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Abstract

This paper uses the Bayesian approach to solve and estimate a New Keynesian model
augmented by a generalized Phillips curve, in which the shape of the price reset hazards
can be identi�ed using aggregate data. My empirical result shows that a constant hazard
function is easily rejected by the data. The empirical hazard function for post-1983 periods
in the U.S. is consistent with micro evidence obtained using data from similar periods. The
hazard for pre-1983 periods, however, exhibits a remarkable increasing pattern, implying that
pricing decisions are characterized by both time- and state-dependent aspects. Additionally,
real rigidity plays an important role, but not as big a role as found in empirical studies using
limited information methods.
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1 Introduction

Since the early 90�s the New Keynesian paradigm has been widely used in the applied monetary
analysis. As a result, interest in the empirical investigation of price rigidity has been rekindled:
understanding how and to what extent prices adjust to changes in market conditions is funda-
mentally important in explaining short-run in�ation dynamics and non-neutrality of monetary
policy.

This paper is broadly related to progress in developing empirical models of sticky prices
based on the New Keynesian framework. The early empirical model of sticky prices was solely
based on the New Keynesian Phillips curve (hereafter: NKPC) under the Calvo pricing assump-
tion (See, e.g. Gali and Gertler, 1999, Gali et al., 2001 and Sbordone, 2002). These authors
estimated the NKPC with GMM, and found a considerable degree of price rigidity for both
the U.S. and Europe. The empirical price reset hazard rate is around 20% per quarter for the
U.S. and 10% for Europe. These results, however, are at odds with increasingly available micro
evidence in two ways. First, recent micro studies generally conclude that the average frequency
of price adjustments at the �rm�s level is not only higher, but also di¤ers substantially across
sectors in the economy1. Second, the Calvo assumption implies a constant hazard function,
meaning that the probability of adjusting prices is independent of the length of the time since
the last price revision, and the �at hazard function has been largely rejected by empirical evi-
dence from micro level data (See, e.g.: Cecchetti, 1986, Campbell and Eden, 2005 and Nakamura
and Steinsson, 2008a). Given these discrepancies between the macro and micro evidence, em-
pirical models allowing for more �exible price durations or hazard functions have become more
popular in the recent literature. Jadresic (1999) presented a staggered pricing model featuring
a �exible distribution over price durations and used simple OLS estimation to demonstrate that
the dynamic behavior of aggregate data on in�ation and other macroeconomic variables provide
information about the disaggregated price dynamics underlying the data. More recently, Sheedy
(2007) constructed a generalized Calvo model and parameterized the hazard function in such a
way that the resulting NKPC implied intrinsic in�ation persistence when the hazard function
was upward sloping. Based on this hazard function speci�cation, he estimated the NKPC using
GMM and found evidence of an upward-sloping hazard function. Coenen et al. (2007) developed
a staggered nominal contracts model with both random and �xed durations, and estimated the
generalized NKPC with an indirect inference method. Their results showed that price rigidity
is characterized by a very high degree of real rigidity, as opposed to modest nominal rigidity
with an average duration of about 2-3 quarters. Carvalho and Dam (2008) estimated a semi-
structural multi-price-duration model with the Bayesian approach, and found that allowing for
prices to last longer than 4 quarters is crucial to avoid underestimating the relative importance
of nominal rigidity. Their estimates, however, also imply a substantial degree of real rigidity
compared to the level deemed plausible in the macro literature (See: e.g. Woodford, 2003).

In this paper, I revisit these issues regarding real and nominal price rigidities by estimating
a fully-speci�ed DSGE model with the full information Bayesian approach. In the theoretical
part of this paper, I construct a DSGE model featuring nominal rigidity that allows for a �exible
hazard function of price setting and real rigidity following Basu (1995). I derive the generalized

1See: e.g. Bils and Klenow (2004), Alvarez et al. (2006) Midrigan (2007) and Nakamura and Steinsson (2008a)
among others.
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NKPC, which incorporates components such as lagged in�ation, future and lagged expectations
of in�ation and real marginal costs. This version of the Phillips curve nests the Calvo case in
the sense that, under a constant hazard function, e¤ects of lagged in�ation exactly cancel those
of lagged expectations, so that, as in the Calvo NKPC, only current real marginal cost and
expected future in�ation remains in the expression. In the general case, however, both lagged
in�ation and lagged in�ation expectations should be presented in the Phillips curve. Thanks to
this richer dynamic structure, the resulting NKPC provides a new analytical apparatus which
is capable to explore both forward- and backward-looking features of aggregate data, such as
in�ation.

Based on this generalized New Keynesian framework, my empirical analysis focuses on two
aspects of price rigidity that are directly related to the estimates of the structural parameters.
First, I am interested in the magnitude and especially the shape of the price reset hazard
function, as microeconometric studies so far deliver con�icting evidence2. The reason the micro
data fails to reach a consensus is that, �rst, those data sets di¤er substantially in the range
of goods included, the countries and time periods covered, and thereby make it di¢ cult to
compare results; and second, even though comprehensive micro data sets have now become
available, they are usually short compared to the aggregate time series. Most of the CPI or
PPI data sets for the U.S. or Europe are only available from the late 80�s 3. It is likely that
the shape of hazard functions depends on the underlying economic conditions, and is therefore
changing over the time periods of the collected data. As a result, conclusions drawn from a
short data set are not necessarily valid for other periods. It is therefore desirable to explore the
empirical shape of the hazard function by examining the long and consistent time series data
as a complement to micro studies. My empirical results show that, for the subsample from 1983
to 2008, the estimated hazard function largely resembles that found in the microeconometric
studies using data from similar periods. The hazard function is decreasing in the �rst two
quarters and then largely �at, with spikes at the 4th and 6th quarters after the �rst adjustment.
The estimated hazard function for periods before 1983 shows a similar pattern, but exhibits a
remarkable increasing trend after the 4th quarter. One interpretation of this �nding is that price
setting is characterized by both time- and state-dependent aspects, but, in a turbulent economic
environment, the state-dependent pricing plays a larger role in price decisions of the sticky
sectors. The reason that my generalized time-dependent model is capable to capture the state-
dependent pricing behavior in the data is the following: even though this framework literally
has no state-dependent feature, meaning that the hazard function does not change over time by
construction. In practice, however, one can apply it to data sets from di¤erent periods, in that
hazards do change in subsamples. Therefore, this framework is �exible enough to empirically
capture the state-dependent feature in the data, even though theoretically it is not.

Second, I study the magnitude of real rigidity implied by the estimates of the structural
parameters in the model. As discussed above, models using limited information methods tend
to �nd a high degree of real rigidity, even when allowing for a longer maximum price duration.
Coenen et al. (2007) limited the maximum contract duration to 4 quarters in their model, and

2The results of those work on the empirical hazard function is not conclusive. Some �nd strong support for
increasing hazard functions (e.g.: Fougere et al., 2005 and Sheedy, 2007), while others �nd evidence in favour of
decreasing hazards (e.g.: Campbell and Eden, 2005, Alvarez, 2007 and Nakamura and Steinsson, 2008a).

