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Uniform confidence bands for pricing kernels ∗

Wolfgang Karl Härdle †,Yarema Okhrin‡, Weining Wang§.

Abstract

Pricing kernels implicit in option prices play a key role in assessing the risk
aversion over equity returns. We deal with nonparametric estimation of the pricing
kernel (Empirical Pricing Kernel) given by the ratio of the risk-neutral density esti-
mator and the subjective density estimator. The former density can be represented
as the second derivative w.r.t. the European call option price function, which we
estimate by nonparametric regression. The subjective density is estimated nonpara-
metrically too. In this framework, we develop the asymptotic distribution theory
of the EPK in the L∞ sense. Particularly, to evaluate the overall variation of the
pricing kernel, we develop a uniform confidence band of the EPK. Furthermore, as
an alternative to the asymptotic approach, we propose a bootstrap confidence band.
The developed theory is helpful for testing parametric specifications of pricing ker-
nels and has a direct extension to estimating risk aversion patterns. The established
results are assessed and compared in a Monte-Carlo study. As a real application,
we test risk aversion over time induced by the EPK.

Keywords: Empirical Pricing Kernel; Confidence band; Bootstrap; Kernel Smooth-
ing; Nonparametric Fitting JEL classification: C00; C14; J01; J31

1 Introduction

A challenging task in financial econometrics is to understand investors’ attitude towards
market risk in its evolution over time. Such a study naturally involves stochastic discount
factors, empirical pricing kernels (EPK) and state price densities, see Cochrane (2001).
Asset pricing kernels summarize investors’ risk preferences and exhibit when estimated
from data, the so called “EPK paradox”, as several studies including Aı̈t-Sahalia and Lo
(2000), Brown and Jackwerth (2004), Rosenberg and Engle (2002) have shown. Although
in all these studies the EPK paradox (non-monotonicity) became evident, a test for the
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functional form of the pricing kernel has not been devised yet. A uniform confidence band
drawn around an EPK is a very simple tool for shape inspection. Confidence bands based
on asymptotic theory and bootstrap is the subject of our paper. In addition, we relate
critical values of our test to changing market conditions given by exogenous time series.

The common difficulty is that the investors’ preference is implicit in the goods traded in
the market and thus can not be directly observed from the path of returns. A profound
martingale based pricing theory provides us one approach to attack the problem from
a probabilistic perspective. An important concept involved is the State Price Density
(SPD) or Arrow-Debreu prices reflecting fair prices of one unit gain or loss for the whole
market. Under no arbitrage assumption, there exists at least one SPD, and when a
market is complete, there is a unique SPD. Assuming markets are complete, pricing is
done under a risk neutral measure, which is related to the pdf of the historical measure
by multiplying with a stochastic discount factor, see section 2 for a detailed illustration.
From an economic perspective, the price is formulated according to utility maximization
theory, which admits that the risk preference of consumers is connected to the shape of
utility functions. Specifically, a concave, convex or linear utility function describes the
risk averse, risk seeking or risk neutral behavior. Importantly, a stochastic discount factor
can be expressed via a utility function (Marginal Rate of Substitution), which links the
shape of pricing kernel (PK) to the risk patterns of investors, see Kahneman and Tversky
(1979), Jackwerth (2000), Rosenberg and Engle (2002) and others.
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Figure 1: Examples of inter-temporal pricing kernels (as functions of moneyness) with
fixed maturity 0.00833 (3 days) in years respectively on 17-Jan-2006 (blue), 18-Apr-2006
(red), 16-May-2006 (magenta), 13-June-2006 (black), see Grith, Härdle and Park (2009).

The above mentioned theory allows us to relate prices processes of assets traded in the
market to risk preference of investors. This amounts to fit a flexible model to make
inference on the dynamics of EPKs over time in different markets. A well-known but
restrictive approach is to assume the underlying following a Geometric Brownian Motion.
In this setting, risk neutral densities and historical densities are log normal distributions
with different drifts, and the pricing kernel has the form of a derivative of a power util-
ity. Thus it is decreasing in return and implies overall-risk averse behavior. However,
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across different markets, one observes quite often a non-decreasing pattern for EPKs, a
phenomenon is called the EPK paradox, see Chabi-Yo, Garcia and Renault (2008).

Two plots of pricing kernels are shown in Figure 1 and Figure 2. Figure 1 depicts inter-
temporal pricing kernels with fixed maturity, while Figure 2 depicts pricing kernels with
two different maturities and their confidence bands. The figures are shown on a returns
scale. The curves present a bump in the middle and a switch from convexity to concavity
in all cases. Especially, this shows that very unlikely the bands contain a monotone
decreasing curve.
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Figure 2: Examples of inter-temporal pricing kernels with various maturities in years:
0.02222 (8 days, red) 0.1 (36 days, black) on 12-Jan-2006 and their confidence bands.

In order to study the EPK paradox, the time varying coverage probability of a uniform
confidence band gives us reliable information. At a fixed point in time, it helps us to test
alternatives for a PK and thus yields insights into time varying risk patterns. A test on
monotonicity of the PK has been proposed by Golubev, Härdle and Timofeev (2009), the
extracted time varying parameter, realized either from a low dimensional model for PK
or given the coverage probability, may thus be economically analyzed in connection with
exogenous macroeconomic business cycle indicator, e.g. credit spread, yield curve, etc,
see also Grith, Härdle and Park (2009).

Several econometric studies are concerned with estimating PKs by estimating a risk neu-
tral density and historical density separately. See section 2 for details. It is stressed in
Aı̈t-Sahalia and Lo (1998) that nonparametric inference from pricing kernels gives unbi-
ased insights into the properties of asset markets. The stochastic fluctuation of EPK as
measured by the maximum deviation has not been studied yet. However, the asymptotic
distribution of the maximum deviation and the uniform confidence band linked to it are
very useful for model check.

Uniform confidence bands for smooth curves have first been developed for kernel density
estimators by Bickel and Rosenblatt (1973), Extension to regression smoothing can be
found in Liero (1982) and Härdle (1989). But only recently, the results have been carried
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over to derivative smoothing by Claeskens and Van Keilegom (2003). Our theoretical
path follows largely their results, but our results are applied to a ratio estimator instead
of just a local polynomial estimator. Additionally, we extend their results into the second
dimension by including the maturity. Also we have a realistic data situation that relates
coverage to economic indicators. In addition we perform the smoothing in an implied
volatility space which brings by itself an interesting modification of the results of that
paper.

