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Leading indicators are typical constructs used in macroeconomics to guide
decision making in several areas of economic activity, including policy formation and
long term investment.  Researchers often evaluate and select leading indicators on a
seemingly ad hoc basis involving OLS regression, which does not take into account the
fact that perhaps the most important property of a good leading indicator lies in its
ability to anticipate the turning points of the time series of interest. We propose an
alternative assessment of leading indicators, based on the turning point significance
transform, which weights each observation of the original time series according to how
much it functions as a turning point. This new construct is then used to evaluate the
accuracy and timeliness of several German and American macroeconomic time series as
leading indicators for GDP growth.
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A leading indicator refers to an economic variable which tends to anticipate

another quantity at a certain lag.  For example, the value of housing starts in the current

period might help one to predict the growth of real GDP in future quarters.  Leading

indicators can also represent a composite of economic variables.  Such indices typically

consist of proxies for consumer sentiment and for various forms of investment, among

other things.  Researchers have typically used leading indicators for a wide variety of

applications and have incorporated them into economic forecasting in many ways.  Box

and Jenkins [1994] discuss the use of leading indicators in conjunction with auto-

regressive and moving average terms to improve forecasting performance.  Perez [1996]

analyses a regime switching model in which the state probability transitions depend

upon a composite index leading indicator.  Given that the use of leading indicators is

pervasive in both academic research and in practice, it is surprising that these variables

are often selected and evaluated on a seemingly ad hoc basis which neglects their usual

purpose.

Specifically, a methodology based on OLS is typically employed to analyse

potential leading indicator candidates and to select the appropriate lag for an acceptable

variable.  OLS obtains the best linear fit at each lag by minimising the sum of squared

errors and in weighting each error equally, does not take into account the fact that

leading indicators are supposed to anticipate turning points.  In practice, researchers

often determine the utility of a leading indicator by how well it predicts major

transitions.  It is conceivable that we may find an economic variable which performs

well in gauging the turning points of a series but does not do well in trend-dominated

regions.  While the minimum sum of squared errors achievable with a linear
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transformation of the variable might be so large that OLS rejects the quantity as a

leading indicator, we may not want to dismiss it so easily in practice.

To establish a criterion for how well a given economic variable anticipates the

turning points of another, we must first elucidate the precise concept of what constitutes

a turning point.  Many researchers have apparently taken the concept for granted and

assumed that major turning points were obvious by inspection, but some have attempted

to define the notion more rigorously.  For example, Stock and Watson [1989], analysing

US real GNP growth, labelled each sequence of two consecutive quarters of negative

growth as a turning point.  Hamilton[1989] and Perez [1996] defined a turning point as

a discrete regime shift.

The common aspect among these frameworks is that they all presuppose a

binary labelling scheme.  That is, each observation or sequence either represents a

turning point or does not.  Depending upon the application, this convention can fail to

use all the information provided by the finite sample in an efficient manner.  In a binary

labelling scheme, one does not discern among the observations labelled as turning

points although they might differ substantially in significance.  Similarly, observations

on the border which a binary scheme leads us to marginally reject as turning points

might nonetheless mark somewhat influential periods of transition.

To deal with this sort of limitation, we construct a time series referred to as the

turning point significance, which intuitively gives the degree to which each observation

in a finite sample behaves as a turning point.  We define this time series and discuss

some of its characteristics in section 2.  Section 3 proposes an alternative linear

estimation scheme based on minimising a weighted sum of absolute errors, with each
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error weight related to the turning point significance of the time series of interest in each

period.  We show in a few examples how the linear fit obtained in this manner allows

the leading indicator series to capture the turning points more precisely at the expense of

accuracy in trend dominated regions.

Using the same weighting scheme which focuses on major turning points, in

section 4 we construct a test for how well a given leading indicator performs in

anticipating critical trend reversals.  This scheme will in general produce different

results from one in which OLS regression is employed in determining the appropriate

lag and strength of the leading indicator.  We compare the two testing methodologies

using several examples of proposed leading indicator relationships in German and

American economic data.  Finally, section 5 concludes and discusses issues relevant to

future research.