3For more details see Table 2 in Alvarez (2007)
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obtained a very high degree of real rigidity (0.004 for the U.S.)�de�ned as the sensitivity of new
price contracts to aggregate real marginal cost, while Carvalho and Dam (2008) allowed for a
longer price duration up to 8 quarters and, as a result, their estimate of real rigidity was improved
by a factor of 10. However, as discussed in Woodford (2003), a value of real rigidity should be
around 0.15 under plausible assumptions. I revisit this issue by using the Bayesian method
with a full-�edged DSGE model. The full information Bayesian method has some appealing
features in comparison to other methods employed in the literature. As pointed out by An and
Schorfheide (2007), this method is system-based, meaning that it �ts the DSGE model to a
vector of aggregate time series. Through a full characterization of the data generating process,
it provides a formal framework for evaluating misspeci�ed models on the basis of the data
density. In addition, the Bayesian approach also provides a consistent method for dealing with
rational expectations �one of the central elements in most DSGE models. My empirical �ndings
con�rm the conclusions drawn by Carvalho and Dam (2008) that over restrictive truncation of
the maximum duration tends to overestimate real rigidity at the expense of nominal rigidity. I
�nd that the estimated real rigidity is decreasing, while the implied average duration of prices
is increasing signi�cantly with a rise in the maximum duration. Last but not least, I �nd that
full information method improves the estimation result of real rigidity. The level of real rigidity
obtained in this paper is broadly in line with the plausible values of strategic complementarity
in pricing decisions.

Recently, identi�ability becomes an important issue in the Bayesian DSGE literature (See:
e.g. Canova and Sala, 2009 and Rios-Rull et al., 2009). In general, it is di¢ cult to make sure
that an identi�cation delivers sensible inference, because the mapping between reduced-form
coe¢ cients and the structural parameters is commonly subject to a highly inscrutable nonlinear
function based on theoretical assumptions in the model. A good identi�cation requires that
those theoretical assumptions, on which the mapping is based, should be robust or, at least,
not seriously misspeci�ed. In this paper, I am interested in identifying structural parameters
regarding real and nominal rigidities from coe¢ cients in the dynamic structure of the generalized
NKPC. The mapping between the hazard function and reduced form coe¢ cients is robust,
because the underlying assumption of the general form hazard function does not depend on
any particular pricing assumptions. In e¤ect, it nests a wide range of pricing assumptions in
the literature as limiting cases. On the other hand, estimated real rigidity depends on several
structural parameters, some of which su¤er from the under-identi�cation problem (de�ned in
Canova and Sala, 2009). In those cases, I conduct various sensitivity analyses to check robustness
of my results.

The remainder of the paper is organized as follows: in section 2, I present the model with
generalized time-dependent pricing and derive the New Keynesian Phillips curve; section 3
introduces the empirical method and the data I use to estimate the model, where the results
regarding real and nominal rigidities are then presented and discussed; section 4 contains some
concluding remarks.
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2 A Sticky Price DSGE Model

In this section, I present a DSGE model of sticky prices due to both nominal and real rigidities.
I introduce nominal rigidity by means of a general form of hazard functions4. A hazard function
of price setting is de�ned as the probabilities of price adjustment conditional on the spell of time
elapsed since the last price change. In this model, the hazard function is a discrete function
taking values between zero and one on its time domain. Many well known models of price
setting in the literature can be shown to imply hazard functions of one form or another. For
example, the most prominent pricing assumption of Calvo (1983) implies a constant hazard
function over the in�nite horizon. On the other hand, real rigidity is introduced similarly as in
Basu (1995), who emphasizes the intermediate input as a source of strategic complementarity
in price decisions.

2.1 Representative Household

A representative, in�nitely-lived household derives utility from the composite consumption good
Ct, and its labor supply Lt, and it maximizes a discounted sum of utility of the form:

max
fCt;Lt;Btg

E0

" 1X
t=0

�t

 
C1��t

1� � � �H
Lt
1+�

1 + �

!#
:

Here Ct denotes an index of the household�s consumption of each of the individual goods, Ct(i);
following a constant-elasticity-of-substitution aggregator (Dixit and Stiglitz, 1977).

Ct �
�Z 1

0
Ct(i)

��1
� di

� �
��1

; (1)

where � > 1, and it follows that the corresponding cost-minimizing demand for Ct(i) and the
welfare-based price index, Pt; are given by

Ct(i) =

�
Pt(i)

Pt

���
Ct (2)

Pt =

�Z 1

0
Pt(i)

1��di

� 1
1��

: (3)

For simplicity, I assume that households supply homogeneous labor units (Lt) in an economy-
wide competitive labor market5.

The �ow budget constraint of the household at the beginning of period t is

PtCt +
Bt
Rt
�WtLt +Bt�1 +

Z 1

0
�t(i)di: (4)

4 In the theoretical literature, the general time-dependent pricing model has been �rst outlined in Wolman
(1999), who studied some simple examples and found that in�ation dynamics are sensitive to di¤erent pricing
rules. Similar models have also been studied by Mash (2004) and Yao (2009).

5Even through it is arguable that assuming di¤erentiated labor inputs is more realistic and theoretically
desirable (see discussion in Woodford, 2003, Ch.3), my choice of uniform labor input can be justi�ed by the
following reasons: �rst, the homogeneous labor unit abstracts from the microfoundation that household packs
di¤erent labor types in a �xed proportion in a labor supply unit and sale it in the competitive labor market. Second,
I will introduce strategic complementarity through assuming intermediate inputs in the production function.
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Where Bt is a one-period nominal bond and Rt denotes the gross nominal return on the bond.
�t(i) represents the nominal pro�ts of a �rm that sells good i. I assume that each household owns
an equal share of all �rms. Finally this sequence of period budget constraints is supplemented
with a transversality condition of the form lim

T!1
Et

h
BT

�Ts=1Rs

i
> 0.

The solution to the household�s optimization problem can be expressed in two �rst order
necessary conditions. First, optimal labor supply is related to the real wage:

�
H
Lt
�C�t =

Wt

Pt
: (5)

Second, the Euler equation gives the relationship between the optimal consumption path and
asset prices:

1 = �Et

"�
Ct
Ct+1

��

RtPt
Pt+1

#
: (6)

2.2 Firms in the Economy

2.2.1 Production Technology

The production side of the economy is composed of a continuum of monopolistic competitive
�rms, each producing one variety of product i by using labor and all other intermediate products
as inputs6. Each �rm maximizes real pro�ts, subject to the production function

Yt(i) = ZtLt(i)
1�aMt(i)

a; (7)

where Zt denotes an aggregate productivity shock. Log deviations of the shock, ẑt; follow an
exogenous AR(1) process ẑt = �z ẑt�1 + "z;t, and "z;t is white noise with �z 2 [0; 1). Lt(i) is the
demand of labor by �rm i and Mt(i) is a composite intermediate input demanded by �rm i,
which is de�ned as follows:

Mt(i) � [
Z 1

0
Mt(i; k)

��1
� dk]

�
��1 : (8)

In equation (8), I assume that the composite intermediate input is aggregated in the same
way as consumption goods. Given these assumptions, the cost minimization yields optimal
demands for the k th intermediate input from �rm i:

Mt(i; k) =Mt(i)

�
Pt(k)

Pt

���
: (9)

I assume that, in the economy, all intermediate products, Yt(i); can serve either as intermediate
consumption goods or as inputs for the production of other intermediate products, and is given
as

6The intermediate-input assumption is motivated by Basu (1995), who shows that introducing intermediate
inputs is an important source of strategic complementarity in price setting. For earlier work, see Blanchard (1982).
Most recently, Nakamura and Steinsson (2008b) show that real rigidity introduced by this assumption �ts better
to the micro evidence of price adjustments.
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Yt(i) = Ct(i) +

Z 1

0
Mt(k; i)dk: (10)

Substituting intermediate consumption and intermediate inputs by the demand functions in
equations (2) and (9), I obtain the demand for intermediate good i:

Yt(i) =

�
Pt(i)

Pt

���
Yt; (11)

where Yt � Ct+
R 1
0 Mt(i)di. Note that in this economy, Yt should be interpreted as gross output,

while Ct represents the "value-added" output.