The paper is organized as follows: In Section 2, we describe the theoretical connection
between utility functions and pricing kernels. In Section 3, we present a nonparametric
framework for the estimation of both the historical and the risk neutral density and derive
the asymptotic distribution of the maximum deviation. In Section 4, we simulate the
asymptotic behavior of the uniform confidence band and compare it with the bootstrap
method. Moreover, we also compare the result with other parametric estimations. In
Section 5, we conclude and discuss our results.

2 Empirical Pricing Kernel Estimation

Consider an arbitrary risky financial security with the price process {St}t∈[0,T ]. We assume
that {St} is a nonnegative semi-martingale with continuous marginals. In a dynamic
equilibrium model the price of the security at time t is equal to the expected net present
value of its future payoffs. The interest rate process r is deterministic. We assume that
the market is complete, i.e. there exists one positive r.v. π such that

E [π] = 1,

E

[
ST

π

E[π|St]
|St
]

= erτSt.

From the risk neutral valuation principle, for the nonnegative payoff ψ(ST ), it holds

E
[
e−rτψ(ST )π

]
= E

[
e−rτψ(ST )E[π|ST ]

]
.

By factorization, we obtain E[π|ST ] = Kπ(ST ), implying

E
[
e−rτψ(ST )π

]
=

∫ +∞

0

e−rτψ(x)Kπ(x)pST
(x)dx,

where pST
(x) is the pdf of the price ST . The last expression justifies the notion of pricing

kernel used for Kπ(x). Following Ait-Sahalia and Lo (2000) consider the distribution
QST

(x) = PQ(ST ≤ x) =
∫ x
−∞ π(z)pST

(z)dz. Its density function qST
is commonly called

the risk neutral distribution of ST or state price density (SPD). This follows by observing
that, for any ψ,

E
[
e−rτψ(ST )π

]
=

∫ +∞

0

e−rτψ(x)qST
(x)dx. (1)

This implies that Kπ =
qST

pST

and both the pdf of the future payoff and the SPD are required

to compute the EPK. Several approaches are available to determine the EPK explicitly.
First, we can impose strict parametric restrictions on the dynamics of the asset prices and
on the distribution of the future payoff. An example are mixture normal distributions,
Jackwerth (2000). In the case of more complex stochastic processes, usually no explicit
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solution is available. A possible technique though is to use the Brownian motion setup as
prior model. Subsequently the SPD is estimated by minimizing the distance to the prior
SPD subject to the constraints characterizing the underlying securities, see Rubinstein
(1994) and Jackwerth and Rubinstein (1996). Second, the EPK can be determined from
the utility function of the agent. Let the aim the investor be to solve the problem:

max
Wt

{u(Wt) + E
t
[βu(WT )]},

where u(·) denotes the utility function, Wt the wealth and β the subjective discount
factor. It can be shown that the stochastic discount factor is proportional to the EPK
and is given by

e−rτ
qST

(s)

pST
(s)

= β
u′(s)

u′(St)
.

This implies that by fixing the utility of the investor we can determine the EPK. In
practice, however, usually the opposite procedure is applied. The EPK is statistically
estimated and used to determine the utility function or the risk aversion coefficient of the
investor.

2.1 EPK and option pricing

Here we consider the SPD qST
and the pdf pST

separately. For notational convenience
we drop the index and write simply q and p. The latter can easily be estimated either
parametrically or nonparametrically from the time series of payoffs. On the contrary, the
SPD depends on risk preferences and therefore the past observed stock time series do
not contain information. Option prices do reflect preferences and, therefore, can be used
to estimate the SPD q. Let C(St, X, τ, r, σ

2) denote the European call-option price as a
function of the strike price X, price St, maturity τ , interest rate r.

q(ST ) = erτ
∂2C

∂K2

∣∣∣
K=ST

.

In a Black-Scholes (BS) framework, where the underlying asset price St follows a geometric
Brownian motion. The European options are priced via:

C(St, X, τ, r, σ
2) = StΦ(d1)−XerτΦ(d2),

where d1 and d2 are known functions of σ2, τ , X and St. This implies that both q(ST )
and p(ST ) are lognormal distributions:

q(ST ) =
1

ST
√

2πσ2τ
exp

[
−{log(ST/St)− (r − σ2/2)τ}2

2σ2τ

]
(2)

and p(ST ) with µ replacing r in (2).

Beside the modeling bias that is implicit in the BS model, it is also not possible to reflect
the implicit volatility smile (surface) as a function of X and τ via (2). The latter may
be derived in stochastic volatility models of Heston or Bates type or even more complex
parametrizations. In order to study unbiased risk patterns, we need to guarantee models
for the pricing kernel that are rich enough to reflect local risk aversion in time and space.
This leads naturally to a smoothing approach.

5



Consider call options with maturity maturity τ . The intraday call options are observed

Yi = Cτ (Xi) + σ(Xi)εi, i = 1, . . . , nq, (3)

where Yi denotes the observed option price and Ki the strike price. Yi and Xi are assumed
to be i.i.d. in the cross section with Var(Yi|X = Xi) = σ2(Xi). It should be said that
the perceived errors are due to neglected heterogeneity factors, rather than mispricings
exploited by arbitrage strategies, see Renault (1997). Figure 3 depicts the call option
prices data used to calculate a SPD. The observations are distributed with different vari-
ances at discrete grid points of strikes prices. For simplicity of notation, we write C(X)
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Figure 3: Plot of call option prices against strike prices 20010117

for Cτ (X). Assuming that C(X) is continuously differentiable of order p = 3, it can be
locally approximated by

C(X,X0) =

p∑
j=0

Cj(X)(X0 −X)j, (4)

where Cj(X) = C(j)(X)/j!, j = 0, . . . , p.

See Cleveland (1979), Fan (1992), Fan (1993), Ruppert and Wand (1994) for more details.
Assuming local Gaussian quasi-likelihood model, we arrive at:

Bnq{C(X)} =
1

nq

nq∑
i=1

Khnq
(Xi −X)Q{Yi, C(X,Xi)}, (5)

where Khnq
(Xi−X) is a (Gaussian) kernel function with a bandwidth sequence hnq . The

vector of solutions is C(X) = {C0(X), C1(X), . . . , Cp(X)}> is obtained via the optimiza-
tion problem

Ĉ(X) = arg max
X∈E

Bnq{C(X)}, (6)
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where E is a certain compact set. This is equivalent to solving

Anq(X)
def
=

1

nq

nq∑
i=1

Khq(Xi −X)
∂Q{Yi, C(X,Xi)}

∂C
Xi = 0, (7)

with Xi
def
= (1, Xi − X, (Xi − X)2, (Xi − X)3)>. We are concerned with 2!Ĉ2(x) =

∂2C(X)
∂X2

∣∣
X=x

, which is shown by Breeden and Litzenberger (1978) to be proportional to
q(x).

