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1 Introduction

The credit derivatives business has seen a dramatic growth over the last decade. Credit
default swaps (CDS) are the dominating plain-vanilla credit derivative product, which
serve also as a building block for credit linked notes, credit indices and further synthetic
credit investments. A credit default swap offers protection against default of a certain
underlying entity over a specified time horizon. A premium, the CDS spread s, is paid
on a regular basis (e.g., on a quarterly, act/360 basis) and on a certain notional amount
N as an insurance fee against the losses from default of a risky position of notional N ,
e.g., a bond. The payment of the premium s stops at maturity or at the random time τ
of default of the underlying credit, whichever comes first. At the time of default before
maturity of the trade the protection buyer receives the payment N(1 − R), where R is
the recovery rate of the underlying credit risky instrument.

More advanced credit derivative products are linked to several underlying credits i =
1, . . . , n and the payoff is a function f(τ1, . . . , τn) of the default times τi of the involved
credits. Examples are basket default swaps, synthetic CDOs or default swaps on certain
tranches of losses from a portfolio. What is common to these basket derivative products
is that their modelling and pricing requires a model for the dependencies between the
underlying credits.

The most important inputs for any credit derivative pricing model are the market
observed fair CDS spreads si(0, T ) for (in principle) all maturities1 T for credit i. From
these spread curves one can back out the market implied (risk neutral) distribution of
the default time, Fi(t) = P(τi < t), t ≥ 0. Now, by the general no-arbitrage pricing
principle, the valuation of a multi-credit derivative with payoff f(τ1, . . . , τn) at time T
calls for calculating the risk-neutral expectation

E
(

exp

(
−
∫ T

0

rsds

)
f(τ1, . . . , τn)

)
, (1)

with (rt) as the riskless short rate. However this requires a model for the joint risk-neutral
distribution

P(τ1 < t1, . . . , τn < tn)

of the default times, where the marginal distributions Fi are “given by the market”.
A common approach in practice is to link the marginal distribution assuming a certain
copula, see e.g. [6],[2]. The calculation of the expectation above is then done either by
Monte-Carlo simulation, or, in case of certain low-factor dependencies, by quasi-analytical
methods. Recall that by arbitrage pricing theory it is justified to calculate the price via
the expectation (1) since it quantifies the cost of dynamic replication (hedging) of the
underlying product, provided it can be replicated, which in turn requires a dynamic
model. So far, from our review of the standard market approach to the valuation of

1CDS are quoted with reasonable liquidity for maturities T of 1, 3, 5, 7, 10 years with highest liquidity
normally in 5 years.
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multi-credit products, no dynamic model whatsoever has been specified. This is indeed
one of the major shortcomings of current market practice in that field. A dynamic model
should specify the stochastic dynamics of credit spreads over time.

From both, the theoretical and practical point of view, besides the pricing of a multi-
credit derivative, an equally important and related problem is the issue of hedging. Pri-
mary hedging instruments in practice are the single name credit default swaps for which a
developed and liquid market exists. Practitioners distinguish two sources of risk to hedge
against. The first one is the so-called spread risk, which is the risk that the market quoted
fair CDS spreads change over time. A change of the spread impacts the distribution of the
respective default time and thus the joint distribution and the mark-to-market valuation
of the considered basket derivative. The spread risk is thus the risk of changing default
probabilities without an actual default of this name having occurred. The second source
of risk is the so-called default risk, which is the impact of an actual default on the basket
derivative contract. Both sources of risk have to be hedged simultaneously.

In their hedging traders focus primarily on spread risk2 and calculate hedge positions in
single name credit default swaps that immunize the joint position against small changes
in the fair market CDS spreads. In addition to that, traders carry out some scenario
analysis to analyze how the chosen hedge strategy performs in case of actual defaults.

Analyzing both sources of risk simultaneously requires a model that goes beyond the
joint distribution of the default times, which covers just a static snapshot at time t = 0. As
time t evolves, the flow of information and the stochastic modelling of the actual defaults
as well as the stochastic dynamics of the market observables are essential ingredients of
the model that determine the hedging strategies. For the dynamics of the CDS spreads
one important quantity that measures dependencies is the impact of the default of one of
the credits on the spreads of the remaining ones. Given the copula describing the joint
distribution, it has been shown in [8], [10] how to determine the conditional distribution
P(τi > t|τj = t) and the fair spread for credit i after the occurrence of the default of
credit j.

In this paper we investigate the pricing and hedging of basket credit derivatives starting
with a generic model for the joint dynamics of the fair CDS spreads si over time for each
credit i = 1, . . . , n in the basket. Our main goal is to analyze the hedging of basket
derivatives in terms of single name credit default swaps. In the special case of a pure
jump filtration we present an elegant and highly efficient approach to the pricing and to
an explicit calculation of hedging strategies. The model we analyze in more detail allows
for asymmetric impacts of defaults, i.e., the impact of the default of credit i on credit
j measured as spread widening of the spread for j caused by the default of i might be
different from the spread widening of i caused by the default of j.

The paper is organized as follows. Section 2 introduces the setup and the basic nota-
tion. Section 3 investigates credit default swaps, their fair spreads, the implied distribution
of the default time and introduces some useful trading strategies related to credit default

2One reason being that most credit default swaps are referring to investment grade credits, i.e., the
likelihood of an actual default is considered to be rather small.
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swaps. Basket credit default swaps are studied in Section 4. We investigate the hedging
of basket products in terms of credit default swaps and related strategies. In case the
flow if information is of pure jump type we present a simple numerical approach, which
is then illustrated by some examples.

