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Abstract

This paper develops a tractable dynamic microeconomic model of migration de-

cisions that is aggregated to describe the behavior of interregional migration. Our

structural approach allows us to deal with dynamic self-selection problems that arise

from the endogeneity of location choice and the persistency of migration incentives.

Keeping track of the distribution of migration incentives over time has important

consequences, because the dynamics of this distribution influences the estimation of

structural parameters, such as migration costs. For US interstate migration, we ob-

tain a cost estimate of somewhat less than one-half of an average annual household

income. This is substantially less than the migration costs estimated by previous

studies. We attribute this difference to the treatment of the dynamic self-selection

problem.
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1 Introduction

Migration decisions are important economic decisions. Migration allows individual agents

to smooth their income and is an important way of adjustment to macroeconomic shocks

(Blanchard and Katz, 1992, and Decressin and Fatas, 1995). Many factors influence the

decision to migrate and there is a vast empirical literature that links migration deci-

sions to economic incentives (see Greenwood, 1975, 1985, and 1997 and Cushing and

Poot, 2004 for survey articles). At the same time, most of this literature has remained

relatively silent about the actual costs of migration to individual agents. Nevertheless,

migration costs are surely a structural parameter of high interest both at an individual

level as well as from an aggregate perspective (Sjaastad, 1962). One example for the

latter is the interaction of unemployment insurance schemes and regional mobility as

has been highlighted in the political economy model of Hassler et al. (2005). This model

shows that more generous unemployment insurance schemes will receive more political

support if migration costs are high.

While migration costs are of substantial theoretical interest, they are a deep struc-

tural parameter that is hard to estimate. Accordingly, only a small number of studies

reports estimates on migration costs. For example, Davies, Greenwood, and Li (2001)

report a cost estimate of about US$ 180,000 for each migration between US states,

and Kennan and Walker (2003, 2006) conclude that, all other things equal, migration

costs are between US$ 176,000 and US$ 270,000.1 In terms of average annual income,

this magnitude of migration costs corresponds to roughly 4-6 average annual household

incomes. Such an estimate appears very high.

Kennan and Walker (2003) suggest that some kind of omitted variable problem may

drive the high cost estimate. In particular, they suggest that an unobservable wage

component is correlated to the decision to stay. We argue that the endogeneity of the

location choice will always lead to such correlation. This endogeneity problem, put in

simple words, refers to the fact that agents are in a certain region most likely because

they moved there in the past for the reason that they are better off living there. If all

observable things are equal, it must be some unobserved component of their preferences

that is in favor of the place in which they actually live.

This motivates us to develop a tractable microeconomic structural model of migration

which can be aggregated and used to describe the simultaneous evolution of migration

incentives and migration rates at an aggregate level. Making explicit this simultaneous

1These estimates do not yet include mark-ups for distance and other factors that influence the psychic
costs of migration. Return migration is usually associated with lower, but still substantial costs.
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evolution allows us to avoid the problem of unobservability of incentives in a simulation

approach and hence evades the aforementioned endogeneity issue. Our model picks up

the general idea that migration can be understood as an investment into human capital

(Sjaastad, 1962). In particular, the migration-decision problem is closely related to the

decision problem for discrete investment projects or lumpy investment.

For the lumpy investment setup, Caballero and Engel (1999) develop a method-

ological framework that allows them to estimate micro-level investment costs from only

aggregate data. We extend their work to migration decisions. This means that we first

develop a structural model of the representative microeconomic problem of migration for

heterogeneous households and in a second step, this model is used to derive the evolution

of the distribution of migration incentives. This evolution of incentives determines the

aggregate migration in turn. Say a household living in one region is earning a low cur-

rent income, but faces a substantially higher potential income in an other region. This

household is very likely to migrate. As a result, the number of households facing large

income differentials strongly decreases after migration decisions have been taken, while

the number of households facing a smaller income differential changes less. If income

differentials are not fully observable, the resulting distribution of unobservable migration

incentives is neither symmetric nor time invariant. It is the treatment of this form of

self-selection that stands at the heart of our analysis.

We take a simulation-based approach and estimate the structural parameters of our

model, in particular migration costs, via Gourieroux, Monfort, and Renault’s (1993)

method of simulated moments. Migration costs are found to be about US$ 21,500,

which is somewhat less than one-half of the average annual income. This cost estimate

is substantially lower than the cost estimates reported by previous studies. Moreover, we

show that applying the techniques used in other papers, we would obtain higher cost es-

timates also from data generated by a simulation of our structural model. Consequently,

we conclude that keeping track of the distribution of migration incentives over time has

an important influence on the estimation of migration costs. This finding extends the

role of self-selection problems to a dynamic setup, which so far have been highlighted

in static frameworks (see for example Borjas, 1987, Borjas, Bronars, and Trejo, 1992,

Tunali, 2000, and Hunt and Mueller, 2004).

Finding more reasonable cost estimates parallels the results of the investment litera-

ture, in which more reasonable estimates of adjustment costs were obtained when fixed

adjustment costs to capital were included into dynamic models. For migration, the issue

of fixed and sunk costs was emphasized in the real-options approach by Burda (1993)

and Burda et al. (1998). However, these papers only look at migration as a once and for
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all decision, so that they preclude return migration. Moreover, the papers do not study

the evolution of migration incentives, to which past migration decisions feed back.

Taking into account these feedbacks, our approach complements the structural ap-

proaches of Davies, Greenwood, and Li (2001) and Kennan and Walker (2006). We

suggest a fully structural model of migration that is based upon dynamic optimization

and hence takes into account the dynamic character of the migration decision. This

allows us to track the dynamic evolution of migration incentives at the macroeconomic

level, but it comes at the cost that we have to reduce the model to a bi-regional setup

for numerical feasibility. One distinct feature of our model is that it enables us to infer

the structural microeconomic parameters of the migration decision from aggregate data;

a research strategy that links our paper to Coen-Pirani’s (2006) island-economy model

of regional migration.

The remainder of this paper is organized as follows: Section 2 gives a brief discussion

of the difficulties of estimating structural migration models when the population dynam-

ically self-selects into its preferred region. The section develops the main motive of our

paper and illustrates why migration costs are hard to estimate by standard (discrete

choice) estimation techniques. Motivated by these considerations, Section 3 presents a

dynamic microeconomic model of the migration decision which assumes that an agent

maximizes future expected well-being by location choice. In Section 4, we show how to

aggregate this model. We derive the contemporaneous law of motion of the distribution

of migration incentives and aggregate migration rates, taking into account heterogeneity

at the microeconomic level. We provide the results of a numerical simulation analysis in

Section 5 to give an idea of how the proposed model actually behaves. Section 6 finally

confronts the model with aggregate data on migration between US states and presents

the estimates of the structural parameters of the model, particularly the estimates of

migration costs. Section 7 concludes and an appendix provides detailed proofs as well

as details on the data employed.

2 What makes migration costs so hard to measure?

Most micro studies and now also more macro studies on migration link the individual

migration decision to a probabilistic model in which agents migrate if the gain in utility

terms obtained by migration,³
umoveit − ustayit

´
= γxit + νit, (1)
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is large enough and exceeds some threshold value c̄, see for example Davies, Greenwood,

and Li (2001), Hunt and Mueller (2004), or Kennan and Walker (2006). This threshold

value c̄ can be interpreted as migration costs in utility terms. The vector of covariates

xit is composed of information that describes the economic incentives to migrate, i.e.

the gains from migration.

For example, xit could contain data on remuneration, on labor market conditions,

and on amenities for both the home and the destination region. The vector of parameters

γ measures the sensitivity of the migration decision to these economic incentives. The

stochastic component νit reflects differences across agents, omitted migration incentives,

and/or some variability of migration costs.

Typically we are interested in the structural parameters γ and c̄ and hence would

estimate some version of (1) to infer these parameters. Unfortunately, such direct ap-

proach is very difficult due to the unobservability of the potential migration gains to the

outside observer. To illustrate this point, suppose that an agent only cares about the

difference in income between home and destination region.

In such setting, xit would be simply a measure of relative income potentials for an

agent which she can realize by location choice. A rational agent then moves to the

region where she earns the most, provided that her migration costs are covered by the

discounted present value of the differences in future incomes.

However, the econometrician can only observe the income that an agent realizes

in the region in which she is currently living. Therefore, the other, the unobserved,

potential income has to be proxied. Typically, it is proxied by an income a similar

agent realizes in the other region. One example for this approach is the paper by Hunt

and Mueller (2004), who apply Mincer-type wage regressions to obtain the unobservable

potential income. A similar example can be found in Burda et al. (1998) or Kennan

and Walker (2006). At a macro level, this approach often means replacing agent-specific

income differences by average income differences across regions, see for example Davies,

Greenwood, and Li (2001).

If we proxy the unobservable income difference xit for individual i in equation (1) by

the average income difference x̄.t between source and destination region, then we obtain³
umoveit − ustayit

´
= γx̄.t + γ (xit − x̄.t) + νit| {z }

composed error term

. (2)

The composed error term γ (xit − x̄.t)+νit now also includes the idiosyncratic component

of income differences ηit := (xit − x̄.t). Since we do not want to base our following
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argument on a classical measurement error or omitted variable problem, assume that

the idiosyncratic component to the income difference ηit is orthogonal to the average

income difference.2 For the ease of exposition, suppose in addition that the agent really

just cares about income, so that the true stochastic component is actually identical to

zero, νit ≡ 0.
Under these assumptions, we can rewrite (2) as³

umoveit − ustayit

´
= γx̄.t + γηit. (3)

In this equation, the regression residual only captures the distribution of idiosyncratic

potential income differences around the mean.