,,��7XUQLQJ�3RLQW�6LJQLILFDQFH

Given a finite sample of a time series, one can note by observation that certain

points appear to act as peaks while others function as troughs.  Such observations

constitute the apparent turning points of the series.  However, upon further reflection,

one notes that this concept is clearly horizon dependent.  In financial forecasting,

prediction of an economic variable one year ahead entails a different process from

prediction 3 months into the future, and in some ways, it makes no sense to speak of

forecasting without specification of the horizon.  Likewise, the analysis of asset returns

depends crucially upon the assumed time interval.  In fact, a researcher investigating

annual stock returns might use an entirely different model for dealing with daily or

weekly data.
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Whether a certain point in a time series represents a turning point and to what

degree depends upon the horizon of interest.  In figure 1 below, the observation in

period 13 represents an apparently significant turning point on a 6 period horizon(that

is, looking 3 periods back and 3 periods ahead), but constitutes a less significant

transition when viewed on a 24 period horizon(looking 12 periods back versus 12

periods ahead).

Figure 1: Turning point significance depends upon horizon.

One can construct several examples to clarify this concept, but the point is that the

concept of a turning point implicitly assumes a specific time horizon.

Given the horizon of interest, a related issue involves the determination of what

constitutes a significant turning point.  Rather than employ a simple scenario under

which each observation in a finite time series sample either represents a turning point or

does not, we define a concept referred to as the turning point significance, or TPS.

Given the horizon of interest, the TPS will provide a quantitative measure of how much

each observation behaves as a turning point.  This function explicitly incorporates the

ambiguity and uncertainty inherent in the assessment of turning points in a finite time
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series sample.  In addition, the TPS provides a convenient form for use in a linear

estimation framework.

Given a time series {Yt}, t = {1,2,...,T} and a horizon of interest F (assumed to

be an even integer), we construct a time series {TPSt}, t = {1,2,...,T} in the following

manner:

TPSt = 0, for t = {1,2,...,F, (T-F+1), (T-F+2),...,T } (1)

These initial and final values of the TPS series are set to zero because the finite time

series sample of size T does not consist of sufficient information to assess the turning

point significance of these observations.  Clearly this manner of dealing with the

beginning and end of the series represents an inefficient use of the available

information, but the current convention provides a basic starting point.  Next construct a

weight vector whose elements are given by a piecewise linear function of the index.

First, define the piecewise linear function P(x):

P(x) = x/F         if 0<x<F/2 (2)

= (F-x)/F     if F/2<=x<F

= 0       otherwise

Then, define the F element vector W as:

Wi=P(i), i=1,2,...,F (3)
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Now, we construct a deviations matrix which consists of F elements for each of the T-

2F core observations ranging from t=F+1 to t=T-F.  Each element of the (T-2F)xF

matrix D equals:

Dj,i=(|yj+F-yj+F-i|+|yj+F+i-yj+F|)⋅|(yj+F-yj+F-i)-(yj+F+i-yj+F)| (4)

Finally, we obtain the remaining elements of the turning point significance time series:

TPS(F+1),...,(T-F)  = (D)(W) (5)

where TPS(F+1),...,(T-F) denotes the vector consisting of the values of TPSt for t ranging

from (F+1) to (T-F) in the appropriate order.

As an example, consider the time series of 70 observations plotted in figure 2. A

positive multiple of the TPS time series for a horizon of 6 periods is displayed in the

same graph.  Note that the events which a casual observer might select as major turning

points correspond to a relatively high value of TPS, and likewise, those observations

which appear to lie in a region dominated by a trend coincide with a lower value of

TPS.  In this example, the TPS agrees with one’s intuition concerning what should

constitute a major turning point.  However, this time series also provides a quantitative

assessment of exactly to what degree every other observation behaves as a significant

turning point.

The TPS time series constructed in the above manner appears to have some

appealing features.  First, only linear components were utilised in its design, and thus

this variable represents perhaps one of the most elementary constructions which can
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assess a concept such as turning point significance in a satisfactory manner.  Secondly,

the convenient form allows for straightforward use in estimation procedures.  In the

next section, we turn to the comparison of OLS with the alternative scheme using a few

examples.

