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Short Abstract 

In Germany, a thread to growth is perceived from demographic change. 

Demographic change means that a population is aging with the perspective of 

shrinking. The key question is whether an aging and shrinking population has 

enough talents to sustain the innovation process that is at the basis of our 

prosperity. In this paper we deal with the age distributions of inventivity. 

Specifically, we confirm past conjectures that inventive productivity is age 

dependent and unequally distributed among inventors. Additionally, we advance 

the new hypothesis that any age-bias in innovation activity should show up as 

industry-specific. The reason is that creative productivity is depending on the rate 

of technological change that on its part is industry specific. We test this 

hypothesis with European patent data for Germany.  

 

JEL: O31, J24, B3 

Keywords: innovation, patents, age-dependent productivity, demographics, sectors 

 

 

1 Motivation 

Technological progress is the key determinant of economic growth in advanced 

economies. It consists in innovations plus the knowledge needed to use them in 

production (Romer 1986, 1987). Innovations issue from spontaneous or trained 

creativity, coupled with purposeful investment (R&D) and job-practice (learning 

by doing, Arrow 1962); they are thus based on knowledge and are producing new 

knowledge. People have different intellectual and institutional access to 

knowledge. The former refers to cognitive and motivational capacity; the latter 

encompasses access to (high-quality) schooling as well as to job practice and 

leading-edge technologies. Both result in heterogeneity of "human capital", 

defined as a worker's, firm's or nation's stock of embodied knowledge and 

economically useful skills. In the process of human capital accumulation, innate 

abilities reduce the cost of education and training in terms of own efforts, and are 

believed to contribute to the development of talent. In Germany, talent, or "high 

potentials", and, generally, "excellence", are currently considered particularly 

important for innovation and economic growth. This is in line with Southern et al. 

(1993) who note that: "When a nation feels that its standard of living is 

threatened, efforts to provide universal access [to education] may be traded off in 

favor of exploiting talent …" (p. 401). 
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In Germany, a thread to growth is perceived from demographic change. 

Demographic change means that a population is aging with the perspective of 

shrinking. All developed countries experience increasing life expectancy leading 

to aging. In some countries, altered demographic behavior (“lowest-low fertility”) 

adds the perspective of a shrinking population. In Germany, mortality rates are 

higher than birth rates since the early 1970th, implying that each subsequent 

generation is smaller than the previous one, and the proportion of young is falling. 

However, public concern is not directed towards size and the age structure of 

population, only, but regards the quality of the labor force, too. The crucial 

question is whether an aging and shrinking population has enough talents to 

sustain the innovation process that is at the basis of our prosperity. The topic of 

creative productivity has thus passed the border of Psychology and Education 

literature into Microeconomics and finally reached Macroeconomics.  

In this paper we only deal with productive creativity as manifested in innovations. 

Our basic interest is with age-specificity of creative productivity. We pick up a 

simple question, briefly dealt with in Henseke and Tivig (2005), too: What is the 

age-distribution of inventors and how does it vary with industry? We advance the 

hypothesis that creative productivity should depend on age in an industry-specific 

way and we test this hypothesis with European patent data for Germany. 

Additionally, we derive some tentative conclusions about the concentration of 

talent.  

 

2 Data 

In order to test our hypotheses we use cross-sectional data of inventors from an 

own survey of the Rostocker Zentrum. A questionnaire was send to 2293 German 

inventors whose patent application was published in 2003 at the European Patent 

Office in one of the following four fields: Agriculture and farm machinery, 

metallurgy, biotechnology, and information technology. Out of the 2293 

questionnaires 381 were undeliverable while 410 returned filled in, which is a rate 

of return of 21 per cent. The survey took place from August till November 2004. 

The advantage of patent data is that it allows collecting information about 

inventors, i.e. about people who do R&D at the technological frontier. We asked 

about sex, year of birth, year of first invention and first patent, respectively, year 

of last invention, the area of work, and the total number of inventions over the 

career, so far. 

