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1 Introduction

The analytics of the all-pay auction with complete information with simul-
taneous bidding is well understood (see Hillman and Riley 1989, Baye et al.
1996, 2005, Kaplan et al. 2003 and Baye et al. 2005). In this paper we



offer a characterization of the all-pay auction with many bidders who may
bid sequentially.

Bidding in all-pay auctions is sometimes sequential both for exogenous
reasons and endogenously. For the two-player context, such endogenous tim-
ing has been discussed by Deneckere et al. (1992) in a Bertrand framework
with consumer loyalty, by Leininger (1991) in an R&D context and by Baik
and Shogren (1992) and Leininger (1993) for a Tullock contest; i.e., a spe-
cific all-pay auctions with noise. We solve the more general case with many
players and discuss the implications of more than two bidders and group
composition for the equilibrium payoffs and for endogenous timing.

2 Equilibrium

A prize of given size V = 1 is allocated among a set N of players i = 1, ...n in
an all-pay auction with complete information. Let x = (x1, x2, ...xn) denote
the vector of players’ efforts. The players in a subset E ⊂ N choose their
efforts simultaneously and irreversibly at a point e(arly) and players from
set L = N − E choose their efforts at point l(ate), where l occurs after e,
and players in L can observe the effort choices made by the players in E.

Player i’s payoff is

πi(x) = pi(x)·1− Ci(xi). (1)

The cost Ci(xi) of expending a given effort xi is a function of this effort,
with Ci(0) = 0, C ′

i(xi) > 0, and C ′′
i (xi) ≥ 0. Linear cost, Ci(xi) = cixi, and

quadratic cost, Ci(xi) = ci(xi)2 are special cases. We assume that players
are asymmetric and can be strictly sorted according to their effort cost.
Without loss of generality we consider them numbered such that, for two
players i and j with i < j, it holds that C ′

i( x) < C ′
j(x) for all x ∈ (0,K].

Player 1 has the lowest cost for expending a given effort, player 2 has the
second lowest cost, etc. The sorting in N also induces a similar sorting of
players in E and in L. We re-number the players in E and L according
to their cost functions as e(1), e(2), ..., e(#E) with Ce(i)

(x) < Ce(j)
(x) and

l(1), l(2), ..., l(#L) with Cl(i)(x) < Cl(j)(x) for all i < j for all x > 0. The
strict global asymmetry and sorting eliminates some equilibria that may
occur otherwise.

The probability that player i wins the prize is denoted as pi.Denote
x̄ ≡ maxk∈N{xk}. If xi = x̄ > xj for all j ∈ N − {i}, then pi = 1 and
pj = 0 for all j 6= i. If several players have chosen the same, highest effort,
x̄, we assume the following tie-breaking rule. Let M be the set of players
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who choose x̄. If M ⊂ E, or M ⊂ L, then each i ∈ M wins the prize with
the same probability equal to 1/#M , where #M is the cardinality of M .
If M ∩ E 6= ∅ and M ∩ L 6= ∅ then the allocation of the prize among the
players in M depends on their cost of effort. If Ci(x̄) ≥ 1 for all i ∈ M ∩ L,
then pi = 1/#(M ∩E) for i ∈ M ∩E and zero for all other players. Denote
(M ∩ L)+(x̄) the subset of (M ∩ L) with players for which Ci(x̄) < 1 holds.
If (M ∩ L)+(x̄) 6= ∅, then pi = 1/#(M ∩ L)+(x̄) for i ∈ (M ∩ L)+(x̄) and
pi = 0 for all other players.

For e(i) ∈ E, a pure strategy is an effort choice xe(i)
and the strategy set

of player e(i) is the set of feasible efforts [0,K], with K being a large but
finite number.1 A mixed strategy Fe(i)

for player e(i) ∈ E is an element of
the set of probability distributions over the effort levels from the set [0,K].
A player l(i) ∈ L observes the vector (xe(1)

, ...xe(#E)
) ≡ xE of effort choices

of all players e(i) ∈ E. Only x̄E ≡ maxe(i)∈E{xe(i)
} is payoff relevant for the

subgame in period l, so we can denote a pure strategy of i ∈ L as a function
xi(x̄E) : [0,K] → [0,K], and a mixed strategy of i as a function Fi(x̄E) :
[0,K] → Σ[0,K] , where Σ[0,K] denotes the set of probability distributions
over the effort levels from the set [0,K].

