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Abstract

A Lévy process is observed at time points of distance ∆ until time
T . We construct an estimator of the Lévy-Khinchine characteristics of
the process and derive optimal rates of convergence simultaneously in
T and ∆. Thereby, we encompass the usual low- and high-frequency
assumptions and obtain also asymptotics in the mid-frequency regime.

Keywords: Lévy process • Lévy-Khinchine characteristics • Nonparametric
estimation • Inverse problem• Optimal rates of convergence
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JEL Classification: G13 • C14

1 Introduction

Lévy processes are the main building blocks for stochastic continuous-time
jump models, which become more and more popular in applications. One
important task is thus to provide estimation methods for the characteristics
of a Lévy process.

There exist two fundamentally different estimation approaches, depend-
ing on the nature of observations. If we can assume high-frequency obser-
vations of the Lévy process, we can discretize a natural estimator based
on continuous-time observations, where the jumps and the diffusion part
are observed directly [9, 7, 5]. Alternatively, the low-frequency setting is
considered where the observation distance does not tend to zero and even

∗This research was supported by the Deutsche Forschungsgemeinschaft through the
SFB 649 ”Economic Risk”.
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asymptotically we cannot observe the diffusion and the jumps directly. Not
surprisingly, in that case we face a more complicated inference problem lead-
ing to a deconvolution-type inverse problem [14, 4, 12, 11]. A very similar
structure occurs in the estimation for Lévy-Ornstein-Uhlenbeck processes
[13] and in the calibration of financial derivatives (European options) to
Lévy models [2].

Here, we want to bridge the gap between high- and low-frequency esti-
mation methods by allowing the time distance ∆ between observations to
remain constant or to converge to zero at an arbitrary speed. First results
into that direction have been obtained by [4] for specific models. In any case,
the observation time T tends to infinity because only this allows identifica-
tion of the drift and the jump part in the limit. We extend the approach for
general Lévy processes by [14] to arbitrary observation distances ∆.

First we introduce the setup in Section 2. Then in Section 3 we propose
our estimator based on a minimum-distance criterion. The correct distance
relies upon uniform convergence properties of the empirical characteristic
function. The main result is an asymptotic upper bound for the estimator of
the jump measure. Particularly interesting is the fact that we recover simul-
taneously the convergence rates for the high- and low-frequency setup, with-
out any prescription for the estimator. As a minimax lower bound proves,
also our intermediate (mid-frequency) risk bounds are asymptotically opti-
mal. All proofs are postponed to Section 4.

2 Statistical model and estimation strategy

A Lévy process (Xt, t > 0) is observed at the n equidistant time points
∆, · · · , n∆ = T . It is well known that the characteristic function of X∆ has
the form

ϕ∆(u) = E
[
eiuX∆

]
= e∆Ψ(u),

where the characteristic exponent Ψ reads as

Ψ(u) = iub− σ2

2
u2 +

∫ (
eiux − 1− iux1(|x| ≤ 1)

)
ν( dx),

with volatility σ ≥ 0, drift b ∈ R and jump measure ν, where ν is a σ-finite
Borel measure on R with

∫
R \{0}(x

2∧1)ν( dx) <∞. Throughout the text we
shall assume that X1 has finite moments up to order 4+ δ for some positive
constant δ. Then we even have (cf. Thm. 25.3 [15])∫

R \{0}
x2ν( dx) <∞.

We can thus give the following reparametrization of the characteristic ex-
ponent in terms of the finite measure νσ( dx) := σ2δ0( dx) + x2ν( dx) and
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b := b+
∫
x 1(|x| > 1)ν( dx):

Ψ(u) = iub+
∫

R

(
eiux − 1− iux

)
x2

νσ( dx),

where the integrand is continuously extended to −u2/2 at x = 0. The Lévy
process is fully described by the parameters b (which is equal to the mean
value of X1) and νσ. The motivation for considering the above parametriza-
tion comes from the following fundamental result (see e.g. Theorem 8.7 in
[15]):

2.1 Proposition. Let P(b,νσ) and
(
P(bn,νσn )

)
n∈N denote infinitely divis-

ible laws with the corresponding characteristics. Then weak convergence
P(bn,νσn ) ⇒ P(b,νσ) takes place if and only if bn → b and νσn ⇒ νσ.