2 No-arbitrage pricing setup and notation

We deal with the pricing of credit derivatives from the point of view of a generic model.
We work on a complete filtered probability space (Ω,F , (Ft)t≥0,P) with right continuous
filtration (flow of information) (Ft)t≥0. Consider non-negative random variables τ1, . . . , τn

on this probability space. We interpret τi as the random time of default of credit i. We
assume that

P(τi = 0) = 0, i = 1, . . . , n (2)

P(τ1 > t1, . . . , τn > tn) > 0, ∀ti > 0, i = 1, . . . , n. (3)

We suppose that τ1, . . . , τn are (Ft)t≥0 stopping times but we do not make any particular
assumption on the way the default times τ1, . . . , τn are modeled. All basic security price
processes in our economy are defined on the filtered probability space (Ω,F , (Ft)t≥0,P).

To simplify the exposition and to put a clear focus on the problem of modelling
dependent defaults, we assume that riskless interest rates are zero in our model. It seems
relatively straightforward to extend our analysis to the case of non-vanishing interest
rates.

We follow the standard no-arbitrage approach for the pricing of derivatives. Suppose
that our market trades as basic instruments default risky zero bonds (Qi(t, T ))t≤T of all
maturities T > 0 for all credits i = 1, . . . , n. By definition Qi(T, T ) = 1{τi>T}. Also there
is a risk free money market account (βt). Since we assume that riskless interest rates are
zero, we have βt = 1, t ≥ 0. Also it is natural to extend the definition of Qi(t, T ) beyond
the maturity T setting Qi(t, T ) = Qi(T, T ) = 1{τi>T} for t > T .

There is no arbitrage between the basic securities if all (Qi(t, T ))t≥0 are (P, (Ft))-
martingales, i = 1, . . . , n, T > 0.

Assume from now on that (Qi(t, T ))t≥0 are (Ft)-martingales, i = 1, . . . , n, T > 0
under the measure P which is then called risk-neutral distribution3.

From the martingale property, we get

Qi(t, T ) = E(1{τi>T}|Ft). (4)

The payoff of a contingent claim which is paid at time T is described by an FT -
measurable random variable X. For an integrable claim X we define4 its value Vt(X) at

3Clearly P might be not uniquely determined with this property, so we just pick one of the measures.
4If X is attainable, i.e., hedgeable by an admissible self-financing strategy, this is justified by the

no-arbitrage paradigm, otherwise this is a definition.

5



time t ≤ T by
Vt(X) = E(X|Ft). (5)

3 Credit default swaps

A credit default swap (CDS) is currently the most popular type of credit derivative. The
market in default swaps is getting increasingly liquid.

A credit default swap offers protection against default of a certain underlying credit
over a specified time period. A premium s, the so-called spread, is paid on a regular basis
(e.g. on a quarterly, act/360 basis) as insurance fee against the losses from default of a
default risky position, e.g., a bond. The payment of the premium s stops at maturity or
at default of the underlying, whatever comes first. At default at time t before maturity
of the trade the protection buyer receives the payment5 (1−Rt), where Rt is the recovery
rate of the underlying credit risky instrument for default at time t. Although recovery
itself is a stochastic quantity, in practice it is often assumed that the recovery rate Rt

is deterministic, e.g., Rt = 40%. A reasonable assumption for R can be drawn from
historical recovery data as published by various rating agencies. On the other hand, it
is easy to verify that the impact of particular recovery assumptions on the pricing of
credit default swaps is negligible. So from now on we assume all recovery rates Rt to be
deterministic, and, to simplify the exposition, independent of time t: Rt = R.

3.1 Notation

We start by investigating a CDS on one of our credits i = 1, . . . , n and write τ = τi for the
random time of default and suppress the index i. Consider a CDS entered into at time
t = 0 with maturity T and spread s. Since riskless rates are assumed to be vanishing, from
the point of view of a protection buyer a credit default swap can be seen as a contingent
claim with payoff

− s · (τ ∧ T ) + (1−R)1{τ≤T} (6)

at time T .
We make use of the following notation:

M(t, T ) = E(τ ∧ T |Ft) (7)

B(t, T ) = M(t, T )− τ ∧ t ∧ T (8)

Q(t, T ) = E(1{τ>T}|Ft) (cf. (4)). (9)

For T fixed, (M(t, T ))t≥0 and (Q(t, T ))t≥0 are martingales. Also (B(t, T ))t≥0 is a non-
negative supermartingale vanishing after τ ∧T . We assume all these processes to be right
continuous with left hand limits.

5We assume that the default swap protects against losses in a default risky position of a notional
amount of one unit.
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The value V (t, T ) of a CDS with maturity T at time t ≤ T can now be written as (cf.
(5))

V (t, T ) = −s ·M(t, T ) + (1−R)(1−Q(t, T )) (10)

= −s · (τ ∧ t)− s ·B(t, T ) + (1−R)(1−Q(t, T )).

In practice the quantity B(t, T ) admits an important interpretation: it is the risky present
value of a basis point; it gives the value at time t of one unit paid for the period of time
from time t to τ ∧ T , i.e., up to default or maturity.

Proposition 1 (i) It holds B(t, T ) > 0 a.s. on {T ∧ τ > t}.
(ii) We have the following relationship between the risky value of a basis point B(t, T )
and risky zero bonds Q(t, u), u ≥ 0,6

B(t, T ) =

∫ T

t

Q(t, u)du =

∫ T

0

Q(t, u)du− τ ∧ t, t ≤ T. (11)

Proof: Statement (i) follows from

B(t, T ) = E(τ ∧ T − t|Ft)

a.s. on {t < T ∧ τ}.
(ii) It suffices to show that

M(t, T ) = E(τ ∧ T |Ft) =

∫ T

0

Q(t, u)du.