Figure 2: Time Series plotted with TPS

,,,�� (VWLPDWLRQ�8VLQJ�WKH�736�7LPH�6HULHV

Using the ordinary least squares criterion in a linear framework, the coefficient

and constant parameters are estimated by minimising the sum of squared deviations.

Specifically, given a time series of interest Yt, and a predictor time series Zt(=Xt-k,

where X is a leading indicator for Y at lag k), we wish to determine the most suitable

choice for the parameters ψ and γ in the following equation:

Yt = ψ + γZt (6)
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2 (7)
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errors are punished severely under this framework, and thus one or two extreme

observations can have an unduly large impact.

According to the alternative estimation scheme, the following weighted sum of

absolute errors, WSAE(ψ,γ), is minimised to select the two parameters:

WSAE(ψ,γ) = ΣTPSt|Yt - ψ-γZt| (8)

TPSt refers the value at time t of the turning point significance for Y, the series of

interest.  Therefore, we explicitly weight the absolute error of an observation by the

turning point significance at that time.  By construction, the predicted values of Yt will

correspond more closely to the actual values for observations which behave like major

turning points.  We use absolute errors partly because the danger of over-fitting to

extreme observations increases when the errors are weighted by the corresponding

turning point significance.  Specifically, outliers will likely possess high TPS values so

that we expect these two characteristics to be correlated to some degree.

For the first example, we construct two time series according to:

Zt = sin(t/2), t = 1,2,...,T, T = 70 observations (9)

Yt = 0.8 + 0.7Zt + εt, where εt(i. i. d) ~ N(0,0.3)

This scenario represents a case where the predictor variable Z (which equals the leading

indicator already lagged) consists solely of a cyclical component, and the variable of

interest Y is determined by a linear function of Z plus an independent and identically



11

distributed normal error term.  A positive multiple of the TPS (F = 6) time series is

displayed along with Y in the plot of figure 3.

Figure 3:  Cyclical Time Series Plotted with TPS.

Upon determination of the most appropriate linear fit according to the OLS and

TPS weighting schemes, one obtains significantly different parameter estimates.  The

OLS results give ψOLS = 0.763 and γOLS = 0.664, while the TPS-weighted results show

that ψTPS = 0.803  and γTPS = 0.833.  The OLS coefficient estimate lies closer to the

actual value of 0.7 specified in the data generating process, and this fact should not

surprise us since the construction of the data utilised an i. i. d. normal error process, for

which OLS estimators perform best.  Whether or not real world economic and financial

data are generated by such a simple mechanism represents a separate issue.  For data

generating processes which contain smaller errors near turning points, the TPS

estimator will perform more suitably according to bias and efficiency criteria.

One can gain insight into the nature of the alternative estimation scheme by

graphically comparing the OLS and TPS linear predictions.  Figure 4 below displays the
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estimates perform better in capturing the behaviour surrounding the periods of

transition.

Figure 4:  Original Series versus OLS and TPS predictions.

However, the TPS estimates miss badly in some places.  In particular, OLS provides a

fairly accurate approximation of the level of the second peak, whereas the TPS estimate

lies far above the actual data.  For the third trough, the TPS fit characterises the depth of

the decline with reasonable accuracy, but the actual series hits the bottom later than

anticipated.  In addition, because of the specialised weighting scheme, OLS typically

performs better when the time series is rising or falling in a trend-like pattern.

As a second example, we consider a repeated slow rise-crash pattern:

        Figure 5: Slow rise-crash time series plotted with TPS
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During each phase, the leading indicator time series Z initially increases gradually, then

accelerates, tapers off, and finally collapses.  We generate Y in terms of Z in the

following manner:

Yt = -0.85 + 0.7Zt + εt, where εt ~ i. i. d N(0,0.1) (10)

In constructing the TPS time series for this case, we employ a horizon of interest(F)

equal to 3 periods rather than 6 because the crucial sharp plunges occur on such a short

time scale.  Once again, we obtain significantly different coefficients depending upon

which weighting scheme is used.  The least squares results give ψOLS = -0.803 and γOLS

= 0.647 while the alternative method produces ψTPS = -1.037 and γTPS = 0.812.  The

OLS estimates lie closer to the actual values used to construct the data partly because of

the assumption of independent and identically distributed normal errors.  However,

when one inspects the graph in figure 6 below, one notices that the TPS weighted

scheme performs slightly better in modelling the behaviour of Y near the crashes.  In

contrast, OLS produces more accurate approximations in general during the slow rises

leading up to the sudden declines.