Using the fact that the increments of a Lévy process are independent and
identically distributed, we can define the empirical characteristic function

ϕ̂∆,T (u) :=
1
n

n∑
k=1

eiu(Xk∆−X(k−1)∆). (2.1)

Pointwise convergence of ϕ̂∆,T to ϕ∆ suggests to choose the estimators of
the parameters of interest such that the corresponding characteristic func-
tion approximately minimizes the distance to the empirical characteristic
function. Consequently, we define(

b̂∆,T , ν̂σ∆,T

)
:= arginf(b̃,ν̃σ) d

(
ϕ̂∆,T , ϕ∆

(
•; b̃, ν̃σ

))
(2.2)

for an appropriate choice of the metric d. It was shown in [14] that for
equidistant observations with ∆ fixed, the estimators of b and νσ defined
according to (2.2) are strongly consistent under rather general conditions
on the choice of the metric d. Moreover, optimal rates of convergence are
obtained if b and νσ are chosen to fit the weighted empirical characteristic
function and its first and second derivative.

The motivation for considering not only the characteristic function, but
also its derivatives comes from the fact that the Fourier transform of the
finite measure νσ can be expressed as

Fνσ(u) :=
∫

R
eiuxνσ( dx) = −Ψ′′(u),

which gives

Fνσ(u) =
ϕ′1(u)

2

ϕ1(u)2
− ϕ′′1(u)
ϕ1(u)

, (2.3)

and in terms of ∆:

Fνσ(u) =
1
∆

(
ϕ′∆(u)2

ϕ∆(u)2
−
ϕ′′∆(u)
ϕ∆(u)

)
(2.4)
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Note that by formula (2.3) and (2.4) there is a strong resemblance of the
problem of estimating νσ with a deconvolution problem. The optimal rates
of convergence depend on the decay behaviour of the characteristic function.

To obtain an estimator which is rate optimal for T →∞ with arbitrary
observation distance ∆, the appropriate choice of a distance function will
have to depend on ∆. Because of the moment sizes E[X2k

∆ ] = O(∆1∧k) (see
p.9 for a proof), it turns out that the distance function

d∆ (ϕ,ψ) :=
2∑

k=0

∆− 1∧k
2 ‖ ϕ(k) − ψ(k)‖L∞(w) (2.5)

is appropriate, where

‖f‖L∞(w) := sup
u∈R

|f(u)|w(u)

for a weight function w : R → R+ specified later. Since we cannot guarantee
that the infimum is always attained, our estimators b̂∆,T and ν̂σ∆,T are chosen
such that

d∆

(
ϕ̂∆,T , ϕ∆

(
•; b̂∆,T , ν̂σ∆,T

))
6 inf

(b,νσ)
d∆ (ϕ̂∆,T , ϕ∆ (•; b, νσ)) + εT (2.6)

with εT = o
(
∆1/2T−

1
2

)
. In what follows, we will use the notation

ϕ∆,T := ϕ∆

(
•; b̂∆,T , ν̂σ∆,T

)
.

3 Rate optimality of the estimation procedure

3.1 Convergence of the empirical characteristic function

The main technical tool needed to prove rate optimality in T and ∆ is
the following result giving control of the weighted empirical characteristic
function on the whole real line uniformly in ∆. In an abstract sense, the
statement below will tell us that the Donsker property holds for the empirical
characteristic function uniformly over the class of distributions (P∆)∆≤1 ,
where P∆ denotes the distribution of X∆.

Let the normalized version of the k-th derivative of the empirical char-
acteristic function process be defined by

C
(k)
∆,T (u) := n−

1
2 ∆− k∧1

2

n∑
j=1

dk

duk

(
eiu(Xj∆−X(j−1)∆) − E

[
eiuX∆

])
. (3.1)

We can now formulate the main result of this section, which is proved in
Section 4.
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3.1 Theorem. For k ∈ N0 let X be a Lévy process with finite (2k + γ)-th
moment and choose w(u) = (log(e+ | u |))−1/2−δ for some constants γ, δ >
0. Then for C(k)

∆,T , defined by (3.1), we have

sup
n≥1,∆≤1

E
[
‖ C(k)

∆,T ‖L∞(w)

]
<∞.