Proposition 1 For any given sets L and E there exists a unique subgame
perfect equilibrium of the (sequential) all-pay auction. Equilibrium pay-offs
are given by:

πj = 0 for all j = 2, ...n, and (2)

π1 =


1 if L = {1}

1− C1(x̄l(2)) if 1 ∈ L and #L > 1
{

with x̄l(2) the solution
of Cl(2)(x̄l(2)) = 1

1− C1(x̄2) if 1 ∈ E with x̄2 the solution of C2(x̄2) = 1
(3)

Proof. Consider the following candidate equilibrium of the subgame at
stage l. Let L+(x̄E) be the set of players k ∈ L for which Ck(x̄E) < 1,
and L−(x̄E) the set of the players k ∈ L for which Ck(x̄E) ≥ 1. Then (i)
all players k ∈ L−(x̄E) choose xk(xE) = 0, (ii) for players k ∈ L+(x̄E), if
#L+(xE) = 1 then xk(xE) = x̄E , and if #L+(xE) > 1, then xk(xE) = 0 for
all k ∈ L with k /∈ {l(1), l(2)},

Fl(1)(xE) =


0 for x ∈ [0, x̄E)

Cl(2)(x) for x ∈ [x̄E , x̄l(2) ]
1 for x > x̄l(2)

(4)

1For instance, it will be sufficient to define K as the solution of C1(K) = 1.
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and

Fl(2)(xE) =


1− Cl(1)(x̄l(2)) + Cl(1)(x̄E) for x ∈ [0, x̄E ]
1− Cl(1)(x̄l(2)) + Cl(1)(x) for x ∈ (x̄E , x̄l(2) ]

1 for x > x̄l(2) .
(5)

These strategies are mutually optimal replies. (i) For given x̄E , xk = 0
uniquely maximizes the payoff of k ∈ L−(x̄E), independent of the choices
of other players in L. (ii) Consider k ∈ L+(xE) with k /∈ {l(1), l(2)}. The
payoff in the candidate equilibrium is πk(0) = 0 and, given (??), πk(xk) < 0
for any xk > 0. Thus xk = 0 is the unique best reply. Consider next l(1).
The payoff of l(1) given the candidate equilibrium strategies of other players
is πl(1)(0) = 0, πl(1)(x) = −Cl(1)(x) for x ∈ (0, x̄E) and

πl(1) = Fl(2)(x) · 1− Cl(1)(x) (6)

for xl(1) ≥ x̄E . By (??) this payoff is equal to 1 − Cl(1)(x̄l(2)) > 0 for
all xl(1) ∈ [x̄E , x̄l(2) ], and smaller than this for all x outside this interval.
Consider finally the payoff of l(2). This payoff is πl(2) = 0 for xl(2) = 0,
πl(2)(x) = −Cl(2)(x) for x ∈ (0, x̄E), and

πl(2) = Fl(1)(x) · 1− Cl(2)(x) (7)

for xl(2) > x̄E . This payoff (??) is equal to zero for all xl(2) ∈ (x̄E , x̄l(2) ] ,
because of (??), and negative for all x outside this interval. Accordingly,
any x ∈ {0} ∪ (x̄E , x̄l(2) ] is an optimal reply for l(2).

The equilibrium in the subgame among players from set L is the equi-
librium of a simultaneous all-pay auction with a minimum bid of x̄E . The
uniqueness of this equilibrium can be shown following the line of arguments
in Baye, Kovenock and de Vries (1996).

Consider stage e. Define maxl(i)∈L{x̄l(i)} ≡ x̄L. A player i ∈ E who
made the highest bid x̄E = maxe(i)∈E{xe(i)

} wins the prize if and only if
x̄E > x̄L. In the characterization of the equilibrium strategies of players
from the set E, this x̄L plays a similar role for players from the set E when
they choose their efforts, as x̄E does in the subgame at l. This x̄L, unlike
x̄E , is not determined by the actual effort choices of players, but is uniquely
determined by the cost structure of the players in L. Hence, the game among
players at stage e, too, has the structure of a simultaneous all-pay auction
with a minimum bid, which now is given by x̄L. x̄L results from foreseeing
the optimal behaviour of players moving at l. The formal reasoning for the
equilibrium choices of players in E given x̄L is analogous to the reasoning
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for L given x̄E and not repeated here, leading to the follwing equilibrium:2

(i) All players k ∈ E−(x̄L) choose xk = 0. (ii) If #E+(x̄L) = 1, then
this player k ∈ E+(x̄L) chooses xk = x̄L. (iii) If #E+(x̄L) > 1, then all
players e(k) ∈ E+(x̄L) with k > 2 choose xe(k)

= 0, player k = e(1) chooses
a mixed strategy that is described by the cumulative distribution function
Fe(j)

(x̄L) that are obtained from (??) and (??) by replacing l by e and E
by L throughout. In this equilibrium, πk = 0 for all k 6= 1. Consider π1. If
1 ∈ L, then xk = 0 for all k ∈ E. Hence, x̄E = 0. If L = {1}, then 1 wins
with no effort and has payoff π1 = 1. If #L > 1, then π1 = 1 − C1(x̄l(2)).
If 1 ∈ E, it has been shown that x1 = x̄2 is within player 1’s equilibrium
support and yields π1 = 1− C1(x̄2).