The number of patents granted to a person, a firm, an industry, or an economy is 

an indicator of inventive capacity; at the same time the aggregate number of 

patents issued in an industry or economy is widely accepted as a proxy for 

technical change (Griliches, 1991). It is not a perfect indicator, though. Patented 

inventions are technical in nature; scientific discoveries and organizational 

innovations are not patentable. From patentable innovations roughly 80 per cent 

are patented (Greif, 1999). Between 1998 and 2000 around one third of German 
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innovative companies used patents. Among bigger firms and in chemistry and 

machinery the share was higher (Ramer, 2002). Unfortunately we have no 

information about the value of the patents in our sample, or about important 

individual characteristics like education. A more general problem is the 

classification system of patents. The international patent classification is based on 

technical considerations. Linking it to an industry classification is not 

straightforward and the question arises whether a patent should be assigned to the 

sector where the product is produced or where the invention is used. We have not 

undergone the attempt to precisely match the used IPC to fitting industry sectors 

since our major interest is in identifying differences in the age-bias of creative 

productivity depending on the pace of area-specific technological progress. 

However, we consider our biotechnology and information technology industries to 

be good approximations, whereas agriculture and metallurgy are only in a broad 

sense comparable to the economic sectors. The lack of a time dimension also 

causes difficulties, because we cannot distinguish between age and cohort effects 

nor do we know growth rates of the population of inventors. If the population of 

inventors had grown with a positive rate because R&D efforts were increased, 

there would automatically be more young inventors. However, put apart all 

deficiencies, our data set still suffices to test our hypothesis.  

 

3 Results 

Before testing our hypotheses we take a quick look at some descriptive statistics. 

The mean age in the total sample is 45.9 years and the median is around 44 years, 

which is higher than the current median age in the work force and also higher than 

the forecasted value for 2050. The average age when the first patent was granted 

is 34.3 and the mean job tenure is 11 years while the median is around 7 years. As 

expected, the number of inventions is highly concentrated among inventors; the 

mean is almost 23 while the median is 10, which is a first sign of a right-skewed 

distribution. The variable for individual productivity that we use in this paper is 

the number of inventions per year as it seems more reliable than the unweighted 

number of inventions. The mean number of inventions per year is 2.13, and the 

median is 1.14. That is, more than half of the inventors in our sample are able to 

create more than one invention per year. The share of women in the data set is 

strikingly low (7.5 per cent) but consistent with the low proportion of women in 

technical study lines and occupations in Germany. If it wasn't for biotechnology, 

were women hold roughly 20 per cent of inventions in our data set, their overall 

contribution would be negligible. Similar results are obtained by Giuri at al. 

(2005).  

Hypotheses 1: Age-Dependency of Inventive Productivity 

Newton was 24 when he started to work at the theory of gravitation, Darwin was 

29 when he developed his theory of natural selection, Einstein was 26 years old 

when he developed the special theory of relativity, and Marie Curie was not older 
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than 30 when she made her milestone discoveries in radioactivity. The general 

belief is that Sciences and also Engineering are a young people’s game. If this was 

true, older societies would be less creative than younger ones. The same is largely 

believed about individual creativity over the life cycle. Over 100 years ago Beard 

described the inverse u-shaped distribution of scientific productivity over the 

lifespan for a set of "nearly all the greatest names in history". He concluded that 

aging of a population could explain its "enormous stupidity and backwardness". 

(Cited after van Dalen, 1999.) Empirical findings are quite robust over time. Cole 

(1979) found a slight age-affect for a cross-sectional data of academic scientists; 

research output and research quality peak on average at age 40 to 44. Levin and 

Stephan (1991) report similar results, but for a panel dataset of scientists. Van 

Dalen (1999) reaches comparable results for the Nobel Prize winners in 

Economics. He finds that 80 per cent of the award-winning work has been 

completed before the age of 45. Stephan and Levin (1993) provide further 

empirical evidence for Nobel Prize winners, in general. Jones (2005) demonstrates 

a similar age effect for outstanding inventors. Already Lehman (1966) reported a 

productivity peak between 35 and 39 for historical inventors in a variety of 

technological fields as well as those still alive in the 1950s. Even before, Oberg 

(1960) tested the hypotheses of age-biased productivity on a sample of 

engineering employees. His results are ambiguous and support the importance of 

the particular field and task on the pattern of individual productivity: while R&D 

personnel’s productivity peaks between 31 and 35 years, engineering employees 

are most valuable to the company between 51 and 60 years. Further empirical 

evidence for an age effect on innovative productivity is presented by Dalton and 

Thompson (1971) for a dataset of around 2,500 engineers in the aerospace 

industry and technology-based commercial industries. Their measure of 

productivity is based on management’s assessment. They report as well a fairly 

early age at which productivity peaks, namely between 31 to 35 years and 

conjecture that with an increase in the importance of new knowledge, the age-

dependency of inventive productivity sharpened. Finally, using the new PatVal 

dataset (a large-scale cross-national survey for the EU), Hoisl (2005) also 

demonstrates that inventive productivity changes over the life-cycle in terms of 

patent output.  