2.2.2 Pricing Decisions under Real Rigidity

Under assumptions of the �rms�side of the economy, each �rm determines pro�t-maximizing
nominal price P �t (i); given real marginal cost and the market demand for their goods (11)

max
Pt(i)

�t(i) = Yt(i)(
Pt(i)

Pt
�mct):

It can be shown that, in a symmetric general equilibrium, real marginal cost (mct) equals7:

mct =
(1� a)a�1

aa

�
�
H
Lt
�C�t

�1�a 1
Zt
: (12)

Note that even though �rms in the economy produce di¤erent goods using di¤erent inputs, �rms�
marginal costs are the same due to the symmetric input-output structure in the economy.

The �rst order condition for P �t (i) yields the following optimally pricing equation:

P �t
Pt
=

�

� � 1mct: (13)

Without nominal rigidity, the �rm�s price decision reduces to a simple period-by-period rule
which sets the optimal price proportional to the real marginal cost by a �xed markup. Because
real marginal cost is dependent only on aggregate variables, new prices should be common across
all resetting �rms.

To show how intermediate inputs give rise to real rigidity in this model, I log-linearize
equation (13), along with the marginal cost equation (12) and the production function (7)
around the deterministic steady state. Up to a log linear approximation, one can show that the
log deviation of the relative price from the steady state ( brpt) can be expressed as follows:

brpt = cmct =  (�1ĉt � �2ẑt) (14)

where :

 =
�(1� a) + a

�(1� a) + a(1 + �)
�1 = (� + �)(1� a)
�2 = 1 + �:

7The derivation is in Appendix (A).

6



In equation (14), parameters  and �1 can be regarded as measures of real rigidity. The elasticity
of relative prices to a change in real marginal cost is given by ; while �1 measures the sensitivity
of real marginal cost to the change in the output gap. Following Woodford (2003), price-
setting decisions are called strategic complementarity when �1 < 1. When we assume that
the monetary authority controls the growth rate of the nominal aggregate demand, m̂t, then
the equilibrium dictates that ĉt = m̂t � p̂t. In this case, price adjustments are �sticky� even
under a �exible price setting, because relative price reacts less than one-to-one to the monetary
policy shock. On the other hand, price setting decisions can be called strategic substitutes when
�1 > 1, so that relative price reacts strongly to monetary policy shocks. Finally the boundary
case where �1 = 1 can be called strategic neutrality.

Now we can discuss how changes in the intermediate inputs share, a; a¤ect the magnitude
of real rigidity of price setting in the model. When setting a equal to zero, creating a linear
production technology, then  = 1 and �1 = �+�. Under the commonly used calibration values
in the DSGE literature (� = 1; � = 1 and � = 10), the real rigidity parameter �1 is equal
to 2 and price decisions are strategic substitutes. When the value of a rises, the real rigidity
parameter becomes smaller, and price decisions become strategic complements to each other.
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Figure 1: Real Rigidity When � = 1; � = 1 and � = 10

In �gure (1), I plot values of  and �1 against values of a, while setting � = 1; � = 1 and
� = 10. In this special case, the elasticity of the relative price to a change in marginal cost, ;
is not sensitive to the input share, while �1 decreases linearly as a becomes larger. This means
that, given the parameter values, real rigidity is mainly driven by the sensitivity of real marginal
cost to changes in the output gap, and the degree of real rigidity is decreasing in a. With a
modest level of the intermediate input share (around 0:5), real rigidity drops below the strategic
neutrality threshold.
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2.3 Pricing Decisions under Nominal Rigidity

In this section, I introduce a general form of nominal rigidity, which is characterized by a
set of hazard rates depending on the spell of the time since last price adjustment. I assume
that monopolistic competitive �rms cannot adjust their price whenever they want. Instead,
opportunities for re-optimizing prices are dictated by the hazard rates, hj , where j denotes the
time-since-last-adjustment and j 2 f0; Jg. J is the maximum number of periods in which a
�rm�s price can be �xed.

2.3.1 Dynamics of the Price-duration Distribution

In the economy, �rms�prices are heterogeneous with respect to the time since their last price
adjustment. Table 1 summarizes key notations concerning the dynamics of the price-duration
distribution.

Duration Hazard Rate Non-adj. Rate Survival Rate Distribution
j hj �j Sj �(j)

0 0 1 1 �(0)

1 h1 �1 = 1� h1 S1 = �1 �(1)
...

...
...

...
...

j hj �j = 1� hj Sj =
j

�
i=0
�i �(j)

...
...

...
...

...
J hJ = 1 �J = 0 SJ = 0 �(J)

Table 1: Notations of the Dynamics of Price-vintage-distribution.

Using the notation de�ned in table 1, and also denoting the distribution of price durations
at the beginning of each period by �t = f�t(0); �t(1) � � � �t(J)g, we can derive the ex-post
distribution of �rms after price adjustments (~�t) as

~�t(j) =

8<:
JP
i=1
hi�t(i) , when j = 0

�j�t(j) , when j = 1 � � �J:
(15)

Intuitively, those �rms reoptimizing their prices in period t are labeled with �Duration 0�, and
the proportion of those �rms is given by hazard rates from all duration groups multiplied by
their corresponding densities. The �rms left in each duration group are the �rms that do not
adjust their prices. When period t is over, this ex-post distribution, ~�t; becomes the ex-ante
distribution for the new period, �t+1: All price duration groups move to the next one, because
all prices age by one period.

As long as the hazard rates lie between zero and one, dynamics of the price-duration distri-
bution can be viewed as a Markov process with an invariant distribution, �, and is obtained by
solving �t(j) = �t+1(j): It yields the stationary price-duration distribution �(j) as follows:
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�(j) =
Sj

J�1
�
j=0
Sj

, for j = 0; 1 � � �J � 1: (16)

Here, I give a simple example. When J = 3, then we have the stationary price-duration distri-
bution � =

n
1

1+�1+�1�2
; �1
1+�1+�1�2

; �1�2
1+�1+�1�2

o
:

Let�s assume the economy converges to this invariant distribution fairly quickly, so that re-
gardless of the initial price-duration distribution, I only consider the economy with the invariant
distribution of price durations.

2.3.2 The Optimal Pricing under the General Form of Nominal Rigidity

Given the general form of nominal rigidity introduced above, the only heterogeneity among �rms
is the time when they last reset their prices, j. Firms in price duration group j share the same
probability of adjusting their prices, hj , and the distribution of �rms across durations is given
by �(j).

In a given period when a �rm is allowed to reoptimize its price, the optimal price chosen
should re�ect the possibility that it will not be re-adjusted in the near future. Consequently,
adjusting �rms choose optimal prices that maximize the discounted sum of real pro�ts over the
time horizon in which the new price is expected to be �xed. The probability that the new price
will be �xed at least for j periods is given by the survival function, Sj , de�ned in table 1.

Here, I setup the maximization problem of an adjuster as follows:

max
P �t

Et
J�1P
j=0

SjQt;t+j

�
Y dt+jjt

P �t
Pt+j

� TCt+j
Pt+j

�
:

Where Et denotes the conditional expectation based on the information set in period t, and
Qt;t+j is the stochastic discount factor appropriate for discounting real pro�ts from t to t + j.
An adjusting �rm maximizes the pro�ts subject to the demand for its intermediate good in
period t+ j given that the �rm resets the price in period t and can be expressed as.