While the migration decision is deterministic to the individual in this setting, it is

stochastic to the econometrician due to his lack of knowledge of ηit. If the econometrician

were to know the distribution of the unobserved component ηit, he would nonetheless be

able to estimate γ with a suitable probabilistic discrete choice model. However, assuming

one of the standard distributions for ηit, e.g. a logistic distribution, is problematic.

Suppose agents are heterogeneous with respect to their potential incomes, so that the

idiosyncratic component ηit has a non-degenerated distribution. In particular, assume

that ηit is initially normally distributed as displayed in Figure 1 (a), so that in the initial

situation a probit model would be appropriate. The figure displays the distribution of

migration incentives, i.e. potential incomes, xit = x̄.t + ηit. Low values of this sum

imply that income in region A is favorable, high values of this sum imply better income

prospects in region B. Correspondingly, all agents with x̄.t + ηit < 0 decide to live in

region A and they decide to live in region B otherwise if we assume zero migration costs

for the moment. In other words, agents self-select into the region that is favorable for

them.3

As a result, the distribution of income differences changes for the next period. No

agent who lives in region A prefers to live in region B. This means that for those agents

who live in region A the distribution of income differences is as displayed in Figure 1 (b).

Effectively, the right-hand part of the distribution in Figure 1 (a) has been cut because

all agents with higher income in region B have actually chosen B as the region to live

in.
2Alternatively, one could think of ηit as being the unexplained residual of a Mincer-type wage regres-

sion and x̄.t being the income component that is explained by all observable characteristics of the agent.
Our line of argument applies to this microeconomic interpretation too.

3This self-selection is driven directly by the heterogeneity of the agents with respect to potential
incomes, but it does not reflect immanent and fixed differences of the regions as in Borjas (1987) and
Borjas, Bronars, and Trejo (1992).
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Figure 1: Distribution of potential incomes in region B relative to A
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It can be seen that the migration incentives x̄.t+ηit are no longer normally distributed

conditional on a household living in region A. Since the estimation residual γηit in our

setup results from a linear transformation of the migration incentive x̄.t + ηit, also the

estimation residual γηit is no longer normally distributed. Accordingly, the distributional

assumptions to estimate (1) by standard maximum likelihood techniques are no longer

fulfilled.

Even adding a normally distributed idiosyncratic income shock does not reestablish a

normal distribution of income differences if income differences are sufficiently persistent.

Figure 1 (c) displays how mild idiosyncratic shocks alter the distribution displayed in

Figure 1 (b) . Again, the distribution is different from the standard distributions assumed

in the estimation of discrete-choice models. The colored-in region indicates the set of

agents that will migrate from A to B after the idiosyncratic shocks.

Besides idiosyncratic shocks, also aggregate shocks to the income difference x̄.t influ-

ence the migration decisions of agents. Figure 1 (d) shows the distribution of migration

incentives as in Figure 1 (c), but after an adverse shock to region A. By comparing

Figures 1 (c) and 1 (d), one can see that the shape of the distribution after migration

(the not colored-in region) differs between both figures. In consequence, the distribution

of migration incentives will not be strictly stationary, it will evolve over time, and it will

depend on the history of aggregate shocks.

Hence, the distribution deviates in two important characteristics from those assumed

in standard discrete-choice models. Firstly, it will not be one of the standard distribu-

tions considered. Secondly, it will display a dynamic behavior as a result of aggregate

shocks.

Now, how does this correspond to an unreasonable estimate of migration costs? If

c̄ is normalized to 1, the parameter γ has a straightforward interpretation. It measures

the sensitivity of migration decisions to income incentives and its inverse 1
γ is exactly

the income differential at which an average agent is just indifferent between moving and

not moving. Or to put it differently, c̄
γ is the money measure of average migration costs.

In turn, this implies that any bias in the estimate of c̄ or γ directly translates into a

bias in estimated migration costs c̄
γ . With the distribution of migration incentives mis-

specified, c̄ and/or γ will be estimated with a bias most probably. The misspecification

of the distribution of migration incentives has two aspects. One is that the distribution

will always be non-standard, i.e. neither normal nor logistic. The second aspect is that

the distribution also changes over time as a result of aggregate shocks to income and the

triggered migration decisions.

To put this argument simply: agents are in a certain region most likely because they
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are better off living there. Because of this self-selection, the distribution of unobserved

migration incentives is most likely not symmetric (see Greenwood, 1985, pp. 533).

Additionally, it displays a dynamic behavior. Accordingly, one needs to keep track of

the evolution of the incentive distribution and standard techniques to deal with self-

selection cannot be applied in a straightforward way. Therefore, we develop a model

based on dynamic optimal migration decisions in the presence of persistent shocks to

income. This model can then be aggregated and used to simulate the evolution of

migration and its incentives over time.

3 A simple stochastic model of migration decisions

We consider an economy with two regions, A and B. For simplicity, this economy is

assumed to be inhabited by a continuum of infinitely lived agents of measure 1. We

model the economy in discrete time and at each point in time an agent has to decide in

which region to live and work. First, we consider the decision problem of an individual

agent. For simplicity an with some abuse of notation, we drop the index i that has

denoted the specific individual before, but use this index to indicate regions, i = A,B.

Living in region i at time t gives the agent utility w̃it. Although w̃it is a catch-all

variable for migration incentives, which can be interpreted as wage income, employment

prospects, amenities, utility from social networks and so on, we refer to w̃it as income

for simplicity.

The agent discounts future utility by factor β < 1 and maximizes the discounted

sum of expected future utility by location choice. Moving from one region to the other

is not costless to an agent. When an agent moves, she is subject to a disutility ct that

enters additively in her utility function.

Hence, the instantaneous utility function u(i, j, t) is given by

u (i, j, t) = w̃it − Ij 6=ict (4)

for an agent that has lived in region j before and now lives in region i. Here, I denotes
an indicator function, which equals 1 if the agent has moved from region j to i and 0 if

the agent already lived in region i before.

Both variables, migration incentive (income w̃it) and moving costs (ct), are stochastic

in our model. They vary over time and across individuals, but are observed by the agent

before she chooses her location. The agent knows the distribution of both components of

her utility function and forms rational expectations about future incomes and migration

costs.

9



Since migration costs are stochastic and hence vary, not all individual agents who

face the same income differential will actually take the same migration decision. In this

sense, the individuals in our model are heterogeneous and to the outside observer the

migration decision is stochastic.

With both w̃it and ct being stochastic, the potential migrant waits not only for good

income opportunities but also for low migration costs. In her migration decision she thus

takes into account two option values. One is the value to wait and learn more about

future incomes and the other one is to wait and search for lower migration costs.

Migration costs themselves depend on many factors and may include both physical

and psychic costs of migration (Sjaastad, 1962), but the factors that determine migration

costs are not constant. For example, search costs to find a new job and accommodation

evolve with market conditions, the disutility of living separated from a family or spouse

changes over time, just as marital status itself is neither constant nor irreversible. We

pick up the variability in migration costs ct by assuming them to be independently and

identically distributed according to a distribution function G.

The distribution of migration incentives, w̃it, is assumed to be log-normal. In partic-

ular, we assume that log income, wit, follows an AR(1) process with normally distributed

innovations ξit and autoregressive coefficient ρ :

ln (w̃it) =: wit = µi (1− ρ) + ρwit−1 + ξit. (5)

This process holds for the whole continuum of agents and each agent draws her own

series of innovations ξit for both regions. The expected value of log income in region i is

µi. The innovations ξit are composed of aggregate as well as idiosyncratic components.

They have mean zero, are serially uncorrelated, but may be correlated across regions

A,B (see Section 4.2).

Income and cost distributions, together with the utility function and the discount

factor define the decision problem for the potential migrant. This is an optimization

problem, which is described by the following Bellman equation:

V (j, ct, wAt, wBt) = max
i=A,B

©
exp (wit)− I{i6=j}ct + βEtV (i, ct+1, wA,t+1, wB,t+1)

ª
. (6)

In this equation, Et denotes the expectations operator with respect to information avail-
able at time t.4

4For technical reasons, we assume boundedness of ξit, so that ξit is in fact only approximately normal.
The bounds to ξit turn the optimization problem into a bounded returns problem, which is easier to
solve. Though, the bounds to ξit can be chosen arbitrarily wide (but finite) so that the distribution of
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The optimal policy is relatively simple. The agent migrates from region j to region

i if and only if the costs of migration are lower than the sum of the expected value

gain βEt [V (i, ct+1, wA,t+1, wB,t+1)− V (j, ct+1, wA,t+1, wB,t+1)] and the direct benefits

of migration expwit − expwjt. This means that the agent migrates if and only if

ct ≤ expwit−expwjt+βEt [V (i, ct+1, wA,t+1, wB,t+1)− V (j, ct+1, wA,t+1, wB,t+1)] . (7)

The expected value difference

Et [V (i, ct+1, wA,t+1, wB,t+1)− V (j, ct+1, wA,t+1, wB,t+1)]

may for example reflect different income expectations. Holding income expectations

constant, the difference of the expected values also reflects the differences in expected

future migration costs.

