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The integration of fuzzy logic systems and neural networks in data driven nonlinear modeling
applications has generally been limited to functions based upon the multiplicative fuzzy implication
rule for theoretical and computational reasons. We derive a universal approximation result for the
minimum fuzzy implication rule as well as a differentiable substitute function that allows fast
optimization and function approximation with neuro-fuzzy networks.
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Introduction
The integration of linguistic information in the form of
fuzzy logic and statistical knowledge acquisition by
neural networks has led to the emerging field of neuro-
fuzzy systems. In the context of nonlinear modeling,
this type of model combines some of the attractive
features from each of the original concepts. In a neuro-
fuzzy system expert knowledge can be used for the
initialization of the parameterized nonlinear function,
implemented as a feedforward network. Such a neuro-
fuzzy network is based upon a particular type of
nonlinear transformation, which is, as is the general case
in neural networks, implemented at the hidden layer
level. Specifically, the nonlinear structure has to satisfy
the mathematical representation of a logical implication
rule. The benefit of satisfying both, the fuzzy logic and
the neural network conditions are:
1) enabling the use of various sophisticated data driven
optimization techniques to improve on the potentially
inaccurate or incomplete information provided by the
expert.
2) gaining an insight into the information obtained from
the data because the nonlinear model resulting from a
statistical optimization of the neuro-fuzzy system retains
PHDQLQJIXO parameters, contrary to many alternative
nonlinear modeling approaches, which are often
characterized as EODFN�ER[ methods.
However, neuro-fuzzy modeling is severely limited by
the narrow scope of admissible functional
specifications. The vast majority of neuro-fuzzy
applications use one and the same nonlinear
transformation, namely the one associated with the
multiplicative (product) implication structure. This is
due to:
1) the lack of approximation-theoretic justification for
alternative logical implication rules (IF-THEN rules)
2) computational convenience, since the differentiability
of the networks is frequently lost when moving from the
product rule to alternative implications.
The narrow scope of functional and interpretational
variation, implied by the availability of only a single
neuro-fuzzy specification, naturally limits its use. This
is particularly unsatisfactory in economics and finance,
given that interpretable nonlinear models constitute one
of the few means to improve our understanding of the
complex - and probably nonlinear - interaction
mechanisms generating much of the observed empirical
data.
To remedy these facts, we provide the theoretical basis
for the empirical application of an alternative neuro-
fuzzy system. In this system the nonlinear
transformation corresponds to the minimum rule of
implication. We first provide the necessary universal

approximation results1 to allow consistent nonlinear
function approximation with minimum-implication
based neuro-fuzzy networks. Second, to overcome
caveat 2, a differentiable extension of the minimum
function is derived. This allows the application of fast
optimization algorithms to the neuro-fuzzy network.
Several simulations illustrate the intuition behind these
results.

Universal Approximation
'HILQLWLRQV
)HHGIRUZDUG�1HXUDO�1HWZRUN� For any U∈1 let $�be an
affine transformation of U[ ℜ∈ . Using Ψ:ℜr→ℜ (called
FRPELQDWLRQ or LPSOLFDWLRQ function) and J:ℜ→ℜ
(called WUDQVIHU or DFWLYDWLRQ function), define I: ℜr→ℜ:
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I(x) is called a feedforward neural network. This
definition allows for complex, multivariate nonlinear
transformations at the hidden layer level while retaining
the additively separable structure underlying key aspects
in the neural network literature.

)X]]\ VHW: Let U = ℜr; a set A ⊂ U is a fuzzy set if its
set membership function is multivalued, e.g.
µA([):U→[0,1], where µA([) is the "membership grade
of point [ in A". As a contrast, in the case of an ordinary
or “crisp” set A the function µA([):U→{0,1}, i.e. it is
only bivalued, meaning that either [ belongs to A or it
does not. Any crisp point [ ∈ U can be "fuzzified". For
example one possible fuzzification of the crisp point √2
(∈ℜ), could be achieved by any continuous probability
density function I, centered at √2 and normalized such
that I(√2) = 1. This transformation VPHDUV out [ over a
whole range with varying membership grade.

)X]]\�5XOH: A fuzzy IF-THEN rule is of the form: IF [�
is A1 and ... and [Q is An THEN \ is B, where “[N is Ak”
stands for the degree of membership of [N in Ak; Ak and
B are fuzzy sets.

)X]]\�/RJLF�6\VWHP2: a mapping from ℜr→ℜ described
by one of the following functional forms:
                                                          
1 A functional family has universal approximation

characteristic if arbitrarily exact approximation of any
function in the universe of interest is possible.

