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Abstract 

The aim of the paper is to study empirically the influence of higher moments of the return 
distribution on conditional value at risk (CVaR). To be more exact, we attempt to reveal the 
extent to which the risk given by CVaR can be estimated when relying on the mean, 
standard deviation, skewness and kurtosis. Furthermore, it is intended to study how this 
relationship can be utilised in portfolio optimisation. First, based on a database of 600 
individual equity returns from 22 emerging world markets, factor models incorporating the 
first four moments of the return distribution have been constructed at different confidence 
levels for CVaR, and the contribution of the identified factors in explaining CVaR was 
determined. Following this the influence of higher moments was examined in portfolio 
context, i.e. asset allocation decisions were simulated by creating emerging market 
portfolios from the viewpoint of US investors. This can be regarded as a normal decision-
making process of a hedge fund focusing on investments into emerging markets. In our 
analysis we compared and contrasted two approaches with which one can overcome the 
shortcomings of the variance as a risk measure. First of all, we solved in the presence of 
conflicting higher moment preferences a multi-objective portfolio optimisation problem for 
different sets of preferences. In addition, portfolio optimisation was performed in the mean-
CVaR framework characterised by using CVaR as a measure of risk. As a part of the 
analysis, the pair-wise comparison of the different higher moment metrics of the mean-
variance and the mean-CVaR efficient portfolios were also made. Throughout the work 
special attention was given to implied preferences to the different higher moments in 
optimising CVaR. We also examined the extent to which model risk, namely the risk of 
wrongly assuming normally-distributed returns can deteriorate our optimal portfolio choice.  

JEL Classification: G11, G15, C61 
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1 Introduction 

Since Markowitz (1952)1

The ongoing discussion on risk measures is not merely a matter of academic 

debate: it is, rather, at the centre of empirical research. There is ample evidence 

that financial return distributions are asymmetric, leptokurtic, and, hence, non-

normal. In such a real case, the variance exhibits two drawbacks. First, it 

weighs upper and lower deviations from the mean equally, and its application 

is in contradiction with the notion that investors only regard those returns as 

risky which are lower than an expected target value. Second, due to model risk 

(the risk of wrongly assuming normally-distributed returns) a mean-variance 

investor can greatly underestimate those extreme events which cause the 

heaviest losses. More precisely, Chamberlain (1983) show that the more 

general class of elliptic distributions, which includes normal distribution as a 

special case, is a precondition for using the standard deviation

 formulated his famous mean-variance criterion, 

virtually everyone agrees upon the mean but challenges the variance. The 

reason is that the conditions which qualify the variance as an appropriate risk 

measure are not fulfilled in practical applications. Nevertheless, due to its 

simple and intuitive characteristics, the mean-variance framework marks the 

quasi-standard for investment professionals nowadays. In this paper we 

compare and contrast two approaches with which one can overcome the 

shortcomings of the variance as a risk measure. 

2

                                                 
1 See also Markowitz (1991). 
2 Within the mean-variance framework, the standard deviation can be regarded as an equivalent 
risk measure with the variance. 

 as an exact 

measure of risk. In addition, Szegö (2002, 2005) concludes that the elliptic 

distribution of returns is necessary for the applicability of any risk measure 
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which relies only on the linear correlation coefficient as a measure of 

dependence between the random returns - which is true for the variance.3

Looking at recent suggestions on how to deal with non-normally distributed 

returns, two distinct approaches emerge. One is to improve the accuracy of the 

mean-variance framework by involving explicitly the third and fourth higher 

moments into the portfolio selection process. Lai (1991) solves such a resulting 

multi-objective optimisation problem by polynomial goal programming

 

4 (PGP) 

and derives optimal portfolios of domestic stocks in the presence of skewness 

preference. Chunhachinda et al. (1997) apply this approach for internationally 

diversified portfolios. Davies et al. (2006) extend it to the first four moments, 

including the kurtosis of the return distribution also. The higher precision of 

this approach, however, comes at the cost of higher model complexity. While, 

in the original mean-variance framework, only one risk aversion parameter is 

needed, the PGP requires two or three preference parameters5

Alternatively, one can replace the standard deviation by a different, more 

suitable, risk measure. One prominent candidate is the CVaR, since it has very 

attractive properties. First of all, it is a downside measure of risk and, hence, 

 and this makes 

the mapping and interpreting of optimal portfolios both peremptory and highly 

sophisticated. In fact, questioning an investor about his/her marginal rates of 

substitution between the different pairs of higher moments is certainly as 

demanding as directly aiming for his/her utility function.  

