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Abstract 
In this paper we investigate the macroeconomic impact of natural disasters in 
developing countries by examining hurricane strikes in the Central American 
and Caribbean region.  Our innovation in this regard is to employ a windfield 
model combined with a power dissipation equation on hurricane track data to 
arrive at a more scientifically based index of potential local destruction. This 
index allows us to identify potential damages at a detailed geographical level, 
compare hurricanes’ destructiveness, as well as identify the countries most 
affected, without having to rely on potentially questionable monetary loss 
estimates.  Combining our destruction index with macroeconomic data we show 
that the average hurricane strike caused output to fall by up to 0.8 percentage 
points in the region, although this crucially depends on controlling for local 
economic characteristics of the country affected. 
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Section I: Introduction 

Natural disasters are generally associated with considerable economic 

losses.  Particularly alarming in this regard is not only the fact that the last three 

and a half decades have witnessed an increase in the number of such 

occurrences, but also that developing countries seem to be those bearing the 

brunt of these events and ultimately the economic consequences, thus possibly 

further adding to the perceived gap between the ‘rich’ and the ‘poor’.  For 

example, between 1970 and 2002 out of a total number of 6436 natural disasters, 

77 per cent have taken place in the developing world.   Moreover, the 

reoccurrence of such extreme events often tends to be concentrated in particular 

geographic areas, striking certain countries again and again, often with great 

severety.  For instance, since 1984 Dominica has been struck by 9 different 

hurricanes, while Hurricane Georges caused losses of around 400 million US$, 

constituting over 140 per cent of GDP, in the Caribbean islands of St. Kitts and 

Nevis in 1998.1   

  While cited damage figures due to extreme events are often impressively 

large, the overall macroeconomic impact, in particular with regard to economic 

output, may in principle not necessarily be quite that apparent for a number of 

reasons.  Firstly, as argued by Horwich (2005), natural disasters are almost 

always localized events and may thus only affect a limited part of the whole 

economy.  Additionally, natural disasters generally relate to a loss in the capital 

                                                 
1
 See Rasmussen (2004). 
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stock – generally of a physical nature although there may also be losses in human 

capital – in an economy.  However, if the gross domestic product is taken as the 

measure of output, it may actually be enlarged by the “production of 

replacement capital and disaster-related rescue, [and] relief and clean-up 

activity” (Horwich, 2000, p. 524).2  Although of course GDP may initially fall 

before such replacement capital, direct fund injections, and rescue and relief 

activity take place, this may at least in part be mitigated if physical assets are not 

the dominant resource and/or if resource substitution occurs.  Moreover, as 

noted by Hallegate (2006), negative shocks such as natural disasters may serve as 

a catalyst for re-investment and upgrading of capital goods which in turn can 

boost an economy.3   

 Arguably, however, one would expect such a ‘dampening’ of the negative 

effects due to natural disasters to play less of a role in developing countries, and 

the evidence seems to support this.  For instance, Horwich (2005) argues that the 

Kobe earthquake in Japan, which was the most severe earthquake of modern 

times to strike an urban area, had little observable macroeconomic consequences, 

while the 1988 earthquake in Armenia, which registered at a lower Richter scale, 

are believed to have had devastating effects on the economy.4 Also, in a cross-

country study Noy (2008) finds that any macroeconomic costs are almost entirely 

due the developing country group of their sample.  Such a differential effect for 

                                                 
2
 Although pre-disaster components and GDP itself could fall before enough replacemtn capital becomes 

available.   
3
 For a discussion on the growth implication derived from theoretical literature, see Noy (2008).  

4
 International Monetary Fund (2001). 
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developing countries may not be that surprising. Firstly, as noted earlier, much 

of the extreme events seem to mainly take place in geographic regions where 

mostly developing countries are located.  Also, many developing countries tend 

to be relatively specialized in production, with particular emphasis on 

agricultural activities, which is likely to be the sector most affected by natural 

disasters.5  As a matter of fact, recent evidence seems to indicate that the extent of 

losses due to natural disasters is very much related to the level of development; 

see, for instance, Anbarci et al (2005), Kahn (2005), Toya and Skidmore (2007), 

and Noy (2008).   

Nevertheless, evidence on how much damages due to extreme events 

actually translate into a fall in overall economic output is as of date sparse, and 

the few estimates that exist vary considerably.  For instance, Raddatz (2007) 

investigated the role that external shocks played in a panel of low-income 

countries and found that climatic disasters (which includes those due to tropical 

cyclones) can only account for 13.9 per cent of the total volatility due to external 

shocks – an arguably small figure when one considers that he finds that external 

shocks themselves can only explain 11 per cent of total output volatility in 

developing countries.   Bluedorn (2005) studies the response of the current 

account to hurricane activity by partially constructing his own estimates of 

damage losses of hurricane strikes in Central America and the Caribbean, and his 

findings suggest that the median damaging hurricane strike will cause output to 

                                                 
5
 See Albala-Bertrand, J.M. (1993).   
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fall by only 0.3 percentage points.6  In contrast, Noy (2008) finds that natural 

disasters will typically cause a drop in output of 9 percentage points in 

developing countries. 

 While the few studies investigating the macroeconomic impact of natural 

disasters should be applauded for their novel attempts in this regard, there are a 

number of reasons to be skeptical about the actual quantitative size of their 

estimates.  Firstly, except for Bluedorn (2005), these studies tend to treat natural 

disasters as a homogenous group of extreme events affecting an assumed 

homogenous group of countries.  Arguably, however, different types of natural 

disasters have different potential effects, while different geographical regions are 

subject to different probabilities of occurrence for these, and thus are likely to be 

affected non-homogenously as the level of readiness may depend on the 

(perceived) probability of incidence.7  Secondly, current studies essentially have 

all relied on aggregate damage estimates, either in financial or human loss levels 

or in terms of identifying the occurrence.  Typically, however, damage estimates, 

such as those provided by the well-known EM-DAT database, which is the main 

source of information for papers investigating national disasters across 

countries8, come from different sources, the nature and quality of reporting may 

change over time, the costs may be exaggerated to attract international 

                                                 
6
 Calculation using Bludorn’s (2005) estimated coefficient and the mean damages per GDP value for 

hurricanes in the region taken from the EM-DAT database.   
7
 For example, tropical cyclones only affect certain regions of the world and mostly coastal areas of these, 

while for other regions being near fault lines increases the likelihood of an earthquake; see Woo (1998). 
8
 Bluedorn (2005) uses the EM-DAT data, as well as other sources to compile information on losses due to 

hurricanes.   For those hurricanes for which there was no information, he inferred costs from similar 

hurricane strikes.   
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emergency relief, and identified events are generally subject to some threshold 

level for inclusion.  Finally, as noted earlier, natural disaster events tend to have 

very localized impacts so that aggregate figures give little indication what 

portion of a country’s economy are actually affected.  