2 Limited to the fuzzy logic systems of interest in the context
of this paper. Neither exhaustive nor all-encompassing.
Many alternative fuzzy logic systems known to the authors
are hereby excluded.
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The difference in logical implication between the two
rules can be illustrated in the following example: The
SUREDELOLW\ of a joint failure of a two independent
component system is given by the product (rule 1) of the
individual probabilities to fail. The SRVVLELOLW\ of system
failure is given as soon as one of the components fails,
thus the minimum (rule 2) of the two probabilities
yields this information, since the stronger component
does have to fail for the joint event to occur. This is
equivalent to stating that a combination of events FDQ
occur exactly if the least likely event of all events
occurs. Hence, taking the probability of the failure of
the strongest link of any system as an estimate of the
risk is obviously the most conservative approach for any
risk calculation as it corresponds to the extreme case of
perfect correlation.
As seen above, in a neuro-fuzzy network each logical
implication corresponds to a particular functional form
of the nonlinear transformation Ψ. In general, all
logically interpretable functions are constrained by the
structural requirements3 for admissible Ψ; the desirable
feature of meaningful parameters hence acts as an
important determinant of the function approximator.
To fit a nonlinear model such as a neuro-fuzzy network
to empirical data, apart from the interpretability, one
requires functional consistency. The neuro-fuzzy
network has to be capable of adequately capturing
arbitrary nonlinear functions4, which could be
underlying the data generating process. This universal
approximation property obviously depends on the
properties of both, the implication function Ψ: ℜr→ℜ
and the nonlinear transfer function J: ℜ→ℜ, because
they jointly determine the nonlinearity at the hidden
layer level. Consistency is given only for Ψ being the
product implication with Gaussian transfer functions J
(e.g. see [5]) or a power thereof [2].
Hence we need to determine sufficient conditions on the
transfer function J� such that there exists a neuro-fuzzy
systems with the minimum implication rule, which can
approximate an arbitrary continuous function to any
desired degree of accuracy.

                                                          
3 For more details see e.g. [5].

4 We limit ourselves to continuous functions for the sake of
exposition. Extension to L2 follows naturally [5].
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Let (ℜr) denote the space of continuous functions

from ℜr→ℜ and K ⊆ (ℜr) a compact subspace.
Define
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with },..,1{ UN ∈  ,..}2,1{∈T  and J: ℜ→ℜ integrable,

bounded and continuous almost everywhere s.th. J�[�� 

J��[����J�[����J�\� for _[_�!�_\_ with 0)( ≠∫
ℜ U

G[[J . Then

for any )�[� ∈ (ℜr) and for any ε > 0 ∃  I�[� s.th.
                             supK ||)�[��I�[�|| < ε.
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Let || ||p denote a p-norm5. Based upon [3], it has been
established that the functional family6 defined by:
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with [��]M ∈ ℜr, βj ∈ ℜ,  σ ∈ ℜ+ is dense on K ⊆ (ℜr)
for any S ∈ [1,∞), if J is integrable, bounded and
continuous almost everywhere and it holds that:
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functional family on the compact subspace K ⊆ (ℜr)
for countably many p.  Since
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(as shown e.g. in [1]) it follows that (5) converges
uniformly to
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when S→∞. In order to establish the universal
approximation  property on the compact subspace K ⊆

(ℜr) for equation (7), we show that for any ε > 0 and

arbitrary )�[� ∈ (ℜr) ∃  I∞�[�T� s.th.
        ε<− ∞ |),()(|sup T[I[)

.

. (8)

The following conditions are fulfilled:

(I) for any )�[� ∈ (ℜr) and for any η > 0 ∃ T
∈[1, ∞)
s.th. ∀T
�≥�T
  it holds:

supK |)�[��IS�[�T
�| < η
for any fixed S∈[1,∞). This follows from the
consistency of IS�[�T
�, derived in [3].
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6 This type of function is known as radial basis function and/or
Kernel estimator in the literature.

7 E.g. this holds among others for any continuous probability
density function J�



(II) for preset values of S�S
 and T
 ∈ [1,∞) and for any
ϕ > 0 ∃ T
 ∈ [1, ∞) s.th. ∀T ≥ T
 it holds:

supK | IS�[�T
����IS
�[�T�_ < ϕ
follows as a special case from (I).

(III) for any fixed T ∈ [1,∞) and for any δ > 0
∃ S
∈[1, ∞) s.th. ∀ S
 ≥ S
 it holds that:

supK | IS
�[�T����I∞�[�T�_ < δ
follows from equation (7).

The repeated application of the triangle inequality to the
left-hand side of (8) yields:

 
|),(),(|sup|),()’,(|sup

|)’,()(|sup|),()(|sup

’’ T[IT[IT[IT[I

T[I[)T[I[)

S
.

SS
.

S
..