                                                 
3 See Joe (1997) and also Embrechts-McNeil-Straumann (2002). 
4 Tayi and Leonard (1988) introduced polynomial goal programming to solve multi-objective 
optimisation problems. They applied it to optimal bank balance-sheet management.  
5 Portfolio selection via PGP incorporates a two-step procedure. In the first step, the conflicting 
and competing objectives are optimised independently in order to obtain a set of non-
dominated solutions. In the second step, a polynomial is minimized containing the deviations 
of the different objectives from their optimum level. For a four moment optimisation, one 
requires, in total, three different preference parameters to weigh the investor’s preference for 
mean-variance, skewness-variance and kurtosis-variance efficiency.   
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consistent with the intuitive notion of risk, since it takes into account only the 

unfavourable part of the return/loss distribution. Secondly, it is a coherent risk 

measure in the sense of the Artzner-Delbaen-Eber-Heath (1999) axioms. 

Thirdly, it also accounts for losses beyond Value at Risk (VaR), which is 

especially important in case of fat-tail distributions. Finally, it has two 

favourable technical properties: it is continuous with respect to the confidence 

level and convex with respect to the control variables, the latter being very 

relevant in portfolio optimisation. In order to optimise within the mean-CVaR 

framework, as it was shown by Rockafellar and Uryasev (2000), one has to 

solve a simple linear programming problem. This makes CVaR very appealing 

in asset allocation. 

Although both approaches have the same objective - that is, to extend the 

mean-variance framework for the case of non-normally distributed returns, 

nobody has yet (to our knowledge) explicitly created a link between them to 

analyse how they differ or coincide. Indeed, one can raise the question, in 

applying CVaR as a risk measure, of the extent to which the information given 

by higher moments of the return/loss distribution can be utilised. In order to 

answer this question, we construct factor models based on cross-section return 

data of 600 individual equities from 22 emerging world markets and determine 

the explanatory power of the first four moments on CVaR at different 

confidence levels. 

In fact, our main contribution to the literature is that we show that, when CVaR 

is minimized, we can count on implied preferences in favour of higher 

skewness, higher mean, lower kurtosis and lower standard deviation. This 

property of CVaR makes it possible to apply the linear programming proposed 
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by Rockafellar and Uryasev for CVaR optimisation as a simple and effective 

alternative to PGP in portfolio allocation.   

We have attempted to organise the remainder of the paper in a logical way. 

Section 2 gives an insight into the methodology of conditional value at risk and 

describes the factor model. Section 3 introduces the mean-CVaR as well as the 

higher moment optimisation framework. The results of the empirical analysis 

are discussed in Section 4. Here, first of all, the specification of data is given, 

and this is followed by the results provided by the factor analysis. Finally, the 

findings of portfolio optimisation are presented and analysed, whilst Section 5 

offers some concluding remarks. 

2 VaR and CVaR as Risk Measure 

2.1 The Definition of VaR and CVaR 

The investor’s perception of risk is naturally associated with the probability of 

future returns falling below a threshold, which is investor-specific and related 

to the investment objective. Such a threshold can, for instance, be a minimum 

required rate of return, the expected return, a stochastic interest rate, or simply 

the zero level, which distinguishes positive from negative returns. Both the 

Value at Risk (VaR) and the Conditional Value at Risk (CVaR) support this 

notion of risk. 

The portfolio risk, however, is not only affected by the future realisation of 

asset returns but also by the portfolio allocation decision today. 6

                                                 
6 We omit subscripts of time because our framework is a single-period model. 

 Thus, for a 
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certain vector of portfolio weights x and the random return R with probability 

density p(R), the cumulative probability distribution of losses L = f(x, R) is7

 

:  

( ).),(),( ζζ ≤==Ψ RxfLPx  (1) 

Then, based on our portfolio allocation decision x, the VaR on a confidence 

level  is defined as8

 

: 

( ){ }.,|min)( αζζα ≥Ψ= xxVaR  (2) 

The CVaR on a given confidence level α is defined as the expected loss given 

that the loss L is higher than or equal to the Value at Risk (VaR) on the same 

confidence level: 

 { }αα VaRLLECVaR ≥=  (3) 

For continuous loss distributions the VaR and CVaR on a given confidence 

level are unique, and their determination is straightforward. In practical 

applications, when we often have to rely on discrete distributions coming from 

the series of past returns or finite sampling methods, VaR and CVaR are not 

necessarily unique. In these cases, we must differentiate between the upper 

CVaR+ and lower CVaR–.9

(3)

 The CVaR+ measures the expected value of losses 

strictly exceeding the VaR, whereas the CVaR– determines the expected value 

of losses higher than or equal to the VaR as given in formula . 