Indeed, with αu = P(τ ≤ u|Ft) increasing right continuous, we can write

E(τ ∧ T |Ft) =

∫
(0,T ]

uP(τ ∈ du|Ft) + T P(τ > T |Ft)

=

∫
(0,T ]

u dαu + T (1− αT )

= TαT −
∫

(0,T ]

αu−du + T − TαT

=

∫
(0,T ]

(1− αu−)du =

∫
(0,T ]

(1− αu)du

=

∫
(0,T ]

Q(t, u)du.

�
6We assume a regular version of the conditional distribution P(τ ≤ u|Ft) = 1−Q(t, u), u ≥ 0.
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Remarks
1. In view of

M(t, T ) =

∫ T

0

Q(t, u)du (12)

the quantity M(t, T ) can be interpreted as a “portfolio” of risky zero bonds Q(t, u) with
maturities 0 ≤ u ≤ T . However, to make this rigorous, one has to extend the usual
notation of a portfolio to cover portfolios of infinitely many securities, see, e.g., [1]. The
“portfolio” representation above would also justify to consider M(t, T ) as a traded secu-
rity.
However, if we consider the risky zero bonds and credit default swaps as traded instru-
ments, M(t, T ) is obviously a traded security since, by (10), it can be represented as a
portfolio of a CDS and a risky zero bond.
2. Another consequence of (12) and (10) is the following “hedge representation” of the
value V (t, T ) of a CDS in terms of risky zero bonds

dV (t, T ) = −s

∫ T

0

(dQ(t, u))du− (1−R)dQ(t, T ).

3. For u ≤ t ≤ T the martingale E(B(t, T )|Fu) = M(u, T ) − M(u, t), 0 ≤ u ≤ t is the
price at time u of a risky basis point paid for the interval [t, T ]. This quantity is similar
to the so-called swaption numeraire used in the market valuation of options on interest
rate swaps. Based on this analogy, one can approach the problem of valuing an option on
a credit default swap for the protection time interval from t to T along the same lines as
it is standard for interest rate swaptions, see [9]

3.2 The CDS spread

The market quotes CDS by their fair spreads s(0, T ), i.e., the price V (0, T ) of a CDS at
time t = 0 is zero by definition if its spread is s(0, T ). Given the spread curve s(0, T )T>0

and an assumption on the recovery rate R in practice from this information, one derives a
curve of implied survival probabilities Q(0, T ), which is in turn the basis for all valuations.
So the primary market information is the actual spread curve and the trader observes its
dynamics over time. This motivates why we devote this section to the spread curve and
its relationship to other quantities.

Definition 1 The fair spread s(t, T ) for a CDS entered into at time t and with maturity
T is defined as

s(t, T ) =

{
(1−R)(1−Q(t,T ))

B(t,T )
: on {τ > t}, t < T

0 : otherwise .
(13)

Observe that from Proposition 1(i) B(t, T ) > 0 P-a.s. on{T ∧ τ > t}, so s(t, T ) is well
defined. For t ≥ τ, or t ≥ T from its interpretation the CDS spread s(t, T ) does in fact
not exist and we have chosen to set the spread to zero in these situations.
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In practice, at inception of a CDS, its spread is usually set to the fair spread.

Proposition 2 (i). The fair spread (s(t, T ))t≥0 is a semimartingale on the interval
[0, τ ∧ T [, i.e., there exists an increasing sequence (τn) of stopping times τn ≤ τ ∧ T
with limn τn = τ ∧ T such that (s(t ∧ τn, T ))t≥0 is a semimartingale.
(ii). If the limit s((T ∧ τ)−, T ) exists, then (s(t, T ))t≥0 is a semimartingale on the whole
axis.

Proof:
(i). For x ∈ [0,∞) let fn(x) = x1[1/n,∞)(x) + gn(x)1[0,1/n)(x) be a smooth function such
that gn(x) ≥ 1

2n
. Define

Xt(n) =
(1−R)(1−Q(t, T ))

fn(B(t, T ))
, t ≥ 0.

By Ito’s formula, X(n) is a semimartingale. Now define

τn = inf{t ≥ 0 : B(t, T ) ≤ 1/n}. (14)

The sequence (τn) is increasing, τn ≤ τ ∧ T . We show that limn τn = τ ∧ T . On the set⋂
n{t > τn}, using that B(t, T ) is a non-negative supermartingale, we get

0 = lim
n

B(t ∧ τn, T ) ≥ lim
n

E (B(t, T )|Ft∧τn)

≥ E

(
B(t, T )

∣∣∣∣∨
n

Ft∧τn

)
,

which implies B(t, T ) = 0 a.s. on
⋂

n{t > τn}. Now if P(limn τn < T ∧ τ) > 0 this
contradicts the statement of Proposition 1(i), namely, that B(t, T ) > 0 a.s. on {t < T∧τ}.

For t < τn by the definition of Xt(n) it holds that s(t, T ) = Xt(n). Finally, to prove
that s(t ∧ τn, T ) is indeed a semimartingale we write

s(t ∧ τn, T ) = Xt∧τn(n) + (s(τn, T )−Xτn(n))1[τn,∞[(t),

where the right hand side is the sum of a semimartingale and a process of bounded
variation.
(ii).
By [5], Proposition (5.8), a necessary and sufficient condition for (s(t, T )) to be extendable
to a semimartingale on the whole axis, is that the left hand limit s((T ∧ τ)−, T ) exists on
B =

⋂
n{τn < τ ∧ T}. More precisely, if one defines s̃(t, T ) by

s̃(t, T ) =


s(t, T ) on {t < τ ∧ T}

0 = s(τ ∧ T, T ) on {t ≥ τ ∧ T} ∩Bc

s((τ ∧ T )−, T ) on {t ≥ τ ∧ T} ∩B
,
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then by [5] Proposition (5.8) (s̃(t, T ))t≥0 is a semimartingale. In view of

s(t, T )(ω) = s̃(t, T )(ω)− s((τ ∧ T )−, T )(ω)1[τ∧T,∞)×B(t, ω)

the spread process ((s(t, T ))t≥0 defined by (13) is a semimartingale too. �

It is not always the case that the left hand limit s((T ∧τ)−, T ) exists. To illustrate the
possible behaviour of the spread s(t, T ) when t approaches τ we investigate to extreme
examples.
Examples.
1. Denote F (t) = P(τ ≤ t) and assume that the filtration (Ft) is generated by the jump
process Nt = 1{τ≤t},

Ft = FN
t , t ≥ 0.