In practice we assume a Gaussian quasi-likelihood function with Q{Y,C(X)} = 1/2{Y −
C(X)}2/σ2(X), which is equivalent to local least squares smoothing. Additionally note
that we assume the parameter C(.) and σ(.) to be orthogonal to each other. Thus we
can estimate them separately as in a single parameter case. Let Anq ,j denote the jth
component of the vector equation Anq . This component corresponds to the j-th derivative
of the option price evaluated at X. The following lemma states the results on the existence
of the solution and its consistency.

Lemma 1 Under conditions (A1) − (A5), there exists a sequence of solutions to the
equations

Anq(x) = 0

such that
sup
x∈E
|q̂(x)− q(x)| = O

[
h−2nq
{log nq/(nqhnq)}1/2 + h2nq

]
a.s.

The density of the returns can be estimated separately from the SPD using historical
prices S1, . . . , Snp of the underlying asset. The nonparametric kernel estimator of pST

is
given by

p̂(x) = n−1p

np∑
j=1

Khnp
(x− Sj),

where hnp is the bandwidth of the kernel L which not necessarily coincides with the kernel
for q. Under assumption (A5), we know that

sup
x∈E
|p̂(x)− p(x)| = O{(nphnp/ log np)

−1/2 + h2np
}. (8)

The estimator of the EPK is then given by the ratio of the estimated SPD and the risk-
neutral density, i.e. K̂(x) = q̂(x)/p̂(x). The next lemma provides the linearization of the
ratio, which is important for further statements about the uniform confidence band of the
EPK.

Lemma 2 Under conditions (A1)-(A5) it holds

sup
x∈E
|K̂(x)−K(x)|

= sup
x∈E

∣∣ q̂(x)− q(x)

p(x)
− p̂(x)− p(x)

p(x)
· q(x)

p(x)
− {q̂(x)− q(x)}{p̂(x)− p(x)}

p2(x)

∣∣
+O[max{(nphnp/ log np)

−1/2 + h2np
, h−2nq
{nqhnq/ log nq}−1/2 + h2nq

}]. (9)
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This lemma implies that the stochastic deviation of K̂ can be linearized into a stochastic
part containing the estimator of the SPD and a deterministic part containing E[p̂(x)]. The
uniform convergence can be proved by dealing separately with the two parts. The conver-
gence of the deterministic part is shown by imposing mild smoothness conditions, while
the convergence of the stochastic part is proved by following the approach of Claeskens
and Van Keilegom (2003). Theorem 1 formalizes this uniform convergence of the EPK.

Theorem 1 Under conditions (A1)− (A5) and for all x ∈ E, it holds

sup
x∈E
|K̂(x)−K(x)| = O[max{(nphnp/ log np)

−1/2+h2np
, h−2nq
{nqhnq/ log nq}−1/2+h2nq

}] a.s.

The proof is given in the appendix.

3 Confidence intervals and confidence bands

Confidence intervals characterize the local precision of the EPK for a given fixed value
of the payoff. This allows to test EPKs at each particular return, but does not allow
conclusions about the global shape. The confidence bands, however, characterize the
whole EPK curve and offer therefore the possibility to test for shape characteristics. In
particular, it is a way to check the persistence of the bump as observed. Give a certain
shape rejection, one may verify the restriction imposed by the power utility and obtain
insights about the risk aversion of the agents. In addition, the confidence bands can be
used to measure the global variability of the EPK. Also, the proportion of BS fitting
covered in nonparametric bands can be used as a measure of global risk aversion.

A confidence interval for the EPK at a fixed value x requires the asymptotic distribution
of p̂(x) and q̂(x). Hereafter, we use L to denote the convergence in law. Under (A1)-(A5):√

nphnp{p̂(x)− p(x)} L−→ N{0, p(x)

∫
K2(u)du}

and √
nqh5nq

{q̂(x)− q(x)} L−→, N{0, σ2
q (x)},

where σ2
q = [B(x)−1N−1TN−1](3,3), with B(x) equal to the product of the density fX(x)

of the strike price and the local Fisher information matrix I{C(x)}. The matrices N and

T are given by N
def
= [
∫
ui+jK(u)du]i,j and T

def
= [
∫
ui+jK2(u)du]i,j with i, j = 0, . . . , 3.

This implies the asymptotic normality of the estimated EPK at a fixed payoff x. More
precisely √

nqh5q{K̂(x)−K(x)} L−→ N{0, σ2
q (x)/p2(x)}.

Let the time point t and the time to maturity τ be fixed. The respective EPK is denoted
by K̂(x)). The variance of K̂ = K̂(x) is given by

Var{K̂(x)} ≈ {p(x)}−2B−1(x)N−1TN−1. (10)

Let Dn(x) be the standardized process:

Dn(x)
def
= n1/2

q hnq

5/2{K̂(x)−K(x)} / [Var{K̂(x)}]1/2.

Relying on the linearization in Lemma 2, we derive the confidence band for K.
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Theorem 2 Under assumptions A(1)-(A5) it follows

P

[
(−2 log hnq)

1/2

{
sup
x∈E
|D̂n(x)| − cnt

}
< z

]
−→ exp{−2 exp(−z)},

where cnt = (−2 log hnq)
1/2 + (−2 log hnq)

−1/2{xα + log(R/2π)}.

The (1− α)100% confidence band for the pricing kernel K is thus:

[f : sup
x∈E
{|K̂(x)− f(x)| / V̂ar(K̂)1/2} ≤ Lα],

where Lα = 2!(nqh
5
nq

)−1/2cnt, xα = − log{−1/2 log(1− α)} and

R = (N−1MN−1)3,3/(N
−1TN−1)3,3 with M = [

∫
ui+j{K ′hnq

(u)}2du − 1
2
{i(i − 1) + j(j −

1)}
∫
ui+j−2K2

hnq
(u)du]i,j=0,...,3.