In line with this literature, we expect to find an age effect, too. Additionally, we 

expect inventive productivity as measured by patenting to be linked to active 

work-age, be it only for overall costs associated with a patent application. 

Therefore, and given the ever longer education periods in Germany as well as the 

fact that some working experience could enhance inventive abilities, we expect to 

find patent to be rewarded at age 30-60/65. Our results are as follows. Kernel 

density estimates of the inventors' age distribution yield a right-skewed 

distribution. The modal age is around 40, the median 44 and the mean at almost 

46 years. These are definitely higher values than for the overall German 

workforce where the median was 40.2 years in 2005, but comparable to Hoisl 
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(2005) who uses a much larger data set. Probably, successful innovators have an 

especially long educational period and/or need some kind of experience or job 

tenure for successful R&D. This is also stressed by the relatively high mean age 

of 34.6 years at which the first own patent was granted. But while the initial mean 

age does not significantly differ over sectors, it changes with age groups. In the 

group of young inventors ( 35≤≤≤≤ ) the average age of the first patent is at around 29 

years, whereas for older (50-65) and old (65+) inventors the measure is 37.3 and 

39.7 years, respectively. The average number of patents per year in the total 

sample is 2.12. The measure is higher for young inventors (2.9). Thereafter it 

decreases slightly, peaks again for the age group 55-65 (2.36) and drops to 1.3 for 

retired inventors. The values are significantly different at the 10 per cent level.  

Hypotheses 2: Concentration of Genius  

Apart from life-cycle variations in creative productivity, the question was raised 

how productivity varies within a cohort. In a seminal paper Lotka (1926) 

describes that the vast amount of research is performed by a small minority of 

scientists. He describes the frequency distribution of scientific productivity by the 

equation: ²/ nxy = , with x being the number of inventors with 1 invention, n the 

number of inventions and y the resulting number of inventors with n inventions. 

This equation is called Lotka's Law and it was extensively proved in the literature. 

Even though the exponent of n had been different in detail, the basic conclusion, 

that scientific productivity is highly concentrated, was generally confirmed. The 

conjecture is that, for various reasons, scientific productivity is path depend and 

determined by early success in research. Allison and Stewart (1974), Allison at al. 

(1982) and Cole (1979) formulate the Accumulative Advantage Hypotheses to 

further explain path-dependency by relating to productivity as well as recognition.  

In our data set there is a huge variation in the individual number of inventions, 

too, ranging from 1 to around 600. In order to control for job tenure and also to be 

able to select occasional inventors we have weighted the number of inventions by 

job tenure. The resulting variable still varies impressively between individuals 

from almost zero to around 23 innovations per year. The median inventor in the 

data set is able to generate 1.2 average inventions per year, while the top 10 per 

cent of inventors produce at least 4 times as many and the top 1 per cent even 

around 12 times more inventions per year than the average. Hence, inventors are 

not a homogenous group. Testing Lotka's Law and hence our hypotheses we 

confirm that many inventors contribute only occasionally to the creation of 

patents, while a small minority is highly productive. Hence, if the distribution of 

talent in the population remains stable, the number of highly creative and 

inventive individuals will decrease with demographic change.  

Hypotheses 3: Sector-Specific Age-Dependency of Innovations 

The driving force behind collecting our survey data was to test the industry 

specificity of the age distribution of inventors. Our intuition was fed by an 

analogy with science, where successful researchers are rather young in fields in 
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which processing and recombining information is crucial, as is the case in 

mathematics, and older in experience and reflection-based fields like philosophy. 

After a while we put that thought into economic terms and formulated the 

hypothesis that the age pattern of inventive productivity changes with the rate of 

technological change and hence, with the weights of experience versus new 

knowledge. Since new knowledge is almost exclusively acquired while young, we 

expect younger, recently trained inventors to be more productive in sectors where 

the importance of new knowledge exceeds that of experience. On the other hand, 

in experience-based sectors in which technological change is slower and more 

incremental in nature, older, more experienced inventors would have a 

comparative advantage over younger ones.  