With the distance d∆ defined according to (2.5), the above theorem tells
us that in terms of T , the empirical characteristic function ϕ̂∆,T satisfies

E
[
∆− 1

2d∆ (ϕ̂∆,T , ϕ∆)
]

= O(T−
1
2 ). (3.2)

An application of the triangle inequality gives

d∆ (ϕ∆,T , ϕ∆) ≤ 2d∆ (ϕ̂∆,T , ϕ∆) + o(∆1/2T−1/2),

so (3.2) remains true if we replace the empirical characteristic function
ϕ̂∆,T by the minimum distance fit ϕ∆,T .

3.2 Asymptotic risk bounds

We are now ready to prove upper bounds for convergence in probability.
We consider in particular the following decay scenarios for the characteristic
function:

a) The characteristic function of X∆ satisfies

|ϕ∆(u)| ≥ Ce−∆c|u|α (3.3)

for some 0 ≤ α ≤ 2 and C, c > 0. This is equivalent to stating that
X∆ posesses at most a supersmooth density with parameters c and α
(if a density exists at all).

Any infinitely divisible distribution having nonzero Gaussian part is
supersmooth with α = 2. Examples of distributions which are super-
smooth with α < 2 are tempered stable laws with index of stability α
(e.g. [6], Chapter 4.5). Note that stable distributions do not fit in our
setting, as they do not match the required moment condition. Normal
inverse Gaussian processes which fulfill (3.3) with α = 1 have been
used for financial modelling, see e.g. [1]. Another example of processes
in finance matching condition (3.3) with α = 1 are Meixner-processes,
see e.g. [16].

b) We have at most polynomial decay of the characteristic function:

|ϕ∆(u)| ≥ C (1 + |u|)−∆β (3.4)
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for C > 0 and β > 0. This means that if X∆ possesses a density at all,
this can be no smoother than ordinary smooth with parameter β.

Typical examples of infinitely divisible random variables with ordinary
smooth densities are Gamma distributions. Compound Poisson distri-
butions, which do not posess a distributional density, fulfill (3.4) for
β = 0. Another typical example of processes fulfilling (3.4) are vari-
ance gamma processes, which have been used to model the logarithm
of stock prices, see, for example [3].

Inspired by the weak convergence in Proposition 2.1, the performance of
the estimator of the finite measure νσ is measured by an integral criterion.
For s > 0 define the space of test functions

Fs :=
{
f ∈ L1(R) :

∫
|Ff(u)| (1 + |u|)s du < 1.

}
.

The corresponding loss for an estimator ν̂σ of νσ is then defined to be

`s (ν̂σ, νσ) := sup
f∈Fs

∣∣∣∣∫ f dνσ −
∫
f dν̂σ

∣∣∣∣ .
3.2 Theorem. Assume E

[
|X∆|4+γ

]
< ∞ for some γ > 0. Let ν̂σ∆,T and

b̂∆,T be defined according to (2.6). Then

E
[
|b̂∆,T − b|

]
= O

(
T−

1
2

)
.

For ν̂σ∆,T , we obtain the following rates of convergence in probability:

a) For distributions with tail behaviour |ϕ∆(u)| ≥ Ce−∆c|u|α we have

`s
(
ν̂σ∆,T , νσ

)
= OP

((
log T

∆

)− s
α

∨ T−
1
2

)
.

Especially, the parametric rate T−
1
2 , is attained for T → ∞ and si-

multaneously ∆T → 0 provided

∆T = O
(
T−

α
2s log T

)
.

b) For distributions with tail behaviour |ϕ∆(u)| ≥ C(1 + |u|)−∆β we have

`s
(
ν̂σ∆,T , νσ

)
= OP

(
T
− s

2∆β (log(e+ T ))
s(1/2+δ)

∆β ∨ T−
1
2

)
.

Especially, the parametric rate T−
1
2 , is attained for T →∞ under the

non-asymptotic condition
∆T <

s

β
.
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By standard parametric theory, all parameters cannot be estimated at
a better rate than T−1/2. Therefore the next result shows that our rates of
convergence are minimax optimal (at least up to a logarithmic factor for
(b)) within a nonparametric class.