Then Q(t, T ) = 1{τ>t}
1−F (T )
1−F (t)

, t ≤ T, and thus

s(t, T ) =
(1−R)(F (T )− F (t))∫ T

t
(1− F (u))du

, t < τ, t < T.

Clearly the left hand limit s(τ−, T ) exists on {τ < T} and

s(τ−, T ) =
(1−R)(F (T )− F (τ−))∫ T

τ
(1− F (u))du

.

2. Now assume that τ is a predictable stopping time w.r.t. the filtration (Ft) and
let (τn), τn ↑ τ, τn < τ on {τ > 0} be an announcing sequence. Then Q(τ−, T ) =
limn Q(τn, T ) = P(τ > T |Fτ−) = 1{τ>T}. For the left hand limit of the spread s(t, T ) at
τ this implies on {τ < T}

s(τ−, T ) = lim
n

(1−R)(1−Q(τn, T ))∫ T

0
1{τn≤u}Q(τn, u)du

=
(1−R)1{τ≤T}∫ T

0
1{τ≤u}1{τ>u}du

= ∞.

The following Proposition shows how the spread curve drives the quantities entering
the valuation formula (10) of a CDS.

Proposition 3 Let t > 0 be fixed and all statements are P-a.s. on {τ > t}.
(i) The risky present value of a basis point B(t, T ) satisfies the following ordinary differ-
ential equation

∂

∂T
B(t, T ) +

s(t, T )

1−R
B(t, T ) = 1, T > t. (15)

10



(ii) Suppose that the CDS spread curve (s(t, T ))T>t is an integrable function in T > t P-
a.s. on {τ > t}. Then the corresponding term structure of risky zero bonds (Q(t, T ))T>t

can be inverted from the CDS spread curve (s(t, T ))T>t and Q(t, T ) is given by

Q(t, T ) = 1− s(t, T )

1−R

∫ T

t

exp

(
−
∫ T

v

s(t, u)

1−R
du

)
dv. (16)

Moreover, for the risky present value of a basis point we have the relation

B(t, T ) =

∫ T

t

exp

(
−
∫ T

v

s(t, u)

1−R
du

)
dv. (17)

Proof: Assertion (i) is an immediate consequence of (13) and (11).
If (s(t, T ))T>t is integrable, the solution to (15) is standard and given by (17). The
assertion for Q(t, T ) then follows in view of Q(t, T ) = ∂

∂T
B(t, T ). �

Remarks.
1. By their definition it is obvious that Q(t, T ) ≥ 0 and B(t, T ) is increasing in T > t.
For that to be true, in view of (16) and (17), the CDS spread curve has to satisfy some
necessary restrictions. Namely, we have Q(t, T ) ≥ 0 if and only if B(t, T ) is increasing in
T > t, which holds, if and only if,

1 ≥ s(t, T )

1−R

∫ T

t

exp

(
−
∫ T

v

s(t, u)

1−R
du

)
dv.

2. Also, by definition Q(t, T ) is a decreasing function in T > t which yields the following
further necessary restriction on the CDS spread curve:

s(t, T )

1−R

∫ T

t

exp

(
−
∫ T

v

s(t, u)

1−R
du

)
dv

is an increasing function in T > t. Practitioners are well aware of the fact that a too
heavily inverted spread curve (s(0, T ))T≥0 could yield “negative” default probabilities for
certain time intervals.

3.3 CDS strategies

In this section we investigate simple trading strategies in credit default swaps that generate
new securities that in turn can be used as hedging instruments. One motivation for
introducing those strategies is that their price dynamics allow for an explicit representation
in terms of the dynamics of the spread, see Proposition 5 below. This in turn will be the
basis of our pricing approach in Section 4.

We denote by V (t, u, T ) the value at time t ≤ T of a CDS entered into at time u with
(fair) spread s = s(u, T ) and maturity T , i.e.,

V (t, u, T ) =

{
−s(u, T ) · (M(t, T )− τ ∧ u) + (1−R)(1{τ>u} −Q(t, T )) : u ≤ t ≤ T

0 : t ≤ u.
(18)
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Proposition 4 Consider a CDS with maturity T and with (fair) spread s(u, T ) at time
u < T . At time T ≥ t ≥ u we have the following equalities for the price V (t, u, T )

V (t, u, T ) = −s(u, T ) · (τ ∧ t− τ ∧ u) + (1−R)1{u<τ≤t} (19)

+ (s(t, T )− s(u, T )) ·B(t, T ),

V (t, u, T ) = −s(u, T ) · (τ ∧ t− τ ∧ u)− s(u, T )(B(t, T )−B(u, T )) (20)

(1−R)(Q(u, T )−Q(t, T )).

