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Shape invariant modelling pricing kernels and risk aversion∗

Maria Grith† Wolfgang Härdle† Juhyun Park‡

Abstract

Pricing kernels play a major role in quantifying risk aversion and investors’ pref-
erences. Several empirical studies reported that pricing kernels exhibit a common
pattern across different markets. Mostly visual inspection and occasionally numer-
ically summarise are used to make comparison. With increasing amount of infor-
mation updated every day, the empirical pricing kernels can be viewed as an object
evolving over time. We propose a systematic modelling approach to describing the
evolution of the empirical pricing kernels. The approach is based on shape invariant
models. It captures the common features contained in the shape of the functions
and at the same time characterises the variability between the pricing kernels based
on a few interpretable parameters. The method is demonstrated with the European
options and returns values of DAX index.
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1 Introduction

Risk analysis and management drew much attention in quantitative finance recently. Un-
derstanding the basic principles of financial economics is a challenging task in particular
in a dynamic context. With the formulation of utility maximisation theory, individuals’
preferences are explained through the shape of the underlying utility functions. The
basic utility functions that undermine individuals’ preferences are thought to be charac-
terized by a concave, convex or linear utility function, describing risk averse, risk seeking
or risk neutral behaviour. An economic consideration states that one unit gain and loss
does not carry the same values for every individual. This view of state dependent risk
behaviour extends the possible shape of utility functions. The comparison is often made
through the Arrow-Pratt measure of absolute risk aversion (ARA), as a summary of ag-
gregate investor’s risk-averseness. The quantity is originated from the expected utility
theory and is defined by

ARA(u) = −U
′′(u)

U ′(u)
,

where U is the individual utility as a function of wealth.

The fundamental problem is that individual agents are not directly observable but the
dynamics of the market is assumed to reflect in the prices of goods traded in the market.
Several efforts are made to relate price processes of assets traded in a market to risk
behaviour of investors, by examining stock prices and option prices, since options are
securities guarding against losses in risky stocks.

A standard option pricing model in a complete market assumes a risk neutral distri-
bution of returns, which is the fair price, multiplied by risk-free interest, under a no
arbitrage assumption. The assumption of no arbitrage assures the existence of risk neu-
tral distributions. If markets are not complete, there are more risk neutral distributions
and the fair price depends on the hedging problem. In this paper, we assume that mar-
kets are complete. The subjective or historical distribution of observed returns reflects
a risk-adaptive behaviour of investors based on subjective assessment of the future mar-
ket. Then the equilibrium price is the arbitrage free price and the transition from risk
neutral pricing to subjective rule is achieved through the pricing kernel. Assuming those
densities exist, the pricing kernel K is defined by the ratio of those densities:

K(u) =
q(u)
p(u)

,

where q is the risk neutral density and p is the historical density. Through the interme-
diation of these densities, we can create a link between the pricing kernel and ARA, see
for example Leland (1980):

ARA(u) =
p′(u)
p(u)

− q′(u)
q(u)

= −d logK(u)
du

.
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Figure 1: Examples of intertemporal pricing kernels with various maturities in
years: 0.097 (blue/dash-dottted) 0.0694 (red/circle) 0.0611 (magenta/dashed) 0.0472
(cyan/solid) respectively on 12-May-2006 (blue/dash-dotted), 17-May-2006 (red/circle),
22-May-2006 (magenta/dashed), 25-May-2006 (cyan/solid). Expiration date is 02-Jun-
2006 for all pricing kernels.

In this way, rather than specifying a priori preferences of agents (risk neutral, averse
or risk seeking) and implicitly the monotonicity of the pricing kernel, we can infer the
risk patterns from the shape of the pricing kernel. When considering several markets
simultaneously, we introduce the time index t in the pricing kernel as Kt and thus the
corresponding ARA at time t can be derived from the pricing kernel Kt as

ARAt(u) = −d logKt(u)
du

. (1)

From a statistical perspective, the properties of the pricing kernel are intrinsically re-
lated to the assumptions about the data generation process. A very restrictive model,
with normal marginal distributions, is the Black-Scholes model, as it will be illustrated
in Section 2. This results in an overall decreasing pricing kernel in wealth, which is
consistent with overall risk-averse behaviour. These preferences are often assumed in
the classical economic theory of utility maximizing agent and correspond to a concave
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Figure 2: Examples of monthly pricing kernels from the first 6 months in 2006 for ma-
turity one month: Dates are 18-Jan-2006 (blue/dash-dotted), 15-Feb-2006 (red/circle),
22-Mar-2006 (magenta/dashed), 19-Apr-2006 (cyan/solid), 17-May-2006 (black/dotted).

indirect von Neumann and Morgenstern utility function. However, under richer para-
metric specifications or nonparametric models monotonicity of the pricing kernel has
been rejected in practice (Engle and Rosenberg, 2002; Ait-Sahalia and Duarte, 2003).

A plot of estimates of pricing kernels in 2006 is shown in Figures 1 and 2. Figure 1
depicts inter-temporal pricing kernels with various maturities in May-June 2006, while
Figure 2 depicts monthly pricing kernels with fixed maturity one month. To make these
comparable, they are shown on a returns scale, as explained in Section 2.4. The sample
of curves appears to have a bump around 1 and have convexity followed by concavity in
all cases. The location as well as the magnitude of the bump vary among curves, which
reflects individual variability on different dates or under different market conditions.
Some features that are of particular economic interest include the maximum of the bump,
the spread or duration of the bump and the location of the bump. These characteristics
are also reported in the literature and shown to be consistent across different markets.