In order to test our hypotheses three empirically based regimes of technological 

change have been defined according to the R&D intensity: low-tech, high-tech 

and advanced-tech with an increasing pace of technological development over the 

categories. The classification of our sectors was done with help of the Fraunhofer 

Institut für System und Innovationsforschung. Agriculture is mainly low-tech, 

though some areas belong to high-tech industries. The same applies for 

metallurgy. On the other side there are biotechnology and especially information 

technology that are dominated by advanced-tech and high-tech products. In other 

words, the rate of technological change is higher in biotech and ICT compared to 

agriculture and metallurgy and therefore the age of inventors should be lower in 

the first group of industries. A quick lock at sector-specific average ages already 

shows that sectors should be grouped according to our hypotheses. In agriculture, 

the mean age is 51.4 which is very close to the value in metallurgy of 53.2 years. 

Contrary to that, in biotechnology and ICT, the mean ages are 43.9 and 42.9 

years, respectively. As age is not normally distributed in some of the industries, 

we performed several non-parametric tests to verify that age distributions differ 

significantly between industries. The results obtained confirm that agriculture and 

metallurgy are different form biotechnology and information technology, whereas 

there are no significant differences within the low-tech group and the high-tech 

group. In Figure 1, kernel density estimates of the sector-specific age distributions 

are plotted to underline the statistical results graphically. 
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Figure 1 - Kernel Density Estimates of sector-specific Age Distributions 
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4 Econometric results
4
 

Some results reported above can also be found in Henseke and Tivig (2005). To 

get deeper insights into the industry-specificity of the age-innovation profiles, we 

additionally performed an econometric analysis. The general finding in the 

literature is that productivity follows an inverse u-shaped pattern over the 

professional career, with a sharp increase in the beginning followed by a peak and 

thereafter a gradual decline that might also stabilise at higher ages. This pattern 

can be described by a polynomial function of third degree. Age is the independent 

variable in the estimation. The dependent variable should ideally be individual 

productivity, but since we cannot measure it directly, we use the relative 

frequency of one year age-groups instead. The estimating equation is:  

iiiii eageageagep ++++=
3

3

2

21 βββα       (1) 

with iage  as the ith age-group and ip  as the corresponding relative frequency. If 

inventive productivity is inverse U-shaped and the model fits the data we expect 

that 1β  and 3β  have positive sign while 2β  is expected to have a negative sign. 

The model is estimated with OLS, first for the whole sample and then for each of 

the four sectors separately. White correction of standard errors is used, if 

necessary. Results are presented in Table 1. 
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Table 1: Estimation Results Model 1 
Variable Agriculture Metallurgy

+ 
Biotechnology Information technology

+ 
Total

+ 

C -.661608 

(.445788) 

 

.808968*** 

(.174771) 

 

-.589990*** 

(.103077) 

 

-.6383*** 

(.1307) 

 

-.447869*** 

(.051310) 

 

Age .040557 

(.026439) 

 

-.049236*** 

(.010755) 

 

.042054*** 

(.006755) 

 

.0447*** 

(.0084) 

 

.031071*** 

(.003337) 

 

Age² -.000754 

(.000515) 

 

.001023*** 

(.000214) 

 

-.000881*** 

(.000144) 

 

-.0009*** 

(.00002) 

 

-.000631*** 

(7.09E-05) 

 

Age³ 4.56E-06 

(3.29E-06) 

 

-6.84E-06*** 

(1.38E-06) 

 

5.78E-06*** 

(1.00E-06) 

 

5.87E-06*** 

(1.22E-06) 

 

4.02E-06*** 

(4.91E-07) 

 

      

R² .061746 .276353 .505581 .424458 .628052 

Adj. R² .003105 .237586 .493220 .413173 .625183 

F-statistics 1.052948 7.128608 40.90297 37.61217 218.9480 
+ 

white standard errors to correct for the influence of heteroskedasticity 

*** coefficient is significant at the 1% level  

 

The model is able to explain quite a big part of the variability of data in the total 

sample, adjusted R² is 62.5% and all coefficients are significant at the 1% level 

and have the expected signs (column 5). From the estimation output it is clear, 

however, that the age distribution varies across industries. The estimated 

coefficients are different and also the overall fit of the model changes. For 

agriculture (column 1) the model is not able to explain the variation in the data, all 

coefficients are highly insignificant even though they have the expected sign; the 