        Figure 6: Slow rise-crash time series with OLS and TPS fits
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These examples give insight into what one can accomplish by using the turning

point significance time series in a linear estimation framework.  Since we restrict the

analysis to a linear form, we cannot possibly improve the timing of a given leading

indicator.  TPS predictions equal an affine transformation of OLS predictions, and thus,

they will increase and decrease in tandem.  However, these TPS predictions clearly

perform better in gauging levels near important turning points at the expense of

accuracy in trend-dominated regions.  During a prolonged unidirectional movement,

TPS fitted values will change too slowly or too quickly and will be prone to stray away

from the trend line.  In contrast, these estimates will on average assess the levels around

major turning points far better than OLS.

Recall that above we have utilised absolute errors rather than squared errors in

constructing the TPS-weighted estimates.  In general, the least squares framework can

fall into the trap of over-fitting to a few extreme observations since outliers are punished

so severely.  I mentioned above that using a TPS-weighting scheme can potentially

intensify this problem because an outlier is likely to possess a high TPS value.  Thus,

when we square the error and then in addition multiply by the TPS, we might perhaps

give an inordinate amount of weight to only a few extreme observations.

Despite this potential difficulty, we base the testing methodology in the next

section on weighted least squares because of the simplicity of the development and the

natural comparisons with OLS which result from this assumption.  In addition, we use

the turning point significance of the leading indicator time series rather than the time

series of interest.  This leads to an intuitive definition of a TPS leading indicator as a

leading indicator which assesses the turning points of a designated time series
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successfully, and one can test whether X leads Y in a turning point significant way by

applying a version of weighted least squares to the data.

In the next section, we formulate the definition of a TPS leading indicator and

construct a test for whether or not a given variable functions as a TPS leading indicator

for another over a given finite sample.  Next, we show in an example how this

framework can have different implications than OLS for the optimal lag of a leading

indicator, given that we focus on sharp movements of the time series of interest.

Finally, we proceed to test eight pairs of time series relating to German and American

economic data, and make comparisons with a methodology based on OLS estimation.

,9�� 7XUQLQJ�3RLQW�6LJQLILFDQW�/HDGLQJ�,QGLFDWRUV

This section defines the concept of a turning point significant, or TPS, leading

indicator and proceeds to test several pairs of commonly used macroeconomic time

series to determine whether or not they satisfy this relation.  In practice, leading

indicators are typically implemented using rules of thumb, and OLS estimation is

utilised to determine the effects of the leading indicator on the time series of interest, to

choose the appropriate lag, and to aid in forecasting.  In the last section, we

demonstrated with a few examples how an error weighting scheme based on turning

point significance can produce linear parameter estimates which lead to improved

accuracy around turning points.  Now, we define a TPS leading indicator as a time

series which predicts the series of interest with a smaller error near turning points.

Definition:  Given two time series samples of length T, Yt(the series of interest)

and Zt(=Xt-k, where X is proposed to lead Y at lag k), we say that X acts as a turning
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point significant, or TPS, leading indicator for Yt at lag k for a horizon of interest F if

the following data generating process establishes Yt for some constants ψ, γ, and σ2,

with γ nonzero:

Yt = ψ + γZt + εt, where εt ~ N(0, σ2/TPSt) (11)

In this definition, Zt is assumed entirely exogenous, and TPSt refers to the turning point

significance time series of Zt for a horizon of interest F.

Thus, Yt is given by a linear function of Zt with a normally distributed error with

zero mean and standard deviation inversely proportional to the square root of TPSt.