 The purpose of the current paper is to address these shortcomings not 

only by employing arguably more appropriate estimates of the potential 

destruction of natural disasters, but also by focusing on a particular region 

subject to a particular type of natural disaster to isolate more reliable estimates of 

their overall macroeconomic impact.  More specifically, as in Bluedorn (2005), 

our geographical focus is on hurricane strikes in the Central American and 

Caribbean region, an area that has been and continues to be particularly 

vulnerable to hurricanes.  For example, in the last 50 years over 80 hurricanes 

made landfall in the region.  However, unlike the previous studies we, rather 

than using potentially measurement error prone indicators of economic damages 

to proxy the severity of a hurricane strike, resort to actual historical data tracking 

the movement of tropical storms across the affected region and employ a wind 

field model on these hurricane `tracks’ that allows us to calculate an 

approximation of the severity of winds experienced at a detailed geographical 

level of the countries potentially affected.  These local wind estimates are then 

used in conjunction with a power dissipation index to proxy local potential 

destructiveness of hurricanes.   
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Employing this wind field model approach arguably allows us to arrive at 

a more scientifically based estimate of potential damage due to hurricanes in the 

region over time. With this in hand we are then able to more accurately show 

which hurricanes were the most damaging, and which sub-regions within 

countries have been historically most affected. Combining our destruction 

estimates with available macroeconomic data we estimate that a typical 

hurricane strike in the region causes a reduction in annual output growth of 

about 0.8 percentage points.   We also show that it is crucial in this regard to take 

account of both the local population distribution as well as the land use of the 

area affected.    

 The remainder of the paper is as follows. In the next section we briefly 

describe the basic nature of hurricanes and their potential destructiveness.  In 

Section III we outline the wind field model and power dissipation equation used 

to derive a local index of local destructiveness.  Section IV describes our data 

sources.  Some  destruction estimates using our proxy are given in Section V.  We 

econometrically investigate the macro-economic impact of hurricanes in the 

region in Section VI.  Finally, concluding remarks are provided in the last section.   

 

Section II: Some Basic Facts about Hurricanes and their Destructive Power 

A tropical cyclone is a meteorological term for a storm system, 

characterized by a low pressure system center and thunderstorms that produces 

strong wind and flooding rain, which forms almost exclusively, and hence its 
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name, in tropical regions of the globe.9 Depending on their location and strength, 

tropical cyclones are referred to by various other names, such as hurricane, 

typhoon, tropical storm, cyclonic storm, and tropical depression.  Tropical storms 

in the North Atlantic and the North East Pacific region, as we study here, are 

generally termed hurricanes if they are of sufficient strength.10 In terms of its 

structure, a hurricane will typically harbor an area of sinking air at the center of 

circulation, known as the ‘eye, where weather in the eye is normally calm and 

free of clouds, though the sea may be extremely violent.11  Outside of the eye 

curved bands of clouds and thunderstorms move away from the eye wall in a 

spiral fashion, where these bands are capable of producing heavy bursts of rain, 

wind, and tornadoes.  The typical structure of a hurricane is depicted in Figure 1.  

Hurricane strength tropical cyclones are typically about 483 km wide, although 

they can vary considerably.  The season for hurricanes in the two regions can 

start as early as the end of May and last until the end of November.   

Hurricane damages typically take a number of forms.  Firstly, the strong 

winds associated with hurricanes may cause considerable structural damage to 

buildings as well as crops.  Secondly, strong rainfall can result in extensive 

flooding and, in sloped areas, landslides.  Finally, the high winds pushing on the 

ocean’s surface cause the water near the coast to pile up higher than the ordinary 

sea level, and this effect combined with the low pressure at the center of the 

                                                 
9
 The term "cyclone" derives from cyclonic nature of such storms, with counterclockwise rotation in the 

Northern Hemisphere and clockwise rotation in the Southern Hemisphere. 
10
 Generally at least 119 km/hr. 

11
 National Weather Service (October 19, 2005). Tropical Cyclone Structure. JetStream - An Online School 

for Weather. National Oceanic & Atmospheric Administration. 
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weather system and the bathymetry of the body of water that results in storm 

surges are the most damaging aspect of hurricanes.   In particular, storm surges 

can cause severe property damage and destruction and salt contamination of 

agricultural areas, where flooding on the coast may occur 3-5 hours before the 

arrival of the center of the hurricane.12  One may also want to note that 

hurricanes lose their strength as they move over land.   

While the extent of potential damages caused by hurricanes may depend 

on many factors, such as slope of the continental shelf and the shape of the 

coastline in the landfall region in the case of storm surges, it is typically 

measured in terms of wind speed.   In this regard, a popular classification has 

been the Saffir-Simpson Scale, which classifies hurricanes into 5 different 

categories, where wind speeds of 119-153 km/hr, of 154-177 km/hr, of 178-209 

km/hr, of 210-249 km/hr, and 250+ km/hr are given values of 1, 2, 3, 4, and 5, 

respectively, on the scale.  With regard to the extent of damages caused, it is 

generally agreed that damages from hurricanes of levels 1 and 2 are relatively 

minor.13  In contrast, once a hurricane reaches a strength of 3 on the Saffir-

Simpson scale, considerable damage is likely as it approaches the coast of an area 

and when it makes landfall.14  For instance, storm surges are typically above 

                                                 
12
 Yang (2007).    

13
 For instance, hurricanes of level 2 typically involve storm surges between 1.8-2.4 meters, damage to 

shrubbery and trees with some trees blown down, and damage to mobile homes, poorly constructed signs, 

and piers.  For more details see http://www.nhc.noaa.gov/aboutsshs.shtml. 
14
 For instance, for the United States Pielke et al (2008) that over 85% of total damages are due to 

hurricanes of strength 3 and above, although these have only comprised 24 per cent of all U.S. landfalling 

tropical cyclones.  Relatedly Vickery et al (2006)show using the loss functions of the HAZUS-MH model 

that loss ration is minimal for wind speeds below 177 km/hr. 
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between 2.7 (at level 3) and 5.5 (at level 5) meters, while terrain continuously 

lower than 1.5 meters above mean sea level may be flooded inland 13 km or 

more for hurricanes of level 3, and 20 km or more for maximum strength storms.   

 

Section III: Hurricane Wind Damage Index 

Our hurricane wind damage index is based on being able to estimate local 

wind speeds at any particular locality where a hurricane strength tropical storm 

passes over or nearby.  To do so we rely on the meteorological wind field model 

developed by Boose et al (2004).15, which provides estimates of wind field 

velocity of any point relative to the ‘eye’ of the hurricane.    This model is based 

on Holland’s well known equation for cyclostrophic wind16 and sustained wind 

velocity at any point P is estimated as: 
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where Vm is the maximum sustained wind velocity anywhere in the hurricane , T 

is the clockwise angle between the forward path of the hurricane and a radial 

line from the hurricane center to the point of interest, P, Vh is the forward 

velocity of the hurricane, Rm is the radius of maximum winds, and R is the radial 

distance from the center of the hurricane to point P.  The relationship between 

these parameters and P are depicted in Figure 2.  Of the remaining ingredients F 

                                                 
15
 This wind field model was, for instance, verified by the authors on data for Puerto Rico.   

16
 See Holland (1980).  One may want to note that Holland’s model is an axisymmetric model in that the 

true asymmetric nature of a hurricane cannot be represented.  There is, however, no consensus on how such 

asymmetry should be modeled; see Bao et al (2005). 
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is the scaling parameter for effects of surface friction, S the scaling parameter for 

asymmetry due to the forward motion of the storm, and B the scaling parameter 

controlling the shape of the wind profile curve.  The peak wind gust velocity at 

point P can then be estimated via: 

Sg GVV =           (2) 

where G is the gust wind factor.    