For the implementation with real data we need a consistent estimator of Var(K̂). For fixed
τ , we rely on the delta method and use the empirical sandwich estimator, see Carroll,
Ruppert and Welsh (1998). The latter method provides the variance estimator for the
parameters obtained from estimating equations given by (7).

For the data points (Xit, Yit), i = 1, · · · , n; t = t+ 1, · · · , t+ τ , we have

V̂ar{K̂(x)} = {p̂(x)}−2V (x)−1U(x)V (x)−1,

where

V (x) =
1

nqτ

nq∑
i=1

t+τ∑
j=t+1

K2
hnq

(Xij − x)

[
∂

∂C
Q{Yij ; Ĉ(x,Xij)}

]2
(H−1nq

Xij)(H
−1
nq

Xij)
>, (11)

U(x) =
1

nqτ

nq∑
i=1

t+τ∑
j=t+1

K2
hnq

(Xij − x)

[
∂2

∂2C
Q{Yij ; Ĉ(x,Xij)}

]
(H−1nq

Xij)(H
−1
nq

Xij)
>, (12)

where Xij = (1, · · · , (Xij−x)3)> and hnq = diag{1, . . . , h3nq
}. The estimator is consistent

in our setup as motivated in Appendix A.2 of Carroll et al. (1998).

3.1 The sheet in maturity dimension

Note that the asymptotic behavior of q̂(x)−q(x) if correctly standardized does not depend
on τ . If we estimate the variance function of K̂τ (x) in time, we can extend the confidence
band as a sheet to the τ dimension. Let x be the set of maturities of interest. The joint
confidence sheet over payoff and maturity is given by

[f : sup
x∈E,τ∈x

{|K̂τ (x)− f(x)| / Var(K̂τ )1/2} ≤ Lα].

In the BS setup we can actually provide an explicit link between the EPKs for different
maturities. For fixed maturity τ , interest rate r we obtain from the normal form of p and
q:

Kτ (x) = exp{(µ− r)(µ+ r − σ2)τ

2σ2
}( x
St

)(µ−r)/σ
2

.
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Figure 4: Examples of sheet for pricing kernels in 060228

This implies

Kτ1(x)/Kτ2(x) = exp{(µ− r)(µ+ r − σ2)(τ1 − τ2)/(2σ2)}
= [exp{τ1 − τ2}]c(µ,r,σ) = g(τ1 − τ2),

for any fixed τ1 and τ2, i.e. the log difference of the PKs is proportional to the difference
of the maturities. In fact, this gives us some insight into the evolution of the sheet
over maturities. More precisely, for known characteristics of the band for fixed τ1, the
confidence band for τ2 is given by

[f : ĝ(τ1 − τ2){−LαV̂ar(K̂τ1) + K̂τ1(x)} ≤ f(x) ≤ ĝ(τ1 − τ2){LαV̂ar(K̂τ1) + K̂τ1(x)}]

for all x ∈ E.

3.2 Confidence bands based on smoothing implied volatility

The construction of the EPK estimator can be stabilized by a two-step procedure as in
Rookley (1997), Fengler (2010). At the first step, we estimate the implied volatility (IV)
function by a local polynomial regression. At the second step, we plug the smoothed IV
into the BS formula to obtain a semiparametric estimator of the option price. Since the
BS model is homogeneous with respect to the asset price and the strike price we smooth
the IV using a local polynomial regression in moneyness (Mt). In the absence of dividends,
it is defined at time t as Mit = St/Xi. The heteroscedastic model for the IV is given by:

σi = σ(Mit) +
√
η(Mit)υi, i = 1, . . . , nq, (13)
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where υi are the i.i.d. errors with zero mean and unit variance and η(·) is the volatility
function.

Defining the rescaled call option price by c(Mit) = Ci/St, we obtain from the BS formula

c(Mit) = c{Mit;σ(Mit)} = Φ{d1(Mit)} −
e−rτΦ{d2(Mit)}

Mit

,

where

d1(Mit) =
log(Mit) +

{
rt + 1

2
σ(Mit)

2
}
τ

σ(Mit)
√
τ

, d2(Mit) = d1(Mit)− σ(Mit)
√
τ .

Combining the result of Breeden and Litzenberger (1978) with the expression for c(Mit)
leads to the SPD

q(X) = erτ
∂2C

∂X2
= erτSt

∂2c

∂X2
(14)

with
∂2c

∂X2
=

d2c

dM2

(
M

X

)2

+ 2
dc

dM

M

X2
. (15)

As it is shown in the appendix the derivatives in the last expression can be determined
explicitly and are functions of V = σ(M), V ′ = ∂σ(M)/∂M and V ′′ = ∂2σ(M)/∂M2.
We estimate the latter quantities by the nonparametric local polynomial regression for
the IV of the from

σ(Mit) = V (M) + V ′(M)(Mit −M) +
1

2
V ′′(M)(Mit −M)2.

The respective estimators are denoted by V̂ , V̂ ′ and V̂ ′′. Plugging the results into (14)-
(15) we obtain the estimator of SPD in the smoothed IV space. Assuming that the IV
process fulfills the the assumptions (A1)-(A5) in the appendix, we conclude that Theorem
2.1 of Claeskens and Van Keilegom (2003) holds also for V̂ , V̂ ′ and V̂ ′′. Note that the
convergence rate of V̂ and V̂ ′ is lower than of V̂ ′′. Relying on this fact, we state the
asymptotic behavior of q̂(x)− q(x) in the next theorem.

Theorem 3 Let σ(Mit) satisfy the assumptions (A1)-(A5). Then

q̂(x)− q(x) = erτSt
M2

X2

[
φ{d̂1(M)}

{√
τ/2− log(M) + rτ

V̂ (M)2
√
τ

}
−e−rτφ{d̂2(M)}

{
−
√
τ/2− log(M) + rτ

V̂ (M)2
√
τ

}]
{V̂ ′′(M)− V ′′(M)}

+O{V̂ ′′(M)− V ′′(M)}.

Theorem 3 allows us to construct the confidence bands of the SPD estimated semipara-
metrically using the confidence bands for the IV. The variance of the estimator is obtained
by the delta method in the following way

Var{q̂(x)− q(x)} =
( ∂q

∂V ′′

)2
Var{V̂ ′′(M)− V ′′(M)}.