Proof: For T ≥ t > u we have

V (t, u, T ) = −s(u, T )E(τ ∧ T − τ ∧ u|Ft) + (1−R)P(u < τ ≤ T |Ft)

= −s(u, T )(τ ∧ t− τ ∧ u)− s(u, T )B(t, T )

+ (1−R)1{u<τ≤t} + (1−R)P(t < τ ≤ T |Ft)

= −s(u, T )(τ ∧ t− τ ∧ u) + (1−R)1{u<τ≤t} + (s(t, T )− s(u, T ))B(t, T ),

where we have used (13) for the last step.
Finally, from (19) and (13)

V (t, u, T ) = −s(u, T )(τ ∧ t− τ ∧ u)− s(u, T )B(t, T ) + (1−R)P(u < τ ≤ T |Ft)

= −s(u, T )(τ ∧ t− τ ∧ u)− s(u, T )(B(t, T )−B(u, T ))

− s(u, T )B(u, T ) + (1−R)P(u < τ ≤ T |Fu)

+ (1−R)[P(u < τ ≤ T |Ft)−P(u < τ ≤ T |Fu)]

= −s(u, T )(τ ∧ t− τ ∧ u)− s(u, T )(B(t, T )−B(u, T ))

+ (1−R)(Q(u, T )−Q(t, T )).

�
Equality (19) possesses a nice interpretation. The first expression, −s(u, T ) · (τ ∧

t − τ ∧ u), is the amount of spread payments accrued so far, the so-called called carry;
(1 − R)1{u<τ≤t} is the protection payment if there was already a default up to time t.
The last term, (s(t, T )− s(u, T )) ·B(t, T ), is the difference between the spread agreed at
inception and the current fair spread for the remaining lifetime times the risky present
value of a basis point for the remaining life time. If there has been no default up to time
t this last term quantifies the actual mark-to-marked value of the CDS.

Let 0 = t0 < t1 < t2 < · · · < tN = T be a partition P of time and consider the
following strategy. At time t0 we enter into a fair CDS with maturity T , at time t1 this
CDS is unwound at the then prevailing market value and we enter into a new fair CDS,
starting at time t1 with maturity T and so on.

12



The value process DP (t, T ) of this strategy is obviously

DP (t, T ) =
N∑

j=1

{
− s(tj−1, T ) [tj ∧ t ∧ τ − tj−1 ∧ t ∧ τ ] +

[s(tj ∧ t, T )− s(tj−1 ∧ t, T )] B(tj ∧ t, T )
}

+ (1−R)1{τ≤t}

=
N∑

j=1

V (tj ∧ t, tj−1 ∧ t, T ). (21)

Now, using (20) and (13) this value process can also be written as

DP (t, T ) = −
∫

(0t∧τ ]

N∑
j=1

s(tj−1, T )1(tj−1,tj ](u)du

−
∫

(0,t∧τ ]

N∑
j=1

s(tj−1, T )1(tj−1,tj ](u)dB(u, T ) + (1−R)(Q(0, T )−Q(t, T ))

= −
∫

(0,t∧τ ]

N∑
j=1

s(tj−1, T )1(tj−1,tj ](u)(du + dB(u, T ))

+ (1−R)(Q(0, T )−Q(t, T )).

Lemma 1 On the stochastic interval [0, τ ∧ T [ the limit of DP (t, T ) as ∆P = maxi(tj −
tj−1) → 0 P-a.s. exists and is given by

lim
∆P→0

DP (t, T ) = −
∫

(0,t]

s(u−, T )(du + dB(u, T )) + (1−R)(Q(0, T )−Q(t, T )).

If the limit s((τ ∧ T )−, T ) exists, then the process (DP (t, T ))t≥0 converges to

−
∫

(0,t]

s(u−, T )(du + dB(u, T )) + (1−R)(Q(0, T )−Q(t, T ), t ≥ 0,

on the whole time axis.

Proof: The assertion follows from [7], Theorem II.21, where, in case the limit s((τ ∧
T )−, T ) does not exist, we have to localize by the sequence τn ↑ τ ∧ T, defined by (14).�

Definition 2 If the limit s((τ ∧ T )−, T ) exists we denote

C(t, T ) = −
∫

(0,t]

s(u−, T )(du + dB(u, T )) + (1−R)(Q(0, T )−Q(t, T )), t ≤ T. (22)

We interpret C(t, T ) as the price at time t of a strategy in credit default swaps which
consists in continuously resettling into a fair credit default swap with maturity T .
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Remark. It might be possible to extend some results of the remainder of this paper also
to the situation where the limit s((τ ∧ T )−, T ) does not exist. However, this seems to be
quite technical and not straightforward to accomplish. More importantly, in Section 4 in
our main application of the results, we deal with models where the limit s((τ ∧ T )−, T )
exists by definition.

So from now on we assume that the limit s((τ∧T )−, T ) exists. The process (C(t, T ))t≤T

is then well-defined and by Proposition 2, (s(t, T ))t≥0 is a semimartingale.

Proposition 5 If the continuous martingale part of the semimartingale (s(t, T ))t≥0 van-
ishes, then

C(t, T ) = −
∫ t

0

s(u, T )du +

∫ t

0

B(u, T )ds(u, T ), t < τ ∧ T. (23)

Proof: By assumption (s(t, T )) is locally of bounded variation, so the integral w.r.t.
(s(t, T )) is in fact a Lebesgue-Stieltjes integral. First integrating by parts and then rear-
ranging and simplifying we get

C(t, T ) =−
∫ t

0

s(u−, T )du−B(t, T )s(t, T ) + B(0, T )s(0, T ) +

∫ t

0

B(u−, T )ds(u, T )

+ [B(., T ), s(., T )]t + (1−R)(Q(0, T )−Q(t, T ))

=−
∫ t

0

s(u−, T )du +

∫ t

0

B(u, T )ds(u, T )

−
∑
u≤t

∆B(u, T )∆s(u, T ) + [B(., T ), s(., T )]t

+ B(0, T )s(0, T )− (1−R)(1−Q(0, T ))

−B(t, T )s(t, T ) + (1−R)(1−Q(t, T ))

=−
∫ t

0

s(u−, T )du +

∫ t

0

B(u, T )ds(u, T ),

where we have used (13) for the last step. �

Equation (23) has an intuitive interpretation. The first term quantifies the accrued
premiums from the CDS positions up to time t. The second integral

∫ t

0
B(u, T )ds(u, T )

expresses the cumulative costs of resettling the CDS positions to be fair: over the “time
interval” du the mark-to-market value of our CDS position from the beginning of this
interval is just the change in fair spread ds(u, T ) times the present value of a basis point
B(u, T ) at the end of the interval and for the remaining time to maturity T .