Since the costs of migration, ct, are assumed to be i.i.d., expected costs at time

t + 1 do not depend on information available at time t. Moreover, the distribution of

future incomes (wA,t+1, wB,t+1) is a function of only (wAt, wBt) , because wit follows a

Markov-process. This allows us to summarize the expected value difference by a function

∆V (wAt, wBt) of only (wAt, wBt) , which is defined as

∆V (wAt, wBt) := βEt [V (B, ct+1, wA,t+1, wB,t+1)− V (A, ct+1, wA,t+1, wBt,+1)] . (8)

Substituting (8) for the value difference in (7) gives a critical level of costs c̄ at which

an agent living in region A is indifferent between moving and not moving to region B.

This threshold is

c̄ (wA, wB) := expwB − expwA +∆V (wAt, wBt) . (9)

To put it differently, a person moves from A to B if and only if

ct ≤ c̄A := c̄ (wAt, wBt) .

Conversely, a person living in region B moves to region A if and only if

ct ≤ c̄B := −c̄ (wAt, wBt) .

w̃it approximates the log-normal distribution arbitrarily close. Existence and uniqueness of the value
function is proved in the appendix.
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Figure 2: Hazard-rates for migration from region A to region B conditional on potential
incomes
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Note that c̄ can be positive as well as negative. If c̄ is positive, region B is more attractive.

If it is negative, region A is more attractive and a person living in region A would only

have an incentive to move to region B if migration costs were negative.

4 Aggregate migration and the dynamics of income distributions

4.1 Aggregate migration

Given this trigger rationale for migration, the hazard rate

Λi (wA, wB) := G (c̄i (wA, wB)) , i = A,B

is the probability that a person in region i moves to the other region if she faces the

potential incomes (wA, wB). This means that the likelihood of a person to move equals

the probability that her migration costs realize below the threshold value c̄i. Since we

assumed a continuum of agents, the actual fraction of migrating agents with income pair

(wA, wB) is equal to this hazard rate too. Figure 2 displays an example of a microeco-

nomic migration-hazard function that stems from the optimization problem (6). The

figure shows how different income combinations change the probability to migrate from

region A to B.
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Now, consider the distribution Ft of (potential) incomes (wA, wB) and household

locations. Suppose this income distribution is the distribution after the income shocks

ξit have been realized, but before migration decisions have been taken. Let fit denote

the conditional density of this income distribution, conditional on the household living

in region i at time t. Then, the actual fraction Λ̄it of households living in i that migrate

to the other region evaluates as

Λ̄it :=

Z
Λi (wA, wB) · fit (wA, wB) dwAdwB. (10)

This means that the aggregate migration hazard Λ̄it is a convolution of the microeco-

nomic adjustment hazard Λi and the conditional income distribution fit. In other words,

the aggregate migration hazard can be thought of as a weighted mean of all micro-

economic migration hazards, weighted by the density of income pairs (wA, wB) from

distribution Ft.

4.2 Dynamics of income distributions

The distribution Ft itself (and hence fit) evolves over time and is a result of direct shocks

to income just as it is a result of past migration. We need to characterize the law of

motion for Ft to close our model and to obtain the sequence of aggregate migration rates.

4.2.1 The effect of migration on income distributions

Recall that the distribution Ft is the joint distribution of potential incomes and house-

hold locations. In order to follow the evolution of Ft we thus need to characterize the

evolution of the fraction Pit of households living in each region, as well as the conditional

distribution of incomes fit (conditional on a household actually living in a specific region

i).

The proportion of households living in region i at time t+ 1 is a result of migration

decisions at time t. The law of motion for Pit is given by

Pit+1 =
¡
1− Λ̄it

¢
Pit + Λ̄−itP−it. (11)

The first part of the sum reflects the fraction of households that remain in region i,

where
¡
1− Λ̄it

¢
is the probability to stay in region i. The second part is the fraction of

households that migrate from region −i to region i.

Since the microeconomic migration hazard depends on (wA, wB) , different potential

incomes result in different propensities to migrate. In consequence, migration changes

not only the fraction Pit of households living in region i at time t, but also the conditional
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distribution of income, fit. For example, households living in region A, earning a low

current income, wA, but facing a substantially higher potential income in B, wB, are very

likely to migrate. As a result, the number of those households strongly decreases after

migration decisions have been taken, while the number of households facing a smaller

income differential changes less.

These considerations form the backbone of our argument. The distribution of mi-

gration incentives is a result of past migration decisions, and we can express the new

density of households with income (wA, wB) in region i after migration, f̂it, by

f̂it (wA, wB) = [1− Λit (wA, wB)]
fit (wA, wB)Pit

Pit+1

+ Λ−it (wA, wB)
f−it (wA, wB)P−it

Pit+1
. (12)

The first product and part of the sum gives the fraction of households that remain in re-

gion i. In this product, the probability [1− Λit (wA, wB)] is again the probability to stay

in region i. The term fit (wA, wB)Pit weights this probability and is the unconditional

income density for region i before migration has taken place. To obtain again the con-

ditional density, the unconditional income density, fit (wA, wB)Pit, is divided by Pit+1,

which is the fraction (or probability) of households living in region i after migration (i.e.

in time t+ 1).

Analogously, the second part of the sum is constructed: Λ−it (wA, wB) is the prob-

ability to migrate from the other region, −i, to destination region i, f−it (wA, wB)P−it

is the unconditional income density for region −i, and dividing by Pit+1 conditions for

living in region i after migration.

4.2.2 The effect of income shocks on the income distribution

Besides migration, also shocks to income change the distribution of income pairs, Ft.

These shocks can be purely idiosyncratic or may effect all individuals in the economy.

For a single agent we can decompose the total shock ξit to her potential income in region

i (see equation 5) into an aggregate component θit and an individual-specific component

ωit :

ξit = θit + ωit, i = A,B.

The aggregate shock θit for region i hits all agents equally and changes their potential

income for region i. Note that this shock does not depend on the actual region the agent

is living in. For example, a positive shock θAt > 0 increases the potential income in

region A for agents that are currently living in this region as well as for agents that are
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currently living in region B. They realize this potential income by deciding to actually

live in region A. The correlation ψθ between θA and θB measures the importance of the

economy-wide business cycles relative to the size of region-specific aggregate fluctuations.

However, aggregate shocks are typically only a minor source of income variation

for an agent. Agents differ in various personal characteristics that result in different

income profiles over time. Individuals differ in their skills and while the demand may

grow for the skill of one person, demand may deteriorate for another person’s skills.

This heterogeneity is captured by the idiosyncratic shocks (ωAt, ωBt) . If ωAt is positive,

income prospects of the individual agent increase in regionA. The correlation ψω between

ωA and ωB reflects economy-wide demand shifts for a person’s individual skills.

Since we assume aggregate and idiosyncratic shocks to be independent, the variance

of the total shock to income, ξit, is the sum of the variances of idiosyncratic and aggregate

shocks: σ2ξ = σ2ω + σ2θ.

Persistency in incomes is captured by the autoregressive parameter ρ in equation (5) .

We abstain from the inclusion of permanently fixed individual differences (fixed effects)

primarily because this makes the model numerically more tractable.5

Idiosyncratic shocks, aggregate shocks, and the persistency of the income process

determine the transition of the distribution of income incentives after migration to the

distribution of migration incentives before migration in the next period. The income

distribution at the beginning of period t+1, Ft+1, results from adding idiosyncratic and

aggregate shocks to the distribution of income after migration in period t, F̂t, of which

f̂it (wA, wB) is the conditional density, see (12). When a household has income wit+1 in

period t+1, this can result from any possible combination of wit and ξit+1 = θit+1+ωit+1

for which

wit+1 = µi (1− ρ) + ρwit + θit+1 + ωit+1 (13)

holds. Solving this equation for wit we obtain

w∗i (wit+1, θit+1, ωit+1) := wit =
wit+1 − (θit+1 + ωit+1)

ρ
− µi

(1− ρ)

ρ
. (14)

This w∗i (wit+1, θit+1, ωit+1) is the time-t potential income in region i that is consistent

with a future potential income of wit+1 and realizations of shocks θit+1 + ωit+1 at the

beginning of period t + 1. Now suppose that both kinds of shocks, θ and ω, have been

realized. Then, w∗A,B is a one-to-one mapping of future income (wAt+1, wBt+1) to current

5 If we were to include fixed effects that reflect different types of agents, the model had to be solved
for each different type of agent in the way it is now solved for the single type of agent.
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income (wAt, wBt) .

The conditional density of observing the future income pair (wAt+1, wBt+1) can thus

be obtained from a retrospective. The income pair (w∗A, w
∗
B) of past incomes corresponds

uniquely to a future income pair (wAt+1, wBt+1) . Consequently, we can express the

density of the income distribution at time t + 1 using the income distribution after

migration F̂t, and its conditional density f̂it. The density of the income distribution

Ft+1 conditional on the region and the vector of shocks is given by

fit+1 (wA, wB|θAt+1, θBt+1, ωAt+1, ωBt+1)
= f̂it (w

∗
A (wA, θAt+1, ωAt+1) , w

∗
B (wB, θBt+1, ωBt+1)) . (15)

Weighting this density with the density of the idiosyncratic shocks h (ωAt+1, ωBt+1)

yields the density of observing the future income pair (w∗A, w
∗
B) together with the idio-

syncratic shock (ωAt+1, ωBt+1) :

f̂it (w
∗
A (wA, θAt+1, ωAt+1) , w

∗
B (wB, θBt+1, ωBt+1)) · h (ωAt+1, ωBt+1) .