3.3 Theorem (Minimax lower bounds). Let us introduce the following non-
parametric classes for νσ:

A(C, c, α) : =
{
νσ : |ϕ∆(u)| ≥ Ce−∆c|u|α

}
B(C, β) : =

{
νσ : |ϕ∆(u)| ≥ C(1 + |u|)−∆β

}
.

Then we obtain the following minimax lower bounds uniformly for |b| ≤ B,
where B is some positive constant:

∃ε > 0 : lim inf
T→∞

∆T∈(0,1]

inf
νσ∆T ,T

sup
νσ∈A(C,c,α)

Pb,νσ

(((
log T
∆T

) s
α

∧ T 1
2

)
`s

(
νσ∆T ,T

, νσ

)
> ε

)
> 0,

∃ε > 0 : lim inf
T→∞

∆T∈(0,1]

inf
νσ∆,T

sup
νσ∈B(C,β)

Pb,νσ

(
T

s
2∆T β∧

1
2 `s

(
νσ∆T ,T

, νσ

)
> ε
)
> 0,

where the infimum is taken over all estimators νσ∆T ,T of νσ based on ob-
servations of X with distance ∆T up to time T .

The proof follows along the same lines as the proof in [14], but the control
of the dependence on ∆ requires additional and rather tedious calculations,
whence it is omitted.

3.3 Discussion

The convergence rates for νσ can be understood in terms of a deconvolution
or statistical inverse problem. The degree of ill-posedness, i.e. the amplifi-
cation of the noise, is governed by the decay of the characteristic function
ϕ∆. For fixed ∆ and the exponential decay of ϕ∆ in (a) we therefore face
a severely ill-posed problem with logarithmic rates of convergence. On the
other hand, the risk is smaller for smoother test functions. If we had looked
also at analytic test functions, where the Fourier transform decays exponen-
tially fast, then we would also in (a) obtain polynomial rates for fixed ∆.
Observe that our estimator does neither rely on the knowledge of the decay
behaviour of the unknown characteristic function nor on the test function
class considered nor on the asymptotics of the observation distance.

The parametric rate is always attained when the smoothness of the test
function sufficiently counterbalances the ill-posedness of the problem. It is
remarkable that in all cases a condition on the observation distance of the
type ∆ = O(T−p) suffices. In the polynomial decay case (b) the ill-posedness
is of degree ∆β which is smaller than the smoothness s exactly under the
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condition ∆ < s/β and we need not assume high-frequency observations.
Very roughly and intuitively, there is an analogy with estimating the deriva-
tive of order ∆β of a regression function and calculating the integral with
an s-smooth test function of compact support, which by partial integration
equals the integral of the regression function itself with an (s−∆β)-smooth
test function. This L2-continuous linear functional can be estimated with a
parametric rate, see e.g. [10].

Like in [9], we might consider the model that ν possesses a density g ∈ Cr

which we want to estimate. The kernel smoothing argument in [14] then
yields in the polynomial decay case (b) a convergence rate for the point-
wise risk of order O(hr + h−∆β−1/2T−1/2) (modulo a log factor, which is
suppressed in the following), where h denotes the kernel bandwidth. An op-
timal bandwidth choice yields the rate O(T−r/(2r+2∆β+1)). Under this loss
we attain the high-frequency rate of convergence O(T−r/(2r+1)) under the
condition ∆ 6 c(log T )−1 with c > 0 sufficiently small. This logarithmic
decay condition should be compared to [7] and [5] where in the compound
Poisson case a polynomial condition is required for the critical observation
distance ∆.

4 Proofs

4.1 Proof of Theorem 3.1

We start by recalling some definitions from empirical process theory. Let a
probability space (X,A,P) be given. For measurable functions u, l : X → R,
the set

[l, u] := {h : X → R | l ≤ h ≤ u}
is called an ε-bracket, if ∫

(u− l)2dP < ε2.

Given some class F of measurable, real-valued functions on X, we denote
by N[ ]

(
ε,F, L2(P)

)
the minimal number of ε-brackets which are needed to

cover F. The entropy integral is defined by

J[ ]

(
δ,F, L2(P)

)
:=
∫ δ

0

(
logN[ ]

(
ε,F, L2(P)

)) 1
2 dε.

Finally, a function F ≥ 0 is called an envelope function for F, if

∀f ∈ F : |f | ≤ F.