The next step entails translating these wind field calculations into potential 

damage estimates.  As noted by Emanuel (2005), both the monetary losses in 

hurricanes as well as the power dissipation of these storms tend to rise roughly 

as the cube of the maximum observed wind speed rises.  Consequently, he 

proposes a simplified power dissipation index that can serve to measure the 

potential destructiveness of hurricanes as17: 

PDI = ∫
τ

0

3dtV           (3) 

where V is the maximum sustained wind speed, and τ is the lifetime of the storm 

as accumulated over time intervals t.  Here we modify this index to obtain an 

index of potential damage of a hurricane at a particular spatial locality.   In 

particular, we focus on speeds that cause significant damages, i.e., on those that 

that are of speed of at least strength 3 on the Saffir-Simpson scale, as discussed 

                                                 
17
 This index is a simplified version of the power dissipation equation 

rddtVCPD
r

D

t 3

00

0

2 ∫∫= ρπ where the surface drag (CD), surface air density (ρ), and the radius of the 

storm (r0) are taken as given since these are generally not provided in historical track data.  Emanuel (2005) 

notes that assuming a fixed radius of a storm is likely to introduce only random errors in the estimation.  He 

similarly argues that surface air density varies over roughly 15%, while the surface drag coefficient levels 

off at wind speeds in excess of 30m/s, so that assuming that their values are fixed is not unreasonable.   
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above. More precisely, the total destruction due to a storm r in any locality j in 

country i at time t is: 

WINDi,j,r,t = ∫
τ

0

,,,

3 drwV trjij  if  Vjt>177 km/hr and zero otherwise  (4) 

where w are weights assigned according to characteristics of the locality to 

capture the ‘potential’ damage there.18  Given that we are mainly interested in 

measuring local destruction in its importance for the country i where the area is 

located, we use importance weights. In this regard we weight by the time 

varying share of population of each individual locality at t-1, where the 

underlying argument is that, even if severely damaged by hurricane winds, 

sparsely populated areas are unlikely to play a significant role in the overall 

macroeconomic impact of a hurricane for a country in any year.  In this regard, it 

has been noted by McGranaham et al (2007) that in developing countries a 

significant share of the population tends to live in coastal areas, especially in 

small island countries, which are of course more vulnerable to tropical storm 

incidence.  Moreover, allowing the population density to vary over time allows 

one to control for the likely changes in the distribution in favour of such coastal 

                                                 
18
 Dilley et al (2005) use a wind field model, albeit a different one, and intra-national population figures to 

identify local tropical cyclone hazard areas across the globe.  In his study of the impact of hurricane events 

on international financial aid flows, Yang (2007) uses the wind field model employed by Dilley et al (2005) 

to calculate out local hurricane speeds and time invariant population weights to generate an index of 

hurricane severity. Our approach in modeling hurricane destruction differs in two regards to these studies. 

Firstly, we base our destruction measure on a scientifically based equation of power dissipation.  Secondly, 

in terms of implementation, we use time varying rather than time invariant population shares, as well as an 

indicator of land cover type, to be discussed later, to take account more accurately of the differences in 

‘potential’ damage locally.    
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areas over our sample period.19   Finally, we will also experiment with using 

weights that describe the land cover type of area j.  

 

Section III: Data Sources 

 Our paper specifically focuses on hurricane activity within the Central 

American and Caribbean region, the members of which are depicted in non-gray 

colors in Figure 2.  In total the region consists of 31 countries/territories, a list of 

which is given in Table 1.  In order to conduct our empirical analysis of the effect 

of hurricane destruction on these we rely on information compiled from a 

number of data sources described below.   

A. Hurricane Data 

For data on hurricanes in the Central American and Caribbean region we 

rely on two data sources, the North Atlantic Hurricane database (HURDAT) and 

the Eastern North Pacific Tracks File, maintained by the National Hurricane 

Center (NHC).  The HURDAT database consists of six-hourly positions and 

corresponding intensity estimates in terms of maximum wind speed of tropical 

cyclones in the North Atlantic Basin over the period 1851-2006 and is the most 

complete and reliable source of North Atlantic hurricanes.20  One may want to 

note that the data are considered to be particularly reliable beginning with 1944, 

the year in which aircraft reconnaissance information about the storms is 

                                                 
19
 For example, for the US it has been found by Rappaport and Sachs (2003) that coastal areas 

have increased their share of the population due to both productivity as well as quality of life 
effects.  One would suspect that the latter would feature particularly in the CAC region where a 
large of economic activity depends on tourism particularly in coastal areas.   
20
 Elsner and Jagger (2004). 
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available. Nevertheless, because satellite monitoring only began in the mid-

1960s, a portion of the lifetime of some of the tropical cyclones, particularly in 

their early life far away from land and normal shipping routes, may be missing.  

However, since we are mainly interested in tropical cyclones that are likely to 

have caused significant damage, i.e., cyclones of hurricane intensity near to land, 

this is unlikely to be a problem for our use of the data. Given the sample period 

of our economic data (which starts earliest for some countries in 1950), we limit 

our use of the data to the period from 1950 onward.21 

 The Eastern North Pacific Tracks File also consists of six-hourly positions 

of tropical cyclones, albeit in the Eastern North Pacific Basin, which is the portion 

of the North Pacific Ocean east of 140W.  The first wind data from aircraft 

reconnaissance in the Eastern North Pacific region were obtained in 1956, where, 

as with the HURDAT data, information for tropical cyclones prior to this were 

taken from ship observations.  Similarly, satellite monitoring only was 

implemented in the mid-1960s.22  However, as argued above, given that we are 

interested in tropical cyclones of hurricane intensity, in particular those that were 

close enough to any land area to cause any damage in the region, the lower 

completeness of the data in this earlier time period is unlikely to affect our 

results.  We thus similarly use the track data starting from 1950.   

 We depict all tropical storm tracks in the region since 1950 in Figure 4, 

where the segments in red signify the part of tropical storms that reached at least 

                                                 
21
 See Elsner (2003). 

22
 See Jarvinen et al (1998). 
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hurricane level of strength 3.   As can be seen, throughout the region there has 

been considerable tropical storm activity with 577 tropical storms having 

navigated the region.  However, one may want to note that a large part of this 

activity has been at a level deemed not (relatively) important in terms of 

potential damages caused as suggested by the Saffir-Simpson scale.   