Integrating over all possible idiosyncratic shocks (ωAt+1, ωBt+1) gives the density

fit+1 of the income distribution before migration in period t+1 for a certain combination

of aggregate shocks (θAt+1, θBt+1):

fit+1 (wA, wB|θAt+1, θBt+1) =Z
f̂it (w

∗
A (wA, θAt+1, ωA) , w

∗
B (wB, θBt+1, ωB)) · h (ωA, ωB) dωAdωB. (16)

For given aggregate shocks, this new distribution determines migration from region i to

region −i according to equation (10) for time t+ 1.
The evolution of income distributions can thus be summarized as follows. Between

two consecutive periods, the conditional distribution of potential incomes first evolves

as a result of migration decisions, moving the density from fit to f̂it. Thereafter, the

distribution is again altered by aggregate and idiosyncratic shocks to income, moving

the density from f̂it to fit+1. The latter density now determines migration decisions in

time t+1, starting the cycle over again. In other words, migration incentives are not only

a result of past income shocks, but also a result of past migration decisions. Keeping

track of the distributional dynamics of migration incentives is at the heart of our model.

This is the difference to most other empirical models of migration.
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5 Simulation analysis

5.1 Numerical aspects

The first step in solving the model numerically is to obtain a solution to (6) . We do so

by value-function iteration.6 For this value-function iteration, we first approximate the

bivariate process of potential incomes for an individual agent in regions A and BÃ
wAt

wBt

!
= wt = µ (1− ρ) + ρwt−1 + ξt (17)

by a Markov chain.7 Because wA and wB are correlated through the correlation structure

in ξ, it is easier to work with the orthogonal components
¡
w+A , w

+
B

¢
of (wA, wB) in the

value function iteration.

We evaluate the value function on an equi-spaced grid for the orthogonal compo-

nents with a width of ±4σ+A,B around their means, where σ+A,B denote the long-run

standard deviations of the orthogonal components. The grid is chosen to capture al-

most all movements of the income distribution F later on.8 Given this grid, we can use

Tauchen’s (1986) algorithm to obtain the transition probabilities for the Markov-chain

approximation of the income process in (17) .

We apply a multigrid algorithm (see Chow and Tsitsiklis, 1991) to speed up the

calculation of the value function. This algorithm works iteratively. It first solves the

dynamic programming problem for a coarse grid and then doubles the number of grid

points in each iteration until the grid is fine enough. In between iterations the solution

for the coarser grid is used to generate the initial guess for the value-function iteration of

the new grid. The initial grid has 16×16×32 points (income A × income B × migration
costs) and the final grid has 128×128 points for income and 256 points for migration
costs.9

6See for example Adda and Cooper (2003) for an overview of dynamic programming techniques.
7To save on notation we drop the regional index of a variable pair like (wAt, wBt) and denote the pair

simply by wt.
8The choice of ±4σ+A,B is motivated as follows. We later assume in the simulations that about 99%

of the income shocks is due to the idiosyncratic component. Therefore, we can expect 99.9% of the
mass of the income distribution to fall within ±3.29 ·

√
0.99σ+A,B

∼= ±3.27σ+A,B around the mean of the
distribution for any given year. Additionally, the mean income for each year moves within the band
±3.29 ·

√
0.01σ+A,B

∼= ±0.33σ+A,B in again 99.9% of all years. Since the sum of both components is
±3.6σ+A,B, a grid variation of ±4σ+A,B should not truncate the income distribution.

9To obtain the grid for migration costs, we first discretize the [0;1] interval into an equi-spaced grid.
Then, we choose the grid points for the migration costs as the values of the inverse of the cumulative
distribution function of the costs evaluated at the equi-spaced grid. This yields a cost grid whose grid
points are equally likely to realize. By contrast to the income distribution, using such an "equally-likely
grid" is possible for the cost distribution, because the cost distribution is strictly stationary. Unlike the
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The solution of (6) yields the optimal migration policy and thus the microeconomic

migration hazard rates Λi. With these hazard rates, we can obtain a series of aggregate

migration rates for a simulated economy as described in detail in Section 4.2 for any

realization of aggregate shocks (θt)t=1...T and an initial distribution F0.

This means that we need an initial distribution of income F0 to solve the sequen-

tial problem. Following Caballero and Engel’s (1999) suggestion, we use the ergodic

distribution of income F̄ that would be obtained in the absence of aggregate income

shocks. This distribution is calculated by assuming that idiosyncratic shocks ω have the

full variance of ξ. In the appendix, we show that the sequence of income distributions

converges to a unique ergodic distribution F̄ in the absence of aggregate shocks. This

ergodic distribution F̄ is a natural starting guess for F0 as Caballero and Engel (1999)

argue.

To simulate a series of migration rates which correspond to the aggregate migration

hazards
¡
Λ̄At,Bt

¢
t=1...T

, we draw a series of aggregate shocks (to the orthogonal basis)¡
θ+At, θ

+
Bt

¢
t=1...T

from a normal distribution with variance φ ·
³
σ+A,B

´2
, φ ∈ [0, 1] . The

weight φ measures the relative importance of aggregate shocks, relative to idiosyncratic

shocks, i.e. σ2ω = (1− φ)σ2ξ and σ
2
θ = φσ2ξ . Correspondingly, the orthogonal components

of the idiosyncratic shocks have variance (1− φ) ·
³
σ+A,B

´2
.

5.2 Parameter choices

A number of parameters has to be determined to actually simulate our model numerically.

Our parameter of most interest is migration costs. Our baseline specification of the

model used for the simulations assumes migration costs to be Gamma-distributed, i.e.

the cumulative distribution function of migration costs is

G (c) =
1

abΓ (b)

Z c

0
xb−1 exp

µ
−x
a

¶
dx. (18)

This distribution function has two parameters, a and b, which determine the mean ab and

the coefficient of variation b−
1
2 . Although the mean cost is ab, one should note that the

average cost paid by a migrant can be smaller as she can wait and search for low migration

costs. In our simulations, we try three parameter combinations (a, b) to see their influence

on the dynamics of interregional migration. We try one parameter constellation with

high, one with medium, and one with almost zero migration costs. We fix the coefficient

of variation to 1 and choose mean costs to be US$ 180,000, US$ 45,000, and US$ 1,

income distribution, it does not move due to aggregate shocks. See Adda and Cooper (2003) or Tauchen
(1986) for the analog case of a stationary Markov chain with normal innovations.
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respectively. This allows us to assess the sensitivity of aggregate migration with respect

to moving costs. In particular, we are interested to see whether the high migration-cost

estimates reported in the literature are compatible with aggregate migration data in the

light of our model.

As an alternative to this baseline specification of stochastic, Gamma-distributed

migration costs, we also simulate the model with deterministic and constant costs of

migration. This alternative specification implies that migration hazards Λi (wA, wB) are

either zero or one now. Moreover, there is no longer an option value of searching for low

migration costs that delays the migration decision in this simplified model. The only

option value that the migrant takes into account is the value to wait for good income

opportunities. When we estimate the model later on, we restrict our attention to this

specification with deterministic costs because in the more complex specification with

stochastic migration costs, the two cost parameters a and b are only weakly identified

separately.

The second important set of parameters describes the process for income and the

income shocks ξ.We need to specify the autocorrelation parameter ρ and the mean µ of

the income process as well as its covariance structure of income shocks. The covariance

structure is composed of the total variance of income shocks σ2ξ , the correlation of income

shocks between regions, ψθ (aggregate) and ψω (idiosyncratic), and the fraction φ of the

income shock that is due to aggregate factors, i.e. the correlation across individual

agents.

We take the parameters for the income process mainly from the recent paper by

Storesletten, Telmer, and Yaron (2004). They estimate the dynamics of idiosyncratic

labor market risk for the US based on the Panel Study of Income Dynamics. Thus the

paper conveys information on both income variances and autocorrelation of log house-

hold income. Besides, the paper reports a mean household income of US$45,000. To

approximately match this figure, we choose the mean of the log income to be µ ∼= 10.5.10

Storesletten, Telmer, and Yaron (2004) find an annual autocorrelation of incomes of

roughly 0.95 and a standard deviation of idiosyncratic income shocks ranging from 0.09

to 0.14 for business cycle expansions and from 0.16 to 0.25 for business cycle contractions

(see Storesletten, Telmer, and Yaron 2004, Table 2). They report a frequency weighted

average of 0.17 for those standard deviations in their preferred specification (Storeslet-

ten, Telmer, and Yaron, 2004, pp. 711). Since we do not model different variances of

idiosyncratic shocks to income along the business cycle, we use their preferred average

10A log-normally distributed variable has mean exp µ+ σ2

2
where µ and σ2 are the mean and

variance of the logs.
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value of 0.17 for the simulations.

Combining both elements, the autocorrelation and the variance of idiosyncratic

shocks to income, we calculate the long-run variance of income to be σ2ω
1−ρ2 = 0.30. This

number refers to persistent elements of income, which should be relevant to migration

decisions. Of course, the fluctuation of income that is observed in real-world data does

not only reflect these persistent shocks. Indeed, Storesletten, Telmer, and Yaron (2004)

find that transitory shocks to income add another variance term in the order of 0.065 to

this long-run variance. This means that transitory shocks are responsible for about 18%

of the total fluctuations of income. However, we expect these transitory shocks to be of

minor relevance to migration choices, simply because they arrive at a too high frequency.