Here it is sufficient to consider only the variance of second derivative of V . The first
derivative and V itself can be neglected. The variance Var{V̂ ′′(M)−V ′′(M)} is estimated
using sandwich estimator similarly to (10).
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3.3 Bootstrap confidence bands

Hall (1991a) showed that for density estimators, the supremum of {q̂(x)−q(x)} converges
at the slow rate (log nq)

−1 to the Gumbel extreme value distribution. Therefore the con-
fidence band may exhibit poor performance in finite samples. An alternative approach is
to use the bootstrap method. Claeskens and Van Keilegom (2003) used smooth bootstrap
for the numerical approximation to the critical value. Here we consider the bootstrap
technique of the leading term in Lemma 2

sup
x∈E
| q̂(x)− q(x)

p(x)
|.

We resample data from the smoothed bivariate distribution of (X, Y ), the density esti-
mator is:

f̂(x, y) =
σ̂X

nqhnqhnq σ̂Y

nq∑
i=1

K
{Xi − x

hnq

,
(Yi − y)σ̂X
hnq σ̂Y

}
,

where σ̂X and σ̂Y are the estimated standard deviations of the distributions of X and Y .
The motivation of using the smooth bootstrap procedure is that a Rosenblatt transfor-
mation requires the resampled data (X∗, Y ∗) to be continuously distributed.

From the re-sampled data sets, we calculate the bootstrap analogue:

sup
x∈E
| q̂
∗(x)− q̂(x)

p̂(x)
|.

One may argue that this resampling technique does not correctly reflect the bias arising
in estimated q, Härdle and Marron (1991) use therefore a resampling procedure based on
a larger bandwidth g. This refined bias-correcting bootstrap method is not required in
our case, since the bandwidth conditions ensure a negligible bias asymptotically.

Correspondingly, we define the one-step estimator for the stochastic deviation by:

h2nq
{K̂(x)∗ − K̂(x)} = −{p(x)}−2{U(x)−1H−1nq

A∗nq
(x)}3,3

with the variance estimated from the bootstrap sample as:

Var{K̂(x)} ≈ {p(x)}−2B(x)−1N−1M∗N−1. (16)

Lemma 3 Assume conditions (A1)-(A5), a (1 − α)100% bootstrap confidence band for
the EPK K(x) is:

[f(x) : sup
x∈E
{|K̂(x)− f(x)|V̂ ar(K̂)−1/2} ≤ L∗α],

where the bound L∗αj
satisfies

P∗[−{U(x)−1H−1nq
A∗nq

(x)}3,3 / {B(x)−1N−1M∗N−1}3,3 ≤ L∗α] = 1− α.

12



4 Monte-Carlo study

The practical performance of the above theoretical considerations is investigated via two
Monto-Carlo studies. The first simulation aims at evaluating the performance under the
BS hypothesis, while the second simulation setup does the same under a realistically
calibrated surface. The confidence bands are applied to DAX index options. We first
study the confidence bands under a BS null model. Naturally, without volatility smile,
both the BS estimator and nonparametric estimator are expected to be covered by the
bands. While in the presence of volatility smile, we expect our tests to reject the BS
hypothesis in most cases.

4.1 How well is the BS model covered?

In the first setting, we calibrate a BS model on day 20010117 with the interest rate set
equal to the short rate r = 0.0481, S0 = 6500, strike prices in the interval [6000, 7400].
We refer to Aı̈t-Sahalia and Duarte (2003) on the sources of the noise and use an identical
simulation setting, with the noise being uniformly distributed in the interval [0, 6]. Fig 5
is a scatter plot of generated observations, the data is clustered in discrete values of the
strike price.

Figure 6 shows a nonparametric estimator for the SPD and a parametric BS estimator.
The two estimators roughly coincide except for a small wiggle, thus the bands drawn
around the nonparametric curve also fully cover the parametric one. The accuracy is
evaluated by calculating the coverage probabilities and average area within the bands,
see Table 1 and Table 2. The coverage probabilities is determined via 500 simulations,
whenever the hypothesized curve calculated on a grid of 100. The coverage probability
approaches its nominal level with the sample size. The bands get narrower with increasing
sample sizes. However, the coverage probabilities never reach the nominal level, which
may well be attributed to the above mentioned poor convergence of Gaussian maxima to
the Gumbel distribution. The area within the bands reflects the stability of the estimation
procedure.

Table 1: Coverage probability (area) of the uniform confidence band at 10% with annu-
alized volatility = 0.1878 for SPD

τ / n 300 450 600

3M 0.7945(2.17) 0.8123(2.06) 0.8533(1.88)
6M 0.8002(2.34) 0.8143(2.08) 0.8595(1.94)

Table 2: Coverage probability (area) of the uniform confidence band at 5% with annualized
volatility = 0.1878 for SPD

τ / n 300 450 600

3M 0.9063(2.402) 0.9144(2.204) 0.9233(1.998)
6M 0.8964(2.438) 0.9056(2.134) 0.9203(2.069)

Historical densities are estimated from simulated stock prices following geometric Brow-
nian motion with µ = 0.23. Therefore, a BS EPK estimator could be tested using the
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Figure 5: Generated noisy BS call option prices against strike prices

above procedure. Due to boundary effects, we concentrate on moneyness (Mt = St/X)
in [0.95, 1.1]. Figure 7 displays the nonparametric EPK with confidence band and the
BS EPK covered in the band. We observe that the BS EPK is strictly monotonically
decreasing. The summary statistics is given in Table 3 and Table 4, due to the additional
source of randomness introduced through the estimation of p(x), the coverage probabili-
ties are less precise than the corresponding coverage probabilities for SPD. Nevertheless,
the probabilities are getting closer to their nominal values and the bands get narrower
when the sample size increases.

Table 3: Coverage probability (area) of the uniform confidence band for the EPK at 5%
with volatility(annualized) = 0.1878

M/n 300 450 600

3 0.7820(2.5434) 0.7980(2.4978) 0.8020(2.3876)
6 0.8602(2.4987) 0.8749(2.4307) 0.8900(2.4131)

Table 4: Coverage probability (area) of the uniform confidence band for the EPK at 10%
with volatility(annualized) = 0.1878

M/n 300 450 600

3 0.7062(2.4714) 0.7356(2.3410) 0.7620(2.2310)
6 0.7289(2.5020) 0.7740(2.2304) 0.8290(2.3131)

4.2 How well is the band in reality?

Section 4.1 studied the performance of the bands under the BS null, while this section is
designed to investigate the performance of the bands when the null hypothesis is violated

14
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Figure 6: Estimation of SPD (red), bands (black) and the BS SPD (blue), with hnq =
0.085, α = 0.05, nq = 300

by a realistic volatility smile observed in the market. For the features of the implied
volatility smile we refer to e.g. Fengler (2005). Keeping the parameters identical to the
setup of the first study, we generated the data with a smoothed volatility function based
on 20010117 with τ = 3M, 6M to maturity.