Y dt+jjt =

�
P �t
Pt+j

���
Yt+j :

This yields the following �rst order necessary condition for the optimal price:

P �t =
�

� � 1

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j MCt+j ]

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j ]

; (17)

where MCt denotes the nominal marginal cost. The optimal price is equal to the markup
multiplied by a weighted sum of future marginal costs, whose weights depend on the survival
rates. In the Calvo case, where Sj = �j , this equation reduces to the Calvo optimal pricing
condition.

Finally, given the stationary distribution, �(j), aggregate price can be written as a distributed
sum of all optimal prices. I de�ne the optimal price which was set j periods ago as P �t�j .
Following the aggregate price index from equation (3), the aggregate price is then obtained by:
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Pt =

 
J�1P
j=0

�(j)P �1��t�j

! 1
1��

: (18)

2.4 New Keynesian Phillips Curve

To analyze the e¤ects of the general form of nominal and real rigidities on the in�ation dynamics,
I derive the New Keynesian Phillips curve from log-linearized equations (17) and (18) around
the zero-in�ation steady state8. De�ning x̂t � logXt � log �X, I obtain the generalized NKPC,
re�ecting the general form of nominal rigidity and real rigidity introduced in the model.

�̂t =
J�1P
k=0

�(k)

1� �(0)Et�k

"
J�1P
j=0

�jSj
	

cmct+j�k + J�1P
i=1

J�1P
j=i

�jSj
	

�̂t+i�k

#
(19)

�
J�1X
k=2

�(k) �̂t�k+1;

where : �(k) =

J�1P
j=k

Sj

J�1P
j=1
Sj

and 	 =
JP
j=0

�jS(j).

The generalized New Keynesian Phillips curve, equation (19), involves a much more complex
structure than the NKPC in the Calvo model9. Current in�ation depends not only on current
marginal cost and in�ation, but also on lagged in�ation and a complex weighted sum of expec-
tations on in�ation and marginal costs. To see the dynamic structure more clearly, I give an
example where J = 3:

�̂t =
1

(�1 + �1�2)	
cmct + �1

(�1 + �1�2)	
cmct�1 + �1�2

(�1 + �1�2)	
cmct�2

+
1

�1 + �1�2
Et

�
��1
	
cmct+1 + �2�1�2

	
cmct+2 + ��1 + �2�1�2

	
�̂t+1 +

�2�1�2
	

�̂t+2

�
+

�1
�1 + �1�2

Et�1

�
��1
	
cmct + �2�1�2

	
cmct+1 + ��1 + �2�1�2

	
�̂t +

�2�1�2
	

�̂t+1

�
+

�1�2
�1 + �1�2

Et�2

�
��1
	
cmct�1 + �2�1�2

	
cmct + ��1 + �2�1�2

	
�̂t�1 +

�2�1�2
	

�̂t

�
� �1�2
�1 + �1�2

�̂t�1;

where : 	 = 1 + ��1 + �
2�1�2:

All coe¢ cients are expressed in terms of non-adjustment rates (�j = 1 � hj) and the sub-
jective discount factor, �: In the empirical analysis, �j�s are identi�able through estimating the

8Detailed derivation is shown in Yao (2009).
9Yao (2009) shows that, under the assumption of a constant hazard function, this version of the NKPC can be

reduced to the Calvo NKPC, because lagged in�ation terms exactly cancel the terms of lagged expectations out.
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distributional weights of aggregate variables and expectations at di¤erent lags. After I obtain
the estimates for the hazard rates, hj , I can calculate the implied distribution of price durations,
�(j); by using equation (16).

2.5 Equilibrium and Log-linearized Equations

The general equilibrium system consists of equilibrium conditions derived from the optimization
problems of economic agents, market clearing conditions and a monetary policy equation. Mar-
ket clearing conditions require real prices clear the factor and good markets, while monetary
policy determines nominal value of the real economy. I choose a Taylor rule to close the model.
Equation (20) is motivated by the interest rate smoothing speci�cation for the Taylor rule10,
which speci�es a policy rule that the central bank uses to determine the nominal interest rate
in the economy, where �� and �y denote short-run responses of the monetary authority to log
deviations of in�ation and the output gap, and qt is a sequence of i:i:d: white noise with zero
mean and a �nite variance (0; �2q).

It = I
�i
t�1

"�
Pt
Pt�1

��� �Yt
Y

��y#1��i
eqt (20)

After log-linearizing those equilibrium equations around the �exible-price steady state, log-
linearized general equilibrium system consists of the NKPC, equation (21), real marginal cost,
equation (22), the household�s intertemporal optimization condition, equation (23), the Taylor
rule, equation (20), and exogenous stochastic processes. In the IS curve, I add an exogenous
shock, dt; to represent real aggregate demand disturbances11.

�̂t =
J�1X
k=0

�(k)

1� �(0)Et�k

24J�1X
j=0

�jSj
	

cmct+j�k + J�1X
i=1

J�1X
j=i

�jSj
	

�̂t+i�k

35� J�1X
k=2

�(k)�̂t�k+1

(21)

cmct = �(1� a) + a
�(1� a) + a(1 + �) [(� + �)(1� a)ĉt � (1 + �) ẑt] (22)

� Et [ŷt+1] = �ŷt + (̂{t � Et [�̂t+1]) + dt (23)

{̂t = (1� �i)
�
���̂t + �yŷt

�
+ �i{̂t�1 + qt (24)

ẑt = �z � ẑt�1 + �t where �t v N(0; �2z) (25)

dt = �d � dt�1 + "t where "t v N(0; �2d) (26)

qt v N(0; �2q) (27)

All parameters in the model have a structural interpretation. I collect the structure para-
meters into a vector � =

�
a; �; �; �; �; ��; �y; �i; �js

�
. In the empirical study, I am interested in

estimating values for those structural parameters by using the Bayesian approach.

10See: the empirical work by Clarida et al. (2000)
11 Introducing this shock is not necessary for the theoretical model, but, in the Bayesian estimation, due to the

singularity problem I need three shocks for three observables.
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3 Estimation

In this section, I �rst describe the data and econometric procedure used to estimate the model,
and then present and analyze the results.

3.1 Bayesian Inference

I apply the Bayesian approach, set forth by DeJong et al. (2000), Schorfheide (2000) and
Fernandez-Villaverde and Rubio-Ramirez (2004) among others, to estimate the structural para-
meters of the DSGE model. The Bayesian estimation is based on combining information gained
from maximizing likelihood of the data and additional information about the parameters (the
prior distribution). The main steps of this approach are as follows:

First, the linear rational expectation model is solved by using standard numerical methods
(See: e.g. Uhlig, 1998 and Sims, 2002) to obtain the reduced form equations in its predetermined
and exogenous variables.

For example, the linearized DSGE model can be written as a rational expectations system
in the form

�0(�)St = �1(�)St�1 +��(�)�t +�!(�)!t: (28)

Here, St is a vector of all endogenous variables in the model, such as ŷt, �̂t, {̂t; etc: The
vector �t stacks the innovations of the exogenous processes and !t is composed of one-period-
ahead rational expectations forecast errors. Entries of �(�) matrices are functions of structural
parameters in the model. The solution to (28) can be expressed as

St = 	1(�)St�1 +	�(�)�t: (29)

The second step involves writing the model in state space form. This is to augment the
solution equation (29) with a measurement equation, which relates the theoretical variables to
a vector of observables Y_obst.

Y_obst = A(�) +BSt + CVt: (30)

Where A(�) is a vector of constants, capturing the mean of St; and Vt is a set of shocks to the
observables, including measurement errors.