Technically, we assume that the transitory shocks realize after migration decisions are

taken and for this reason, we do not include any transitory components of income in the

microeconomic model.

At the macroeconomic level, however, the inclusion of a transitory shock to income

is of importance for two reasons if the model shall be compared to real-world data with

respect to the correlation of incomes and migration rates.

Firstly, there will be some income fluctuations at the macroeconomic level that are

transitory of a similar type as the transitory shocks at the microeconomic level. This

will influence the correlation of incomes and migration right away.

Secondly, and maybe more importantly, we have to take into account the fact that

income measures migration incentives perfectly in our model, while it obviously does not

do so in the real world. For example, fluctuations in regional price levels, changes in the

supply of public goods, or the fact that the empirical income concept is itself noisy, all

together weaken the relationship of income and migration at the aggregate level. This

means that the model will produce unrealistically large correlations of income differen-

tials and migration rates at the macroeconomic level if these aspects of measurement are

ignored.

Both aspects, transitory income fluctuations and measurement problems, can be

addressed by augmenting the model by a transitory error term of income.11 For this

reason, we introduce such term in the form of a pseudo-normally distributed shock

to aggregate incomes. This transitory income component ϕ has no influence on the

distribution of migration rates but only on the correlation of migration rates and incomes.

We use the numbers reported by Storesletten, Telmer, and Yaron (2004) for idiosyncratic

shocks as a guideline. These numbers suggest that the aggregate transitory shock ϕ

11This strategy picks up the idea of Erickson and Whited (2000) to rationalize empirically observed
low investment-q sensitivities.
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has 18% of the long-run variance of the permanent aggregate income component, i.e.

σ2ϕ =
0.18σ2θ
1−ρ2 . This number seems to be a lower bound, however, because measurement

errors inflate the variance of the transitory shock. Therefore, we estimate the magnitude

of the transitory shock along with migration costs in the actual estimation of our model.

In order to describe the income process completely, two elements of the variance-

covariance structure of income still have to be specified. We need to determine the

magnitude of permanent aggregate fluctuations and the correlation of income shocks

across regions. Unfortunately, Storesletten, Telmer, and Yaron (2004) do not report

numbers on aggregate income risk, so that we take this data from a different source.

We estimate the variance of aggregate shocks to income from income per capita data for

US states for the years 1969 - 2004 as reported in the REIS database provided by the

Bureau of Economic Analysis (BEA). This data is deflated using the US-wide consumer

price index. Moreover, we remove fixed effects and a linear time trend from the income

data. The residual variance of log income for US states over time is roughly 0.002.12 To

calculate the fraction, φ, of income risk due to aggregate fluctuations, we compare this

estimated long-run aggregate variance with the long-run idiosyncratic variance of income

that is implied by Storesletten, Telmer, and Yaron’s (2004) estimate of σ2ω
1−ρ2 = 0.30.

Adding idiosyncratic and aggregate income risk we obtain an overall variance of income

that is equal to 0.302. In turn, aggregate income risk accounts only for a fraction of

approximately 0.002
0.302

∼= 0.006 of total income risk. For the simulations, we use this

number to specify φ. However, our rough calculation of the fraction of aggregate shocks

can only be an approximation. Therefore, we actually estimate this fraction later on.

Finally, we need to specify the correlations of shocks to income across regions, ψϕ, ψω

and ψθ. These correlations refer to potential incomes and are therefore inherently unob-

servable. We assume that transitory, aggregate, and individual correlation coefficients

are equal, i.e.ψϕ = ψω = ψθ, so that we only need to specify one common parameter ψ.

In our simulation exercise we measure ψ as the correlation coefficient of state-average

income per capita and the US-average income per capita (both in logs, CPI deflated,

and taking fixed effects and a linear time trend into account). From the REIS database,

we infer a partial correlation coefficient of ψ̂ = 0.578. Again, this number can only be

a first approximation. For the estimation, we abstain from fixing the parameter ψ but

estimate it along with migration costs.

As we work with annual data, we choose the discount factor β = 0.95. Table 1
12Note that for the comparison of our model with real-world data we use a shorter time horizon to

calculate summary statistics. We do so to match the length of the IRS data. This implies that the within
sample variance of aggregate income presented in these summary statistics is smaller than the estimate
of the long-run variance presented here.
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Table 1: Parameter choices for the simulation analysis

Storesletten REIS Simulation
et al. (2004) data

Fraction of aggregate shocks φ — 0.006 0.006

Correlation of shocks across regions ψ — 0.578 0.578

Long-run variance of incomes σ2ω+σ
2
θ

1−ρ2 0.30 0.002 0.302

Variance of transitory aggregate income shocks — — 3.61×10−4

Autocorrelation of income ρ 0.95 — 0.95

Discount factor β — — 0.95

summarizes our parameter choices for the three specifications that we simulate.

5.3 Simulation results

We simulate our model for 51 pairs of regions and 26 years, but we drop the first 10

years for each region to minimize the influence of our initial choice of F0. This generates

a simulated dataset for migration that has the same size as the Internal Revenue Service

(IRS) area-to-area migration flow dataset, which is our empirical benchmark. This

database contains annual area-to-area migration flow data for US states for the period

1989-2004.13 Income data is taken from the REIS database, CPI deflated, and in logs. A

detailed data description for both, IRS and REIS data can found in the data appendix.

In order to minimize simulation uncertainty, we replicate each simulation 10 times and

13Alternative migration data for the US, such as the Census, are less appropriate for our analysis as we
focus on the effect of income dynamics. While the Census reports changes in the place of residence over
a period of 5 years and is only available once every decade, the IRS data are available on a yearly basis.
The Census data suggests an approximate annual migration rate of 2%, which is significantly lower than
the migration rate of 3.9% documented in the IRS data. This difference may stem from the fact the
Census data cannot take into account return migration over a 5 year period, which can be expected to
be of sizable importance (see the discussion in Coen-Pirani, 2006 or the results of Kennan and Walker,
2006).
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report the averages over the simulations.

Of course the actual migrant faces a more complex decision problem than the one

simulated in our model of two regions. Including D.C. as a destination region, an agent

has to decide between 50 possible alternatives states where she can move to. To make

this comparable to our model, the 50 alternatives in the data have to be aggregated

to a single complementary region.14 The population-weighted average income over all

alternative 50 states is used as the average income of the alternative region.

In order to characterize the results of the simulation exercise, we have to calculate

a number of moments from the simulated dataset and compare these moments to the

moments that we observe in the actual IRS and REIS data. This comparison tells us how

well our model is capable of replicating characteristic features of the actual migration

and income data at an aggregate level. In particular, the comparison tells us which of

the three considered levels of migration costs is best compatible with the observed data.

Such way of inference is frequently applied in the literature on real business cycles, see

e.g. Prescott and Kydland (1982), Backus, Kehoe, and Kydland (1992), or Baxter and

Crucini (1993), and many others.

The lines along which this literature has typically described aggregate fluctuations

guide our choice of characterizing moments: variances, covariances, autocorrelations, and

means. We compare average migration rates, the standard deviation of migration rates,

their autocorrelation, and the cross-correlation of migration rates. Besides, we look at

the implications of the different migration cost regimes on the level and fluctuations

of average incomes. To measure the cyclical behavior of migration, we calculate the

mean of in- and outmigration rates and correlate this with the average income in both

regions. In the simulated data, the average income in region i is calculated w̄it :=

ln
³R
expwif̂it (wi, w−i) dwidw−i

´
, i.e. the income obtained after migration decisions

have been taken. Additionally, we run a typical reduced form migration regression that

relates migration rates to average incomes in source and destination region.

We run two sets of simulation exercises. One set features stochastic migration costs

that are Gamma-distributed. The other set of simulation exercises assumes migration

costs to be deterministic and constant over time. While the first formulation may be

regarded as being more realistic, since migration costs are modelled more flexible at

the household level, the corresponding simulation results are harder to interpret at the

same time. Stochastic migration costs and the household’s option to search for low

costs of migration drive a wedge between the expected level of migration costs and the

14Generating artificial bi-regional data means that we assume technically that the best income oppor-
tunity over all alternative regions follows the log-normal distribution assumed in our model.
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costs that are actually incurred by the migrating households. In other words, the first

set of simulations involves two different measures of migration costs. This makes our

analysis somewhat difficult to relate to findings of previous studies, which work with a

deterministic formulation of migration costs. This is the reason why we also report a set

of simulation exercises in which migration costs are fixed to a deterministic value.

Table 2 reports the results of our first set of simulation exercises, in which migration

costs are stochastic and follow a Gamma-distribution. The first experiment uses cost

parameters close to what has been reported in the literature. We fix the coefficient of

variation in all three experiments to one. To match an average migration cost of US$

180,000 as reported in Davies, Greenwood, and Li (2001), we set a = 180, 000. The

results of this experiment are displayed in column (1) of Table 2.