R² is very low and consequently the F-statistic is insignificant. Metallurgy 

(column 2), that appeared comparable to agriculture from the previous test, show 

a different pattern. The coefficients are all highly significant but have the wrong 

signs. No more than one quarter of the whole variation in the data can be 

explained by the model used. The estimation results for biotechnology and 

information technology are firstly, similar to each other, confirming results of 

previous tests. In both cases coefficients are all significant, have the expected 

signs and are in both sub-samples very close to each other. The model fit is thus 

much better than in the other group of industries.  

From the estimated coefficients it is possible to calculate the peak of each age 

distribution. As expected, the peak ages in biotechnology and information 

technology are very close to each other, 38.3 and 39 years, respectively. In 

agriculture the calculated peak is at 46.6 years, but the value is unreliable because 

of the highly insignificant coefficients. For metallurgy, the calculated peak age is 

very high, at 59 years, which is caused by the estimated pattern. So, estimation 

results generally confirm our previous findings: Biotechnology and information 

technology are comparable in their age distribution to each other but are different 

to metallurgy and agriculture. However, for agriculture and metallurgy, model (1) 
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is not appropriate, since the variation in the age distribution cannot be explained 

and coefficients do not show the expected signs, respectively.  

Therefore, in a next step we formulated an empirical model that allows estimating 

all sector-specific age distributions jointly in order to test differences between the 

estimated frequency distribution of age. The following specification was used:  

jijijjijjijji eageageagep ++++=
3

3

2

21 βββα     (2) 

with jiage  as the ith one-year age group in sector j and jip  as the corresponding 

sector-specific relative frequency. Sector dummies are used to model varying 

response parameters. Model (2) is estimated by OLS with White 

heteroskedasticity-consistent standard errors. As before, the expected sign of 1β  

and 3β  is negative and of 2β  positive. Results can be found in Table 2 below. In 

the first two columns the sector-specific frequency distribution of age calculated 

from the sample is used as dependent variable. To eliminate part of the 

randomness in the data and to check the robustness of results in column 1 and 2, 

five-years moving averages of the age density are used in column 3 and 4. 

According to our hypothesis 3 we divide sectors into a low-tech and a high-tech 

group (column 1 and 3). Results are compared with the estimation with the full set 

of sector dummies (column 2 and 4). If our hypothesis is true, the coefficients and 

the overall quality of the estimations will not differ between the two 

specifications. Furthermore, the specification allows using the Wald-Test to test 

for significant differences between the estimated age-density patterns. Therefore, 

we impose restrictions on the coefficients, namely that there are equal. If the 

restrictions are true, then the unrestricted estimates will be similar to the restricted 

ones and the Wald-test statistic does not reject the Null Hypotheses of equal age 

patterns.  

The reference sector is information technology (the high-tech group), because 

here the number of observations is highest. Generally, the model fits the data 

fairly well. All coefficients have the expected signs and the adjusted R² ranges 

from 24.7 per cent for sample data to 58.8 per cent when the age-distribution data 

is smoothed. For an interpretation of results remember that the estimated 

coefficients in the upper rows are valid for the reference group. To calculate the 

values for another sector or group, simple add the coefficients of the interaction 

variables. Insignificant coefficients of the interaction variables indicate that the 

age distribution of the specific sector is not statistically different from the 

reference category. In column 1 all estimated values are significant: The basic 

model itself as well as the interaction variables. Thus, there are significant 

differences in the sample between the age distributions in high-tech and low-tech 

industries. As before, we calculate the peak age which is 39.4 and 46.9 years for 

high-tech and low-tech industries, respectively. The adjusted R² is with 26.6 per 

cent relative low, which might be caused by the high randomness in the data and 

the small sample size. In column 2, the whole set of sectors is used. Compared to 
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Model 1, the adjusted R² declines. The newly added sector-variables have no 

further explanatory power, which is in accordance to the hypotheses. With the 

exception of biotechnology interaction-variables, all coefficients are significant at 

least at the 10% level. The estimation of the reference model is very close to 

results in column 1. Biotechnology does not differ significantly from the reference 

category while agriculture and metallurgy do. The resulting peak age for 

information technology is 38.6 years, for biotechnology 40.1 years, for metallurgy 