Third, when we assume that all shocks in the state space form are normally distributed,
we can use the Kalman �lter (Sargent, 1989) to evaluate the likelihood function of the observ-
ables L(�jY_obsT ). In contrast to other maximum likelihood methods, the Bayesian approach
combines the likelihood function with prior densities p(�), which includes all extra informa-
tion about the parameters of interest. The posterior density p(�jY_obsT ) can be obtained by
applying Bayes�theorem

p(�jY_obsT ) _ L(�jY_obsT ) p(�): (31)

In the last step, � is estimated by maximizing the likelihood function given data L(�jY_obsT )
reweighted by the prior density p(�), in that numerical optimization methods are used to �nd
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the posterior mode for � and the inverse Hessian matrix. Finally, the posterior distribution is
generated by using a random-walk Metropolis sampling algorithm12.

3.2 Data

According to my empirical model and research questions to be addressed in this paper, I choose
following three observables: the growth rate of real GDP per capita, the in�ation rate and
nominal interest rate series for the U.S. over the period 1955.Q1 - 2008.Q413. In estimating a
structural price setting model, it is essential to avoid spurious in�uences due to shifts in the
monetary policy regime especially when estimating backward-looking pricing (See: Erceg and
Levin, 2003). To avoid this problem, I follow Lubik and Schorfheide (2005) to split the sample
into two sub-samples. The �rst sub-sample (DS1) ranges from 1955.Q1 to 1982.Q4, while the
second (DS2) is based on the periods from 1983.Q1 to 2008.Q4. I plot all data series in �gure
214.

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
2

1

0

1

2
Output

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0.5

0

0.5

1
Inflation

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
2

0

2

4
Nominal interest rate

Figure 2: Data Plot

Based on the way I construct the empirical model and the de�nition of variables, the mea-
surement equations are de�ned as follows:

y_obs = ŷt � ŷt�1
�_obs = �̂t

i_obs = {̂t:

12 I implement the Bayesian estimation procedure discussed above by using the MATLAB based package
DYNARE, which is available at: http://www.cepremap.cnrs.fr/dynare/
13Details on the construction of the data set are provided in Appendix (B).
14 In this �gure, data series are detrended by a common linear trend, but in the empirical analysis I detrend

each sub-sample by a separate linear trend.
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3.3 Priors

The priors I choose are in line with the mainstream values used in the Bayesian literature (e.g.
Smets and Wouters, 2007 and Lubik and Schorfheide, 2005). They are centered around the
average value of estimates of micro and macro data with fairly loose standard deviations. The
marginal prior densities for the structural parameters are listed in table 2.

parameters prior_dist. mean st.dev parameters prior_dist. mean st.dev

� gamma 1.5 0.375 �i beta 0.5 0.1
� normal 0.5,1.5 1.0 �z beta 0.8 0.1
a beta 0.56 0.20 �d beta 0.5 0.1
�j beta 0.5 0.26 �z invgam 0.1 2.0
�� Gamma 1.5 0.1 �m invgam 0.1 2.0
�y Gamma 0.125 0.1 �d invgam 0.1 2.0

Table 2: Priors of Parameters.

I �x two parameters in advance. The discount factor � is equal to 0:99, implying an annual
steady state real interest rate of 4%. The elasticity of substitution between intermediate goods
is set to be 10, implying an average mark-up of around 11%. Both are common values used in
the literature.

The prior distributions of the preference parameters are largely in line with Smets and
Wouters (2007). The intertemporal elasticity of substitution, �; is set to follow a gamma distri-
bution with mean 1.5 and a standard error of 0.375; The inverse elasticity of labour supply, �; is
assumed to be normally distributed around the mean of 0.5 and 1.5. A mean of 0.5 re�ects high
elasticities of labor supply ( 1� = 2) that is motivated by using balanced growth path consider-
ations in the macro literature, while 1

� =
1
1:5 is typically estimated in the micro-labor studies

(See: e.g. Blundell and Macurdy, 1999). For both cases I set a large standard error of 1.0.15

I choose a beta distribution with the support between zero and one as the prior for the share
of intermediate inputs, a. I set the mean to 0.56, re�ecting the weighted average revenue share
of intermediate inputs in the U.S. input-output table (Nakamura and Steinsson, 2008b). The
standard deviation is equal to 0.20. The priors for the non-adjustment ratios, �j ; are chosen
based on micro evidence on the mean frequency of price adjustments, reported by Bils and
Klenow (2004). They �nd that the U.S. sectoral prices on average last only 2 quarters, which
implies the hazard rate is equal to 0.5. I set the loose prior to all �j�s with the same mean, so
that these priors re�ect the view of a constant-hazard pricing model, such as in the Calvo model.
By choosing a fairly large standard deviation (0.26) for hazard rates, I allow the data to speak
out quite freely about the magnitudes of hazard rates over the time horizon speci�ed in the
model. The prior on the coe¢ cients in the monetary policy reaction function are standard. The
priors for �� and �y are centered at the values commonly associated with the Taylor-rule. This
rule also allows for interest rate smoothing with a prior mean of 0.5 and a standard deviation
of 0.1.
15The reason I use two priors for � is that, as shown in the estimation results, the data does not provide accurate

information on this parameter, so that the prior mean largely predominates the posterior mode of �. Therefore,
I set two di¤erent priors to check the robustness of my other results to the value of �:
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Finally, I assume that the standard errors of the innovations follow an inverse-gamma dis-
tribution with a mean of 0.1 and two degrees of freedom. The persistence of the AR(1) process
of the productivity shock is beta-distributed with a mean of 0.8 and the standard deviation of
0.1, and the persistence of the AR(1) process of the aggregate demand shock is beta-distributed
with a mean of 0.5 and the standard deviation of 0.1.

3.4 Estimation Results

By applying the methodology described above, I proceed to gauge the degree of real and nominal
rigidity in terms of the estimated structural parameters. The posterior modes of parameters
are calculated by maximizing the log likelihood function of the data, and then the posterior
distributions are simulated using the �Metropolis-Hastings� algorithm. The results presented
here are based on 200,000 draws and the average acceptance rate is around 0:4.

The posterior mode, mean and 5%, 95% quantiles of the 18 estimated parameters are reported
in tables 6 and 7 for both subsamples (DS1, DS2). In �gures 4 and 5, I plot the histograms of
all parameters obtained by the Metropolis-Hastings simulations. In �gures 6 and 7, I present
results of the �multivariate diagnostic plot� that reports an aggregate measure of convergence
based on the eigenvalues of the variance-covariance matrix of each parameter. The horizontal
axis represents the number of Metropolis-Hastings iterations, and the vertical axis gives the
measure of the parameter moments, starting from the initial value of the Metropolis-Hastings
iterations. In this case, we obtain convergence and relative stability in all measures of the
parameter moments.

A visual comparison of prior and posterior distributions suggests that the time series data
provides weak information on the inverse elasticity of labor supply, �; and the monetary policy
parameter, ��, but they are very informative about the real and nominal rigidities in terms of
the estimated parameters. Focusing on the results from the period after 1983, the estimated
share of intermediate inputs is around 0.91, and is largely consistent with the value argued for
by Basu (1995). The elasticity of intertemporal substitution is quite high (3.36) and the inverse
elasticity of labor supply is 0.83 for the posterior mode. Together with the �xed value � = 10;
they imply the real rigidity parameter, �1, is equal to 0.254, and translates to a modest level
of strategic complementarity. I turn now to the nominal rigidity that is represented by the
estimates of non-adjustment rates, �j . Contrary to the prior distributions, which are motivated
by the Calvo model where all hazard rates are constant over time, the estimates reveal that the
hazard function changes shape over time and the data strongly advocates a non-constant hazard
function. The estimated hazard function has a mean of roughly 15% per quarter which is broadly
consistent with the estimates of the standard NK models. More importantly, price reset hazards
vary substantially around this mean, depending on how long the non-adjustment spell is. The
hazard rate is high one quarter after the price adjustment (about 80%), suggesting that there
is a large portion of �rms revising their prices frequently (quarter-by-quarter). Afterwards, the
hazard rates stay low for the next three consecutive quarters (around 10%) and rise at the 4th
and 6th quarters after the price adjustment. This is evidence that a considerable number of �rms
adjust prices on a periodical basis and that both implicit and/or explicit price contracts exist
within the economy. As to the shape of the hazard function, with the exception of periodical
spikes, hazard rates are largely constant but slightly increasing towards the end of the time
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horizon. The estimated shape of the hazard function for sub-sample DS1 exhibits a somewhat
di¤erent pattern. I discuss this aspect of estimates in detail in a later section.