B. Population Data 

The population data used in the analysis is derived from the Latin 

America and Caribbean Population Database (LAC), which provides data on the 

spatial distribution of the region for 2.5 minute grid cells for 1960, 1970, 1980, 

1990, and 2000.  The LAC was compiled from medium-scale maps at country and 

sub-national level, national population censuses and United Nations data for the 

smaller islands of the Caribbean.23  Given that the date of censuses differed 

across countries and did not always coincide with the dates for which data was 

constructed, population projections for the required years were derived from an 

inter-censal growth rate between the next and the next to last enumeration for 

each administrative unit.  The approach to then converting the administrative 

figures into gridded data was based on the assumption that population densities 

are strongly correlated with accessibility.  More precisely, information on the 

transportation network consisting of roads, railroads and navigable rivers was 

combined with the location of urban centers to compute a simple measure of 

accessibility for each node in the transportation network.  These accessibility 

                                                 
23
 One may want to note that particularly the small Caribbean islands lacked sub-national administrative 

units. 
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measures were then interpolated into a regular raster surface. Finally, population 

figures for each administrative unit are distributed in proportion to the 

accessibility index value of each grid cell.    We use this regional breakdown as 

the benchmark geographical schemata for our analysis.  One may want to note 

that this breaks the total Central American and Caribbean region into 137,820 

individual locations.   

In order to derive annual national population share figures for each grid 

cell for each country in our analysis, we use a similar inter-censal growth rate to 

interpolate data for years between the given values.  For the years prior to 1960 

(i.e., 1950-1959) and those after 2000 (i.e., 2001-2005) we simply assumed the 

same annual growth rate of the decade subsequent and prior to the period, 

respectively.   

In Figure 5 we portray the population share of individual localities within 

countries as calculated from the LAC for 2000, where darker shading indicates a 

higher share.  It becomes clear that the population within countries is fairly 

unevenly distributed. For example, for many of the Caribbean islands, as well as 

for some of the Central American countries, populations tend to be more 

concentrated in coastal areas, i.e., locations that are also more likely to suffer 

from hurricane strikes.  One may also want to note that while the average change 

in share has been small (0.02 percentage points)24, there is considerable variation 

(a standard deviation of 0.2 percentage points), with some cells altering their 

                                                 
24
 Although of course the number of grid cells is large so that large average changes are unlikely. 
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share by as much as 21 percentage points.  Hence there is clearly also some time 

variation in the distribution of population in the region even at a very local level.   

C. Land Cover Data 

Our data source for classifying land cover type is the Global Land Cover 

2000 data set (GLC 2000).  The data classifies land cover across the globe into 22 

distinct land cover categories based on 14 months (1 Nov. 1999 - 31 Dec. 200) of 

daily 1-km resolution satellite data acquired over the whole globe by the 

VEGETATION instrument on-board the SPOT 4 satellite and delivered as multi-

channel daily mosaics ("S1" format).  We first overlaid the data to the grids used 

for the population data described above.  We then used land cover categories (i) 

urban built-up areas, (ii) cropland (upland cropland or inundated/flooded 

crops), (iii) mosaic of cropland / shrub or herbaceous cover, and (iv) mosaic of 

cropland / tree cover / other natural vegetation to define the cells as ‘economic’ 

areas (EA) and all other land cover categories to identify ‘non-economic’ (NEA) 

areas.25   We depict the distribution of these our land cover classification in 

Figure 6, where the beige color portrays NEAs and greened colored are the non 

urban built up areas and green shading portrays all other EAs.   The first thing to 

note is that the urban-built up areas constitute a minute portion of land cover 

and it is hence for this reason that we group them into the EA category.  More 

generally, one can see that all countries contain significant proportions of both 

the NEA and the EA types. 

                                                 
25
 These other areas include all other areas that were not ‘built-up’ or used for crops.    



 17

D. GDP Data 

Our source of GDP per capita data is taken from the World Penn Tables 

(WPT), which provides annual economic data for a large number of countries.   

One may want to note that GDP data are not available for all countries for all 

years, so that any use of the WPT data in our analysis, i.e., the econometric part 

of our study, ultimately means working with an unbalanced panel.  The years of 

data available per country, as well, as the average growth rate, where available, 

are given in Table 1.  

 

Section IV: Hurricane Destruction Estimates 

To calculate local and aggregate wind speed damage estimates due to 

hurricanes, we first need to estimate local wind speeds experienced by relevant 

localities.  One should note that of all the parameters necessary to estimate (1) 

and (2) some are given by the hurricane best track data, while for others values 

need to be assumed as in Boose et al (2004).  In particular, the raw hurricane data 

set provides values for maximum sustained wind velocity, Vm, at particular 

locations at particular time intervals and from these one can then estimate Vh, the 

forward velocity, and, relative to the point of interest P, the clockwise angle 

between the forward path of the hurricane T, and, R, the radial line from the 

hurricane center.   

The scaling parameters, F, S, B, and G in (1) and (2) control for surface 

friction, forward motion of the hurricane, the shape of the hurricane, and the 
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gust factor, respectively.  Here we use the figures as suggested by Boone et al 

(2005).  In particular, F is assumed to take on values of 1.0 and 0.8 for points on 

water and land respectively, while G uses respective values of 1.2 and 1.5 for 

these surface types.  S and B are assumed to be 1.0 and 1.3, respectively.   Finally, 

one should note that while the radius of maximum winds, Rm, i.e., the distance 

between the center of the cyclone and its band of strongest winds, is considered 

to be an important parameter in tropical cyclone forecasting, historical hurricane 

best track data generally do not provide estimates of this parameter.26 We thus 

assume this to take on the value of 50 (km), which corresponds to its average 

value found for hurricanes with central pressures falling between 909 and 993 

hPa.27 

With these parameter inputs in hand the wind field model in (1)-(2) 

enables us to estimate the wind intensity experienced by any location relative to 

the position and maximum wind speed of a hurricane (as given by the best track 

data). However, one may want to note that while the raw cyclone data provides 

six hourly positions of tropical cyclones, these storms may travel considerable 

distance within six hours.  Thus in order to ensure that we do not neglect areas 

that may be affected but do not fall within any significant distance (in the sense 

of experiencing severe winds) in our six hour windows, we linearly interpolated 

the positions P and wind speeds between the six hourly data to obtain three 

                                                 
26
 This parameter is traditionally measured by reconnaissance aircraft in the Atlantic basin, so that there is 

no information in this regard for older hurricanes.   
27
 See Hsu and Yana (1998). This roughly corresponds to the central pressures of tropical storms of 

hurricane strength, where central pressure is inversely related to strength.   
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hourly track data.28  In choosing all possible positions for which to calculate wind 

speeds experienced, we compiled the location of the center of each grid cell used 

for the population data within our region of interest.   

In terms of applying our wind field model to obtain local wind intensity 

estimates for the Central American and Caribbean region, we then followed each 

tropical cyclone over each point of the interpolated track and calculated the wind 

intensity relative to the center of each grid cells in the schemata provided by the 

population data as long as these fell within 500 km of the hurricane’s location.29  

This provided us with a complete set of estimates of wind fields experienced by 

all spatially relevant localities relative to each position of each tropical cyclone.  