Intuitively, the more Zt exhibited turning point characteristics at time t, the more

accurate is the linear prediction of Yt.  The definition does not refer to the forecast error

variance of Yt given Xt-k or to the one step ahead forecast error of Y given values of X

in the previous period and before.  Rather, it removes these issues from consideration by

assuming complete exogeneity of Zt.  The resultant test for a TPS leading indicator

should be regarded as entirely ex post.

Multiplying the specification by TPSt
1/2 on both sides, we obtain:

YtTPSt
1/2 = ψTPSt

1/2 + γTPSt
1/2Zt + TPSt

1/2εt (12)

Given the assumption of exogeneity of all observations on Zt, we immediately have that

TPSt
1/2, constructed as a function of this time series, is also exogenous.
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We wish to perform a test of the null hypothesis that γ = 0, which means that Zt

is not a TPS leading indicator for Yt, against the alternative hypothesis that γ is in fact

nonzero.  Since TPSt
1/2 is exogenous, we have that:

Var((TPSt)
1/2εt) = TPStVar(εt) = TPSt(σ2/TPSt) = σ2 (13)

Therefore, performing OLS with the data weighted by TPSt
1/2 results in an efficient,

unbiased estimate for γ.  Under the null hypothesis that γ = 0, the estimated coefficient

γTPS divided by the standard deviation of the estimate possesses a t distribution with the

appropriate number of degrees of freedom.  The current situation essentially represents

a case of weighted least squares, and we test the null hypothesis that X is not a TPS

leading indicator for Y at lag k by comparing the estimated t ratio of γTPS to the

corresponding critical value of the proper t distribution.

Given a time series of interest Yt and a series Xt which is proposed to lead Yt,

we compute the optimal lag based on OLS, kOLS, by selecting the lag(from a specified

range) which produces the highest R2 in a standard regression of Yt on Xt-k.  Likewise,

we determine the optimal lag according to TPS by running the above weighted least

squares regression for several lag values over a reasonable range, and selecting that

value which produces the highest R2.  The optimal lag obtained in this manner, kTPS will

not in general equal the optimal lag generated by OLS, kOLS.  Thus, it becomes

conceivable that a predictor variable which performs well at lag k in terms of the non

weighted regression R2 fails as a TPS leading indicator, and thus does not gauge the

turning points of the time series of interest accurately.
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As an example of a case in which the two methods lead to divergent conclusions,

consider the two artificially constructed time series in the plot below.

Figure 7:  Leading Indicator X anticipates sharp declines in Y by two periods.

We see that X, which is constructed entirely from linear segments, reaches a peak

exactly two time periods before Y, which is composed of both cubic and linear portions.

However, Y begins its gradual ascent three periods after X recovers.  Thus, it is not

clear a priori what the optimal lag of the leading indicator should be, and furthermore,

the value obtained by a specific evaluation scheme will depend on how much emphasis

the procedure places on the timing of the sharp plunges as opposed to the recoveries.

Table 1 shows the results of using the OLS versus the TPS methodology to determine

the significance of X in predicting Y at each lag, in terms of the coefficient t statistic

and R2.

Table 1:  OLS and TPS results for example in figure 7.

K TOLS R2
OLS TTPS R2

TPS

1 0.608 0.014 0.303 0.00339
2 5.571 0.544 6.22 0.598
3 10.619 0.819 2.629 0.217
4 5.161 0.526 0.409 0.00691
5 1.690 0.110 1.033 0.044

42.875

0

x
t

y
t

301 t
0 10 20 30

0

20

40

60



19

Using OLS regression with the original data, the R-squared and t statistics reach a peak

when the estimation is performed using k = 3, but the regression using the data

weighted by the square root of the turning point significance produces the highest R-

squared and t-statistic for k = 2.  Thus, the two schemes imply different optimal lags,

and in fact, the TPS weighted scheme models the timing of the sharp declines more

accurately.  The series of interest Y is plotted with the leading indicator X lagged by

two and three periods in figure 8.

  Figure 8: Series of interest (Y) plotted with leading

  indicator (X) at lags of two and three periods.