Finally, the estimated monetary policy reaction function is consistent with the common view
of the Taylor rule. Monetary policy after 1983 responds strongly to the deviation of in�ation
(1.647), but not much to the output gap (0.03). There is a considerable degree of interest rate
smoothing, as the posterior mode of �i is around 0.7. It is noteworthy to address that the
estimates of the monetary policy function are considerably di¤erent when using the �DS1�data
set. Monetary policy appears to react more weakly to the in�ation gap, but much more strongly
to the output gap (0.197). Besides, it has a slightly weaker interest rate smoothing component
(0.66) than in the post 1983 periods.

3.5 Robustness Tests

In this section, I �rst test the robustness of the estimates under alternative setups regarding
di¤erent priors, and then I check the sensitivity of identi�ed real and nominal rigidities to the
di¤erent truncation points on the price duration as well as the choice of labor supply elasticity.

3.5.1 Alternative Priors and Model Setups

M(1) M(2) M(3) M(4) M(5)
Parameter Benchmark � = 1:5 � = 10 � = 6 � = 0:5

a 0:9137
(0:0451)

0:8987
(0:0467)

0:9137
(0:0451)

0:9128
(0:0464)

0:8652
(0:0547)

� 10 10 9:9761
(0:4994)

5:9603
(0:4984)

10

� 3:3694
(0:4729)

3:3750
(0:4744)

3:3694
(0:4728)

3:3721
(0:4726)

3:1049
(0:4605)

� 0:8305
(0:8776)

1:6710
(0:9463)

0:8305
(0:8778)

0:8352
(0:8807)

0:9892
(0:8377)

�� 1:6470
(0:0974)

1:6479
(0:0976)

1:6470
(0:0974)

1:6464
(0:0974)

1:6982
(0:0933)

�y 0:0306
(0:0429)

0:0289
(0:0408)

0:0306
(0:0430)

0:0314
(0:0442)

0:059
(0:0414)

�1 0:1951
(0:0772)

0:2044
(0:0782)

0:1951
(0:0772)

0:1907
(0:0765)

0:5

�2 0:9087
(0:1384)

0:9114
(0:1345)

0:9087
(0:1384)

0:9074
(0:1402)

0:5

�3 0:9256
(0:1198)

0:9282
(0:1155)

0:9256
(0:1198)

0:9244
(0:1218)

0:5

�4 0:9174
(0:1351)

0:9204
(0:1300)

0:9174
(0:1351)

0:9161
(0:1375)

0:5

�5 0:4302
(0:3891)

0:4449
(0:3719)

0:4302
(0:3891)

0:4232
(0:3977)

0:5

�6 0:7257
(0:4154)

0:7399
(0:3917)

0:7257
(0:4154)

0:7189
(0:4268)

0:5

�7 0:2825
(0:4602)

0:2745
(0:4447)

0:2825
(0:4602)

0:2865
(0:4676)

0:5

Log Margin. Likeli. 66:10 66:26 66:10 66:25 59:27

Table 3: Sensitivity Check of the Posterior Modes

Table 3 reports results of the sensitivity analysis in the following steps: �rst, I check the prior
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sensitivity by altering the prior mean, �; to 1.5. I choose to check this parameter because of the
con�ict between micro and macro calibration values. The �rst two columns in the table compare
the results from the two alternative priors. All estimates remain similar in both cases except
for �. When using 0.5 as the prior mean, the posterior mode is equal to 0.8305 with a standard
deviation of 0.8776. When setting the prior mean to 1.5, on the other hand, the posterior mode
is equal to 1.6710 with a standard deviation of 0.9463. Next, I check whether �xing � a¤ects the
estimation results. To do that, instead of setting � to 10, I now allow for estimating the value
of � with the prior mean of 6 and 10 - two common values used in NK models. The third and
fourth columns report almost identical results with the exception of �. These results manifest
the identi�cation problem of these two parameters in this empirical framework. In the case of
�, the choice of the prior only marginally a¤ects the joint data density, while, in the case of �,
inclusion of this parameter in the estimation does not matter at all, meaning that the population
objective function may be independent of this parameter. From these results, we learn that the
identi�cation of the hazard function in this model is robust to the choice of these two structural
parameters in the selected range.

Finally, I change the model setup by �xing the hazard rates to the value of 0.5, implying an
average duration of 2 quarters16. As seen in the last column, �xing hazards does not signi�cantly
a¤ect the estimates of other structural parameter. But, in terms of log marginal likelihood, this
�xed-hazard setup is clearly less favorable by the data. In the last row of the table, I report the
log marginal likelihood of the data for each model. It shows that changing priors of � and �
only marginally a¤ects the data density, but the data gives strong support of the �exible hazard
model M(1) as opposed to the �xed-hazard model M(5). The Bayes factor in favor of the �exible
hazard model is approximately by the factor of 103:

3.5.2 Truncation Points and Real/Nominal Rigidity

In this session, I address an issue �rst raised by Carvalho and Dam (2008), in which they
emphasize that allowing for prices to last more than 4 quarters is crucial to avoid estimates
implying too little average nominal rigidity and too much real rigidity. In other words, the
choice of maximum price duration, J; is not innocuous for the estimates regarding nominal and
real rigidities. Coenen et al. (2007), for example, estimate a generalized Calvo model with the
maximum price duration of 4 quarters. As a result, their estimates imply an extremely high
level of real rigidity (0.004 for the U.S. estimates). Carvalho and Dam (2008) demonstrate,
however, that by allowing for a maximum duration of 6 or 8 quarters, the estimates of real
rigidity decline signi�cantly. For example, the median level of the real rigidity parameter in the
posterior distribution rises in the case of J = 6; from 0.006 to 0.021 and when J = 8, it increases
even further to 0.042. Nevertheless, these results are still quite low regarding the values deemed
plausible in the macro literature.

In table 4, I present some new results from the Bayesian estimation. I report the estimation
results regarding nominal and real rigidities with respect to models with the maximum price

16 I call it the pseudo-Calvo model because, in this case, I truncate the hazard function at the 6th quarter. As
a result, it is not exactly equivalent to the Calvo model, which implies an in�nite horizon for the hazard function.
This pseudo-Calvo can be view as an approximation of the real Calvo model. I conduct also the pseudo-Calvo
model with longer horizons, but it does not change the main conclusion.
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duration of 4, 6, and 8 quarters. The �rst three columns present the results when setting the
prior for the inverse elasticity of labor supply to 0.5, and the last three columns report the same
results for � = 1:5 as a sensitivity check. Both result panels con�rm the conclusions drawn
by Carvalho and Dam (2008) � that an over restrictive truncation of the maximum duration
tends to overestimate real rigidity at the expense of nominal rigidity. As seen in the table,
even though the shape of the hazard function stays relatively stable in models with a di¤erent
truncation point, the implied average duration of prices increases signi�cantly with a rising
maximum duration. When � = 0:5, for example, the mean duration of sticky prices is only
4.42 months in the model of J = 4, while it increases to 6.88 months in the model with J = 8.
By contrast, the real rigidity parameter, �1, increases, which means strategic complementarity
weakens with an increase of maximum duration. It is however, worthy of noting, that the real
rigidity obtained in this full information estimation is broadly in line with the plausible values
in the literature. They range between 0.155 to 0.286 in di¤erent setups, but all those values fall
within the reasonable range of strategic complementarity in price decisions.