We were then able to calculate local destruction according to our index of (4).   

 We first depict all hurricane tracks that according to our wind damage 

index were associated with at least some damage in one of the countries in the 

CAC region in Figure 7, where the red portions of the tracks indicate when these 

reached strengths of at least 3 on the Saffir-Simpson scale.  Accordingly, only 119 

storms, i.e., 20 per cent of all tropical storms that occurred since 1950 in the North 

Atlantic and Eastern North Pacific, came within close enough distance and 

reached high enough strength to affect  local areas of the countries in the CAC 

region.    

                                                 
28
 One should note that interpolating the track data to obtain more frequent observations of the tropical 

cyclone is standard in the literature; see, for instance, Jagger and Elsner (2006). 
29
 Hurricanes have been observed to reach up to a maximum of size of 1000km in diameter.   
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As a demonstration of how our WIND index translates into estimates of 

local destruction for individual hurricane occurrences we next calculated and 

plotted its value over all affected localities for Hurricanes David and Gilbert in 

Figures 8 and 9, respectively, where shading moving from yellow to red 

indicates the rising scale of damages (measured in terms of their contribution on 

a national scale because of the population weights).   One may want to note that 

these were two of the most destructive hurricanes in the region over our sample 

period.  For instance, David, which struck in 1979, was a hurricane of strength 5 

reaching up to 240 km/hr winds and is known to have been one of the most 

deadliest of the 20th century, killing at least 2,068 individuals, and causing 

torrential damages, particularly in the Dominican Republic.  In contrast, 

Hurricane Gilbert was the second most intense hurricane ever observed in the 

Atlantic basin, wreaking havoc in the Caribbean and the Gulf of Mexico for 

nearly 9 days in 1988, killing a total of 341 people and causing about $9.4 billion 

(2006 USD) in damages over the course of its path.30   

As can be seen from Figure 8, Hurricane David only made landfall at 

hurricane strength in the Dominican Republic, causing damages throughout the 

island.   Noteworthy in this regard is that the extent of damages differed widely, 

where being close to the actual traveled track does not necessarily mean large 

destruction in terms of national importance because of a non-even spread of 

                                                 
30
 See http://en.wikipedia.org/wiki/Hurricane_Gilbert. 
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population densities.31  One may also want to take note that while no other 

islands were directly struck, Hurricane David’s winds were strong enough to 

affect many of these by simply passing by.  Hurricane Gilbert, in contrast, made 

landfall at hurricane strength in both Jamaica and Mexico, but caused relatively 

little damages in other islands that it passed.  Additionally, although damages 

due to Gilbert were highest in levels in Mexico, the large size of the country and 

hence lower population shares of the affected areas, which is taken account of in 

terms of our employed weighting scheme, implies that in terms of national 

importance the storm had a much larger impact on Jamaica.  

    Summing the values calculated from the WIND proxy over all 

hurricanes r can also serve to compare the destructiveness of hurricanes relative 

to each other in terms of the damages done across economies.   We show the top 

twenty most destructive, their normalized levels (relative to the 20th ranked) of 

destruction, as well as the countries affected, listed in descending order of 

destruction, in Table 2.  As can be seen, Hurricane Hugo, striking in 1989, was 

the most destructive storm over our sample period, affecting 9 countries, where 

St. Kitts and Nevis was the nation hit hardest.  Moreover, compared to the 

hurricane ranked 20th (i.e., Hattie), it caused over ten times more destruction.  In 

contrast, Hurricane David, whose track was shown above, while slightly less 

destructive, affected a larger number of countries.   

                                                 
31
 Most obviously, some areas, despite being very close to the actual track, were estimated to have zero 

damages because the local population was zero.   
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In Figure 10 we plot the degree of destruction suffered by individual 

localities in the region – i.e., summing WIND over j – where the scale increases as 

colors change from yellow to red.  As can be seen, particularly the very small 

islands have suffered badly from hurricane strikes, which is not surprising given 

that much of their area can be considered coastal, and hence especially 

vulnerable to hurricanes, and the fact that a greater share of the population will 

be affected given their geographical size.  The larger Central American countries, 

in contrast, suffered mostly in their coastal regions, which constitute a much 

smaller portion of their total area, and hence the level of destruction (as indicated 

by the yellow shading) has not been as severe as for some of the other territories 

in the area.   

One can also use our index to compare the cumulative historical 

experience of countries within our sample period, by summing WIND over all i.  

The results of this are shown in Table 3, where we for each country within the 

CAC region list the number of hurricanes that affected it, as well as the 

normalized of destruction (relative to the one with the lowest non-zero value, i.e., 

Guatemala).  Accordingly, the incidence of hurricanes varies widely across the 

CAC, as does the degree of destruction.  Anguilla has, according to our index, 

suffered the most, nearly two thousand times that of Costa Rica.  Other countries 

severely affected over our sample period were St. Kitts and Nevis, the Virgin 

Islands, the Cayman Islands, Antigua, Monsterrat, and Guadeloupe.   One may 

want to note that although Mexico, being exposed to both the Eastern North 
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Pacific and North Atlantic hurricanes, was hit by the most hurricanes, the total 

destruction suffered, relative to other countries, was relatively minor given its 

large geographical area and lower population shares of individual localities.   

 

Section V: Macroeconomic Impact 

Our main econometric task is to investigate the macroeconomic impact of 

hurricane strikes in the Central American and Caribbean region using our index 

of destruction.  To do so we take our panel of countries for which we also have 

macroeconomic data and specify a simple growth equation: 

GROWTHi,t-1→t = α + β1GDP_CAPi,t-1 + β2WINDi,t + εi,t     (5) 

where GROWTH is the growth rate in GDP per capita over t-1 to t, GDP_CAP is 

the log of initial GDP per capita at time t-1, WIND is our destruction proxy, 

summed over all hurricanes r and all regions j, and ε is an error term.   In essence 

this is a simple growth equation that allows for some degree of convergence via 

the initial GDP per capita term, as commonly used in the empirical literature, 

although here over the short term, i.e., annual time intervals.32   

One should also note that with the inclusion of the initial level of GDP per 

capita one could easily rewrite (5) to be a dynamic panel model with the lagged 

dependent variable as one of the regressors.  However, it is well known that 

dynamic panel regressions are characterized by a systematic bias in the estimator 

of the coefficient on the lagged dependent variable, first identified by Nickell 

                                                 
32
 One may want to note that that Noy (2007) uses a similar set-up investigating the macroeconomic 

consequences of  natural disasters affect using cost data from the EM-DAT database. 
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(1981).  Furthermore, this potential bias in the convergence term may lead to a 

bias in other coefficients in the model.   Thus standard panel estimator such as 

the Least Squares Dummy Variable (LSDV) or fixed effects estimator would be 

inappropriate.  In order to correct for the bias we hence employ Bruno’s (2005) 

bias correction LSDV estimator, which extends the original estimator by Kiviet 

(1995).33  Standard errors on the coefficients are generated via bootstrapping 

methods.   One may also want to note that we are implicitly assuming that our 

WIND index is exogenous.   This seems fairly plausible since, apart from the 

population weighting scheme (defined in terms of the previous year), it is 

constructed from non-economic data.   