This observation motivated us to consider a common shape modelling approach for the
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series of pricing kernels with explicit components of location and scale known as shape
invariant modelling. Detailed account of this approach is given in Section 2. With an
ease of recovering pricing kernels embedded in the market data, the shape invariant
modelling approach provides a systematic treatment in examining discrepancy between
empirical findings and theoretical exposition. Furthermore, this modelling approach
facilitates characterisation of time varying risk perception. Time varying parameters
of the utiliy finction can be found also under Black-Scholes model assumptions but
their interpretation is limited also due to errors induced by the misspecification of the
pricing kernel model. In view of these considerations, the pricing kernel is the natural
intermediary in risk management. In particular, the relationship between properties,
especially shape, of utility functions and risk-adaptive behaviours are captured through
the pricing kernel. For this modelling approach, we first need to recover pricing kernels
empirically.

1.1 Empirical pricing kernels

With increasing availability of large market data, several approaches to recovering pricing
kernels from empirical data have been proposed. As many of them estimate p and q

separately to recover K, potentially relevant are many studies focusing on recovering risk
neutral density, see e.g. Jackwerth (1999), Bondarenko (2003) for comparison of different
approaches. For the estimation of p nonparametric kernel methods or parametric models
such as GARCH or Heston models are popular choices.

Most of earlier works adopt a static viewpoint, showing a snap shot of markets on
selected dates but report that there is a common pattern across different markets. The
first dynamic viewpoint appears in Jackwerth (2000), who recovers a series of pricing
kernels in a consecutive time and claims that these do not correspond to the basic
assumption of asset pricing theory. In a similar framework Giacomini and Härdle (2008)
perform a factor analysis based on the so-called dynamic semiparametric factor models,
while Giacomini et al. (2008) introduce time series analysis of daily summary measures
of pricing kernels to examine variability between curves.

Due to evolution of markets over time under different circumstances, these quantities are
intrinsically time varying. Thus, approaches that do not take into account the changing
market make limited use of information available in the current data. On the other
hand, changes over time may not be completely arbitrary, as there are common rules
and underlying laws that assure the dynamic evolution of the market system. Moreover,
variability observed in pricing kernels, as shown in Figures 1 and 2, is not necessarily
linear, and thus factors constructed from a linear combination of observations are only
meaningful for explaining aggregated effects.

We take a dynamic viewpoint but focus on the common characteristics observed across
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different studies and markets. We then explain individual variability as a deviation from
a reference. This strategy is transferred to characterisation of changes in risk behaviour.
The changes in corresponding ARA measures can be examined together and especially
the one corresponding to the reference pricing kernel may be viewed as a typical pattern
of risk behaviour.

1.2 Common shape modelling

The new message here is an analysis of a sequence of pricing kernels through shape-
invariant models. As noted earlier, the multiple curves share a common shape, but
allow for individual variability which may be explained by shifts in horizontal as well
as vertical directions. This is the assumption that we will consider in our analysis, a
functional data analysis viewpoint (Ramsay and Silverman 2002 & 2005, Ferraty and
Vieu 2006).

When multiple curves are viewed as realizations of a common function, treating curves
individually wastes our resources. By combining all the information across the curves, the
common functional form can be obtained efficiently. Assuming no horizontal variability,
a principal component analysis (PCA) type linear decomposition procedure will further
provide an optimal representation with a few common components. With additional
variability in horizontal direction, however, a simple summary statistic such as mean
obtained from a type of averaging operation becomes meaningless (Kneip and Gasser,
1992). Consequently, the PCA type of analysis without taking into account the obvious
horizontal variability produces many more spurious directions of maximal variability and
thus interpretation of components becomes arbitrary. It is possible though to remove the
additional variability before applying PCA by estimating the horizontal transformation,
nonparmetrically or parametrically, through curve alignments. Still interpretability of
results may be an issue.

Instead, we directly model the pricing kernels using a semi-parametric approach where
the common function is modelled nonparametrically but individual effects are in a para-
metric functional form. With this method we will be able to use the maximal information
of multiple curves with interpretable individual effects. Further generalization is possi-
ble by allowing the transformation to be nonlinear or unspecified, see for example Kneip
and Gasser (1992), Gasser and Kneip (1995), Ramsay and Li (1998) and Gervini and
Gasser (2004) among many others. In the context of functional data analysis, this is
dealt with under curve alignment, synchronization or registration. Inclusion of random
shift and transformation as well as other covariate effects also can be achieved (Ke and
Wang, 2001).

In this article we restrict to parametric specification as the data in consideration sug-
gests a relatively simple structure and parameters are easily related to interpretation

6



of economic interest. The paper is organised as follows. Section 2 describes the shape
invariant model in detail, which serves the basis of our analysis. Empirical results of
empirical pricing kernels as well as risk aversion measures are provided in Section 3
followed by discussion and conclusion in Section 4.

2 Shape invariant modelling

Let {Ytj , t = 1, · · · , T ; j = 1, · · · , n} be a noisy sample of curves measured at {uj} in an
interval J satisfying the model

Ytj = Kt(uj) + εtj ,

where εtj are independent errors with mean zero and standard deviation σ2
t . To take

into account the underlying shape relationship, we consider the form

Kt(u) = θt1K0

(u− θt3
θt2

)
+ θt4 . (2)

0.0 0.5 1.0 1.5 2.0
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Figure 3: Example of location and scale shift pricing kernels (left) and corresponding
utility functions (right) of a power utility. Solid line in each plot represents reference
curves of K0(u) = u−γ and U0(u) = u1−γ/(1− γ) with γ = 0.7 respectively. Parameters
are θt2 = 0, θt1 = 1.1, θt2 = 1− θ(1/γ)

t1 , and θt4 = 0 for dot-dashed (red) and θt4 = 0.5 for
dashed (blue) lines.