Proof of Theorem 3.1 . We decompose C(k)
∆,T in its real and imaginary part

and introduce the set of functions

Fk
∆ :=

{
∆− 1∧k

2
dk

duk
cosux : u ∈ R

}
∪

{
∆− 1∧k

2
dk

duk
sinux : u ∈ R

}
.
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Denote by P∆ the distribution of X∆. An application of Corollary 19.35 in
[17] gives for any ∆ > 0:

sup
T

E
[
‖C(k)

∆,T ‖L∞(w)

]
< CJ[ ]

(
E
[
F 2(X∆)

]
,F(k)

∆ , L2(P∆)
)
, (4.1)

for any envelope function F = F k
∆ of Fk

∆ and a universal constant C which
does not depend on ∆. It is shown in [14] that the right hand side of 4.1 is
finite. To make the result uniform in ∆, it remains to consider the behaviour
of the entropy integral for ∆ ∈ (0, 1] varying.

To cover Fk
∆ with brackets of size ε, we define for grid points u∆,j specified

later the bracket functions

g±∆,j(z) = ∆− 1∧k
2

(
w(u∆,j)

dk

duk
cos(u∆,jz)± ε|z|k

)
I[−M.M ](z)±∆− 1∧k

2 |z|kI[−M,M ]c(z)

and

h±∆,j(z) = ∆− 1∧k
2

(
w(u∆,j)

dk

duk
sin(u∆,jz)± ε|z|k

)
I[−M.M ](z)±∆− 1∧k

2 |z|kI[−M,M ]c(z),

with

M := M(ε,∆, k) := inf
{
m : ∆−(1∧k)E|X∆|2kI{|X∆|>m} ≤ ε2

}
.

By definition of M , the size of the brackets is

E
[(
g+
∆,j(X∆)− g−∆,j(X∆)

)2
]
≤ 4ε2

(
∆−(1∧k)EX2k

∆ + 1
)
.

For ∆ ≤ 1, the expression on the right is uniformly bounded above by cε2

for some c > 0. This is obvious for k = 0. For k ≥ 1, this is a consequence
of the well known fact that E

[
X2k

∆

]
≤ c∆ for some c > 0, which is seen by

using the formula

E
[
X2k

∆

]
= i−2kϕ

(2k)
∆ (0) = i−2k d

2k

du2k
e∆Ψ(u)

∣∣∣
u=0

.

An analogous argument gives:

E
[(
h+

∆,j(X∆)− h−∆,j(X∆)
)2
]
≤ cε2.

For a function gu(•) := ∆− 1∧k
2 w(u) ∂k

∂uk cos(u•) ∈ Fk
∆ to be contained in

[g−∆,j , g
+
∆,j ], we have to ensure

|w(u)
dk

duk
cos(uz)− w(u∆,j)

dk

duk
cos(u∆,jz)| ≤ ε|z|k ∀z ∈ [−M,M ]. (4.2)
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With the estimate

|w(u) cos(uz)− w(uj) cos(ujz)|I[−M,M ](z)
≤ (w(u) + w(uj)) ∧(

|w(u) cos(uz)− w(u) cos(ujz)| I[−M,M ](z) + |w(u) cos(ujz)− w(uj) cos(ujz)| I[−M,M ](z)
)

≤ (w(u) + w(uj)) ∧ (M |u− uj |+ Lip(w)|u− uj |) ,

where Lip(w) is the Lipschitz-constant of w, and with the analogous in-
equality for the sine-function, (4.2) is seen to hold for any u ∈ R such that

min {|u− u∆,j |(Lip(w) +M), w(u) + w(u∆,j)} ≤ ε.

Hence to cover Fk
∆ with brackets of P∆-size cε2, we need grid

points u1, · · · , uJ(ε) such that w(u1) ≤ ε
2 , w(uJ(ε)) ≤ ε

2 and
|uj − uj+1| ≤ ε

Lip(w)+M(ε,∆,k) . For the minimal number J(ε) of cε-brackets
needed to cover F∆,k, this yields the estimate

J(ε) ≤ 2U(ε)(Lip(w) +M(ε,∆, k))/ε,

with

U(ε) := inf
{
u ∈ R : w(u) ≤ ε

2

}
³ exp

(
ε−κ
)

for some κ < 2.