Compared to the actual data, the annual migration rates are too low. While we

observe an annual average migration rate of 3.9%, the model predicts a migration rate

of only 2.9%. With US$ 180,000, expected migration costs are too high. Migration rates

also fluctuate less in the simulated data than in the actual data. Simulated migration

rates are too procyclical and the cross-correlation of incomes is 0.611, while the corre-

lation of income shocks ψ was set to 0.578. With migration costs being stochastic, the

actually incurred migration costs are about US$ 23,000 and hence lower than expected

migration costs. This difference stems from the substantial variation of migration costs

which was imposed by our ad hoc choice of b = 1. In turn, potential migrants wait for

low realizations of migration costs which are drawn every period anew.

In summary, the high-cost specification implies too little migration and too little

fluctuation of migration rates, while income fluctuation is realistic. Therefore, we try a

specification with lower migration costs. We set a = 45, 000, so that expected migration

costs are divided by four and now equal an average annual income of US$ 45,000. These

lower migration costs imply a substantial increase in migration rates that are with 4.1%

very close to the observed average migration rate. Even the standard deviation of mi-

gration rates is very close to the one we observe in the data. Migration becomes also

less procyclical, but aggregate migration responds overly strong to aggregate income. A

further result of lower migration costs is an increase in average income by 1.1% com-

pared to the high-cost specification. This magnitude is similar to the 1% welfare gain

from migration that Coen-Pirani (2006) reports. With lower migration costs, households

are more often in the region where their income is higher. However, they are in their

preferred region most of the time even in the high-cost specification, so that potential

benefits of further migration are small. This reflects that the actually incurred migration

costs are relatively small already in the specification with high costs. In the specification
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Table 2: Simulation results: stochastic, Gamma-distributed migration costs

Data high medium zero
costs (1) costs (2) costs (3)

Average annual migration rate 0.039 0.029 0.041 0.102

Standard deviation of annual migration rates 0.004 0.002 0.004 0.009

Autocorrelation of migration rates1 0.807 0.839 0.739 0.279

Cross-correlation of migration rates1 0.047 -0.972 -0.979 -0.991

Mean of log average income 10.710 10.825 10.836 10.833

Standard deviation of log average income 0.030 0.027 0.026 0.025

Cross-correlation of log average income1 0.578 0.611 0.652 0.737

Variance of household income 0.299 0.295 0.287 0.261

Correlation of
¡
Λ̄i + Λ̄−i

¢
and (w̄i + w̄−i)

(procyclicality)1 0.215 0.540 0.467 0.016

Sensitivity of immigration into region i2

w.r.t. average income in region i 0.061 0.068 0.103 0.111
w.r.t. average income in region −i -0.063 -0.063 -0.097 -0.110

Average incurred migration costs 23,043 10,675 0.99

1 Partial correlation controlling for a linear time trend and fixed effects.
2 Coefficients of a reduced form regression of migration rates on incomes in both regions.
All three specifications assume a coefficient of variation of one for migration costs, i.e. b = 1.
The high cost specification assumes expected migration costs to be US$ 180,000, i.e.
a = 180, 000. The medium cost specification assumes a = 45, 000, and the zero cost
specification sets a = 1 for numerical feasibility. We simulate data on 51 region-pairs and a 26
year history of migration and income data. The first 10 years of simulated data are dropped in
order to minimize the influence of initial values. Each simulation is repeated 10 times. The
table reports averages over the 10 repetitions.
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with medium expected migration costs, the incurred costs are even smaller and amount

only to US$ 10,675.

While the first scenario displays an extreme bound of high migration costs, the third

scenario of almost no migration costs provides a lower bound. It clearly shows how

influential it is to keep track of the evolution of migration incentives. In a model in

which migration incentives are drawn randomly, we should observe migration rates of

50% in the absence of migration costs. By contrast, our model predicts a substantially

lower migration rate of 10.2% when migration costs are absent. This difference stems

from the fact that in our model migration incentives are not drawn purely randomly.

Instead, they depend on previous migration decisions and income shocks.

The differences between the three cost specifications become even more pronounced

when we assume migration costs to be deterministic, see Table 3. Qualitatively, the

results do not change when we apply this simplification. Quantitatively, the differences

between the three specifications become more pronounced though. Migration rates are

far too low in the high-cost specification and they fluctuate way too little. The efficiency

gain due to better allocation of households to regions measured by the average income is

substantially larger when migration costs are reduced from US$ 180,000 to US$ 45,000.

Here the average income increases by 3.7%.

Overall, our various simulation exercises do not yet allow a decisive assessment of

which level of migration costs fits the data best. The average migration rates and their

fluctuations are best captured by the medium-cost formulation. However, the overall

match of the simulated data with the observed data is not perfect.

6 Estimation

We rely on an indirect inference procedure in order to find the parameters of our model

that allow us to match closest the observed patterns of migration that are in the data.

In particular, we apply a method of simulated moments (MSM) as has been proposed by

Gourieroux, Monfort, and Renault (1993) to obtain estimates of structural parameters

when the likelihood function of the structural model becomes intractable, as in our

setting.

6.1 Methodology

Indirect inference is the natural extension of the simulation exercise presented in the

previous section. The idea behind this methodology is to choose a set of moments that

captures the characteristics of the data, and then to calibrate and simulate the structural

economic model such that the moments are best replicated by the simulation.
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Table 3: Simulation results: deterministic migration costs

Data high medium zero
costs (1) costs (2) costs (3)

Average annual migration rate 0.039 0.010 0.024 0.102

Standard deviation of annual migration rates 0.004 0.001 0.003 0.009

Autocorrelation of migration rates1 0.807 0.687 0.663 0.279

Cross correlation of migration rates1 0.047 -0.785 -0.941 -0.991

Mean of log average income 10.710 10.784 10.821 10.833

Standard deviation of log average income 0.030 0.027 0.026 0.025

Cross-correlation of log average income1 0.578 0.560 0.616 0.737

Variance of household income 0.299 0.310 0.277 0.261

Correlation of
¡
Λ̄i + Λ̄−i

¢
and (w̄i + w̄−i)

(procyclicality)1 0.215 0.550 0.457 0.016

Sensitivity of immigration into region i
w.r.t. average income in region i 0.061 0.033 0.078 0.111
w.r.t. average income in region −i -0.063 -0.024 -0.068 -0.110

Average incurred migration costs 180,000 45,000 1

1 Partial correlation controlling for a linear time trend and fixed effects.
2 Coefficients of a reduced form regression of migration rates on incomes in both regions.
All three specifications assume deterministic migration costs. The high cost specification
assumes migration costs to be US$ 180,000. The medium cost specification assumes migration
costs of US$ 45, 000 and the zero cost specification assumes one US$ of migration costs for
numerical feasibility. We simulate data on 51 region-pairs and a 26 year history of migration
and income data. The first 10 years of simulated data are dropped in order to minimize the
influence of initial values. Each simulation is repeated 10 times. The table reports averages
over the 10 repetitions.
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Accordingly, we first decide on an informative set of moments (. We select the stan-

dard deviation of the migration rates, the standard deviation of average incomes, and the

correlation of average incomes across regions as the first three moments to be matched.

To this set of moments we add the estimated parameters from a reduced form regression

of migration rates on the incomes of the destination and the source region. To make the

regression scale-invariant with respect to incomes, we use log-deviations from average

incomes as the income variables, i.e. we estimate

mit = α0 + α1 (wit − w̄i) + α2 (w−it − w̄−i) + uit.

The parameters α1 and α2 reflect income sensitivities of migration. For the simulated

data, these sensitivities were reported at the bottom of Tables 2 and 3. The intercept

α0 captures the average of migration rates.

We simulate our model for a given vector of model parameters β and calculate the

distance between the moments obtained from this simulation (̂ (β) and the sample mo-

ments (S . We use the covariance matrix of (S obtained by 10000 bootstrap replications

as a weighting matrix so that our distance and goodness-of-fit measure is

L = ((S − (̂ (β))0 cov ((S)
−1 ((S − (̂ (β)) .

Naturally, we cannot estimate all parameters of the model, since this would be nu-

merically infeasible. We restrict ourselves to the estimation of migration costs and the

correlation of shocks to potential incomes both across individuals (φ) and across regions

(ψ). We opt for the estimation of φ and ψ, because these parameters cannot be inferred

from the realized income data alone, as we argued previously. Since migration smooths

income, the counterparts to φ and ψ in terms of a covariance structure in realized in-

comes are substantially influenced by the magnitude of migration costs. At the same

time, we also expect φ and ψ to have a significant influence on the behavior of aggregate

migration itself. However, this argument does not hold true for the correlation of the

transitory aggregate income shock ϕ. This transitory shock is irrelevant to the migration

decision itself, and hence its effect cannot be smoothed by migration. For this reason,

we fix the correlation of the transitory income shock ψϕ at the value of the observed

correlation of incomes in the REIS data.

While we have tried both a stochastic as well as a deterministic specification of mi-

gration costs in the simulations, we restrict ourselves to the estimation of a specification

with deterministic costs for two reasons. First, the deterministic formulation with deter-
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ministic costs is much easier to interpret and to compare to other studies, as migration

costs are captured by a single number to be estimated. Second, the two parameters of

the Gamma-distribution in a formulation with stochastic costs are only weakly identified

separately. Indeed, we find that the formulation with stochastic costs increases the risk

of running into local minima of the distance measure L.