∞

∞

−+−

+−≤−
 (9)

where each of the right-hand side terms is arbitrarily
small because they obey conditions I, II and III,
respectively:

          εδϕη ≡++≤− ∞ |),()(|sup T[I[)
.

         (10)

Thus one can always find a T such that the left-hand
side is arbitrarily small. This result establishes the
universal approximation of systems such as (7). To
apply this result to minimum-implication rule fuzzy
systems note that for any J: ℜ→ℜ s.th.  J�[�� � � J��[�
and J�[�� <� J�\� for |[_� >� _\| a functional equivalence
between (4) and (7) follows from

         { } { }( )
N

N
N

N

[K[K max)(min =              (11)

by setting D��N� ��]M�N�σ and 1/σ = D��N ∀ N��N ∈ {1,..,r}.
This establishes the density of minimum implication
fuzzy logic systems via a functional equivalence
relation to the radial basis function. Hence subject to the
conditions on J�[� all admissible radial basis function
kernels (5) can be used for consistent modeling with the
minimum implication rule as well. Since the previous
consistency results for fuzzy logic approximators were
limited to the Gaussian density function [5] and powers
thereof [2], this theorem provides a significant extension
to the scope of consistent fuzzy modeling.

Properties of the Fuzzy Minimum System
Given the theoretical justification for the use of the
minimum implication in the nonlinear approximation
context, it is interesting to investigate its properties. The
first question obviously concerns the domain of
application, i.e. in what type of problem is a minimum
implication system more suitable than a product rule
system?
The differences between product and minimum
implication rule are best illustrated in the form of
graphical representations (Figures 1-2), defined as the
neuro-fuzzy system output displayed on a 2D surface
over the input quantities [� and [� (T=1).

Figure 1: Graphical representation of the product
implication rule with Gaussian transfer function.

Figure 2: Graphical representation of the minimum
implication rule with Gaussian transfer function.

The two graphs show significant differences in the
structure of their level sets. It becomes apparent: the less
convex the level sets of any target function are the more
appropriate the minimum function becomes.
Furthermore, consider the shape of admissible
membership functions. As stated above Gaussians and
their powers are so far the only choice in case of the
product rule system, however any symmetric unimodal
function, centered at zero and strictly monotonic on
either side of its maximum constitutes an acceptable
membership function for the minimum rule (Figure 3).
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Figure 3: Acceptable membership functions for the
minimum implication rule.

As an example for function approximation, we consider
a dynamical systems problem where the present value of
[ depends on functions of the most recent changes and
functions of the most recent levels such as8:

3/2

21

3/2

21 )()(1 −−−− ++−+−=
WWWWW
[[[[[     (12)

which displays chaotic behavior for start values x1 = -
0.3 and x2 = -0.1.
A comparison of the goodness of fit9 for both, the
minimum and the product implication rule yields:

Product Rule Minimum Rule
Mean
Squared
Error

8.1 3.1

Table 1: Goodness of Fit of Product and Minimum Rule
for time series (12).

While the figures indicate that in this particular case the
minimum function proves superior to the product, it is
important to note that the minimum function also
introduces a problem which becomes severe in complex
applications: any cost function based upon it will not be
differentiable because the minimum function is not
differentiable itself; this prevents the usage of efficient
(gradient) optimization methods. To illustrate this point
we contrast convergence times of fitting 600 data points
from series (12), once with the differentiable product
implication rule and then with the minimum implication
rule for the following optimization algorithms [4]:

1. the quasi-Newton algorithm by Broydon, Fletcher,
Goldfarb, and Shanno (BFGS)
2. the conjugate gradient method as formulated by
Fletcher, Reeves, Polak, and Ribiere
3. Powell’s modified conjugate directions method
4. the simplex simulated annealing (SSA) algorithm.

                                                          
8 Similar problems arise in the control literature.

9 600 data points from time series (12) are fitted using one
hidden node systems with each implication rule using the
simplex simulated annealing (SSA) algorithm of [4].

Table 2 reports the obtained average of convergence
times for the different combinations of implication rule
and optimization procedure. Note that due to the lack of
differentiability the gradient algorithms 1. and 2. can not
be applied to the minimum implication system.

Algorithm Product Minimum
1.Quasi Newton 189 no gradient
2.Conj. Grad. 1888 no gradient
3.Powell 4993 7322
4.SSA 7642 15121

Table 2: Average convergence time in microseconds.

It is evident that for the product implication rule the
gradient algorithms significantly outperform algorithms
3. and 4. Hence - even if the minimum implication
constitutes a potentially superior10 structure - the lack of
differentiability is a major hindrance for any application
of the minimum implication system on large data sets
and/or high dimensional problems. For such
applications a differentiable substitute function for the
minimum implication is derived in the following
paragraph. This provides (almost) the same functional
properties as the minimum function, augmented with
with an analytical gradient for efficient optimization.