The result of Proposition 5 is of critical importance for our pricing and hedging ap-
proach for basket derivatives in Section 4. In particular, we will make use of the fact that,
by (23) and (17), the price dynamics of the strategy C(t, T ) are explicitly represented in
terms of the dynamics of the spread s(t, T ).
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4 Credit basket derivatives

Consider n credits with default times τ1, . . . , τn. A credit basket derivative with maturity
T is a contingent claim with payoff VT at time T where

VT = f(T, τ1, . . . , τn)

with a measurable function f such that f(T, τ1, . . . , τn) is a FT measurable random vari-
able.
Important examples are basket default swaps to be discussed in more detail below.

Assume from now on that

P(τi = τj) = 0,∀i 6= j. (24)

The default times τ1, . . . , τn can then be uniquely ordered and we denote by τ[k] the time
of the kth default, i.e., τ[k] ∈ {τ1, . . . , τn} and

τ[1] < τ[2] < · · · < τ[n].

A kth to default swap (basket CDS) with maturity T and premium s is like a credit default
swap where the event to protect is the occurrence of the kth default before maturity T .
It is a credit basket derivative with payoff

V kth
T = −s · (τ[k] ∧ T ) +

n∑
i=1

Pi(τi)1{τ[k]≤T,τ[k]=τi}, (25)

where Pi(τi) is an insurance premium paid if credit i is the kth defaulting. In practice
one usually has Pi(τi) = 1−Ri, where Ri is the recovery rate for credit i.

4.1 Hedging basket claims

In the following we investigate the problem of hedging a basket credit derivative with
primary securities such as credit default swaps V i(t, T ) on credit i or strategies Di,P (t, T ),
Ci(t, T ) as defined in Section 3.3. The superscript i indicates that the respective security
refers to credit i. We refer to the Definition 2 of (Ci(t, T ))t≥0 and recall that we always
assume that the limit si((τi ∧ T )−, T ) exists.

Definition 3 The basket credit derivative VT = f(T, τ1, . . . , τn) is called hedgeable in the
hedge instruments H i(., S) ∈ {V i(., S), Di,P (., S), Ci(., S)} with S ∈ Mi and Mi a finite
set of maturities, if

VT = K +
n∑

i=1

∑
S∈Mi

∫ T

0

ni,S(u)dH i(u, S), (26)

with some constant K and predictable integrands ni,S such that the integrals are well-
defined. The integrands {ni,S, S ∈ Mi, i = 1, . . . , n} are called a hedging strategy in the
hedge securities {H i(., S), S ∈ Mi, i = 1, . . . , n}.
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Following our definition (5) for the value of a claim we get

Lemma 2 Suppose VT = f(T, τ1, . . . , τn) is hedgeable in the instruments H i(., S) with
strategy {ni,S, S ∈ Mi, i = 1, . . . , n} such that

∫ t

0
ni,S(u)dH i(u, S), t ≤ T, is a P-martingale

for every i, S. Then the price V0 is

V0 = E(VT ) = K.

Remark: The strategy {ni,S, S ∈ Mi, i = 1, . . . , n} can be extended to a self-financing
strategy in the securities {H i(., S), S ∈ Mi, i = 1, . . . , n} ∪ {β} putting a respective
amount nβ into the risk free savings account βt = 1,

nβ(t) =
n∑

i=1

∑
S∈Mi

ni,S(t)H i(t, S)−

(
K +

n∑
i=1

∑
S∈Mi

∫ t

0

ni,S(u)dH i(u, S)

)
, t ≤ T.

4.2 Hedging in the pure jump case

Denote by N i the jump process associated with the default time τi

N i
t = 1{τi≤t}, t ≥ 0.

In this section we assume that the underlying filtration (Ft) is

Ft = FN1,...,Nn

t , t ≥ 0, (27)

i.e., the filtration is generated by the pure jump processes N1, . . . , Nn. In other words,
defaults are the only observable information in the market.

Proposition 6 Consider a basket credit derivative with integrable payoff

VT = f(T, τ1, . . . , τn)

at time T . Denote Vt = E(VT |Ft), t ≥ 0. Then VT is hedgeable in the hedge instruments
H i(., S) ∈ {V i(., S), Di,P (., S), Ci(., S) with S ∈ Mi and Mi a finite set of maturities, if
and only if

∆Vτj
=

n∑
i=1

∑
S∈Mi

ni,S(τj)∆H i(τj, S), j = 1, . . . , n.

Proof: Because of assumption (27) the processes V and H i(., S) are pure jump mar-
tingales, i.e., compensated sums of jumps. The jumps are exhausted by τ1, . . . , τn. The
assertion follows since pure jump martingales coincide if and only if their jumps coincide
(see, e.g,. [4], Chapter VIII). �

It well-known that in the pure jump case the flow of information (Ft) possesses a very
simple and explicit form, which will be the key to our further analysis of hedging and
pricing basket derivatives.

16



Denote by zk the random variable indicating the identity of the kth default:

zk =
n∑

i=1

i 1{τ[k]=τi}, k = 1, . . . , n. (28)

Lemma 3 Let (Xt) be (Ft)-adapted, then Xt admits a representation

Xt = f0(t)1[0,τ[1])(t) + f1(τ[1], z1, t)1[τ[1],τ[2])(t) + . . . (29)

+ fn−1(τ[1], . . . , τ[n−1], z1, . . . , zn−1, t)1[τ[n−1],τ[n])(t)

+ fn(τ[1], . . . , τ[n], z1, . . . , zn, t)1[τ[n],∞)(t),

with deterministic functions fk(t1, . . . , tk, i1, . . . , ik, t), tl ∈ R+, il ∈ {1, . . . , n} that are
measurable in (t1, . . . , tk).