We estimate σ2ϕ along with the other model parameters, so that our set of estimated

parameters finally is β =
¡
migration costs, ψ, φ, σ2ϕ

¢
.15

6.2 Estimation results

Table 4 displays the point estimates of the matched moments calculated from the IRS and

REIS data and the corresponding moments obtained from the simulation of our model

with the estimated parameters. Overall our model is able to replicate the observed

moments closely. In fact, the χ2 (2)-distributed overidentification test reported at the

bottom of the table does not reject our model.

Table 5 presents the estimates of the model parameters. The estimated migration

costs are US$ 21,203. This number is below the costs of the medium-cost specification

for deterministic costs considered in the previous section. It falls between the average

incurred costs of the medium-cost and the high-cost specification with stochastic costs.

In any case, it is a smaller number than the estimates reported in other contributions

such as Davies, Greenwood, and Li (2001) or Kennan and Walker (2006).

The estimated value of the correlation of income shocks across regions is 0.1039.

This is substantially smaller than the number we specified for the simulations, hav-

ing set the correlation of shocks equal to the observed correlation of realized incomes

(0.578, see Table 1). Migration ties together more closely the average incomes in both

regions than were tied together without migration. The realized incomes co-move more

strongly than the shocks to the income process. This drives a wedge between the corre-

lation of income shocks and the correlation of average realized incomes, the latter being

always larger than the former.

The estimated fraction of income shocks that is aggregate amounts to 0.0044. This

magnitude of the aggregate shock corresponds closely to the value we assumed previously.

There is a significant transitory income component in the aggregate income fluctuations,

which has an estimated standard deviation of 0.0265. This means that transitory fluc-

tuations in aggregate income add a variance term that has about 53% of the long-run

variance of potential incomes
³

0.02652

0.0044·0.302 = 0.528
´
. However, migration smooths real-

15To save on computation time, we use a smaller grid than in the simulation exercises. We choose a
grid of 64×64× 128 points to approximate the state space.
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Table 4: Simulated moments estimation: moments estimates

Moment Actual Moments Simulated Moments

Migration rates

standard deviation 0.0036 0.0036

Income

standard deviation 0.0299 0.0297

correlation across regions 0.5776 0.5686

Reduced form regression

intercept (average migration rate) 0.0393 0.0393

sensitivity to income of destination region 0.0609 0.0621

sensitivity to income of source region -0.0627 -0.0544

Overidentification test χ2(2) 0.322
p-value 0.851

The column ‘Actual Moments’ refers to the moments estimated from the combined
REIS/IRS data set, with data on 50 US states and D.C. over the period 1989-2004.
The column ‘Simulated Moments’ refers to the moments estimated from the simulation
of the model using the parameters given in Table 5. Both actual and simulated data
are within-transformed and linearly de-trended. The simulations generate a panel of 51
region-pairs and a 26-year history of migration and income data. The first 10 years of
simulated data are dropped in order to minimize the influence of initial values. Each
simulation is repeated 5 times and data moments are compared to the average over the
5 replications of the simulation.
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Table 5: Simulated moments estimation: structural parameter estimates

Parameter Estimated Value

Migration costs 21,203
(8, 697)

Correlation of income shocks across regions Ψ 0.1039
(0.0050)

Fraction of income shock due to aggregate fluctuations φ 0.0044
(0.0006)

Standard deviation of transitory income shock σϕ 0.0265
(0.0010)

Standard errors in parenthesis. Estimation is carried out using the simulated moments
estimator by Gourieroux, Monfort, and Renault (1993), which chooses structural model
parameters by matching the moments from a simulated panel of regions withe the data
moments as displayed in Table 4. The simulations generate a panel of 51 region-pairs
and a 26-year history of migration and income data. The first 10 years of simulated
data are dropped in order to minimize the influence of initial values. Each simulation is
repeated 5 times and data moments are compared to the average over the 5
replications of the simulation.
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ized income so that transitory shocks make up 78% of the aggregate variance in realized

income.

As outlined before, the transitory income component of our model relates to two

sources: to truly transitory fluctuations in incomes and to the fact that migration is not

perfectly driven by income incentives alone. The latter aspect refers to other aggregate

factors that are important to migration flows (and were subsumed as income in our

model).

6.3 Comparison of cost estimates

To provide further evidence how the dynamics of the incentive distribution influences the

estimation of migration costs, we apply a static random utility model to data generated

from a simulation of our dynamic model. The generated data set comprises 51 pairs

of regions and 16 years of data. The parameters of the model are fixed to the values

estimated in the previous section.

The aim of this exercise is to facilitate a direct comparison of static and dynamic

approaches to the estimation of migration costs. In particular, we apply a conditional-

logit approach similar to Davies, Greenwood, and Li (2001) to describe the migration

decision. Simplifying Davies, Greenwood, and Li’s model and adapting it to our bi-

regional framework, the likelihood of the conditional logit model becomes

lnL =
X
t

X
i=1,2

⎡⎣ Λ̄itPit ln
³

1
1+exp{c+γ(w̄it−w̄−it)}

´
+
¡
1− Λ̄it

¢
Pit ln

³
1

1+exp{−c−γ(w̄it−w̄−it)}

´⎤⎦ . (19)

While Davies, Greenwood, and Li (2001) include a set of other variables to describe

the utility gained from location choice, our simulated model just allows for log income

as an explanatory variable. This means that the form of the likelihood function in (19)

assumes that utility is composed of an income component (with sensitivity γ > 0) and

a disutility from migration c < 0. The estimated money measure of this disutility is

exp
³
w̄ − ĉ

γ̂

´
, see Davies, Greenwood, and Li (2001). Since our model is composed of

only two regions, we cannot estimate γ and c from a cross-section as Davies, Greenwood,

and Li (2001) do, but have to pool the simulated data instead.

We want to abstract from the additional problem that income data measures migra-

tion incentives imperfectly. Otherwise, this would drive up estimated migration costs

and bias the comparison against the static approach. For this reason, we simulate the dy-

namic model having set all parameters to their estimated values except for the variance

of the measurement error, which is set to zero instead.
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Table 6: Simulation results: comparison to cost estimate based on a static random utility
model

Migration cost (from estimation) 21,203

Average annual income 53,906

Migration cost estimate
based on a static random utility model 104,110

The imputed migration costs taken from our estimation are US$ 21,203. By con-

trast, the conditional-logit estimation suggests a cost of US$ 104,110, a number that is

substantially higher (see Table 6). In terms of annual incomes this corresponds to 0.4

and 2 average annual incomes, respectively. This comparative exercise shows that the

estimation of structural parameters is likely to be subject to a bias if the unobserved

dynamics of the distribution of incentives is not taken into account.

7 Conclusion

We have provided a tractable model of aggregate migration with a sound microeconomic

foundation. The paper is a contribution to the recently evolving literature on structural

models of migration. We explicitly deal with the problem of the unobservability of

potential gains from migration and their dynamic character. The dynamic character of

migration incentives has two aspects. First, the individual gains from migration evolve

stochastically over time, but will typically display a high degree of persistency. Second,

at an aggregate level, the distribution of migration incentives is a result of past migration

decisions themselves.

Starting from the microeconomic decision problem allows us to keep track of the

dynamics of the incentive distribution. This distributional dynamics may be referred to

as a dynamic self-selection problem. Neglecting this self-selection problem may result in

biased estimates of structural parameters, such as migration costs. In our application to

US interstate migration, we find the estimated migration costs to be substantially lower

than those reported in previous studies. The estimated migration costs amount to about

US$ 21,500, which corresponds to less than one-half of an average annual income.

Our analysis calls once more for a careful treatment of the self-selection problem
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when economic incentives are not fully observable. What makes this issue particularly

relevant for the analysis of migration is that the unobservable incentives are highly

autocorrelated though not perfectly persistent. Rather than being drawn every period

anew, migration incentives have a long memory. One example of this long memory of

migration incentives is the persistency that income displays.

We integrated the persistency of unobserved migration incentives in a structural

dynamic microeconomic model of the migration decision. This consequently allowed

us to simulate the joint behavior of the observed migration rates, of the unobserved

migration incentives, and of their observable proxy, i.e. incomes.

The partial unobservability of migration incentives may not only be of importance

to macro-studies of migration. Also at a micro level, income potentials are typically

unobservable and have to be proxied. However, such approximation regularly neglects

self-selection. If households live in their preferred place of residence as a result of their

location choice, and if all observable things are equal, then it must be the unobserved

component of their preferences that is in favor of the place where they actually live in.

Besides unobservable parts of income, this unobservable component of preferences can

also comprise different valuations of different amenities and social networks. Even these

factors can be expected to exhibit persistency.

Future research calls for a more complex microeconomic model that integrates more

information into the macroeconomic analysis, for example labor market conditions and

amenities. Additionally, it would be desirable to extend our bi-regional approach to

the case of multiple regions, as in Davies, Greenwood and Li (2001), and Kennan and

Walker (2006). Further aspects, such as the interaction of migration and local labor

markets, could be analyzed in a general equilibrium framework as in Coen-Pirani (2006),

but our results call for an explicit treatment of the dynamic structure and persistency

of migration incentives. However, all this goes beyond what is currently numerically

feasible, in particular if the model is meant to be estimated.