We first started estimating (5) without including any hurricane 

destruction measure, just simply the convergence parameter and year dummies.  

As can be seen from the first panel in Table 4, initial GDP per capita has a 

negative a significant coefficient, indicating, as much of the convergence 

literature suggests, that there is some convergence towards a some growth path 

(although in the relatively short-term since our data is annual).  Moreover, the 

rate of convergence implied by the parameter is roughly in line with what has 

been found in the convergence literature in terms of the per annum convergence 

rate.   

                                                 
33
 Another option would be to use now standard GMM estimator, such as that proposed by Arellano and 

Bond (1991) .  However, as shown by Judson and Owen (1996), the corrected LSDV estimator is more 

efficient in a typical macroeconomic panel as we have here.  
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We next proceeded to add our WIND proxy, as shown in panel two of 

Table 4.  As can be seen, the damage due to hurricane winds is estimated to have 

a negative and significant impact on economic growth in countries in the region.   

Taking the average destruction of a hurricane strike, for instance, the estimated 

size of the coefficient would imply a reduction in the growth rate by 0.5 

percentage points, whereas the largest destruction in a country in any year over 

our sample period (which was in the Virgin Islands due to Hurricane Lenny in 

1999) would have reduced economic growth by 7.3 percentage points.  We also 

investigated whether there may be growth effects beyond a year, for which we 

show the results of including the WIND index lagged by a year.  However, the 

insignificance of the lagged value, depicted in the third panel, suggests that any 

negative impact does not extend beyond the short term.34 

An advantage of the WIND index is that it allows one not only to capture 

the effect on those localities where according to the track data the hurricane 

passed directly over, but also those which were within plausible distance to 

experience nevertheless losses, even to the extent that the hurricane may have 

never made landfall in the country concerned.  To investigate how important it is 

to capture these aspects, we first created a simple zero-one dummy indicating 

whether there were any landfalls of hurricanes of at least strength three in the 

year - the results of this are shown in panel 4 of Table 4.  However, the 

insignificant and positive coefficient suggests that such a landfall incidence 

                                                 
34
 We tried including up to four year lags, but these were always insignificant.   
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proxy is unlikely to be enough to capture the negative growth impact of 

hurricanes.  Similarly using the number cells directly passed over in any year by 

hurricanes relative to the total number of cells in any country as a proxy for 

destructiveness shown in the fifth panel does not suffice in proxying hurricane 

damages.    

Earlier on we made the argument that it may be important to control for 

the population share of localities in order to take account of its ‘potential’ 

destruction.   To emphasize this point we instead used the simple area share of 

each locality as weights in (4) in the 6th panel in the regression results table. 35   

Accordingly, our WIND proxy is now, compared to the results in the second 

row, although still negative, insignificant.   

It is important to emphasize that once the wind speed for localities of 

destruction are estimated, the degree of destruction in our index depends 

essentially on two assumptions.  First, it is only winds of at least strength of 178 

km/hr that cause significant damage, as suggested by the Saffir-Simpson scale.  

Secondly, in line with the argument made by Emmanuel (2005), both power 

dissipation and the degree of destruction rise in cubed terms with wind speed 

experienced.  To investigate whether it is indeed winds above hurricane three 

strength that cause significant damage at the macroeconomic level, we calculated 

the equivalent measure in (4) except using wind speeds of at least strength 1, i.e., 

the cut-off point for a tropical storm in the region to be considered a hurricane.  

                                                 
35
 One should note that although in a horizontal plane all grid cells are of the same area, given the curvature 

of the Earth’s surface the actual area will vary with the longitude. 
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Also, we also experimented with not cubing the hurricane speeds (above 

strength 3) experienced by a grid cell.36   However, as can be seen from the 

estimated coefficients in the 7th and 8th panels, both of these proxies, while still 

negative, are no longer significant. Thus, at least as discernable from our results, 

it seems indeed reasonable to assume that damages from hurricanes mostly start 

once winds experience at least a strength of 178 km/hr and increase in cubic 

fashion in speed above this threshold.   

While the distribution of population may give some rough indication of 

the ‘potential’ damage that a area in a country may experience due to hurricane 

winds relative to other less populated areas, one problem with regard to 

adhering strictly to this proxy for developing countries in particular is that often 

large portions of economic output are agricultural, and agricultural areas are 

likely to be especially vulnerable to wind field destruction.  But, if landholdings 

are relatively large and/or farm households are not particularly large, then 

sparsely populated areas may simply be areas where agricultural production is 

important.  In other words, weighting by population may be underestimating the 

actual potential effect of hurricane damage.   

In order to roughly address this issue we used our classification of 

individual cells into the economic (EA) and non-economic (NEA) areas, as 

defined in Section III, and re-calculated WIND in (4), giving a weighting of 1 to 

the EAs but zero to NEAs.  In order to isolate the effect of this classification we 

                                                 
36
  

Not cubing the measures that incorporates wind speeds above strength one also was insignificant. 
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first start off with using area rather than population weights.  The results of 

employing these land cover weights are shown in panel 9 of Table 4.   

Accordingly, while the coefficient on our proxy is still negative, it is no longer 

significant.  Thus solely controlling for land cover type is insufficient to capture 

local economic importance of locality.  We next, in panel 10, used population 

rather than area weights in conjunction with our land cover type weights, 

depicted in the panel 10.   WIND is now highly significant and moreover 

portrays a much larger quantitative effect than for the simple population 

weighted measure.  For example, if one considers the mean of non-zero 

observations on WIND_EA, then this would indicate that the average destruction 

in these areas caused a fall in output growth by about 0.8 percentage points.  

Thus, our findings suggest that it is important to take both the population 

distribution as well as the land use into consideration when trying to measure 

hurricane destruction with our wind field model approach.   

As a final exercise it is arguably instructive to investigate how the results 

from using our wind field model approach in modeling the macroeconomic 

impact of hurricanes would compare to using data commonly used as a measure 

of damages in the natural disasters literature, i.e., data from the EM-DAT 

database.  In this regard, one should note that the EM-DAT database is the most 

comprehensive publicly available compilation of information on the natural 

disasters and their damages around the globe that have occurred since 1900. In 

particular, the database records natural disasters as those in which at least 10 
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people were killed, at least a 100 people were affected, and/or there was a call 

for international assistance or a declaration of state emergency.  For each natural 

disaster the EM-DAT database records the total number of individuals killed, the 

number of persons affected, and the total value of damages due to the event.  

With regard to hurricane related natural disasters, the database isolates a 

category termed ‘windstorms’, which consists of natural disaster events relating 

to cyclones, hurricanes, storms, tornados, tropical storms, and typhoons and 

winter storms.       

Before proceeding in using the EM-DAT data to estimate the macro-

economic impact of hurricanes in the Central American and Caribbean region, it 

is important to point out that, while there is considerable merit in the quality and 

coverage of the data and hence its widespread use, there a number of 

shortcomings that need to be considered with regard to estimating damages.  