48.1 years and for agriculture 47.4 years. We again use the Wald-Test to confirm 

that estimated age distributions are different from each other. Results again 

strongly confirm our hypotheses: Biotechnology and information technology, on 

one side, and agriculture and metallurgy, on the other side, differ from each other, 

while no such differences can be found within the groups. Finally, in the last two 

columns of Table 2 we report results with the moving average of relative age-

frequencies as dependent variable. Smoothing and reduction of randomness 

clearly have a positive impact on the estimates and support our previous findings 

further. The adjusted R² is in both columns around 60 per cent. Again, the use of 

the whole set of sector dummies adds only marginal explanatory power as 

compared to the low-tech dummy estimation. In column 3 all coefficients are 

significant and have the expected signs. As before, the estimated age density 

distributions in low- and high-tech industries differ significantly from each other. 

Findings in the last column are generally in line with our hypothesis. First, the 

adjusted R² changes only slightly as compared to the previous column. Second, 

agriculture and metallurgy do not differ from each. But even though single 

estimates of biotechnology are not significant, the age-density distribution of 

biotechnology as a whole is now significantly different from the one in 

information technology at the 1 per cent level. The linear part is still equal, but the 

quadratic and cubic terms differ. However, differences between high and low tech 

industries regarding calculated peak-ages last. In ICT the peak age is 38.1 years, 

in biotechnology it is 39.8 years while in metallurgy and agriculture it is 48.4 and 

45.9 years, respectively. A summary of the calculated maxima and minimum ages 

based on the estimates of model (1) and (2) can be found in Table 3. Interestingly, 

the calculated minimum age is sector-independent and varies around the onset of 

retirement; this can be seen as a further prove of the reliability of our results. 

Furthermore, it allows to conclude that there is a non-negligible amount of 

inventors who (re)start patenting after retirement. 
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Table 2: Estimation Results for Model 2 

 Variable Sample Age Density 

2 groups  

Sample Age Density 

All sectors 

MA Age Density 

2 groups 

MA Age Density 

All sectors 

C -.446610*** 

(.084959) 

-.424128*** 

(.098758) 

-.527597*** 

(.071038) 

-.494007*** 

(.071413) 

AGE .030763*** 

(.005399) 

.030097*** 

(.005947) 

.036190*** 

(.004437) 

.035151*** 

(.004312) 

AGE² -.000618*** 

(.000108) 

-.000614*** 

(.000116) 

-.000734*** 

(8.94E-05) 

-.000728*** 

(8.53E-05) 

AGE³ 3.85E-06*** 

(6.96E-07) 

3.87E-06*** 

(7.30E-07) 

4.65E-06*** 

(5.83E-07) 

4.67E-06*** 

(5.50E-07) 

     

(age�lti) -.004542*** 

(.001298) 

 -.004889*** 

(.000873) 

 

(age²�lti) .000152*** 

(4.74E-05) 

 .000162*** 

(3.32E-05) 

 

(age³�lti) -1.20E-06*** 

(4.19E-07) 

 -1.26E-06*** 

(3.07E-07) 

 

     

(age�b1)  -.005397*** 

(.001566) 

 -.005574*** 

(.001337) 

(age�b2)  -.005154** 

(.002243) 

 -.006318*** 

(.001142) 

(age�b3)  -.001140 

(.001353) 

 -0.001521 

(.000939) 

(age²�b1)  .000185*** 

(5.78E-05) 

 .000189*** 

(5.14E-05) 

(age²�b2)  .000170** 

(8.13E-05) 

 .000208*** 

(4.30E-05) 

(age²�b3)  3.70E-05 

(4.86E-05) 

 4.96E-05 

(3.40E-05) 

(age³�b1)  -1.50E-06*** 

(5.17E-07) 

 -1.52E-06*** 

(4.81E-07) 

(age³�b2)  -1.31E-06* 

(7.11E-07) 

 -1.61E-06*** 

(3.91E-07) 

(age³�b3)  -2.82E-07 

(4.27E-07) 

 -3.82E-07 

(3.02E-07) 

     

R² 0.291822 0.299748 0.593326 0.619532 

Adj. R² 0.266225 0.247229 0.577059 0.587826 
*** coefficient is significant at 1% level 