According to Proposition 1, for any partition of players into the sets
E and L, there is a unique subgame perfect equilibrium. The number of
different partitions of n players into two sets is 2n. Hence, we have char-
acterized 2n possible equilibrium configurations, which, however, result in
only n different equilibrium payoff vectors (π1, 0, .., 0), where π1 can assume
the values 1 and 1− C1(x̄i), i = 2, .., n.

Adding another player (n + 1) doubles the number of feasible partitions
(as this player could ”join” any previous partition in either E or L), but
add only one further equilibrium payoff vector π = (1 − C1(x̄n+1), 0, ..., 0)
with a new positive payoff for player 1. If the new player is not the one with
the highest cost of effort (and hence change our labelling of players), the
number of different equilibrium payoffs for player 1 only increases by one to
(n + 1). Moreover, n of those are identical to the previous ones unless the
new player happens to be the -new- strongest one with the lowest cost of
effort. In this latter case all n feasible equilibrium payoffs for player 1, which
are smaller than 1, can be different from the previous feasible equilibrium
values with only n players. With just 2 players the equilibrium payoffs for
three player partitions (E1, L1) = ({1}, {2}), (E2, L2) = ({1, 2}, {∅}) and
(E3, L3) = ({∅}, {1, 2}) are identically equal to (1 − C1(x̄2), 0), whereas
(E4, L4) = ({2}, {1}) yields the payoffs (1,0).

The equilibrium with n players has similar properties as the solution
with two players. Only the player with the strongest cost advantage has a
positive payoff. This payoff is larger if this player chooses his effort last. An
interesting and new aspect is that the all-pay auction that takes place at
stage l and the competition it involves for those players, does not benefit

2Uniqueness then again follows from reasoning as in Baye et al. (1996) for any set E
and any x̄L. For a more detailed exposition see the working paper version, Konrad and
Leininger (2005).
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the players who choose at stage e compared to the situation in which there
is only one player who chooses at l. The reason is that x̄L, the minimal
bid for a player in E in order to win, does not depend on actual behavior of
players in the competition at L, but their potential limit behavior in rational
play. This largest possible rational counter bid, however, is determined by
exogenous data, namely the cost parameters of the players moving at l.

Also similar to the two-player case, the player with the lowest cost is
best off if he moves later than all other players. For all other players, timing
does not affect their payoff. They all cannot expect to gain something from
participating in the contest and from making positive bids. Turning to the
case in which players can choose whether they belong to group E or group
L, by the nature of the equilibrium, all players i ≥ 2 are indifferent as to
which group they would join as their equilibrium payoff is zero. Player 1’s
payoff depends on his own and the other players’ choice, but 1 ∈ L is an
almost strictly dominant choice: only when player 2 chooses l is player 1
indifferent between bidding at e (and preempting player 2) or l (and entering
a simultaneous all-pay auction with player 2). Still, any offer of a small
”premium” payment for moving at e - either by the rules of the game or
by player 1 - would select the efficient equilibrium as the unique one. This
essentially characterizes the possible endogenous equilibrium partitions of
players into the groups E and L.

These results do not depend in an essential way on our choice of tie-
breaking rule. This rule was chosen in order to arrive at strict subgame
perfect equilibria. Choice of other tie-breaking rules; i.e. the probably more
”‘obvious”’ one, which stipulates the winning probability of a player from
M as always equal to 1

#M regardless of his membership in E or L, would
only produce ε−equilibria. Moreover, these ε−equilibria would all lie in
ε−neighborhoods of our strict equilibria.

3 Conclusions

The sequential structure of bids in an all-pay auction with complete infor-
mation and many players favors the strongest player, particularly if some
of his strongest competitors have to make their bids prior to him. For
an appropriate partition of players the prize is efficiently allocated to the
strongest bidder, with aggregate bid cost in this equilibrium of zero. More-
over, this partition of players into groups can emerge as an equilibrium
outcome if all players choose their timing of bids simultaneously in a stage
prior to the actual bidding stages. This result has important consequences
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for the theory of rent-seeking and patent competition among heterogeneous
agents. For instance, Konrad and Leininger (2006) show that the problem
of efficient provision of collective effort in contests between groups of hetero-
geneous agents, which have to cope with the possibility of internal conflict
over the returns of the collective effort, becomes tractable by implementing
the equivalent of the efficient equilibrium in the internal conflict.
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