First of all, information used to collate the list of natural disaster events is taken 

from a number of sources and hence there may be some concern in terms 

consistency across sources and thus possibly across countries and time.  Related 

to this there appears to be greater reporting of events over time and the 

likelihood that events recorded in earlier time periods are more likely to have 

exceeded the minimum specified criteria in the data.37  Perhaps most 

importantly, one should note that damages reported in the data refer to `ex-post’ 

measures in that they are damages due to events that have to meet the minimum 

                                                 
37
 See Ramcharan (2007). 
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criteria of impact, and hence cannot be used to measure the actual potential 

impact of a natural event, given that the probability of a potentially damaging 

event to become actually damaging may depend on a number of other country 

specific and local factors.   This latter aspect may inherently introduce a sample 

selection bias into the issue of measuring damages due to natural disaster events 

such as hurricanes.  For instance, it has been demonstrated that the extent of 

damages may depend on factors such as wealth and the level of human capital in 

a country; see Kahn (2005) and Toya and Skidmore (2007).  It has also been 

pointed out that reporting of damages due to natural disasters may be subject to 

exaggeration to encourage greater flows of international financial aid; see Yang 

(2007). Finally, it has also been pointed out that the measure of damages in the 

EM-DAT base only includes direct losses due to the natural disaster events; see 

Noy (2008). 

We these caveats in mind we proceeded to use information from the EM-

DAT database to construct proxies of hurricane events to investigate their 

macroeconomic impact in the Central American and Caribbean region.  In 

particular, we used those most commonly used and found to be significant in the 

natural disaster literature estimating cross-country effects, namely, total damages 

measured relative to GDP (of a year prior) and the number of persons killed 
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relative to the population size (of a year prior).38  We calculate these measures for 

the information provided in EM-DAT on hurricane events in the region. 39  

One may want to first remark that Bluedorn (2005) noted that for 

hurricane strikes the EM-DAT is particularly unsatisfactory, where there are 

several important hurricane strikes that have taken place in the region that are 

missing from the data set.  We thus first calculated the number of hurricanes 

affecting each country over our sample period from EM-DAT and depict these 

for comparison reasons relative to that derived form our measure in Table 3.   As 

can be seen, the EM-DAT number of significant hurricane strikes is lower than 

that derived from our wind field model for 24 out of 31 countries, in many cases 

by at least 50 per cent.  There are also four countries for which the EM-DAT 

sources indicates a greater number of significant incidences of losses due to 

hurricanes, namely, St. Lucia, Panama, El Salvador, and Costa Rica.  One may 

want to note that this does not mean that these hurricanes are missing from the 

best track data40, but that the areas affected according to our time varying 

population data were essentially unpopulated and/or that wind speeds did not 

reach high enough strength to be considered significant.   For the years and 

countries for which we had both GDP and damages estimates we also compared 

our cumulative country specific measure of destruction with that using damage 

data from the EM-DAT calculated as a ratio of GDP.  The correlation coefficient 

                                                 
38
 See, for instance, Kahn (2005), Toya and Skidmore (2007), and Noy (2008). 

39
 One may want to note that the database does not systematically record actual maximum wind speeds 

observed for any of these hurricanes. 
40
 This was verified by looking at the raw track data. 



 32

of the ranking of countries, found to be 0.024, shows that there is little 

relationship between the relative rankings of the two measures.  One may also 

want to note that if we compare our minimum non-zero destruction country 

(Costa Rica) with that country that which experienced the most destruction in 

this sub-sample (Anguilla), then the destruction in the latter was 1,831 times 

larger.    A comparison of the same minimum and maximum affected countries 

(Turcs & Caicos Islands and Mexico, respectively) as found from the EM-DAT 

database, suggests that in contrast the latter experienced destruction 1,621,659 

times larger.   

Our results of including these EM-DAT measures of destruction are 

shown in the last two panels of Table 4 .   As can be seen, while the coefficients 

are negative, they are statistically insignificant for both.  Hence this provides 

some indication that, at least for hurricanes strikes in the CAC region, using EM-

DAT data may not be appropriate.   

 

Section VI: Concluding Remarks 

While monetary losses due to natural disasters are often large, it is not 

clear to what extent such losses will translate into large reductions in countries’ 

growth rates.  In this paper we investigated the macroeconomic impact of natural 

disasters in developing countries by examining hurricane strikes in the Central 

American and Caribbean region since the 1950s.  Our innovation in this regard is 

to develop a more scientifically based index of potential local destruction of 
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hurricanes that employs a wind field model combined with a power dissipation 

equation using historical hurricane track data.  

Our index allowed us to identify potential damages at a detailed 

geographical level, compare hurricanes’ destructiveness, as well as identify the 

countries most affected without having to rely on potentially questionable 

monetary loss estimates.  Combining this index with a macroeconomic data for a 

panel of countries in the area we estimate that the loss in output growth for an 

average hurricane is about 0.8 percentage points, but that the most destructive 

hurricane would have caused on average a reduction in the growth rate of about 

7.6 percentage points.   
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Table 1: Central American and Caribbean Region Countries/Territories, ISO 
Codes, and the Availability of Economic Data 

 
  Non-Missing GDP Data 
CAC List: 
 

ISOCDE: 
 

Minimum 
Year 

Maximum 
Year 

Non-missing 
Observatios 

Aruba ABW --- --- 0 
Anguilla AIA --- --- 0 
Antigua ATG 1970 2003 34 
Bahamas BHS 1970 2004 35 
Belize BLZ 1970 2004 35 
Barbados BRB 1960 2004 45 
Costa Rica CRI 1950 2004 55 
Cuba CUB 1970 2003 34 
Cayman Islands CYM --- --- 0 
Dominica DMA 1970 2003 34 
Dominican Republic DOM 1951 2003 53 
Guadaloupe GLP --- --- 0 
Grenada GRD 1970 2003 34 
Guatemala GTM 1950 2003 54 
Honduras HND 1950 2004 55 
Haiti HTI 1970 2000 31 
Jamaica JAM 1953 2003 51 
St. Kitts & Nevis KNA 1970 2003 34 
St. Lucia LCA 1970 2003 34 
Mexico MEX 1950 2004 55 
Martinique MTQ --- --- 0 
Montserrat MSR --- --- 0 
Netherlands Antilles ANT 1970 2003 34 
Nicaragua NIC 1950 2004 55 
Panama PAN 1950 2003 54 
Puerto Rico PRI 1970 2003 34 
El Salvador SLV 1950 2003 54 
Turks & Caicos Islands TCA --- --- 0 
Trinidad &Tobago TTO 1950 2003 54 
St.Vincent & 
Grenadines 

VCT 1970 2003 34 

US Virgin Islands VIR --- --- 0 

 



 38

Table 2: Top Ten Most Damaging Hurricanes 
 

Name Year ND Countries Affected (in descending order of damage) 