Proof. As a consequence of [3], Theorem A2.32, for each t and k there exists an Fτ[k]
-

measurable variable V (k, t) such that the Ft measurable random variable Xt is of the
form

Xt1{τ[k]≤t<τk+1]} = V (k, t)1{τ[k]≤t<τk+1]}.

Finally, from [3], Theorem A2.30, we get

V (k, t) = fk(τ[1], . . . , τ[k], z1, . . . , zk, t)

with a function fk with the stated properties. �

4.3 Pricing and hedging a basket CDS in the pure jump case

In view of (29) the CDS spreads si(t, T ) can be written in the form

si(t, T ) = (30)
ai(t, T ) : t < τ[1]

ai(t, T ) + bi(τ[1], z1, t, T ) : τ[1] ≤ t < τ[2], z1 6= i
ai(t, T ) + bi(τ[1], z1, t, T ) + bi(τ[1], τ[2], z1, z2, t, T ) : τ[2] ≤ t < τ[3], z1 6= i, z2 6= i
. . . : . . .

.

The function ai(t, T ) is the deterministic base CDS spread up and until the time of first
default, the function bi(τ[1], z1, t, T ) is the spread widening relative to the base spread
ai(t, T ) which is caused by the occurrence of the first default and the first default being
credit z1 6= i etc.

Since si(t, T ) is a semimartingale we will assume that the functions

ai(t, T ), bi(t1, . . . , tk, i1, . . . , ik, t, T )
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are of finite variation and càdlag in the variable t ∈ [0, T ].
In addition, to be able to use the result of Proposition 3, the functions ai(t, T ), bi(u, j, t, T )

are supposed to be integrable in the variable T . In view of the remarks following Propo-
sition 3, the functions

ai(t, T ), bi(t1, . . . , tk, i1, . . . , ik, t, T )

have to satisfy some additional conditions, which we assume to be fulfilled.

By [3], Theorem A2.34, the predictable hedge strategy n(t) in any of our hedge in-
struments is necessarily of the form

n(t) =


n0(t) : 0 ≤ t ≤ τ[1]

n1(τ[1], z1, t) : τ[1] < t ≤ τ[2],
n2(τ[1], τ[2], z1, z2, t) : τ[2] < t ≤ τ[3],
. . . : . . .

. (31)

with measurable functions nk.

4.3.1 Hedging and pricing a first-to-default swap

Now, it turns out that the hedging and pricing of a first to default swap can be made
quite explicit.

We need a purely technical condition on the support of the measure P(τi ∈ dt, τ[1] = τi)

supp(P(τi ∈ dt, τ[1] = τi ≤ T )) = [0, T ]. (32)

Proposition 7 Consider a first-to-default (FTD) swap with maturity T and payoff V first
T

as in (25) for k = 1,

V first
T = −s · (τ[1] ∧ T ) +

n∑
i=1

Pi(τi)1{τ[1]≤T,τ[1]=τi}.

Chose as hedge instruments CDS strategies Ci(t, T ) (see (22)) for the underlying credits
i = 1, . . . , n. The FTD swap is hedgeable in the instruments Ci(t, T ) with strategies ni(t)
as in (31), i.e.,

V first
T = K +

n∑
i=1

∫ T

0

ni(s)dCi(s, T ),

if and only if the vector function n0(t) = (n1
0(t), . . . , n

n
0 (t))T satisfies the following system

of ordinary integral equations

−s · t · 1 + P(t) = K · 1 +

∫
(0,t)

dF(u, T ) · n0(u) · 1 + E(t, T ) · n0(t), t ≤ T (33)

−s · T = K +

∫ T

0

dF(u, T ) · n0(u), (34)
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with the notation7

P(t) = (P1(t), . . . , Pn(t))T

1 = (1, . . . , 1)T

E(t, T ) = (Ei,j(t, T ))i,j=1,...,n

Ei,j(t, T ) =

{
1−Ri : i = j

(bi(t, j, t, T ) + ∆ai(t, T ))
∫ T

t
exp

(
−
∫ T

v
ai(t,u)+bi(t,j,t,u)

1−Ri
du
)

dv : i 6= j

dF(u, T ) = (−a1(u, T )du + B1(u, T )da1(u, T ), . . . ,−an(u, T )du + Bn(u, T )dan(u, T ))

Bi(u, T ) =

∫ T

t

exp

(
−
∫ T

v

ai(t, u)

1−Ri

du

)
dv

and functions ai, bi from (30).

Proof: Using Proposition 5 the FTD swap is hedgeable in the instruments Ci(t, T ) with
strategies ni(t) as in (31) if and only if

−s · (τ[1] ∧ T ) +
n∑

i=1

Pi(τi)1{τ[1]≤T,τ[1]=τi}

= K +
n∑

i=1

[
−
∫ τ[1]∧T

0

ni
0(u)si(u, T )du +

∫ τ[1]∧T

0

ni
0(u)Bi(u, T )dsi(u, T )

+ni
0(τ[1])(1−Ri)1{τ[1]=τi≤T}

]
.

On the set {τ[1] = τj = t ≤ T} using (17) and (30) this can be written as

−s · t + Pj(t) =

K +
n∑

i=1

[
−
∫ t

0

ni
0(u)ai(u, T )du +

∫
(0,t)

ni
0(u)

∫ T

u

exp

(
−
∫ T

v

ai(t, w)

1−Ri

dw

)
dv dai(u, T )

]
+
∑
i6=j

ni
0(t)(b

i(t, j, t, T ) + ∆ai(t, T ))

∫ T

t

exp

(
−
∫ T

v

ai(t, u) + bi(t, j, t, u)

1−Ri

du

)
dv

+ nj
0(t)(1−Rj).