The common shape function K0 is a reference curve and deviation from the reference
curve is described by four parameters (θt1, θt2, θt3, θt4) that represent a scale change and
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a shift in horizontal and vertical direction. It is instructive to consider utility functions
implied by this family of pricing kernels together. The utility function can be derived
from

U(u) = α

∫ u

0
K(x) dx ,

for a constant α. U0 denotes the utility function corresponding to K0. Figure 3 shows
an example of transformation based on a power utility function, which corresponds to
risk averse behaviour, marked as solid line. Pricing kernels Kt are shown on the left and
the corresponding utility functions Ut are on the right. The dashed and dot-dashed lines
represent Kt and Ut with appropriate parameters θ in the equation (2). Depending on
the choice of parameters, the utility function can be made increase quickly or slowly. As
an illustration, we consider the Black-Scholes model with power utility function. The
Black-Scholes model assumes that the stock price follows a geometric Brownian motion

dSt/St = µdt+ σdWt ,

which gives rise to a log normal density for the historical density p. Under the risk
neutral measure, the drift µ is replaced by the riskless rate r and the density q is also
log normal. The pricing kernel can be written as a power function

K(u) = λu−γ , 0 < γ < 1 ,

with appropriate constants λ and γ. The corresponding utility function is a power utility

U(u) = λ
u1−γ

1− γ
.

Assume that λ = 1 and suppose that K0 is the Black-Scholes power function u−γ . Then
the class of pricing kernel implied in (2) is given by

Kt(u) = θt1

(u− θt3
θt2

)−γ
+ θt4

= θ∗t1(u− θt3)−γ + θt4 ,

where θ∗t1 = θt1θ
γ
t2. Notice that with this family of functions θt1 and θt2 are not iden-

tifiable and Kt is defined for u > θt3. For the sake of argument we set θt2 = 1 for the
moment. The corresponding utility function is

Ut(u) =
∫ u

θt3

Kt(x) dx

=
θt1

1− γ
(u− θt3)(1−γ) + θt4(u− θt3)

def= θ∗∗t1 (u− θt3)(1−γ) + θt4(u− θt3) .

When θt4 = 0, this produces again a transformed power utility. When θt4 6= 0, there is
additional linear term in the function. See Figure 3 for comparison.
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The parametrisation in (2) is commonly referred as shape invariant models (SIM), orig-
inally introduced by Lawton et al. (1972), and includes as a special case complete para-
metric models with known K0. When the common function is unspecified, this type of
approach needs self-modelling regression.

Model (2) is very general and needs further restriction. For example, the Black-Scholes
family of power utility functions shown in Figure 3 has ambiguity between θt1 and
θt2. Issues of identifiability of the common function as well as parameters are studied
in Kneip and Gasser (1988). Basically unless there exist some qualitatively distinct
common characteristics for each curve, the model is not identifiable. In the case of no
prior structural information is available, it is enough to consider peaks and inflection
points for smooth curves as reference points. At least two of such points called landmarks
would be sufficient. Even with unique K0, some translation and scaling of parameters
lead to multiple representation of the models. For uniqueness of parameters, we will
impose normalizing conditions:

T−1
T∑
t=1

θt1 = 1, T−1
T∑
t=1

θt2 = 1, T−1
T∑
t=1

θt3 = 0, T−1
T∑
t=1

θt4 = 0 .

in the sense that there exists an average curve, see Kneip and Engel (1995). This is not
restriction at all and can be replaced by any appropriate combination of parameters.
Alternatively, the restriction θ1 = (1, 1, 0, 0) takes the first curve as a reference, as
in Härdle and Marron (1990) or an application-driven normalisation scheme can be
introduced (Lawton et al., 1972).

2.1 Estimation of SIM

The model in (2) is equivalently written as

Kt(θt2u+ θt3) = θt1K0(u) + θt4 , θt1 > 0 , θt2 > 0 . (3)

The estimation procedure is developed using the least squares criterion based on nonpara-
metric estimates of individual curves. If there are only two curves, parameter estimates
are obtained by minimizing∫

{K̂2(θ2u+ θ3)− θ1K̂1(u)− θ4}2w(u) du , (4)

where K̂i are nonparametric estimates of the curves. Härdle and Marron (1990) studied
comparison of two curves and Kneip and Engel (1995) extended to multiple curves with
an iterative algorithm. We consider an adaption of such algorithm here.

The weight function w is introduced to ensure that the functions are compared in a
domain where the common features are defined. We assume that there is an interval
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[a, b] ∈ J where boundary effects are eliminated and then define

w(u) =
∏
t

1[a,b]

{
(u− θt3)/θt2

}
.

The parameter estimates are compared only in the common region defined by w but the
individual curve estimates are defined on the whole interval. Weights can be extended
to account for additional variability.

The normalization leads to:

T−1
T∑
t=1

Kt(θt2u+ θt3) = K0(u) . (5)

Formula (5) was exploited also in the algorithm proposed by Kneip and Engel (1995).
We adopt a similar strategy here.

• Initialize

– Estimate individual regression functions Kt by a nonparametric smoother.

– Set starting values (θ(0)
t2 , θ

(0)
t3 ) for each t = 1, · · · , T .

– Construct an initial estimate K(0)
0 by

K(0)
0 (u) = T−1

T∑
t=1

K̂t(θ(0)
t2 u+ θ

(0)
t3 ) .

• For rth step, r = 1, · · · , R,

– Determine parameters θ(r) separately for each t = 1, · · · , T by minimizing∫
{K̂t(θt2u+ θt3)− θt1K(r−1)

0 (u)− θt4}2w(u) du .

– Normalise parameters: for j = (1, 2) and k = (3, 4)

θ
(r)
tj ←

θ
(r)
tj∑
t θ

(r)
tj

, θ
(r)
tk ← θ

(r)
tk − T

−1
∑
t

θ
(r)
tk .

– Update K(r−1)
0 to

K(r)
0 (u) = T−1

T∑
t=1

K̂t(θ(r)
t2 u+ θ

(r)
t3 ) .
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• Determine final estimates:

θ̃t = θ
(R)
t ,

K̃0(u) = T−1
T∑
t=1

K̂t(θ̃t2u+ θ̃t3) .