Both our treatment of the self-selection problem and the inference of microeconomic

structural parameters from macroeconomic data is an attempt to overcome the di-

chotomy of macro and micro studies that has characterized the migration literature

(see Greenwood, 1997). Beyond the application to migration decisions, our treatment of

the dynamic self-selection problem may also be applicable to other important discrete

choices in an economy, for example labor-market participation.
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8 Appendix

8.1 Existence and uniqueness of the value function

We begin with proving existence and uniqueness of the value function. Notation is as in

the main text throughout this appendix, unless stated otherwise.

To ease the exposition, we assume that the income process is only approximately

log-normal. In particular, we assume that income has a finite support.

Definition 1 Let W =
£
W,W

¤
be the support of w.

Definition 2 Define a mapping T according to the migration problem of a household,

that is

T (u) (·) = max
j=A,B

©
exp (wjt)− I{i6=j}ct + βEtu (j, ct+1, wAt+1, wBt+1)

ª
. (20)

The mapping T is defined on the set of all real-valued, bounded functions B that are
continuous with respect to wA,B and c and have domain D = {A,B} ×R+ ×W2.

Lemma 3 The mapping T preserves boundedness.

Proof. To show that T preserves boundedness one has to show that for any bounded

function u also Tu is bounded. Consider u to be bounded from above by ū and bounded

from below by u. Then, Tu is bounded, because

Tu = max
j=A,B

©
exp (wjt)− I{i6=j}ct + βEtu (j, ct+1, wAt+1, wBt+1)

ª
≤ exp

¡
W̄
¢
+ βū <∞,

(21)

and

Tu= max
j=A,B

©
exp (wjt)− I{i6=j}ct + βEtu (j, ct+1, wAt+1, wBt+1)

ª
(22)

≥ max
j=A,B

©
exp (wjt)− I{i6=j}ct + βu

ª
≥ exp (W ) + βu > −∞. (23)

Lemma 4 The mapping T preserves continuity.

Proof. Since Tu is the maximum of two continuous functions, it is itself continuous.

Lemma 5 The mapping T satisfies Blackwell’s conditions.

Proof. First, we need to show that for any u1 (·) < u2 (·) the mapping T preserves

the inequality. Since both the expectations operator and the max operator preserve the
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inequality, also T does so. Second, we need to show that T (u+ a) ≤ Tu + γa for any

constant a and some γ < 1. Straightforward algebra shows that

T (u+ a) = Tu+ βa. (24)

Since β < 1 by assumption, T satisfies Blackwell’s conditions.

Proposition 6 The mapping T has a unique fixed point on B, and hence the Bellman-
equation has a unique solution.

Proof. Follows straightforwardly from the last three Lemmas.

8.2 Invariant distribution

We prove that migration and idiosyncratic shocks to income induce that income follows

an ergodic Markov-process if there are no aggregate shocks. Therefore, there is an in-

variant distribution the sequence of income distributions converges to. For simplicity, we

present the proof for an arbitrary discrete approximation of the model with a continuous

state-space for income.

Lemma 7 Assume any large and fine enough but otherwise arbitrary discretization of
the state space with n points for the potential income in each of the regions. Then,

we can capture the transition from ft to ft+1, which are the unconditional densities

of the distribution of households over both regions and potential incomes, in a matrix

B =

Ã
(I −DA)Π DBΠ

DAΠ (I −DB)Π

!
∈ R2n

2×2n2.16 In this matrix, Π denotes the transition

matrix that approximates the AR(1)-process for income by a Markov-chain, see Adda

and Cooper (2003, pp. 56) for details. Matrix Di is the n2 × n2 diagonal matrix with

the migration hazard rates for each of the n2 income pairs of the income grid.

Proof. First, we take a discrete state-space of n possible wages for each region, wA1...wAn

and wB1...wBn. Second, we denote the vector of probabilities that describes the distribu-

tion of potential incomes and household locations in the following form

f =
³
f (A,wA1, wB1) ... f (A,wAn, wB1) ... f (A,wAn, wBn) f (B,wA1, wB1) ... f (B,wAn, wBn)

´0
.

(25)

16Since we work with a discretization, correctly speaking f is not the density, but the vector of
probabities of drawing a location-income possibility vector from a given element of the grid.
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Analogously, we define the distribution after migration but before idiosyncratic shocks,

f̂ . Taking our law of motion from (16) , we obtain as a discretized analog

ft+1 = (I2 ⊗Π) f̂t. (26)

Here ⊗ denotes the Kronecker product. Now, define di as the fraction of households that
migrate and are in the i − th income and location triple given our vectorization of the

income grid. This means that di = Λj (wAk, wBl) , i = 1...2n2, where (j, wAk, wBl) is

the i-th element in the vectorized grid. Moreover, define D = diag (d) as the diagonal

matrix with migration rates on the diagonal and DA and DB as the diagonal matrices

with only the first n2 and the last n2 elements of d, respectively. Then, we can describe

the transition from ft to f̂t by

f̂t =

Ã
I −DA DB

DA I −DB

!
ft (27)

Combining the last two equations, we obtain

ft+1 =

Ã
(I −DA)Π DBΠ

DAΠ (I −DB)Π

!
ft. (28)

Lemma 8 For any distribution of idiosyncratic shocks with support equal to W2, matrix

Π has only strictly positive entries.

Proof. If the idiosyncratic shocks have support equal to W2, then every pair of potential

incomes can be reached from every other pair of incomes as a result of the shock, because

we assume the shocks to income to be approximately log-normal. Thus, all entries of Π

are strictly positive.

Lemma 9 For any distribution of costs with support equal to R+, the inequalities 0 ≤
di < 1 hold for all diagonal elements di of D. If the grid is fine enough also di > 0 holds

at least for one i.

Proof. If there is no upper bound to migration costs, the migration probability is

strictly smaller than 1, since V is bounded. This means 0 ≤ di < 1. Let Cmax =

max(wA,wB)∈W2 |c̄ (wA, wB) | be the largest possible gain from migration. If the grid for

costs is fine enough, there will always be a grid-point of migration costs that is smaller

than this maximal gain Cmax. This is because migration costs can be arbitrarily close to

zero. Hence, there is some i such that di > 0 holds if the grid is fine enough.
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Lemma 10 For any distribution of costs with support equal to R+, B2 has only positive
entries.

Proof. We obtain for B2

B2 = BB =

Ã
((I −DA)Π)

2 +DBΠDAΠ (I −DA)ΠDBΠ+DBΠ (I −DB)Π

(I −DB)ΠDAΠ+DAΠ (I −DA)Π ((I −DB)Π)
2 +DAΠDBΠ

!
.

(29)

Each entry of this matrix is weakly positive, because (I −Di) , Di, and Π are positive.

Hence, we only need to argue that in each sum at least one part is always strictly positive.

For the elements on the diagonal, this follows directly from (I −Di)Π > 0. For the off-

diagonal elements, there may be some rows of zeros in DiΠ. However, at least one row

of DiΠ will be non-zero, because there is some non-zero di and (I −Di)Π > 0 because

of the Lemma above. Consequently, all elements of (I −Di)ΠDjΠ are strictly positive.

Proposition 11 Under the assumptions of the above Lemmas, migration and idiosyn-
cratic shocks define an ergodic process with a stationary distribution F0 = limn→∞Bnei.

Proof. The above Lemma directly implies the ergodicity of the Markov chain.

8.3 Data

Data on migration between US federal states are provided by the US Internal Revenue

Service (IRS). The IRS uses individual income tax returns to calculate internal migration

flows between US states. In particular, the IRS compiles migration data by matching

the Social Security number of the primary taxpayer from one year to the next. The IRS

identifies households with an address change since the previous year, and then totals

migration to and from each state in the US to every other state. Given these bilateral

migration data, we compute aggregate gross immigration for the 50 US states and the

District of Columbia as the sum of all immigrations from other US states to a particular

state. Migration rates are calculated by expressing gross immigration as proportions

of the number of non-migrants reported in the IRS dataset. The IRS state-to-state

migration-flow data is available for the years 1989 - 2004.

Income per capita data is taken from the Regional Economic Information System

(REIS) compiled by the Bureau of Economic Analysis. The REIS data is available online

at www.bea.gov/bea/regional/reis/. The income-per-capita figure for the alternative

region is computed as the population-weighted mean of all per capita incomes outside a

specific state.
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Table 7: Descriptive statistics

Mean Std. Dev. Min Max

Migration rate .0393 .0178 .0144 .1146

Migration rate filtered .0393 .0036 .0234 .0629

Income per capita 10.71 .1644 10.39 11.27

Income per capita filtered 10.71 .0312 10.61 10.82

Complementary income per capita 10.76 .0624 10.67 10.86

Complementary income per capita filtered 10.76 .0239 10.73 10.80

We remove a linear time trend from all data and express all variables as deviations

from their unit-specific means (re-scaled by their overall mean), i.e. we apply a within-

transformation. Table 7 reports descriptive statistics for the original as well as for the

transformed data.

In order to examine the time-series properties of the data employed, we perform a

unit-root analysis for migration rates and income data. In a sample of size T = 16 and

N = 51 either a Breitung and Meyer (1994) or a Levin, Lin, and Chu (2002) unit-root

test is most appropriate. For the Breitung and Meyer (1994) test, we determined the

optimal augmentation lag length by sequential t−testing. Taking into account three
augmentation lags and time-specific effects, we can reject the null hypothesis of a unit

root at the 5% level of significance. Similarly, the Levin, Lin, and Chu (2003) test rejects

the null hypothesis of a unit root taking a linear time trend into account.
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