� = 0:5 � = 1:5

parameter J=4 J=6 J=8 J=4 J=6 J=8
�1 0.127 0.182 0.195 0.134 0.210 0.204
�2 0.882 0.904 0.909 0.885 0.910 0.911
�3 0.834 0.910 0.926 0.835 0.914 0.928
�4 1 0.899 0.917 1 0.904 0.920
�5 0.236 0.430 0.248 0.445
�6 1 0.726 1 0.740
�7 0.283 0.275
�8 1 1

Mean Duration (months) 4.42 5.98 6.88 4.48 6.29 7.03

 0.753 0.784 0.701 0.544 0.599 0.560
�1 0.206 0.251 0.363 0.313 0.347 0.511

Real Rigidity (�1) 0.155 0.197 0.254 0.170 0.208 0.286

Bayes�factor 1 30.1 175.9 1 24.5 182.7

Table 4: E¤ects of Truncation on Nominal and Real Rigidities

In the last row, I report the Bayes�factors based on the model with a maximum duration of
4 quarters as the benchmark case. The Bayes�factors show that the data strongly supports the
models with longer maximum durations. The factor is around 25-30 for models with a maximum
duration of 6 quarters and 180 for models with a maximum duration of 8 quarters. In light of
this result, I choose to estimate the model with an 8-quarter-hazard-function in the next section,
implying a maximum price duration of 9 quarters17.

17 It is worth of noting that it is not true that the longer maximum duration is chosen, better the result will be.
This is because the longer maximum-duration has also costs in terms of computational burdens and identi�cation
problems.
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Figure 3: Comparison of Hazard Funcitons

3.6 Hazard Functions

In this section, I compare the estimates of hazard functions from the two sub-samples. As
discussed in the introduction, empirical work using micro data sets gives di¤erent evidence on
the shape of the empirical hazard function. For example, Cecchetti (1986) used newsstand
prices of magazines in the U.S. and Goette et al. (2005) examined Swiss restaurant prices. Both
studies �nd strong support for increasing hazard functions. By contrast, recent studies using
more comprehensive micro data �nd that hazard functions are �rst downward sloping and then
mostly �at, interrupted periodically by spikes (See, e.g.: Campbell and Eden, 2005, Alvarez
et al., 2006 and Nakamura and Steinsson, 2008a). Studies using earlier data tend to support a
di¤erent picture of the hazard function as opposed to those using data sets from more recent
periods. This is evidence that the shape of hazard functions depends on the underlying economic
conditions, such as in�ation rates, and is therefore changing over the time periods of the collected
data. Here, I use the longer time series data to estimate the hazard function consistently and
compare the results.

The pattern of hazard functions is shown in �gure (3). In the right panel, I plot the posterior
modes of hazard rates in the post-1983 period, when the in�ation rate is modest and stable. It
is slopping downwards in the �rst two quarters and then slightly increasing in time-since-last-
adjustment, but with periodical spikes at the 4th and 6th quarters after the �rst adjustment.
This pattern largely resembles the empirical hazard function from recent micro studies. By
contrast, in the left panel, the estimated hazard function for the pre-1983 periods shows a similar
pattern, but it exhibits a remarkable increasing trend after the 4th quarter. One interpretation
of this �nding is that price setting is characterized by both time- and state-dependent aspects,
but, in a turbulent economic environment, the state-dependent pricing plays a larger role in
price decisions of the sticky sectors. In this empirical exercise, I apply the generalized time-
dependent model to data sets that are characterized by di¤erent macroeconomic conditions.
Estimated hazard function changes in its shape in subsamples. Therefore, this framework is
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�exible enough to empirically capture the state-dependent feature in the data. Finally, we can
also draw conclusion that price stickiness in the economy is substantially variant. Roughly 70%
of �rms adjust their prices frequently (quarter-by-quarter), while there are also a fair amount
of �rms adjusting their prices periodically.

3.7 Distribution of Price Durations

This Model Carvalho&Dam1 Coenen et. al.2

Durations J=4 J=6 J=8 J=4 J=6 J=8 J=4 (U.S.)
!1 0.750 0.602 0.552 0.583 0.382 0.276 0.98
!2 0.095 0.109 0.108 0.156 0.104 0.086 0.00
!3 0.085 0.099 0.098 0.036 0.033 0.027 0.01
!4 0.070 0.089 0.090 0.225 0.045 0.037 0.01
!5 0.081 0.083 0.173 0.156
!6 0.019 0.036 0.264 0.144
!7 0.026 0.143
!8 0.007 0.132

Mean Duration (months) 4.42 5.98 6.88 5.71 9.95 13.1 4.2

Notes: 1) Results reported here is taken from the Table (4) in the paper.

2) Results reported here is taken from the Table (5) in the paper.

Table 5: Distribution of Price Durations

Finally, I report the distribution of price durations implied by the estimated hazard rates.
I calculate them by using formula (16). Table 5 reports the results of the data set DS2 and
compares them with results from similar studies in the literature. The �rst noteworthy fact
is that the duration distributions reported in this table do not have the same shape. While
distributions in this paper and Coenen et al. (2007) are strictly downward sloping, those in
Carvalho and Dam (2008) are U-shaped. When I compare the mean durations implied by these
models, my model with 4-quarter-truncation yields a similar result as in Coenen et al. (2007).
The average duration is around 4.3 months, close to the evidence reported by Bils and Klenow
(2004). However, as I have shown in the previous section, by extending the truncation point,
the mean duration implied by the estimates increases. With 8-quarter-truncation, my model
produces an average duration of 6.88 months, which is consistent with the evidence presented by
Nakamura and Steinsson (2008a), who control the price data for sales and product substitution.
Carvalho and Dam (2008)�s distributions, on the other hand, yield much longer mean durations,
more than double the size of the mean durations reported from other studies.
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Conclusion

In this paper, I study issues related to real and nominal price rigidities by estimating a fully-
speci�ed DSGE model with the full information Bayesian approach. I construct a DSGE model
featuring nominal rigidity that allows for a �exible hazard function of price setting and real
rigidity. The generalized NKPC possesses a rich dynamic structure, with which I can identify
the detailed time-pro�le of hazard rates underlying the aggregate dynamics.

This study reveals some interesting insights, which are absent in the literature. First, by
using the aggregate time series data, this empirical model allows for inferring the shape of the
hazard function over a long period of time in a consistent way. The estimates for the sub-
sample from 1983 to 2008 largely resemble the evidence found in the microeconometric studies
using data from similar periods. They reveal that �rms adjust their price mainly in a time-
dependent manner. By contrast, the results for pre-1983 periods, however, suggest that pricing
behavior is very di¤erent when the data is characterized by highly volatile in�ation. Second,
my empirical �ndings con�rm the conclusion drawn by Carvalho and Dam (2008), that an
over-restrictive truncation of the maximum duration tends to overestimate real rigidity at the
expense of nominal rigidity. The level of real rigidity obtained in my full information estimation
is broadly more plausible than those reported by the studies using limited information empirical
methods. Therefore, it is useful to use a fully-speci�ed DSGE model to infer real and nominal
rigidities underlying the aggregate data.