This procedure is shown to provide consistent estimates. In particular despite nonpara-
metric pilot curve estimates, the parameters are

√
n consistent. Furthermore, Kneip

and Engel (1995) showed in their analysis that the initial estimates of the curves are
of minor importance compared to the final estimate of K0 and suggested the final esti-
mates K̃0 be re-estimated with new bandwidths. This improves precision of estimates
because the pooled sample allows reduction in variance in K̃0 and thus can accommodate
undersmoothing at the final stage to reduce bias.

A notable difference in applying the model to the pricing kernels is that the original
data available are not noisy realisations of the underlying function itself, but ratio of
functions estimated with possibly non-equal bandwidths, and thus the updating of each
estimator as a whole may not be practical. However we can take advantage of having
smooth curves evaluated at finite points as data. It is easier to improve the initialisation
step, explained in Section 2.2. This leads to simplification of the estimating procedure
with little compromise of the quality of the fit. In fact, the number of iterations required
is very small and often 3 or 4 is sufficient in practical terms. We found that when the
initial estimates are determined sufficiently accurate, the iteration is not necessary.

2.2 Starting values

If there is no scale change in horizontal direction, due to prominent peaks in each curve,
the parameter θ3 can be identified easily by the location of the individual peak. If the
models hold true, and there are two unique landmarks identifiable for each curve, simple
linear regression between the individual mark and the average mark provides an estimate
of the slope parameter θ2. Suppose that the peak is identified by u satisfying K ′t(u) = 0.
Then we have

0 = K′t(u) =
θt1
θt2
K′0
(u− θt3

θt2

)
.

Writing u∗t for K′t and u∗0 for K′0 leads to a simple linear relation:

u∗t = θt2u
∗
0 + θt3 . (6)

If an inflection point is used, we would have

0 = K′′t (u) =
θt1
θ2
t2

K′′0
(u− θt3

θt2

)
,
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which gives rise to the same relation as (6), with the corresponding u∗∗t and u∗∗0 substi-
tuted. The coefficients of intercept and slope estimates are used for starting values of
θt3 and θt2 respectively.

0.8 1 1.2

1

2

3

Figure 4: Initial estimates of monthly pricing kernels with fixed maturity τ = 1 in the
first 14 curves in the sample. Marked are two landmarks identified.

We used the peak and the inflection points around 1 as landmarks, marked in Figure 4.
The location of the landmarks is defined by the zero crossings of the first and second
derivatives. Because the initial observations Kt are a smoothed curve, we find that
additional smoothing procedure is not required at this stage: a finite difference operation
is sufficient to apply mean value theorem with linear interpolation.

The slope between any two points did not vary much, which is consistent with the model
specification. This step is also used as an informal check and should there be any nonlin-
earity detected, the model needs to be extended to include a nonlinear transformation.
With our example, this was not the case.
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2.3 Nonlinear optimisation

Given the estimates of (θt2, θt3), the nonlinear least squares optimisation uses (4), which
is approximated by ∑

j

{
K̂t(θt2uj + θt3)− θt1K̂0(uj)− θt4

}2
w(uj) . (7)

When the initial values of (θt2, θt3) are sufficiently accurate, this produce is simplified
to a linear regression. Conditional on θt2, θt3 and K̂0, the solutions to the least square
regression with response variable K̂t(θt2uj+θt3) and explanatory variable K̂0(uj) provide
(θt1, θt4). When a further optimisation routine is employed to improve the estimates,
these numbers serve as initial values for (θt1, θt4).

2.4 Initial estimates of K

The initial estimates of K are obtained from separate estimates for p and q. We use
intraday European options data on DAX index, provided by European Exchange EUREX
and maintained by the CASE, RDC SFB 649 (http://sfb649.wiwi.hu-berlin.de)
in Berlin. The data contains the actually traded call prices, the implied index price
corrected for the dividends from the futures derivatives on the DAX, the strike prices,
the interest rates (linearly interpolated to approximate a riskless interest rate for the
specific option’s time to maturity), the maturity, the type of the options, calculated
future moneyness, calculated Black and Scholes implied volatility, the volume and the
date. The extracted observations for our analysis cover the period between April 2003
and June 2006.

Figure 4 shows the resulting estimates on the scale of (compounded) log returns using
the estimation methods summarised below. All curves show prominent peak but the
intensity as well as the location of the peak varies among the curves, which is further
explained by SIM.

Estimation of the risk neutral density q: We begin with the call price option
formula that links the call prices to the risk neutral density estimation. The European
call price option formula is given by

C(K, τ, rt,τ , δt,τ , St) = e−rt,τ τ
∫ ∞

0
max(ST −K, 0)q(ST |τ, rt,τ , δt,τ , St) dST

where

• St: the underlying asset price at time t,

13



• K: the strike price,

• τ : the time to maturity,

• T = t+ τ : the expiration date,

• rt,τ : the deterministic risk free interest rate for that maturity,

• δt,τ : the corresponding dividend yield of the asset.

Write q(ST ) for q(ST |τ, rt,τ , δt,τ , St). For fixed t and τ , assume rt,τ = r and δt,τ = δ, the
risk neutral density is expressed as

q(K) = erτ
∂2C

∂K2
.

The relation is due to Breeden and Litzenberger (1978) and serves the basis of many
current semi-parametric and nonparametric approaches. We employ the semiparametric
estimates of Rookley (1997), where the parametric Black-Scholes formula is assumed
except that the volatility parameter σ is a function of the option’s moneyness and the
time to maturity τ . In this work, we fix the maturity and consider one dimensional
regression problems, where the local polynomial smoothing with order 2 is applied to
the observations of implied volatility on moneyness scale. A detailed account of the
method is found in Huynh et al. (2002).