The generalized Markov inequality yields for some c′ > 0:

M(ε,∆, k) ≤
(
E
[
|X∆|2k+γ

]
/∆1∧kε2

)1/γ
< c′ε−2/γ .

The second inequality applies the fact that we have the moment bound
E
[
|X∆|2k+γ

]
= O (∆), which is a consequence of Theorem 1.1 in [8].

The entropy with bracketing is

logN[ ](ε,F∆,k, L
2(P∆)) ≤ logU(

ε

c
) + log

(
c (Lip(w) +M(ε/c,∆, k))

ε

)
.

The upper limit in the entropy integral appearing in (4.1),
√

E[F 2
∆,k(X∆)],

is again bounded above uniformly in ∆ < 1. We have thus shown that up
to some universal constant

sup
∆≤1

sup
T

E
[
‖C(k)

∆,T ‖L∞(w)

]
≤

∫ 1

0

√
log(U(ε)) dε+

∫ 1

0

√
log
(
Lip(w)/ε+ ε−(2/γ+1)

)
dε. (4.3)

Now (4.3) is finite since logU(ε) ³ ε−κ for some κ < 2. This completes the
proof.
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4.2 Proof of Theorem 3.2

To prove the upper bounds, we establish a number of technical lemmas
giving control on the characteristic exponent and its derivatives. First, we
formulate a result which connects the tail behaviour of the characteristic
function (which corresponds to the smoothnes of the density) to the jump
activity round the origin, extending a result from [14]:

4.1 Lemma. Let an infinitely divisible law with characteristics (b, 0, ν) be
given such that its characteristic function satisfies

|ϕ(u)| ≥ Ce−c|u|α

for some 0 < α < 2 and C, c > 0. Then for any α′ > α the integral∫ 1

−1
|x|α′ν( dx)

is finite.

Proof. Setting κ := inf1<x≤2 (1− cosx) > 0, we have the series of inequali-
ties∫ 1

−1
|x|α′ν( dx) =

∞∑
m=0

∫
{2−(m+1)<|x|≤2−m}

|x|α′ν( dx)

≤ κ−1
∞∑

m=0

2−α′m

∫ (
1− cos(2m+1x)

)
ν( dx)

= κ−1
∞∑

m=0

2−α′m
(
−ReΨ(2m+1)

)
≤ κ−1

(
2c

∞∑
m=0

2−(α′−α)m − logC
∞∑

m=0

2−α′m

)
<∞.

4.2 Lemma. In the situation of the preceding lemma, let α ∈ [1, 2) and
assume finite moments for the law of order α′ > α. Then the following
bound on the derivative of the characteristic exponent holds for α′ ∈ (α, 2):

∀u ∈ R : |Ψ′(u)| ≤ K(1 + |u|α′−1) (4.4)

for some K > 0.
For α < 1 the derivative of the characteristic exponent is always uni-

formly bounded:
sup
u∈R

∣∣Ψ′(u)
∣∣ <∞. (4.5)
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Proof. Since the diffusion part is zero by assumption, we obtain

|Ψ′(u)| =
∣∣∣∣ib+ i

∫ (
eiux − 1

)
xν( dx)

∣∣∣∣ (4.6)

≤ |b|+
∫

(2 ∧ |ux|) |x|ν( dx) (4.7)

≤ |b|+ 22−α′ |u|α′−1

∫
|x|α′ν( dx). (4.8)

and the integral appearing in (4.8) is finite by Lemma 4.1 together with
the moment assumption. We have thus shown (4.4). To see (4.5) , we can
estimate ∣∣Ψ′(u)

∣∣ ≤ |b|+ 2
∫
|x|ν( dx) (4.9)

and this expression is finite for α < 1 by Lemma 4.1.

Next, we focus on the exponential decay behaviour. We first need a result
concerning the minimum distance fit of the characteristic function.

4.3 Lemma. Let |ϕ∆(u)| ≥ Ce−∆c|u|α. With

I∆,T := [−U∆,T , U∆,T ] :=

[
−
(

log T
3∆

) 1
α

,

(
log T
3∆

) 1
α

]
.

we find for any observation distance ∆ = ∆T ∈ (0, 1]

lim
T→∞

P
(
∀u ∈ I∆,T : |ϕ∆,T (u)| ≥ C

2
e−∆cuα

)
= 1.