HUGO 1989 10.05 KNA, MSR, VIR, GLP, ATG, AIA, DMA, PRI, MTQ 

DAVID 1979 8.84 DOM, DMA, MTQ, VIR, PRI, GLP, LCA, MSR, BRB, KNA, HTI, ATG, 
BHS 

DONNA 1960 7.72 TCA, ATG, AIA, KNA, MSR, GLP, CUB, VIR, DMA, BHS, PRI 
LENNY 1999 7.11 VIR, AIA, KNA, PRI 
IVAN 2004 6.72 CYM, JAM, ABW, ANT, GRD, CUB, TTO, VCT, MEX 
LUIS 1995 5.93 AIA, ATG, KNA, MSR, GLP 
INEZ 1966 3.54 MSR, GLP, DMA, ATG, KNA, VIR, PRI, DOM, HTI, CUB, MEX 
ALLEN 1980 3.52 CYM, VCT, BRB, LCA, HTI, JAM, MTQ, CUB, MEX, GRD, DOM, 

DMA 
CLEO 1964 3.22 HTI, GLP, MSR, DMA, KNA, ATG, DOM, VIR, JAM, MTQ, PRI, CUB, 

BHS 
DOG 1950 3.19 AIA, ATG, KNA, LCA, MTQ, MSR, GLP, VCT 
GILBERT 1988 2.00 CYM, JAM, HTI, MEX, CUB, DOM 
FLORA 1963 1.89 CUB, GRD, HTI, TTO, DOM 
BETSY 1965 1.79 BHS, TCA, DMA, BHS, GLP, VIR, MTQ, PRI, DOM 
JANET 1955 1.72 BRB, GRD, BLZ, VCT, ABW, MEX, HND, GTM 
FOX 1952 1.70 CYM, BHS, CUB 
GEORGES 1998 1.69 MSR, ATG, GLP, KNA, PRI, VIR, DOM, AIA, CUB 
ANDREW 1992 1.57 BHS 
FRANCES 2004 1.38 TCA, BHS 
KEITH 2000 1.10 BLZ, MEX 
HATTIE 1961 1 BLZ, HND, GTM, MEX 

Notes: ND refers to normalized (relative to Hurricane HATTIE) destruction. 
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Table 3: Cumulative Historical Destruction by Country/Territory 

ISOCODE # Hurricanes ND EM-DAT # Hurricanes 

AIA 7 2278 3 
KNA 9 2220 4 
VIR 9 2172 4 
CYM 9 2082 2 
ATG 11 1959 4 
MSR 10 1801 2 
GLP 11 1713 5 
BHS 20 1322 8 
TCA 5 1138 0 
JAM 7 1052 7 
BLZ 8 986 7 
DMA 7 986 5 
PRI 10 918 4 
DOM 13 774 9 
HTI 10 663 10 
CUB 21 637 10 
MTQ 7 557 6 
GRD 4 493 3 
BRB 4 487 3 
LCA 4 407 5 
ABW 4 377 0 
VCT 4 273 4 
ANT 3 212 0 
HND 11 175 7 
TTO 2 95 2 
MEX 42 61 18 
NIC 7 31 6 
GTM 7 3 5 
CRI 1 1 5 
PAN 0 0 2 
SLV 0 0 4 

Notes: (1) # Hurricanes indicates the number of hurricanes that had affected the individual 
countries/territories. (2) Normalization of destruction is done relative to CRI. (3) ND refers to 
normalized (relative to Hurricane HATTIE) destruction. 
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Table 4: Regression Results 
 
 Hurricane Proxy ββββWIND Std. Error ββββGDP_CAP(t-1) Std. Error 

(1) None 
 

  -0.0260885* 0.0106504 

(2) (Windspeed>178)3  
Population Weighted 

-5.08e-10* 2.37e-10 -0.0252828* 0.0103694 

(3) (Windspeed>178)3  
Population Weighted 

-5.09e-10* 2.46e-10 -0.025109* 0.010935 

 (Windspeed>178)3  
Population Weighted(t-1)*HU 

-2.13e-11 1.55e-10   

(4) Landfall Dummy 
 

0.003629 0.0047441 -0.0261541* 0.0107717 

(5) % of Grids with Landfalls 
 

-7.74e-08 2.69e-07 -0.026056* 0.0107626 

(6) (Windspeed>178)3  
Area Weighted  

-4.88e-10 2.57e-10 -0.0253455* 0.0104367 

(7) (Windspeed>118)3  
Population Weighted 

-2.11e-10 1.45 e-10 -0.0254827* 0.010364 

(8) (Windspeed>178)   
Population Weighted 

8.35e-15 1.79e-13 -0.026056* 0.0107638 

(9) (Windspeed>178)3  
Area Weighted, EA=1, NEA=0 

-4.96e-10 6.41e-10 -0.026052* 0.0102181 

(10) (Windspeed>178)3  
Population Weighted* EA=1, NEA=0 

-8.80e-10** 3.07e-10 -0.0259452* 0.0106592 

(11) COST/GDP(t-1) 
 

-384.2236 2194.5 -0.0258881* 0.0106052 

(12) DEATHS/POP(t-1) 
 

-20.69586 12.34383 -0.0266218* 0.0103922 

Notes: (1) # of observations and countries in all regressions are 969 and 23, respectively. (2) time 
dummies included. (3)  ** and * are 1 and 5 per cent significance levels, respectively. (4) Standard 
errors are bootstrapped. 
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Figure 1:  The Typical Structure of a Hurricane 
 

 
Source: http://www.angryconservative.com/home/Portals/0/Blog/GlobalWarming 

 

Figure 2: Wind Field Model Structure 

 

 
Source: Boose et al (2001) 

http://www.angryconservative.com/home/Portals/0/Blog/GlobalWarming
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Figure 3: Caribbean and Central American (CAC) Region 

 

 

Figure 4: All Tropical Cyclone Activity Since 1950 

Notes: The red portion of the tracks constitute the segments of tropical storm tracks that reached 
at least hurricane intensity of level 3.   
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Figure 5:  Population Share Distribution in 2000 

 
Notes: Share is measured in terms of local units in the national population, where darker shading 
indicates greater share. 
 

Figure 6: ‘Economic’ and ‘Non-Economic’ Use Areas of the CAC Region 

Notes: Beige colored areas are NEAs, while the portions constitute the urban built-up and green 
shading signifies all other EAs. 
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Figure 7:  Relevant Hurricanes  

 
Notes: The red portion of the tracks constitute the segments of tropical storm tracks that reached 
at least hurricane intensity of level 3. 

 

Figure 8:  Hurricane David’s Destruction Path 

 
Notes: (1) The degree of destruction increases as the colour scheme changes from yellow to red. 
(2) Hurricane tracks of at least strength 3 are depicted in purple and those of strengths 1-2 as 
pink. 
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Figure 9:  Hurricane Gilbert’s Destruction Path 

 
Notes: (1) The degree of destruction increases as the colour scheme changes from yellow to red. 
(2) Hurricane tracks of at least strength 3 are depicted in purple and those of strengths 1-2 as 
pink. 

 

Figure 10:  Local Degree of Destruction 

 
Notes: The degree of destruction increases as the color scheme changes from yellow to red. 
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