We focus on options with maturity one month (31 working days/ 23 trading days) across
several years, from DAX 30 Index European options traded on Eurex Exchange. Since
daily trade is organized in such a manner that we will not find options with maturity one
month in every trading day, we select only that days when such securities are traded.
This procedure enables us to identify one string of options every month from April 2003
to June 2006; this adds up to 38 days.

The index stock price varies within one day and we would need to identify the price at
which a certain transaction has taken place. However, several authors (e.g. Jackwerth
(2000)) report that the change of the index price is stale and we use instead the prices
of futures contracts closest to the time of the registered pair option strike to derive the
corresponding stock price corrected for dividends, following a methodology described in
Fengler (2005).

For each day, we use only at-the-money and out-of-the-money call options and in-the-
money puts to compute the Black-Scholes implied volatilities. This guarantees that
unreliable observations (high volatility) will be removed from our estimation samples.
Since, as mentioned before, the intraday stock price varies, we use its median to compute
the risk neutral density. For this price, we verify if our observations satisfy the no
arbitrage condition:

S∗ ≥ Ci ≥ max(S∗ −Kie
−rτ , 0) ,

14



where S∗ is the adjusted (for dividend) price.

Moneyness is computed for each pair (S∗i ,Ki), where after we assume that the volatility
does not depend on the changes in the intraday stock price. (Notice that the results
in Figure 6 are defined on a returns scale (continuously compounded 1 month-period
returns V = 1 + log(ST /St)) different from the moneyness definition used by Rookley
(1997)). We have used the following transformation of probability measure:

P(V ≤ v) = P(ST ≤ Stev−1) =
∫ Stev−1

0
q(ST )dST .

The risk neutral density q on the log returns is then

d

dv
P(V ≤ v) = Ste

v−1q(ST ) (8)

Estimation of the historical density p: The return values provide information on
the historical density p. In contrast to the option prices data, the number of obser-
vations at maturity is limited and additional modelling assumption on the evolution of
stock prices is necessary. Jackwerth (2000), among many others, used GARCH models to
simulate the return values at maturity, while Ait-Sahalia and Lo (2000) used a nonpara-
metric kernel density estimates based on past return values. Alternatively the returns
of the stock prices are assumed to vary slowly and thus the process can be assumed
stationary for a short period of time. With this assumption, a nonparametric kernel
density estimates is used in Ait-Sahalia and Lo (2000). Jackwerth (2000) argues that
some discrepancies between estimates are attributed to overlapping and non-overlapping
windows of the past observations selected. Nevertheless with varying degrees of assump-
tions on the model, common characteristics such as peaks and skewness are reportedly
observed in a wide range of estimates (Härdle et al., 2009).

In this work we use the nonparametric kernel density estimates similar to Ait-Sahalia and
Lo (2000) based on the past two years’ observations from the maturity. We experimented
with varying sizes of the window of the past observations including non-overalpping and
overlapping returns. According to our experiences the difference in shapes between them
is not considerable but the prominence of peak varies more with the bandwidth choices.

2.5 Smoothing parameter selection

Initially individual estimates of p are obtained based on Gaussian kernel with bandwidth
choice from the Silverman’s rule of thumb (Wand and Jones, 1995) and then a common
bandwidth is obtained by taking either the average or the maximum. The common
bandwidth is introduced to avoid systematic bias driven by different bandwidth choices
- difference in peaks can be amplified by different magnitude of the bias due to different
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Figure 5: Example of q estimates with varying bandwidths (0.05, 0.1, 0.15, 0.20). The
first three panels show estimates of implied volatility, its first and second derivative. The
corresponding densities are shown in lower right panel. Estimates are stable for a wide
range of bandwidths choices.

bandwidths introduced. However, we find that, due to inherent variability, taking the
average of the initial bandwidths sometimes produce multi-modality and taking the
maximum tends to oversmooth. So the final bandwidth is selected in the range between
the mean and the maximum by visual inspection.

The bandwidth selection for q is expected to be more influential than that of p in gauging
performance of the estimates, as it involves derivative estimation. Figure 5 examines
the effect of the bandwidth choices on q̂. Top left panel shows the implied volatility
estimates overlayed, the top right shows the first derivative estimates and bottom left
shows the second derivative estimates respectively, which are used as inputs to create
the estimates of q on bottom right panel. The bandwidths used are 0.05, 0.10, 0.15,
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0.20. With the apparent undersmoothing at the smallest bandwidth, there is notable
variability in terms of smoothness in estimation of implied volatility and its derivatives
however the resulting density estimates demonstrate robustness. Similar observations
are made to other dates. However by smoothing on implied volatility domain, we find
that the estimates are stable with relatively a wide range of bandwidths. The reported
estimates used 0.20 for all estimation.

2.6 Word on asymptotics

There are two layers of estimation involved. The first step deals with individual curve
estimation and the second step introduces shape invariant modelling. The shape in-
variant modelling is largely robust to how the data are prepared before entering the
iterative algorithm and the resulting estimates are interpreted as conditional on the in-
dividual curves. Therefore, the main estimation error arises in the first stage where p
and q are separately estimated with possibly different sample sizes and separately chosen
bandwidths.

In practical terms, the sample size used in estimating p is normally of smaller order, say
n compared to N = nM for q for a constant M , due to the difference between collected
daily observations for p and intraday observations for q. Thus it is expected that the
estimation error will be dominated by the estimation error of p. On the other hand,
the underlying function p for which simple kernel estimation is used is much simpler
and more stable compared to q for which nonparametric second derivative estimation is
required. Thus the source of error will partially be cancelled out.

Because the estimates of ratios are constructed from the ratio of the estimates, we can
decompose the error as

K̂(u)−K(u) =
q̂(u)
p̂(u)

− q(u)
p(u)

' q̂(u)− q(u)
p(u)

− q(u)
p(u)

p̂(u)− p(u)
p(u)

.