Proof. ¿From Theorem 3.1 we infer by Markov’s inequality

P
(
∃u ∈ I∆,T : |ϕ∆,T (u)| < C

2
e−∆c|u|α

)
≤ P

(
∃u ∈ I∆,T : |ϕ∆,T (u)− ϕ∆(u)| > C

2
e−∆c|u|α

)
= P

(
sup

u∈I∆,T

|ϕ∆,T (u)− ϕ∆(u)| 2
C
e∆c|u|α > 1

)
≤ w(U∆,T )−1 2

C
e∆|U∆,T |α∆

1
2O
(
T−

1
2

)
.

The choice of U∆,T ensures that this expression tends to zero for T → ∞,
whatever ∆ is.

Let Ψ∆ := ∆Ψ(u) denote the characteristic exponent of the true charac-
teristic function ϕ∆ and Ψ∆,T the characteristic exponent of the minimum
distance fit ϕ∆,T . The next two results give control on the deviation of Ψ∆,T

from Ψ∆ and of its second derivatives.
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4.4 Lemma. Let |ϕ∆(u)| ≥ Ce−∆c|u|α. With K > 0 from (4.4) the following
bound in probability is valid:

sup
u∈I∆,T

∣∣∣Ψ′
∆,T (u)−Ψ′

∆(u)
∣∣∣

∆w(u)−1e∆c|u|α
(
1 + ∆

1
2K(1 + |u|

α
2 )
) = OP(T−

1
2 ). (4.10)

Moreover,

sup
u∈I∆,T

∣∣∣Ψ′
∆,T (u)

∣∣∣
∆w(u)−1e∆c|u|αK(1 + |u|

α
2 )

= OP(1). (4.11)

Proof. We have, with probability tending to one, for all u ∈ U∆;T :

∣∣Ψ′
∆,T (u)−Ψ′

∆(u)
∣∣ = ∣∣∣∣ϕ′∆,T (u)

ϕ∆,T (u)
− ϕ′∆(u)
ϕ∆(u)

∣∣∣∣
≤

|ϕ′∆,T (u)− ϕ′∆(u)|
|ϕ∆,T (u)|

+
∣∣Ψ′

∆,T (u)
∣∣ |ϕ∆,T (u)− ϕ∆(u)|

|ϕ∆,T (u)|

≤
(
e∆c|u|αw(u)−1∆ + ∆K(1 + |u|α

2 )e∆c|u|αw(u)−1∆
1
2

)
∆− 1

2 d (ϕ∆,T , ϕ∆) ,

where the last inequality is a consequence of Lemma 4.2 and Lemma 4.3.
Another application of Theorem 3.1 gives (4.10).
Now (4.11) follows from (4.10), using Lemma 4.4 and the estimate∣∣Ψ′

∆,T (u)
∣∣ ≤ ∣∣Ψ′

∆(u)
∣∣+ ∣∣Ψ′

∆,T (u)−Ψ′
∆(u)

∣∣ .
4.5 Lemma. Let |ϕ∆(u)| ≥ Ce−∆c|u|α. For the second derivative of the
characteristic exponent we have

sup
u∈R

∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣ = ∆OP(1).

Moreover, we can give the following bound in probability uniformly on I∆,T :

sup
u∈I∆,T

∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣

∆Ce∆c|u|αw(u)−1
(
1 + ∆

1
2 (1 + |u|α

2 ) + ∆
3
2 (1 + |u|α)

) = OP

(
T−

1
2

)
(4.12)

Proof. To see the first statement of the lemma, recall that the second deriva-
tive of the characteristic exponent is always bounded above:

∀u ∈ R :
∣∣Ψ′′

∆(u)
∣∣ = ∆

∣∣∣∣−σ2 +
∫
eiuxx2ν( dx)

∣∣∣∣ ≤ ∆
(
σ2 +

∫
|x|2ν( dx)

)
<∞.
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Then apply the series of inequalities∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣

≤ 4
(
|Ψ′′

∆(0)|+
∣∣Ψ′′

∆,T (0)−Ψ′′
∆(0)

∣∣)
≤ 4

(
|Ψ′′

∆(0)|+
∣∣ϕ′′∆,T (0)− ϕ′′∆(0)

