0.150 0.037 0.007 0.002
 n-5 – – – – 1 0.409 0.120 0.026 0.005
 n-6 – – – – – 1 0.367 0.098 0.021
 n-7 – – – – – – 1 0.333 0.081
 n-8 – – – – – – – 1 0.308
 

N
um

be
r o

f C
oa

lit
io

n 

M
em

be
rs

 (m
) 

n-9 – – – – – – – – 1 
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Table 3: External Stability Likelihood Estimates 

   Number of Players (n) 
   2 3 4 5 6 7 8 9 10 

n 1 1 1 1 1 1 1 1 1 
 n-1 0 0.223 0.655 0.897 0.978 0.996 0.999 1 1 
 n-2 – 0.028 0.412 0.773 0.938 0.988 0.998 1 1 
 n-3 – – 0.036 0.499 0.832 0.959 0.992 0.999 1 
 n-4 – – – 0.035 0.560 0.867 0.969 0.995 0.999
 n-5 – – – – 0.030 0.610 0.891 0.977 0.996
 n-6 – – – – – 0.026 0.648 0.908 0.982
 n-7 – – – – – – 0.025 0.677 0.922
 n-8 – – – – – – – 0.020 0.702
 

N
um

be
r o

f C
oa

lit
io

n 

M
em

be
rs

 (m
) 

n-9 – – – – – – – – 0.017
 

Table 4: Stability Likelihood and Success Indexes Estimates  

  Number of Players (n) 
  2 3 4 5 6 7 8 9 10 

n 1 0.777 0.345 0.103 0.022 0.004 0.001 0 0 

n-1 0 0.127 0.149 0.074 0.023 0.004 0.001 0 0 

n-2 – 0.028 0.148 0.101 0.036 0.010 0.002 0 0 

n-3 – – 0.036 0.126 0.071 0.023 0.005 0.001 0 

n-4 – – – 0.035 0.112 0.053 0.015 0.003 0.001 

n-5 – – – – 0.030 0.101 0.040 0.011 0.002 

n-6 – – – – – 0.026 0.090 0.031 0.007 

n-7 – – – – – – 0.025 0.082 0.025 

n-8 – – – – – – – 0.020 0.076 

N
um

be
r o

f C
oa

lit
io

n 

M
em

be
rs

 (m
) 

n-9 – – – – – – – – 0.017 

( )SGI n  14.8 25.5 33.6 39.9 45.1 49.4 53.0 56.1 58.8 

( )CGI n  100 87.2 55.4 30.4 16.3 9.3 5.9 4.0 2.8 
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Table 5: Success Indexes Estimates: Asymmetry and Efficiency Effect 

 Number of Players Range 
of bi´s 

 2 3 4 5 6 7 8 9 10 

  Asymmetry Effect 

( )SGI n  11.1 25.0 36.0 44.4 51.0 56.3 60.5 64.0 66.9 0.2 
( )CGI n  100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

( )SGI n  16.1 29.9 39.2 45.6 50.1 53.5 56.2 58.7 60.8 [0.1;0.3] 
( )CGI n  100.0 43.8 17.3 9.9 6.6 4.7 3.5 2.7 2.1 

( )SGI n  17.3 28.2 35.5 41.2 45.9 49.9 53.3 56.3 59.0 [0;0.4] 
( )CGI n  100.0 76.7 42.7 23.3 13.5 8.4 5.5 3.9 2.8 

  Efficiency Effect 

( )SGI n  15.8 29.7 39.4 46.2 50.9 54.4 57.2 59.5 61.6 [0;0.2] 
( )CGI n  100 38.9 15.2 8.5 5.7 4.1 3.1 2.4 1.9 

( )SGI n  16.4 29.9 38.8 44.8 49.0 52.4 55.3 57.9 60.2 [0.2;0.4] 
( )CGI n  100.0 50.2 19.8 11.4 7.6 5.4 4.0 3.0 2.3 

( )SGI n  17.2 29.3 36.9 42.3 46.8 50.6 53.8 56.7 59.2 [0.4;0.6] 
( )CGI n  100 67.8 31.6 17.6 11.1 7.3 5.0 3.6 2.6 
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