Numerical instability might occur in the region where p̂ ≈ 0 however this is not of
theoretical concern. In fact, the pricing kernel is the Radon-Nikodym derivative of an
absolutely continuous measure, and thus p and q are equivalent measures, that is, the
null set of p is the same as the null set of q. So we can limit our attention to the
case where p(u) > ε for some constant ε. Provided that p(u) > ε and q(u) > ε, the
asymptotic approximation is straightforward and asymptotic bias and variance can be
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computed from

E[K̂(u)−K(u)] ' E[q̂(u)− q(u)]
p(u)

− q(u)
p(u)

E[p̂(u)− p(u)]
p(u)

= O(h4
q) +O(h2

p) + O(h2
p + h4

q) ,

Var[K̂(u)−K(u)] ' K2(u)
{Var[q̂(u)]

q2(u)
+

Var[p̂(u)]
p2(u)

}
= O

{
(Nhq)−1

}
+O

{
(nhp)−1

}
+ O

{
(Nhq)−1 + (nhp)−1

}
.

Since q̂ involves estimation of second derivative of a regression function, the error is dom-
inated by the estimation of q. Ait-Sahalia and Lo (2000) showed in a similar framework
that the error is dominant by the estimation of q and for the purpose of asymptotics p
can be regarded as a fixed quantity.

Consistency and asymptotic normality of the parameter estimates are shown in Härdle
and Marron (1990) for two curves and in Kneip and Engel (1995) for multiple curves.
So we may write that

θ̂t ≈ N(θt,Σt) .

Due to the iterative algorithm, the asymptotic covariance matrix is more complicated
for multiple curves but Kneip and Engel (1995) shows that, as the number of curves in-
creases, the additional terms arising in the covariance matrix is of lower order than the
standard error term due to non-linear least square methods. There is no suggested esti-
mate for the asymptotic covariance matrix but a consistent estimate can be constructed
as in standard non-linear least square methods. Define the residual êtj = K̂t(uj)−K̃t(uj)
where K̂ is the initial estimates and K̃ is the SIM estimates and let

σ̂2
t = (n)−1

n∑
j=1

ê2tj .

The covariance matrix can be estimated as

Σ̂t = σ̂2
t

[
n−1

n∑
j=1

{
5θ K̃t(uj ; θ̃)

}{
5θ K̃t(uj ; θ̃)

}>]−1
,

where 5θK(u; θ) is the first derivative of the function, given by

∂K(u)
∂θ1

= K0

(u− θ3
θ2

)
,

∂K(u)
∂θ2

= −θ1
θ2

(
u− θ3
θ2

)
K′0
(u− θ3

θ2

)
,

∂K(u)
∂θ3

= −θ1
θ2
K′0
(u− θ3

θ2

)
,

∂K(u)
∂θ4

= 1 .

18



To see whether the location or scale parameters are different between any pair of curves,
we can compute the standard errors of the estimates to make a comparison. A formal hy-
pothesis testing also appears in Härdle and Marron (1990) for kernel-based estimates and
in Ke and Wang (2001) for spline-based estimates. For example we might be interested
in testing whether a location or a scale parameter can be removed.

Although these results are practically relevant, we note that the methods mentioned all
assume direct observations of the underlying function of interest, with one smoothing
parameter selection involved. Obtaining comparable rigorous results for our estimator
is complicated in the present situation due to the non-standard nature of the estimator
being a ratio of two separate nonparametric estimates with independent bandwidths.
We consider this out of scope of this paper and leave for separate work.

0.8 0.9 1 1.1 1.2

1

2

3

0.8 0.9 1 1.1 1.2

1

2

3

Figure 6: Estimated common shape function K0 (left) and transformed curves Kt(θt2u+
θt3) of those in Figure 4 on the common domain (right).

3 Pricing kernels and risk aversion

The common curve estimate of the pricing kernel, together with shifted curves are shown
in Figure 6. The estimate is not defined outside the range where no information is
available on the common shape. Figure 7 shows the parameter estimates from the
model (2), with approximate 95% (pointwise) confidence intervals added. Note that the
range in y axis of the location parameters (θ3, θ4) and scale parameters (θ1, θ2) differ.
θ1 and θ4 correspond to the amplitude variability (vertical direction) and θ2 and θ3
correspond to phase variability (horizontal direction) across dates.

In Section 2, we have discussed utility functions implied by the pricing kernel family. In
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Figure 7: Parameter estimates of the shape invariant models for the EPK and their
confidence intervals at 95% confidence level

general the utility function corresponding to Kt is given by

Ut(u) = θt1θt2U0

(u− θt3
θt2

)
− U0

(
− θt3
θt2

)
+ θt4u

≡ θ∗t1U0

(u− θt3
θt2

)
+ θ∗t4 + θt4u .

The utility function Ut is a combination of a SIM class of the common utility function
and a linear utility function. The ARA measure is given by

ARAt(u) =
− θt1
θt2
K′0
(
u−θt3
θt2

)
θt1K0

(
u−θt3
θt2

)
+ θt4

. (9)

For example, assuming K0(u) = u−γ with θt2 = 1 gives

ARAt(u) = γ
{

(u− θt3) + (θt4/θt1)(u− θt3)γ+1
}−1

.

When θt4 = 0, this function is monotonically decreasing but in general this is not the
case.
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Figure 8: Estimated pricing kernels (left) and corresponding ARA measures (right) in
2003 (top) and 2004 (bottom). These are reconstructed based on the model parameters
shown in Figure 6 and 7.

In order to gain some insights to these results, we take a closer look at the changes
that individual effects in the family of scale and shift parameters have on the common
function of empirical pricing kernel (EPK) and absolute risk aversion (ARA). These
effects are demonstrated in Figures 10 and 11. We vary each θi, with i = {1, 2, 3, 4} with
respect to a baseline model - the reference curve for θ0 = (1, 1, 0, 0) and then we show
how these modifications translate into changes of the risk attitudes.