∣∣+ ∣∣(Ψ′
∆,T (0))2 − (Ψ′

∆(0))2
∣∣)

= 4
(
|Ψ′′

∆(0)|+
∣∣ϕ′′∆,T (0)− ϕ′′∆(0)

∣∣+ 2 |Ψ′′
∆(0)|

∣∣ϕ′∆,T (0)− ϕ′∆(0)
∣∣+ ∣∣ϕ′∆,T (0)− ϕ′∆(0)

∣∣2)
= ∆OP

(
1 + T−

1
2 + ∆T−

1
2 + ∆T−1

)
= ∆OP (1) .

Next, (4.12) can be seen by estimating∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣

=

∣∣∣∣∣ϕ′′∆,T (u)
ϕ∆,T (u)

−
(
Ψ′

∆,T (u)
)2 − ϕ′′∆(u)

ϕ∆(u)
+
(
Ψ′

∆(u)
)2∣∣∣∣∣

≤

∣∣∣ϕ′′∆,T (u)− ϕ′′∆(u)
∣∣∣

|ϕ∆(u)|
+
∣∣Ψ′

∆,T (u)
∣∣ |ϕ∆,T (u)− ϕ∆(u)|

|ϕ∆(u)|
+

∣∣Ψ′
∆,T (u) + Ψ′

∆(u)
∣∣ ∣∣Ψ′

∆,T (u)−Ψ′
∆(u)

∣∣ .
The desired bound is an immediate consequence of Lemma 4.4.

For distributions with characteristic functions decaying at most polyno-
mially, we can prove auxiliary results analogous to Lemmas 4.1-4.5. As the
proofs run in a completely analogous way, we omit the details and only state
the main result:

4.6 Lemma. Let |ϕ∆(u)| ≥ C(1 + |u|)−∆β. Define

I∆,T :=
[
−T

1
2∆β (log(e+ T ))−

1/2+2δ
∆β ,+T

1
2∆β (log T )−

1/2+2δ
∆β

]
.

Then we have

sup
u∈I∆,T

∣∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣∣

∆C(1 + |u|)∆βw(u)−1
= OP

(
T−

1
2

)
.

The proof of the upper bound result can now easily be obtained as a
consequence of the preceding lemmas.

Proof of Theorem 3.2: The result for b̂∆,T is an immediate consequence of
Theorem 3.1, using |b̂∆,T − b| = ∆−1|ϕ′∆,T (0)−ϕ′∆(0)|. For the estimator of
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νσ, applying Parseval’s identity, the loss satisfies

`s
(
ν̂σ∆,T , νσ

)
= sup

f∈Fs

∣∣∣∣∫ f(x)ν̂σ∆,T ( dx)−
∫
f(x)νσ( dx)

∣∣∣∣
=

1
2π

sup
f∈Fs

∣∣∣∣∫ Ff(u)
(
Fν̂σ∆,T (u)− Fνσ(u)

)
du
∣∣∣∣

≤ 1
2π

sup
f∈Fs

∫
|Ff(u)| 1

∆

∣∣Ψ′′
∆(u)−Ψ′′

∆,T (u)
∣∣ du

≤ 1
2π

sup
u∈R

(1 + |u|)−s 1
∆

∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣ .

By an application of Lemma 4.5 and Lemma 4.6, we can estimate

a) for |ϕ∆(u)| ≥ Ce−∆c|u|α :

sup
u∈R

(1 + |u|)−s 1
∆

∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣

≤ sup
u∈I∆,T

(1 + |u|)−s

(
1 + ∆

1
2 (1 + |u|

α
2 ) + ∆

3
2 (1 + |u|α)

e−∆c|u|αw(u)

)
OP

(
T−

1
2

)
∧ (1 + U∆,T )−s

= OP

(
T−

1
2 ∨

(
log T

∆

)− s
α

)
.

b) for |ϕ∆(u)| ≥ C(1 + |u|)−∆β:

sup
u∈R

(1 + |u|)−s 1
∆

∣∣Ψ′′
∆,T (u)−Ψ′′

∆(u)
∣∣

= OP

(
T
− s

2∆β (log (e+ T ))
s(1/2+δ)

∆β ∨ T−
1
2

)
.
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