There are, however, some important caveats. First, in this paper, I show that it is possible to
identify the shape of price reset hazard function using only the aggregate data, such as in�ation
and output gap. This approach works by carefully identifying the e¤ects of lagged in�ation
and lagged expectations of aggregate variables on in�ation through the generalized NKPC. As
shown in the empirical results, those e¤ects fade out fairly fast in the data, as a result, hazard
rates after the 4th quarter are only weakly identi�ed. Next, identi�cation is a complex issue,
because all model�s assumptions could a¤ect the validity of the results. In this paper, I use a
fairly stylized model with many convenient features. Some of them need to be examined more
carefully. For example, if the Taylor rule is suitable for this generalized sticky price model? If
not, should a more general formulation of monetary policy be used in the estimation? Moreover,
Ascari (2004) shows that trend in�ation plays an important role in both the long-run and the
short-run in�ation dynamics. It might be important to estimate the model taking the trend
in�ation into account, because it also a¤ects the dynamic structure of the generalized NKPC
(See: Yao, 2009). I put these questions in the future research agenda.
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A Deviation of Marginal Costs

The labor market is competitive and intermediate input markets are featured by a monopolistic
supplier and inter-�rm demands, �rms are price takers in both factor markets. In each period,
�rms maximize their real pro�ts in terms of composite consumption goods given factor prices
and the production technology (7), solving

max
Nt(i);Mt(i)

�t(i) =
Pt(i)

Pt
Yt(i)�

Wt

Pt
Lt(i)�Mt(i):

Deriving the F.O.Cs of labor and intermediate inputs yields:

Wt

Pt
=
1� a
a

Mt(i)

Lt(i)
: (32)

Then substituting out Mt(i) by using the production function (7), I obtain the conditional
demand function for the labor input

Lt(i) =

�
a

1� a

��a Yt(i)
Zt

�
Wt

Pt

��a
: (33)

Similarly, I can derive the conditional demand function for the intermediate input

Mt(i) =

�
a

1� a

�1�a Yt(i)
Zt

�
Wt

Pt

�1�a
: (34)

Given these conditional demands for inputs, the production costs can be obtained as follows:

TC(Wt; Pt; Yt(i)) = (1� a)a�1 a�a
�
Wt

Pt

�1�a PtYt(i)
Zt

: (35)

It follows that real marginal cost is obtained by taking derivative w.r.t. Yt(i);

mct = (1� a)a�1 a�a
�
Wt

Pt

�1�a 1
Zt
: (36)

Finally, we can substitute real wage out of this expression by using equilibrium labor supply
condition (5)

mct = (1� a)a�1 a�a
�
�
H
Lt
�C�t

�1�a 1
Zt

(37)
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B Data

The data used in this paper is taken from the FRED (Federal Reserve Economic Data) main-
tained by the Federal Reserve Bank of St. Louis.

� Growth rate of real GDP per capita: is based on the Real Gross Domestic Product (Series:
GDPC1). They are in the unit of billions of chained 2005 dollars, quarterly frequency and
seasonally adjusted. To construct per capita GDP, I use the Civilian Noninstitutional Pop-
ulation (Series: CNP16OV) from the Bureau of Labor Statistics, U.S. Department of La-
bor. The monthly data is converted into quarterly frequency by arithmetic averaging. Per
capita real output growth is de�ned as: 100� [ln (GDPt=POPt)� ln (GDPt�1=POPt�1)] :
Finally the series in subsamples are mean-adjusted by a linear trend separately.

� In�ation rate: is calculated by using either the implicit price de�ator (Series: GDPDEF)
or Consumer Price Index for all urban consumers: all items (Series: CPIAUCSL).The
monthly data is converted into quarterly frequency by arithmetic averaging. In�ation rate
is de�ned as 100 � ln (Pt=Pt�1) : Finally the series in subsamples are mean-adjusted by a
linear trend separately.

� Nominal interest rate: is the E¤ective Federal Funds Rate (Series: FEDFUNDS). The
monthly data is converted into quarterly frequency by arithmetic averaging. The data
is divided by 4 and then is detrended with the trend in�ation calculated by using the
Hodrick-Prescott-Filter.
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C Tables

Parameters Prior Posterior (M-H 200,000)

Dist. Mean S.D. Mode Mean 5% 95%

a beta 0.56 0.20 0.9137 0.8781 0.7808 0.9805

� gamma 1.5 0.375 3.3694 3.2449 2.4431 3.9824

� normal 0.5 1.0 0.8305 1.0628 -0.2269 2.2943

�� normal 1.5 0.1 1.6470 1.6802 1.5303 1.8386

�y normal 0.125 0.1 0.0306 0.0398 -0.0310 0.1148

�i beta 0.5 0.1 0.6987 0.6831 0.6161 0.7497

�1 beta 0.5 0.26 0.1951 0.2778 0.1420 0.4113

�2 beta 0.5 0.26 0.9087 0.8204 0.6512 0.9976

�3 beta 0.5 0.26 0.9256 0.8201 0.6334 0.9993

�4 beta 0.5 0.26 0.9174 0.7822 0.5463 0.9994

�5 beta 0.5 0.26 0.4302 0.4732 0.0658 0.8730

�6 beta 0.5 0.26 0.7257 0.5661 0.1888 0.9878

�7 beta 0.5 0.26 0.2825 0.4592 0.0286 0.8448

�z beta 0.8 0.1 0.9922 0.9858 0.9736 0.9988

�d beta 0.5 0.1 0.8768 0.8635 0.8157 0.9123

�z invgam 0.1 2.0 0.0573 0.0779 0.0253 0.1322

�m invgam 0.1 2.0 0.1590 0.1666 0.1382 0.1937

�d invgam 0.1 2.0 0.1059 0.1191 0.0764 0.1617

Table 6: Posterior Distributions of Parameters (U.S.83-08)
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Parameters Prior Posterior (M-H200,000)

Dist. Mean S.D. Mode Mean 5% 95%

a beta 0.56 0.20 0.9914 0.9889 0.9790 0.9985

� gamma 1.5 0.375 3.0111 3.0441 2.2801 3.7508

� normal 0.5 1.0 0.8583 1.0947 -0.2431 2.2961

�� normal 1.5 0.1 1.4923 1.5009 1.3380 1.6581

�y normal 0.125 0.1 0.1973 0.2079 0.1193 0.2922

�i beta 0.5 0.1 0.6599 0.6628 0.5999 0.7251

�1 beta 0.5 0.26 0.2734 0.3297 0.1941 0.4632

�2 beta 0.5 0.26 0.7729 0.7639 0.5785 0.9843

�3 beta 0.5 0.26 0.7988 0.7274 0.4910 0.9884

�4 beta 0.5 0.26 0.9262 0.8088 0.6077 0.9997

�5 beta 0.5 0.26 0.3298 0.4865 0.1023 0.8890

�6 beta 0.5 0.26 0.6626 0.5700 0.1975 0.9816

�7 beta 0.5 0.26 0.3298 0.4615 0.0431 0.8581

�z beta 0.8 0.1 0.8133 0.7753 0.6781 0.8815

�d beta 0.5 0.1 0.8723 0.8597 0.8152 0.9063

�z invgam 0.1 2.0 0.0648 0.0884 0.0319 0.1482

�m invgam 0.1 2.0 0.2888 0.2948 0.2584 0.3303

�d invgam 0.1 2.0 0.3351 0.3718 0.2527 0.4804

Table 7: Posterior Distributions of Parameters (U.S.55-82)
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Figure 4: Prior and Posterior Distributions (U.S.83-08)
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Figure 6: Multivariate Diagnostic Plots (55-82)
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