Figure 8 and 9 report the estimators for SPD and EPK. The bands do not cover the BS
estimator. Correspondingly, Table 5 and Table 6 show the coverage probabilities, which
rapidly decrease when sample sizes are increasing. However, the area within the bands
does not change significantly when compared with the results of Section 4.1. We conclude
that the confidence bands are useful for detecting the deviation from the BS model.

Table 5: Coverage probability (area) of the uniform confidence band for the EPK at 5%

τ / n 300 450 600

3M 0.5120(2.4320) 0.1784(2.2340) 0.0500(2.0176)
6M 0.5920(2.5304) 0.4100(2.1678) 0.1780(2.0234)

Table 6: Coverage probability (area) of the uniform confidence band for the EPK at 10%

τ / n 300 450 600

3M 0.2580(2.1196) 0.0500(2.0483) 0.0300(2.0132)
6M 0.3746(2.2234) 0.4100(2.1324) 0.1780(2.0030)
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Figure 7: Estimation of EPK (red), bands (black) and the BS EPK (blue), with hnq =
0.085, α = 0.05, n = 300

5 An illustration with DAX data

5.1 Data

In contrast to previous studies that are mainly based on S&P500 data, we focus on intra-
day European options based on the DAX. The source is the European Exchange EUREX
and data available by C.A.S.E., RDC SFB 649 (http://sfb649.wiwi.hu-berlin.de) in Berlin.
The extracted observations for our analysis cover the period between 1998 and 2008. Fig-
ure 10 shows the DAX index. The semiparametric SPD estimates of Rookley (1997) are
applied to estimate the EPK. We fix maturity and concentrate on the moneyness dimen-
sion. As we cannot find traded options with the same maturity on each day, we consider
options with maturity 15 days (10 trading days) across several years. Specifically, we
extract a time series of options for every month from Jan 2001 to Dec 2006; this adds up
to 63 days.

To make sure that the data correctly represents the market conditions, we use several
cleaning criteria. In our sample, we eliminate the observations with τ < 1D and IV > 0.7.
Also, we skip the option quotes violating general no-arbitrage condition i.e. S > C >
max{0, S−Ke−rτ}. Due to the put-call parity, out-of-the-money call options and in-the-
money puts are used to compute the smoothed volatility surface. The median is used
to compute the risk neutral density. We use a window of 500 returns for nonparametric
kernel density estimators of HD.

Figure 11 describes the relative position of the HD and SPD on a specific day, the EPK
peak is apparently created through the different probability mass contributions at different
moneyness states.
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Figure 8: Plot of confidence bands (black), estimated value (red), the BS (blue) SPD with
simulated volatility smile, np = 2000, nq = 300, hnq = 0.06, hnp = 0.0106, α = 0.05.

Figure 9: Plot of confidence bands (black), estimated value (red), the BS (blue) EPK
with simulated volatility smile np = 2000, nq = 300, hnq = 0.06, hnp = 0.0106, α = 0.05.
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Figure 11: Plot of estimated state price density (Rookley’s method, hnq = 0.0600) (black)
and historical density (hnp = 0.0106)(blue) for 20060228
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5.2 Estimation of DAX EPK and its uniform confidence band
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Figure 12: BS EPK (black), Rookley EPK (red), Uniform Confidence band (blue) for
α = 0.05

We consider two specifications for the pricing kernels. In the first specification, the BS
pricing kernels have a marginal rate of substitution with power utility function:

K(M) = β0M
−β1 , (17)

where β0 is a scaling factor and β1 determines the slope of pricing kernel. Thus the BS
calibration is realized by linearly regressing the (ordered) log-EPK on log-moneyness. In
the second specification, we construct the nonparametric confidence bands as described
in Section 3.2,. A sequence of EPKs and corresponding bands are shown in Figure 12.
In most of the cases, the BS EPKs are rejected via the confidence bands. The amount of
deviation from the hypothesized BS specification though provides us valuable information
about how risk hungry investors are. Besides, the area of the bands varies over time, which
gives us insights into the variabilities of the prevailing risk patterns. In sum, the bands not
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only provide a simple test for hypothesizes EPKs but also help us to study the dynamics
risk patterns over time.

200101 200112 200208 200302 200411 200509 200611
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13: Coverage probability and the DAX index ( rescale to [0, 1])
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Figure 14: First difference of coverage probability and the DAX index return (standard-
ized)

5.3 Linking economic conditions to EPK dynamics

We use two different indicators for the deviation from the simple BS model. As an
approximation to the coverage probability, we calculate the proportion of grid points of
the band which covers the BS EPK. As a second measure, we introduce the average width
of the confidence band over the moneyness interval [0.95, 1.1] as a proxy for the area
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between the confidence bands. This provides us with a measure of variability, see also
Theorem 2.

The first risk pattern time series are given in Figure 13, where we display the DAX index
(scaled to [0, 1]) together with the coverage probability. We discover that the coverage
probability becomes less volatile when the DAX index level is high. Figure 14 shows the
differenced time series. From a simple correlation analysis, we argue that the change in
coverage probability and DAX return (with a lag of 3M) are highly negatively correlated
(correlation −0.3543) when the DAX index goes down (200101-200302). On the contrary,
in the period when the DAX goes up, one observes a large positive correlation (0.3151).
What does this mean economically? This implies in a period of worsening economic
condition, a positive part of the monthly DAX returns induces a greater hunger for risk in
a delay horizon of 3 months. Positive returns have just the opposite effects. With boosting
and bullish markets, the positive correlation indicates a 3-month horizon of decreasing
risk aversion.