We now proceed with the novel testing methodology and comparison with OLS

for several examples involving real economic data.  For each lag k within a certain

range, we determine the t ratio of the linear coefficient and the R2 resulting from OLS

regression of Yt on Xt-k.  Likewise, we compute these two statistics for a regression with

weighted data values, where the weight at each time period equals the square root of the

TPS of the lagged leading indicator at time t.

The eight examples for an initial evaluation using quarterly data from Q1 1970

to Q4 1994 are obtained from the Deutsche Bank Research economic database.  The

IFO business climate index and the year on year change (% year on year) in the number
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of new non residential housing permits in Germany are each proposed to lead the year

on year change in German real GDP.  Similarly, we examine how well the OECD

leading index trend for the German economy (% year on year) and labour productivity

(% year on year) lead economic growth.  For these cases, we omit the four quarterly

observations biased by reunification accounting effects.   Using US economic data, we

propose the number of housing starts each quarter and the National Association of

Purchasing Managers (NAPM) composite diffusion index as leading indicators for real

GDP (% year on year ) in the US.  Likewise, the OECD leading index trend (% year on

year) and manufacturing productivity (% year on year) are analysed as leading

indicators for economic growth.

Tables A1 through A8 in the appendix of the paper display empirical results for

the OLS and TPS-weighted regressions.  To produce the alternative estimation results,

we weight each error by the square root of the value of the TPS time series of the lagged

leading indicator in the appropriate period.  Each of the tables corresponds to a specific

time series of interest – leading indicator pair, and we estimate the regressions for lags

ranging from 1 to 5 periods (except for US manufacturing productivity (% year on

year), for which OLS obtains an optimal lag of 6 quarters in anticipating economic

growth).  For each lag, we display the t ratio and R-squared resulting from OLS

estimation, as well as the corresponding values generated by a regression using

weighted observations.  The critical value for rejecting the null hypothesis of a zero

coefficient at the 1% level of significance equals approximately 2.64 since we have

about 90-100 observations in each regression.

The results in Table A1 indicate that both OLS and TPS agree that the number of

non residential housing permits (% year on year) approximately leads German real GDP
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growth at a lag of 3 quarters.  At a lag of three quarters, the estimated t ratio exceeds the

1% critical value of 2.64 according to the TPS scheme and surpasses the 5% critical

value for OLS, and the R-squared values peak at this lag for both methods.  Thus, this

leading indicator performs well both from a standpoint of minimising the sum of

squared errors and for the purpose of gauging turning points.  It is interesting to note

that the estimated t ratios and R-squared fall off more rapidly upon deviation from the

optimal lag when using the TPS scheme.

According to Table A2, the IFO business climate index fails to serve as a TPS

leading indicator at any of the tested lags for a 5% level of significance while OLS

estimation produces significant t ratios for lags 1 to 3.  In fact, the highest t-ratio for the

TPS method of 1.814, obtained with a lag of one period, falls below 1.98, which marks

the critical value corresponding to a 5% level of significance.  Although one can find a

linear function of the lagged index which performs well in minimising the sum of

squared errors, there is no linear transformation which accurately assesses the turning

points according to our framework.  Tables A3 and A4 show that the two schemes

imply that both the OECD leading index trend (% year on year) and productivity (%

year on year) act as leading indicators for German real GDP growth at the first few lags,

with the first one optimal.  Table A5 indicates that the quantity of total quarterly

housing starts in the US leads US economic growth at the first lag although the OLS

results imply that this relationship is more significant than does the TPS estimation.  In

Table A6 (NAPM composite diffusion index), we see that while OLS estimation results

in significant t ratios from lags 1 to 3, TPS accepts the null hypothesis of no relationship

at all lags examined.  Thus, OLS implies the clear acceptance of the NAPM composite

diffusion index as a leading indicator, but the turning point significance framework does

not. Table A7 shows that both OLS and TPS imply that the OECD leading index trend
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(% year on year) serves as a leading indicator for US economic growth, yet the t ratios

fall off more sharply at higher lags under the TPS framework.  Finally, in Table A8 we

find that according to the TPS scheme, productivity impacts growth for the most part

with a lag of three quarters, but the coefficient estimate falls short of being significant at

the 1% level.  On the contrary, OLS implies that productivity acts as a highly significant

leading indicator at a lag of six quarters.