A Differentiable Quasi-Minimum Function
The differentiable substitute function is derived in two
steps. First the bivariate case is considered and then we
show that this argument can be recursively extended to
any finite dimensional multivariate [.
Rewriting (4) for 2-dimensions (Figure 2):
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Sustituting )( ,1, LLLRL
[DDJ\ ⋅+= , L�∈ {1,2},

the minimum function can be expressed as:
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Since the absolute value function fails to be
differentiable, any function based upon it inherits this
property.

Consider the following substitution for the absolute
value function |z|:

          ))1)((tanh)ln(cosh(
1

),( 2 +⋅=Ψ ]]] αα
α

α     (15)

This substitution has the following properties:
                                                          
10 If the target surface features non-convex level sets such as

those displayed by equation (12) or cusps, the minimum
implication rule yields better results.
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1. For z = 0 the result is evident from property 2. For z ≠
0 we show that 0),(lim =−Ψ

∞→
]] α

α
 using L’Hopital’s

rule. The ratio of the derivatives w.r.t. α yields:
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with )tanh( ]⋅= αη . The denominator is bounded away

from zero for every term. Thus the second derivative as
the sum and product of continuous functions is
continuous itself.

5. To see that

0))1)((tanh)ln(cosh(
1 2 ≤−+⋅ ]]] αα
α

for all z > 0 and all α>0, some algebra yields:
                                  02 ≤⋅− ]α ,

which is evident for α > 0 and z > 0. The same steps can
be done for 0≤]  by changing the sign of the inequality.
The proposed function serves as a parametric substitute
for the absolute value function (Figure 4).

Figure 4: Absolute value function |z| (left) and its
substitute ),( α]Ψ  for 5.0=α , 1.0 and 5.0 (right)..

For the case of T=1, the substitution yields:
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for the right-hand side of equation (13). This constitutes
a 2-dimensional differentiable quasi-minimum function
(Figure 5).

Figure 5: The quasi-minimum implication rule with
Gaussian transfer function (α=10)

To extend this argument to U dimensions, note that
{ } { }{ }

ULLLU
\\\\\\\ ,...,,...,min,min,...,min 1111 +−=     (22)

for any L ∈ {1,..,U}, i.e. the minimum function can be
recursively applied pairwise to any number and
permutation of the arguments without changing the
result [1]. Thus by recursive pairwise application of
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dimension U. Consequently, by substituting the
differentiable quasi-absolute value function Ψ(\L�\M,α)
for |\L�\M| in each recursion leads to a differentiable
quasi-minimum function defined from ℜr → ℜ.

Optimization Implications
A comparison of the average convergence times based
upon time series (12) of the quasi-minimum function
(using α=1) relative to the true minimum function is
given in Table 3.

Algorithm Minimum Quasi-Min.
1.Quasi Newton No gradient 309
2.Conj. Grad. No gradient 4393
3.Powell 7322 11868
4.SSA 15121 35861

Table 3: Average convergence time in microseconds.

It turns out that, although the average convergence time
for the quasi-minimum function is somewhat lower than
for the product implication rule (Table 2), the
applicability of the efficient gradient techniques (i.e.
methods 1. and 2.) for the quasi-minimum function
provides significant improvements in convergence
speed with respect to the true minimum function.
The relative performance differentials increase with the
number of data points and the number of hidden nodes.

A remaining question pertains to the sensitivity of these
results to α. Figure 6 reports the mean squared error
(MSE) of the same experiment for varying values of α.

Figure 6: α-dependence of the mean squared error for
product, minimum, and quasi-minimum function.

For a large range of α the approximation with the quasi-
minimum yields the same results as that of the true
minimum function. In this range the mean squared error
of the minimum is significantly lower than that of the
product approximation. While this is not intended to
serve as an exhaustive evaluation of the properties of
quasi-minimum approximation, these encouraging

results warrant further investigation and application of
the minimum and the quasi-minimum neuro-fuzzy
functions.

Conclusions
This paper provides both, the theoretical basis and some
practical hints for the application of neuro-fuzzy
networks using the minimum-implication rule. A gap
among the available universal approximation results for
fuzzy logic systems is closed by theorem 1, which links
the particular form of nonlinear transformations via a
functional equivalence relation to existing consistent
function approximators in the literature. Since this can
be achieved by only one symmetry and one
monotonicity constraint, the resulting admissible class
of nonlinear WUDQVIHU� (or DFWLYDWLRQ or PHPEHUVKLS
JUDGH) functions is significantly larger than the
corresponding class for the product implication rule.
Furthermore, we show how the inherently not
differentiable minimum function can be replaced by an
asymptotically equivalent implication rule, which
enables significantly faster data driven optimization.
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