**  coefficient is significant at the 5% level 

*    coefficient is significant at the 10% level 

lti –  dummy for low tech industries (agriculture, metallurgy) 

b1 – dummy variable for agriculture 

b2 – dummy variable for metallurgy 

b3 – dummy variable for biotechnology    
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Table 3: Maxima and Minima of the Estimated Age Density Functions 

Model (1) 

Separate estimation 

 Total Agricult. Metallurgy Biotech. ICT 

Maximum at age  39.63 46.56 59.13 38.31 38.95 

Minimum at age   65.02 63.67 40.58 63.3 65.19 

Model (2) 

Joint Estimation 

Original Data 

High-tech ind.  Low-tech ind. Agricult. Metallurgy Biotech. ICT 

Maximum at age  39.38 46.88 47.43 48.09 40.07 38.58 

Minimum at age  67.63 70.35 73.25 67.53 67.14 67.19 

Model (2) 

Joint Estimation 

Smoothed Data 

High-tech ind. Low-tech ind. Agricult. Metallurgy Biotech. ICT 

Maximum at age  39.42 46.99 45.93 48.41 39.82 38.14 

Minimum at age  65.82 65.5 68.14 64.88 65.65 65.79 

 

5 Summary and conclusion 

In this paper we briefly review why aging is believed to diminish creative 

productivity on all levels, thus threatening welfare in advanced industrial 

countries. Then we picture and analyze in great detail the age structures of 

German inventors as identified by patents granted by the European Patent Office 

in the year 2003. As no age variables are contained in patent descriptions, we 

conducted an own survey. Its size was limited by available means. We were not 

aware at the time of parallel efforts conducted on a much lager scale with the 

PatVal survey for the EU. However, our main question was not dealt with, so far, 

with PatVat data.  

We test three hypotheses concerning: Age dependency of productive creativity 

(hypothesis 1), concentration of talent (hypothesis 2), and industry-specificity of 

age-dependency of innovations. As far as the first two hypotheses are concerned, 

we essentially confirm results of other studies based on very different data sets. 

Yet, by interpreting results under the perspective of demographic change, we 

draw attention to some aspects not considered before. For example, the median 

age of our inventors is much higher than for the overall German workforce. 

Possible reasons were named before: long education periods, some other 

institutional factors as well as the need to gain some experience before 

contributing to own patents. On the side of consequences of this finding, aging in 

Germany doesn't seem, at least at present and for a while, that detrimental to 

creative productivity as currently assumed. However, under hypothesis 2 we 

tested Lotka's Law and found that many inventors contribute only occasionally to 

the creation of patents, while a small minority is highly productive. Assuming that 

the distribution of talent in the population remains stable, the number of highly 

creative and inventive individuals will decrease with demographic change. 

Our original hypothesis, inspired, of course, by a whole bunch of literature in 

fields ranging from Psychology and Education to the Economics of Innovation 
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and Growth theory, is hypothesis 3. Beside some descriptive statistics we run 

several econometric regression to test our conjecture that creative productivity is 

industry specific because it depends on technological change that differ, itself, 

across industries. We look at four fields: Agriculture and farm machinery, 

metallurgy, biotechnology, and information technology, which we group into 

"low-tech" (the former two) and "high-tech" industries (the latter two). Our result 

support the conclusion that in innovative and hence fast growing sectors with high 

rate of technological change younger inventors perform better while older ones 

have a comparative advantage in fields with slower technological change, in 

which knowledge has a lower half-time and hence experience higher value.  

Currently the baby boomer cohorts are aged 35 to 44 and contribute almost one 

third to the labour force. There is a large supply of educated and talented 

individuals from which the German economy benefits in terms of innovations, 

technological progress and productivity. Additionally, the German economy 

currently draws substantial power from the export of goods that are to a large 

extent experience-based, too, like automobiles. In 2050 the size of the age group 

35-44 will have declined by 4 million persons compared to 2003 according to a 

rough projection of the Rostocker Zentrum (2005). Their share in the labour force 

will be around 25 per cent or even lower if labour force participation rates of older 

workers increase. The question then seems just, if talents will suffice to keep the 

German economy at the technological frontier that might more and more be 

knowledge-intensive and hence in need of younger inventors. Fortunately, there 

are ways out of any scarcity once it is recognized. 
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