In several cases, using the turning point significance framework to analyse

potential leading indicators has resulted in implications similar to those of OLS.  Both

methods lead us to conclude that the year on year changes in non residential housing

permits, the OECD leading index trend, and labour productivity all act as significant

leading indicators for German economic growth.  Likewise, the yoy changes in the

OECD leading index trend for the US economy and the number of quarterly housing

starts both function as leading indicators for US economic growth according to the

methodologies.

However, several important differences become apparent when we examine the

various tables.  First, the strength of each leading indicator, as gauged by the t ratio and

R-squared, occasionally differs between the two frameworks.  According to table 5, the

R-squared for OLS and TPS estimation using total housing starts lagged by 1 quarter is

0.52 and 0.09, respectively, indicating that OLS attaches much more power to this

quantity in leading economic growth.  Second, the two schemes disagree substantially

on the optimal lag in the case of US manufacturing productivity (% year on year) and

on how significant this leading indicator is at the optimal lag.  Finally, in a few cases,

OLS estimation accepts as a highly significant leading indicator a variable which the

TPS scheme rejects at the first five lags.
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We have constructed a time series giving the degree of turning point behaviour

at each period, and have used this quantity to calculate an alternative estimator for the

linear prediction of a time series using an appropriate lagged leading indicator.  The

method essentially weights the error for each observation by a quantified measure of

how much the series exhibits turning point behaviour at that time.  Thus, the leading

indicator is forced to perform better near apparent turning points at the expense of

accuracy in trend-dominated regions.

Based on a data generating process in which errors decline near major turning

points, we have used the turning point significance time series to construct a simple test

for the ability of a proposed leading indicator to gauge the critical transition periods of a

particular time series.  The methodology determines the performance of the leading

indicator in this regard at each lag and thus allows one to select the optimal lag.  We

have shown in an artificially constructed example that the alternative scheme can

improve the timing of the leading indicator in anticipating sharp changes in the time

series of interest.

We have utilised the turning point significance in testing several leading

indicators in anticipating major changes in German and US real GDP growth.  The

results have quite interesting implications partly because two time series which are

typically thought to function as accurate leading indicators do not, in fact, capture major

turning points as determined by our special criteria.  This includes the IFO business

climate Index for German economic growth and the Purchasing managers composite
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diffusion index for US economic growth.  In other cases, the results differ concerning

the appropriate lag and the strength of the leading indicator.

This preliminary investigation has produced some interesting results and has

demonstrated that the new TPS methodology does not in general coincide with the

typical OLS-based decision strategy.  Whether or not this novel framework will prove

more useful in general remains uncertain.  The definition of a TPS leading indicator and

the test which follows naturally hinge critically upon the definition of the turning point

significance time series, which involves a new perspective on what it means for an

observation to be a turning point.  Specifically, the convention of giving a yes/no

answer to the question of whether a given observation constitutes a turning point is

replaced by the construction of a measure which rates every single point in the finite

sample according to how much it behaves as a major turning point.  This new

perspective entails using the generalised notion of turning point significance instead of

separating the sample into non turning points and turning points.  We expect that given

a finite sample, the observations which appear to constitute the primary turning points

upon casual inspection will also coincide with maximum values of the turning point

significance time series in general.

The use of the turning point significance concept stands in contrast to past

approaches to the assessment of sharp changes in a time series.  Many authors have

used ad hoc definitions of what constitutes a turning point based on percentage changes

in the series in surrounding periods.  In addition, some researchers have considered

turning points as discrete changes in regime.  For example, Hamilton(1989) modelled

the growth rate of US real GNP with a two state Markov regime switching model and

interpreted the changes between the expansionary regime and the recessionary regime
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as the major turning points of this time series.  All of these approaches have utilised a

yes/no decision criterion to determine turning points.  Such conventions possibly

represent special cases of basing turning point selection on functions of the TPS.  For

example, if we use the TPS raised to the 4th power to represent the importance of each

observation in this regard, then the measures for the major turning points will exceed

those of the insignificant turning points by so much that we will for all practical

purposes have separated the sample into one group containing just a few critical turning

points and a second group containing all other observations.