For this exercise we first standardise the common curve that we have estimated via
the shape invariant model so that the peak occurs at the value 0 on the abscissa. We
observe that an increase in θ1 has a positive scaling effect on the EPK curve. The
absolute increase is larger for values of the EPK around the peak; the converse holds for
a decrease in θ1. However, when compared to the common curve, a change in θ1 does
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Figure 9: Estimated pricing kernels (left) and corresponding ARA measures (right) in
2005 (top) and 2006 (bottom). These are reconstructed based on the model parameters
shown in Figure 6 and 7.

not have any effect on ARA because, as we can see from (9), ARA does not depend on θ1
when θ4 = 0. Yet, the effect of θ1 on ARA can be analysed by considering two distinct
cases: θ4 > 0 and θ4 < 0. These specifications are important because the direction of
change in the slope of ARA is dictated by the sign of θ4. In the present case - after
normalisation - θ1 varies around 0 and its effect on ARA is almost nil.

A larger value in the parameter θ2 as compared to a benchmark value of 1 slackens the
EPK by stretching the x-axis, which implies larger spread of the bump. When we vary
θ2 alone the slope of ARA(θ2u) is 1/θ2

2

[{
K′0

2(u)−K′′0(u)/K0(u)
}
/K2

0(u)
]
. The term in

brackets does not depend on θ2; it is equal to the slope of ARA(u). Therefore, there is
an inverse relationship between the direction of change in the parameter and that of the
absolute value of the slope. These changes in slope occur arround an inflection point
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Figure 10: EPK: θ1 = 0.75 (red), θ1 = 1.25 (blue) - up left, θ2 = 0.75 (red), θ2 = 1.25
(blue) - up right, θ3 = −0.025 (red), θ3 = 0.025 (blue) - bottom left, θ4 = −0.25 (red),
θ4 = 0.25 (blue) - bottom right - compared to the baseline model θ0 = (1, 1, 0, 0) (black).

that corresponds to the peak of the EPK.

A positive increment in θ3 shifts both curves to the left without any modification in the
shape. θ4 simply translates EPK curves above or below the reference curve following a
sign rule. Similarly to θ2, the shape of ARA modifies around the fixed inflection point
that marks the change from risk proclivity (negative ARA) to risk aversion (positive
ARA). The effect of θ4 on the values of ARA is straightforward: since θ4 adds to the
K0 in the denominator its increase will diminish the absolute ARA level and the other
way around: absolute ARA level will increase with its reduction. Insulating the effects
of a change in θ4 on the slope of ARA(u) analytically proves to be a more complicated
than in the case of θ2 because the change in the slope depends jointly on the change in
θ4 and on the EPK values and its first two derivatives. In our case, the slope around

23



-0.2 -0.1 0 0.1 0.2

-20

0

20

40

-0.2 -0.1 0 0.1 0.2

-20

0

20

40

-0.2 -0.1 0 0.1 0.2

-20

0

20

40

-0.2 -0.1 0 0.1 0.2

-20

0

20

40

Figure 11: ARA: θ1 = 0.75 (red), θ1 = 1.25 (blue) - up left, θ2 = 0.75 (red), θ2 = 1.25
(blue) - up right, θ3 = −0.025 (red), θ3 = 0.025 (blue) - bottom left, θ4 = −0.25 (red),
θ4 = 0.25 (blue) - bottom right - compared to the baseline model θ0 = (1, 1, 0, 0) (black).

the inflection point increases when θ4 decreases.

With this information at hand we can characterise the changes in risk patterns in relation
with economic variables of interest. Before doing this, we should mention that in the
case of nonstandard common curves - in our empirical example the peak does not occur
at 0 - θ2 introduces a shift effect in EPK together with its shape effect. We will then
observe that a larger value in the parameter θ2 as compared to a benchmark value of 1
slackens EPK and shifts it to the right. ARA suffers a transformation similar to EPK in
the horizontal direction, but also a slight shrinking and translation effect in the vertical
direction. This second effect becomes more evident for larger values of θ2. Therefore,
the effect of θ3 must be interpreted only in conjunction with θ2.

Following Engle and Rosenberg (2001) we try to link the parameters describing risk
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∆θ1 ∆θ2 ∆θ3 ∆θ4 ∆Px ∆Py
∆θ1 1.00*
∆θ2 -0.71* 1.00*
∆θ3 0.71* -0.99* 1.00*
∆θ4 -0.93* 0.45* -0.45* 1.00*
∆Px -0.27*** 0.41** -0.38** 0.1 1.00*
∆Py 0.96* -0.83* 0.83* -0.82* -0.31*** 1.00*

∆CS -0.30*** 0.19 -0.19 0.31*** 0.13 -0.28***
∆Y C -0.02 -0.15 0.15 0.11 -0.21 0.03
∆IR 0.01 0.10 -0.08 -0.02 0.53* -0.00
RDax 0.68* -0.57* 0.56* -0.59* -0.52* 0.69

Table 1: Correlation coefficients between EPK risk aversion parameters and economic
indicators of the business cycle

sig at 1% = *
sig at 5% = **
sig at 10% = ***

attitudes to the business conditions. In this sense we compute the correlation coefficients
between each parameter θi and variables of interest. In addition, we build another two
time series that account for the location of the peak: Px and Py and repeat the procedure.
We use the following variables that have a revealed relation with the state of the economy:
credit spread (CS) is the difference between the yield on the corporate bond1 and the
government bond maturing in 5 years; the yield curve slope (YS) refers to the difference
between the thirty-year government bond yield and three-months intebank rate; short
term interest rate (IR) is the three-months intebank rate; and DAX 30 Performance
index as a proxy for consumption (Ait-Sahalia and Lo (1998)). These are all daily time
series. For our purpose we have selected the days that exactly match the dates of the
one month pricing kernels. The data has been collected from the Datastream and refer
to the German market.