As far as the average width of the bands is concerned, we may conclude from Figure 15
and Figure 16 that in periods of clearly bullish or bearish momentum, the volatility of
the width of the confidence band is higher. This may be caused by the uncertainty of
the market participants about the long-term persistence of the trend. The lag effect on
risk hunger is also detectable for this constructed indicator. Over the whole observation
interval, the correlation between the monthly DAX return and the change in the average
width is −0.3230 for a 1M lag and −0.2717 for 3M.
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Figure 15: Area between the bands and the DAX index (scaled to [0, 1])

6 Conclusions

Pricing Kernels are important elements in understanding investment behavior since they
reflect the relative weights given by investors states of nature (Arrow-Debreu securities).
Pricing kernels may be deduced in either parametric or nonparametric approaches. Para-
metric approaches like a simple BS model are too restrictive to account for the dynamics
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Figure 16: First difference of the area between the bands and the DAX index return
(standardized)

of the risk patterns, which induces the well-known EPK paradox. Nonparametric ap-
proaches allow more flexibility and reduce the modeling bias. Simple tools like uniform
confidence bands help us to conduct tests against any parametric assumption of the EPKs
i.e. shape inspection. Considering the numerical stability, we smooth the IV surface via
the Rookley’s method, to obtain SPD estimator.

We have studied systematically the methodology of constructing the uniform bands for
both semiparametric or nonparametric estimators. Based on the confidence bands, we
explored two indicators to measure risk aversion over time and connected it with DAX
index, one is the coverage probability measuring the proportion of the BS fitting curve
covered in bands, while another one is the area indicator measuring the variability of the
estimator. We have found out that there are strong correlations between DAX index and
our indicators with lag effects. The smooth bootstrap is studied without a significant
improvement in finite sample performance. One interesting further extension would be
employing robust smoothers to improve the bootstrap performance.

7 Appendix

Assumptions:

(A1) hnq → 0 in such a way that {log nq/(nqhnq)}1/2h3nq
→ 0, and the optimal band-

width, to guarantee undersmoothing, is of order O{(log nqnq)
1/4[(p−j)/2]+3+2j+α}, where

j = 0, 1, 2, 3, and α > 0.

(A2) The kernel function K ∈ C(1)[−1, 1] and takes value 0 on the boundary.

(A3) For the likelihood function Q ∈ C(1)(E) it holds that infx∈E Q(x) > 0. C(x) ∈
C(4)(E). Additionally the third partial derivatives of Q(Y,C) with respect to C exists
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and is continuous in C for every y. The Fisher information I(C(x)) has a continuous
derivative and infx∈E I{C(x)} > 0.

(A4) There exists a neighborhood N(C(x)) such that

max
k=1,2

sup
x∈E
|| sup
C∈N{C(x)}

∂k

∂Ck
Q(y;C)||λ <∞

for some λ ∈ (2,∞]. Furthermore

sup
x∈E

E[ sup
C∈N(C(x))

| ∂
3

∂C3
Q(y;C)|] <∞.

(A5) The density of underlying p(x) is three times continuously differentiable.

(A6) Let anp = (nphnp/ log np)
−1/2 + h2np

from (8) and bnq = h−2nq
(nqhnq/ log nq)

−1/2 + h2nq

from Lemma 1. We assume that nq/np = O(1) and anp/bnq = O(1).

7.1 Proof of Lemma 1

We follow the approach of Zhao (1994) also deployed by Claeskens and Van Keilegom
(2003). Consider the disturbed coefficients of the local polynomial

Cε(x,X0) =

p∑
j=0

{Cj(x) + εnqj}(X0 − x)j,

where εnqj are positive-valued sequences for j = 0, . . . , p + 1. This leads to the modified
system of equations

Anqj,ε(x) =
1

nq

nq∑
i=1

Khnq
(Xi − x)

∂Q{Yi, Cε(x,Xi)}
∂C

(Xi − x)j.

Similarly to Lemma 2.2 of Härdle, Janssen and Serfling (1988) and using assumptions
(A1)-(A4), we obtain

sup
x∈E

sup
C∈N{C(x)}

√
nqhnq

log nq

∣∣∣ 1

nqhnq

nq∑
i=1

Khnq
(Xi − x)

∂Q{Yi, C(x,Xi)}
∂C

(Xi − x)j

hjnq

−E
{ 1

nqhnq

nq∑
i=1

Khnq
(Xi − x)

∂Q{Yi, C(x,Xi)}
∂C

(Xi − x)j

hjnq

}∣∣∣ = O(1) (a.s.).

This implies that supx∈E |Anqj,ε(x)−EAnqj,ε(x)| = O[hjnq
{log nq/(nqhnq)}1/2] = `nqj (a.s.).

Particularly this implies, that (a.s.) |Anqj,ε(x) − EAnqj,ε(x)| ≤ `nqj for appropriate εnq .
Consider the first order Taylor expansion of ∂Q{Yi, Cε(x,Xi)}/∂C around the true values
of the parameters Cj(x) of the polynomial regression.

∂Q{Y,Cε(u,X)}
∂C

≈ E
[∂Q{Y,C(X)}

∂C

]∣∣∣
X=u

+ E
[∂2Q{Y,C(X)}

∂C2

]∣∣∣
X=u
· {Cε(u,X)− C(u)}.
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Noting that E
[
∂Q{Y,C(X)}

∂C

]
= 0 we obtain

E{Anqj,ε(x)} = −E
( 1

nq

nq∑
i=1

Khnq
(Xi − x)(Xi − x)j E

[
− ∂2Q{Yi, C(X)}

∂C2

]∣∣∣
X=u

×{C(u,Xi)− C(u) +

p∑
j∗=0

εnqj∗(Xi − u)j
∗}
)
.

Note that sup|u−x|≤hnq

∑p
j∗=0(u − x)j

∗ ∫
uj

∗
Khnq

(u)du = O(1). We decompose the ex-

pectation into two parts, one containing C(u,Xi)− C(u) and the second one containing∑p
j∗=0 εnqj∗(Xi − u)j

∗}. Let p̃ = 2([p/2] + 1) and

ωj(hnq)
def
= h2[(p−j)/2]+1

nq

∫
up̃+jKhnq

(u)du · sup
x∈E

Cp̃(x) = O(h2{[(p−j)/2]+1}
nq

).

The first part is bounded above by Mωj(hnq) for some constant M , while the second
part is bounded by 2`nqj. Choosing εnqj = O(max[2ωj(hnq), 4`nqj/M ]) we obtain that
E[Anqj,ε(x)] ≤ −1

2
Mεnqj. Similarly we can show that E[Anqj,−ε(x)] ≥ 1

2
Mεnqj. This

implies that Anqj,ε(x) ≤ `nqj − 1
2
Mεnqj < 0 and Anqj,−ε(x) ≥ −`nqj + 1

2
Mεnqj > 0. Thus

there exists a sequence of estimators Ĉj(x) such that supx∈E |Ĉj(x)− C(x)| ≤ εnqj. The
choice of εnqj implies for j = 2

sup
x∈E
|q̂(x)− q(x)| = O[h−2nq

{log nq/(nqhnq)}1/2 + h2nq
] (a.s.)