Whether the TPS framework we have developed in this paper will be amenable

to out of sample forecasting poses a difficult question.  The data generating process

defining a TPS leading indicator as well as the test based upon this process assume

complete exogeneity of the leading indicator time series.  Thus, difficulties associated

with forecasting are dismissed in favour of formulating a simple ex post test for leading

indicator ability.  Exactly how to extend the present analysis to produce forecasts which

more effectively anticipate turning points warrants further investigation.
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Table A1:  Time Series of Interest - YOY change in German real GDP
Leading Indicator – YOY change in non residential housing permits

Lag TOLS R2
OLS TTPS R2

TPS

1 1.795 0.034 0.975 0.01
2 2.057 0.045 1.790 0.034
3 2.523 0.067 3.44 0.116
4 2.08 0.047 2.238 0.053
5 1.841 0.037 0.855 8.408E-3

Table A2:  Time Series of Interest - YOY change in German real GDP
Leading Indicator - IFO Business Climate Index

Lag TOLS R2
OLS TTPS R2

TPS

1 6.579 0.391 1.814 0.035
2 5.132 0.274 1.759 0.036
3 3.474 0.143 1.376 0.023
4 1.879 0.044 0.262 8.416E-4
5 0.628 4.911E-3 -1.005 0.012

Table A3:  Time Series of Interest - YOY change in German real GDP
Leading Indicator - YOY change in OECD leading index trend

Lag TOLS R2
OLS   TTPS R2

TPS

1 6.476 0.318 11.175 0.576
2 5.831 0.278 5.097 0.223
3 4.49 0.189 2.823 0.082
4 2.658 0.077 1.465 0.025
5 1.057 0.013 0.238 1.535E-3

Table A4:  Time Series of Interest - YOY change in German real GDP
Leading Indicator - YOY change in productivity

Lag TOLS R2
OLS   TTPS R2

TPS

1 3.825 0.139 4.876 0.207
2 3.54 0.123 3.236 0.104
3 2.735 0.078 2.198 0.052
4 1.356 0.021 0.384 3.077E-3
5 0.4 2.442E-3 -0.213 2.44E-3
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Table A5:  Time Series of Interest - YOY change in US real GDP
Leading Indicator - Total Housing Starts

Lag TOLS R2
OLS   TTPS R2

TPS

1 10.067 0.521 3.031 0.090
2 8.012 0.411 2.773 0.077
3 5.270 0.234 2.385 0.059
4 2.720 0.076 1.034 0.012
5 0.864 8.311E-3 -0.880 8.628E-3

Table A6:  Time Series of Interest – YOY change in US real GDP
Leading Indicator – Purchasing managers composite diffusion index

Lag TOLS R2
OLS   TTPS R2

TPS

1 12.19 0.615 1.615 0.027
2 7.603 0.386 0.884 8.422E-3
3 3.656 0.128 0.267 7.807E-4
4 0.695 5.346E-3 0.278 8.586E-4
5 -1.391 0.021 -0.747 6.235E-3

Table A7:  Time Series of Interest – YOY change in US real GDP
Leading Indicator - YOY change in OECD leading index trend

Lag TOLS R2
OLS   TTPS R2

TPS

1 14.526 0.694 10.149 0.526
2 11.11 0.573 4.608 0.188
3 6.995 0.350 1.050 0.012
4 4.240 0.166 -1.425 0.022
5 2.159 0.050 -1.855 0.037

Table A8:  Time Series of Interest – YOY change in US real GDP
Leading Indicator – YOY change in productivity

Lag TOLS R2
OLS   TTPS R2

TPS

1 2.142 0.047 -0.972 0.01
2 3.080 0.093 0.785 6.65E-3
3 4.751 0.199 2.250 0.053
4 5.955 0.283 2.104 0.047
5 7.025 0.357 1.976 0.042
6 7.168 0.369 1.784 0.035
7 6.080 0.298 0.550 3.467E-3
8 4.690 0.204 0.487 2.753E-3
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