All these time series are nonstationary (we have performed the Dickey-Fuller-Test for
every series) and we prefer to use the first difference instead for a clear interpretation
of the interdependencies (for the Dax index we compute the monthly percentage change
(RDax)). Table 1 reports the result.

We interpret the peak as the transition between two decreasing pricing kernels corre-
sponding to the area of losses and profits. A smooth transition indicates a reluctance

1Series Euro Area Corporate Bond Yield are based on the German CORPTOP Bond maturing in 3-5

years. Data are sourced from the Commerzbank.

25



to assume locally a risk loving behavior or, a higher constant risk aversion coefficient
consistent with Black-Scholes power utility function.

A positive change in the short term interest rate shifts the location of the EPK peak
to the right, to the areas of higher returns. Increasing short-term interest rate signals
worsening investment opportunities connected with a price up of credit. The correlation
of ∆IR with both ∆θ2 and ∆θ3 is not statistically significant. Therefore, while the
effect on the shape of ARA remains unclear, we can infer that the agents update their
expectations for the Dax returns according to the changes of the risk free interest rate.

The credit spread is an indicator of the investor’s believe with respect to the riskiness of
an investment. The increase in the credit spread is negatively correlated with the change
in the peak height. The correlation with both ∆θ1 and ∆θ4 is also significant. We know
that only θ4 has a significant effect on the shape of ARA for values of θ4 around 0. ∆CS
and ∆θ4 have a positive and significant correlation; with other words, an increase of
the credit spread leads to lower values of ARA around the inflection point. Thus, risk
proclivity is less pronounced in periods of recessions, announced by larger credit spreads.

Positive returns on the DAX index shift the peak of the EPK to the left. There is a
negative correlation between ∆θ2 and the DAX returns which means the if Dax index
increases the ARA will have a higher slope around the inflexion point, the local risk
proclivity is more pronounced, so the constant risk aversion coefficient decreases, which
implies that agents assume more risk. The region where the value of a unit payment is
greater when DAX returns are lower contracts: agents behave more risky on schrinking
domains.

On the vertical axis, positive returns enhance the peak. Both correlations of ∆θ1 and
∆θ4 are significant. The negative correlation of ∆θ4 with DAX returns indicates that
ARA values increase relative to the previous period when DAX index increases. More
pronounced local risk aversion around the switching point is in line with the effect
introduced through ∆θ2: Agents are locally more risk prone or overall less risk averse.

We haven’t found any significant correlation with the change in the yield slope.

The sense of the relations between the indicators of the business cycle - here, statistically
significant are the credit spread growth and the DAX returns - and the parameters that
summarize risk preferences indicates that locally risk loving behavior is procyclical. Our
finding are in line with the results of Following Engle and Rosenberg (2001). In addition,
we have learned how agents change their believes in the sense that they update the
expected value of the risky bets (the region on which they have nonstandard preferences)
according to the business cycle: the domain on which we record risk prone behavior
moves in the same sense with the indicators of economic contraction (the changes in the
short term interest rate) and in oposite sense with the indicators of economic expansion
(DAX returns). One possible explanation for it is the variation of the demand for
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Figure 12: Decomposition of EPK - up and ARA - bottom (red/dashed) in individual
effects: θ1 (brown/triangle), θ2 (blue/dash-dotted), θ3 (green/dotted), θ4 (magenta/star)
as compared to the common curve (black), on 16-Jul-2003 (left) and 19-Apr-2006 (right)

insurance under different market conditions.

Furthermore, we observe that there are significant correlations between the variations
of all θi. Important for us is the negative strong correlation between ∆θ1 and ∆θ2:
a decrease in the peakness comes along with an increase in the duration, which both
lead to less pronounced locally risk loving behavior. Intuitivelly, we can assert that a
concerted negative evolution of the economic indicators over several periods will lead
eventually to overall risk averse behaviour.

The evolution that we observe for our estimated period can be sumarized by Figure 12.
The graphs shown are a representative of a bundle of curves estimated at the beginning
and the end of the period we analysed. We observe that shifting effects of θ2 and θ3 are
of opposite sense and almost cancel each other. At the begining of the estimation period
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θ2 is larger than one, indicating an expansion of the spread. This relation to the baseline
parameter of one is roughly the case for θ1 as well (see Figure 7). Dominantly negative θ4
in the first stages brigs upon the slopes in ARA (larger values for risk aversion functions)
relative to the reference. This effect interacts with the effect for slope introduced by θ2.
The credit spread growth does not have any clear pattern over the period we considered.
Negative growth in the short term interest rates and positive returns on Dax index in the
first period as oposed to the second period mark the transition from a prosperous business
conditions to declining economy. In between these periods the market is unsettled.

4 Conclusions

We have explored a way of combining information contained in a series of empirical
pricing kernels. We propose a systematic approach using shape invariant modelling that
aims at capturing a common structure as a reference curve and explaining individual
variability by the deviations on the horizontal and vertical directions from the reference
curve. We have demonstrated the method using the European DAX options and returns
data and quantified the variability with four parameters that are easy to interpret in
the economic context. Inspection of these summaries would enhance our understanding
of the potentially complex objects like pricing kernels. Based on the pricing kernels we
derived the risk behaviour based on the ARA measures. We were also able to relate the
changes in risk behaviour to economic variables of interest and we have found that local
risk loving behaviour is procyclical.

Several extensions are left for future research. Although the shape invariant modelling
framework is independent of the estimation of pricing kernels, this can serve an alter-
native framework for comparison of empirical pricing kernels and related quantities.
Furthermore, time series analysis based on the estimated parameters for longer series
will be useful to summarise the dynamics and can be used to develop formal statistical
inference methods. We have only considered linear transformation and found it sufficient
for our analysis. An extension to nonlinear transformation is relatively straightforward,
if necessary. The real issue then would be to incorporate some formal statistical inference
methods to distinguish the cases.
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