7.2 Proof of Lemma 2

Recall from Lemma 1 and (8) that

sup
x∈E
|p̂(x)− p(x)| = O{{log nq/(nqhnq)}1/2 + h2np

} = O(anp),

sup
x∈E
|q̂(x)− q(x)| = O[h−2nq

{log nq/(nqhnq)}1/2 + h2nq
] = O(bnq).

To determine the order of the EPK we linearize the ratio q(x)/p(x).

K̂(x)−K(x) =
q̂(x)

p̂(x)
− q(x)

p(x)
=
q̂(x)p(x)− p̂(x)q(x)

p2(x)
· 1

1 + p̂(x)−p(x)
p(x)

.

We decompose the first factor as q̂(x)p(x) − p̂(x)q(x) = {q̂(x) − q(x)}p(x) − {p̂(x) −
p(x)}q(x), while for the second factor we use the first order Taylor expansion. Putting
together we obtain

sup
x∈E
|K̂(x)−K(x)| = sup

x∈E
| q̂(x)− q(x)

p(x)
− p̂(x)− p(x)

p(x)
· q(x)

p(x)

−{q̂(x)− q(x)}{p̂(x)− p(x)}
p2(x)

+
{p̂(x)− p(x)}2

p2(x)
· q(x)

p(x)
|.

The first two elements are of order O(bnq) and O(anp) respectively, while the last element
is of order O(anp). Summarizing we conclude that

sup
x∈E
|K̂(x)−K(x)| = O[max{anp , bnq}].
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7.3 Proof of Theorem 2

The basic idea of the proof is to approximate the process

Dnq(x) = n1/2
q h5/2nq

{K̂(x)−K(x)}/[V̂ar{K̂(x)}]1/2

by a process with a non-stochastic variance term, which is further approximated by a
process that can be treated with the tools of Claeskens and Van Keilegom (2003). Here
we drop for the simplicity of notation the indices in nq and hnq . As first approximation
we define

D(1)
n (x)

def
= n1/2h5/2{K̂(x)−K(x)}/{VK(x)}1/2,

where VK(x) = Var{K̂(x)} is given in equation (10). Lemma 2 ensures that the approxi-
mation by

n1/2h5/2{q̂(x)− q(x)}/{p(x)VK(x)1/2} (18)

is uniformly of order Op{(log n)−1/2}. The process in equation (18) can be approximated
as in Claeskens and Van Keilegom (2003) by

2! exp(rτ)h2fX(x)−1/2VK(x)−1/2I{C(x)}−1/2
3∑
i=0

fX(x)−1/2I{C(x)}−1/2{N−1}3,i+1An,i(x)

(19)
For the definition of the local Fisher information, I{C(x)}, the matrix N and the process
Ani(x), we refer to Section 3 and Section 7. Define

Yni(x)
def
= (nh)1/2h−i[I{C(x)}fX(x)]−1/2Ani(x).

Then equation (19) can be written as

Fn(x)
def
= 2! exp(rτ)h2{fX(x)}−1/2VK(x)−1/2I{C(x)}−1/2

3∑
i=0

hi{N−1}3,i+1Yni(x)

Please note that N is not a function of x as Claeskens and Van Keilegom (2003) erro-
neously write. Following their line of thoughts, we replace Yni(x) (uniformly) by

Y ′ni(x) = h1/2
∫
Kh(z − x)

(z − x
h

)
dz.

In order to apply Corollary A1 of Bickel and Rosenblatt (1973), denote the covariance
function of the Gaussian process Fnq(x) by r(x), and note that

r(x) = Cov(Y ′nj(x), Y ′nj(0)) = C1 − C2|x|2 + O(|x|2)

for x ∈ E, where C1 and C2 are constants. Since the regularity conditions are satisfied,
the result follows.

Finally, we have to show that supx∈E |V̂ar{K̂(x)} − Var{K̂(x)}| = Op(1).

sup
x∈E
|V̂ar{K̂(x)} − Var{K̂(x)}|

= sup
x∈E
|V̂ar

{ q̂(x)− q(x)

p(x)

}
− Var

{ q̂(x)− q(x)

p(x)

}
|+ Op{(nh)−(1/2+α)(log n)1+α},
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where 0 < α < 1.

According to Corollary 2.1 in Claeskens and Van Keilegom (2003), for j = 3, k = 3,

sup
x∈E
|V̂ar{q̂(x)} − Var{q̂(x)}| = Op{(nh log n)−1/2}.

This implies
sup
x∈E
|V̂ar{K̂(x)} − Var{K̂(x)}| = Op(1).

7.4 Expressions for the semiparametric estimator of SPD

Taking the derivatives of c(Mit) with respect to moneyness (M) and noting that both
d1(Mit) and d2(Mit) depend on Mit we obtain

dc

dM
= ϕ(d1)

dd1
dM
− e−rτ ϕ(d2)

M

dd2
dM

+ e−rτ
Φ(d2)

M2
,

d2c

dM2
= ϕ(d1)

{ d2d1
dM2

− d1
(

dd1
dM

)2}
−e
−rτϕ(d2)

M

{ d2d2
dM2

− 2

M

dd2
dM
− d2

(
dd2
dM

)2}
− 2e−rτΦ(d2)

M3

Computing the first and second order differentials for d1 and d2 using the notation V =
σ(M), V ′ = ∂σ(M)/∂M and V ′′ = ∂2σ(M)/∂M2, we obtain

dd1
dM

=
1

MV
√
τ

+
{
− log(M) + rτ

V 2
√
τ

+
√
τ/2
}
V ′,

dd2
dM

=
1

MV
√
τ

+
{
− log(M) + rτ

V 2
√
τ

−
√
τ/2
}
V ′,

d2d1
dM2

= − 1

MV
√
τ

{ 1

M
+
V ′

V

}
+ V ′′

{√τ
2
− log(M) + rτ

V 2
√
τ

}
+V ′

{
2V ′

log(M) + rτ

V 3
√
τ

− 1

MV 2
√
τ

}
,

d2d2
dM2

= − 1

MV
√
τ

{ 1

M
+
V ′

V

}
+ V ′′

{
−
√
τ

2
− log(M) + rτ

V 2
√
τ

}
+V ′

{
2V ′

log(M) + rτ

V 3
√
τ

− 1

MV 2
√
τ

}
,
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