In vector notation this is just equation (33). In the same way, on the set {τ[1] > T} we
obtain (34). In view of condition (32) this proves the assertion. �

Corollary 1 Suppose that for every s, K equation (33) possesses a solution

ns,K
0 (t), t ≤ T.

7∆ai(t, T ) = ai(t, T )− ai(t−, T ).
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(i) For given spread s the price K of the FTD swap is a solution of the equation

K = −s · T −
∫ T

0

dF(u, T ) · ns,K
0 (u).

(ii) The fair spread sFTD of the FTD swap is a solution of the equation

sFTD =
−
∫ T

0
dF(u, T ) · nsFTD,0

0 (u)

T
.

Remark. Even in case of a model that is not of pure jump type, the results above seem
to be applicable to a certain extend, at least for the purpose of pricing. Start with some
model for τ1, . . . , τn on a filtered probability space (Ω,F , (Ft)t≥0,P) with risk-neutral
distribution P. Suppose we get a hand on the joint distribution of the default times and
their copula

P(τ1 < t1, . . . , τn < tn) = C(F1(t1), . . . , Fn(tn)).

Now construct a model with pure jump filtration possessing exactly the same joint dis-
tribution of default times. For this purpose, the default implied spread widenings can be
calculated as shown in [8],[10] and the setup (30) can be made explicit from the copula.
Prices and fair spreads calculated as above in the framework of a pure jump model then
coincide with the prices and fair spreads in the original model since they depend solely
on the joint distribution.

4.3.2 Numerical examples

Contrary to most pricing models for FTD swap in practice, which are based on a time
consuming Monte-Carlo simulation of a copula model or which use somewhat restricting
factor dependency structures, the approach above allows for an extremely fast and efficient
implementation of the pricing of an FTD swap, producing at the same time explicit
hedging strategies in case of a pure jump model.

We start with a model setup as in (30) assuming for simplicity of exposition that all
functions ai(t, T ), bi(u, j, t, T ), . . . are constant over time, i.e.

ai(t, T ) = ai, bi(u, j, t, T ) = bi(j), . . .

For the premiums Pi(t) of the FTD swap we assume, as it is common in practice, that

Pi(t) = 1−Ri.

In this case equation (33) simplifies, for j = 1, . . . , n and 0 ≤ t ≤ T

−s t + (1−Rj) =K −
n∑

i=1

ai

∫ t

0

nj
0(u)du

+
∑
i6=j

ni
0(t)b

i(j)
1−Ri

ai + bi(j)

[
1− exp

(
−ai + bi(j)

1−Ri

(T − t)

)]
+ (1−Rj)n

j
0(t).
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This system of equations possesses a unique solution for every s, K, which can be even
made explicit. However, we prefer a numerical solution based on a discretisation of time.

As an example, consider n = 5 names with base spreads a1 = 0, 80%, a2 = 0, 90%, a3 =
1, 00%, a4 = 1, 10%, a5 = 1, 20% and assume recoveries Ri = 20% throughout. The
following table shows the fair FTD spread sFTD for maturities T = 1, . . . , 5 and for
constant default implied spread jumps bi(j) = 1%, 5%, 10%.

bi(j)/T 1 2 3 4 5
1% 4,878% 4,764% 4,657% 4,555% 4,459%
5% 4,467% 4,073% 3,765% 3,516% 3,310%
10% 4,074% 3,523% 3,148% 2,872% 2,660%

Now consider the same example as above with maturity T = 5 and with default
implied spread jumps bi(j) = 5% throughout. Here are the fair prices K of the FTD swap
for different given spreads s.

spread s 2,00% 2,50% 3,00% 3,31% 3,50% 4,00% 4,50%
K in basis points 598,16 369,85 141,54 0,00 -86,75 -315,06 -543,37

The final example takes a rather extreme situation. We consider a basket with n = 5
names and with base spreads a1 = 1, 00%, a2 = 2, 00%, a3 = 3, 00%, a4 = 4, 00%, a5 =
5, 00%, recoveries Ri = 20%, a maturity of T = 5 and equal default implied spread jumps
bi(j) = 10%. The fair spread is then sFTD = 7, 992%. The following picture shows the
hedges notionals ni(t) over time for a fair FTD swap.
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FTD Hedges over Time
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The hedges start at time t = 0 with relatively small hedge amounts ni(t) � 100%
that increase over time and tend to 100% as t approaches the maturity T . This admits an
intuitive explanation. Let us think of a bank that bought FTD protection from a client
and hedges by selling protection in single name CDS in the underlying names. In case
the first credit defaulting before maturity is i, the bank receives the amount (1 − Ri)
from the client. This amount is, according to the shown hedge ratios of nk(t) < 1, higher
than what the bank has to pay in the hedge, namely, the amount ni(t)(1 − Ri). The
difference, Di(t) = (1− ni(t))(1−Ri), between the two is, of course, not a windfall profit
for the bank. Due to the spread widening in the remaining names k 6= i unwinding the
now redundant hedges in these names is costly, the cost becoming higher the higher the
remaining life time T − t of the CDS. On the other hand, there might be a (so-called
carry-) mismatch between the premium the bank has paid to the client and what was
earned from the hedges; up to time t the carry is

−sFTD · t +
∑

k

∫ t

0

nk(u)sk(u, T )du.

Initially, for small t the carry will be negative as the hedge amounts nk(t) are small. In
case of default any negative carry has to be be covered as well by the difference Di(t). For
t getting closer to maturity T , the hedge ratios nk(t) approach 100%, generating a locally
positive carry, which, in case there is no default at all, will balance the final overall carry
to be zero at maturity T .
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