                                                 
7 One can interpret it as the probability that the loss will not exceed a given thresholdζ . In 
line with the recent literature of downside risk measures, we define both VaR and CVaR based 
on the loss, and not directly the return. Please, note that the loss can be obtained by mirroring 
the return along the y-axis, hence L = -R. 
8 See Jorion (1997) and Frey-McNeil (2002) for details. 
9 See Rockafellar and Uryasev (2002). 



 6 

Rockafellar and Uryasev (2002) proved that, in discontinuous cases, CVaR can 

be expressed as the weighted average of VaR and CVaR+. Using the α-tail 

distribution 

 
,10 with 

1
)(

<<
−

−Ψ
= λ

α
α

λ αVaR  (4) 

the following equation holds: 

 ,)1( +−+= ααα λλ CVaRVaRCVaR  (5) 

where Ψ is the cumulative probability distribution of L, so that Ψ(VaRα) = P(L 

≤ VaRα). 

2.2 The Influence of Higher Moments on CVaR 

The methodology applied for testing the influence of higher moments on CVaR 

is regression analysis. In the first regression model (the original model) CVaR 

served as a resultant variable, and the expected return (E), the standard 

deviation of returns (σ), the skewness (s) and kurtosis (k) were used as 

explanatory variables.  

The expected return, which can be estimated as the (arithmetical) average of 

returns in a given time period, is a typical measure of “location”10

The standard deviation of returns is the square root of the variance. As it is 

well-known, the variance can be determined as the squared average of 

. In this case 

the location of observed values plays a crucial role in the magnitude of the 

measure. Based on the fact that an increase in the expected return means a 

decrease in expected loss (given that other conditions are unchanged), it is 

logical to expect that risk measured by CVaR will decrease in this case.   

                                                 
10 This expression is used by Pflug (1999, p.1) as he differentiates measures of “dispersion” 
(such as the variance) and measures of “location” (such as the expected value). 
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deviations of returns from the mean. As a “volatility” measure, the variance or 

the standard deviation of the returns respectively has been the traditional 

measure of risk11

Skewness is defined as the normalised third central-moment of a distribution 

and indicates the degree of asymmetry in the shape of the distribution function 

(in our case in the return distribution). If the skewness is positive, the 

distribution function has a longer tail extending to the right (to the direction of 

large (positive) values) than to the other direction.

. As such, it belongs to the category of “location independent” 

measures, since its value is determined by the relative distance of each return 

observation from the mean - and not by their absolute location.  

12

Kurtosis is defined as the normalised fourth central-moment of a distribution 

and intuitively refers to the fact of how the different “scores” are distributed at 

the different parts of the distribution – namely, in the centre, at the tails, and 

between the centre and the tails (in the “shoulders”). If we take the bell-shaped 

normal distribution function as a starting point and replace scores from the area 

between the centre and the tails (to the centre as well as to the tails) the result is 

a so-called leptokurtic distribution - which is thinner in the centre and thicker 

 In the case of negative 

skewness, precisely the opposite holds, i.e. the distribution function has a 

longer tail the left, namely to the direction of small (negative) values. Negative 

skewness suggests the occurrence of extreme negative returns (usually, 

however, with low probability). Considering that negative return can be 

interpreted as loss, an increase in the value of skewness – maintaining other 

conditions unchanged – might cause a decrease in the value of risk measured 

by CVaR.  

                                                 
11 Cf. Eftekhari-Pedersen-Satchell (2000). 
12 In this case the mean is higher than the median. 
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at the tails than a normal distribution.  Based on these considerations, with an 

increase in the kurtosis – other conditions remaining unchanged – we can 

expect intuitively an increase in the CVaR.  

The first step was to calculate the expected return, the standard deviation of 

returns, the skewness, the kurtosis and the CVaR values for each equity. For 

these calculations we utilized the 600 time series, with 513 weekly return data 

in each time series. Then we ran a linear regression on the cross-section data. 

The regression model applied can be written as follows:  

 εσσα +⋅+⋅+⋅+⋅+= kcsccEccCVaR ksE0  (6) 

where cE, cσ, cs and ck are the regression parameters expressing the influence of 

the particular explanatory variables, the expected return (E), the standard 

deviation of returns (σ), the skewness (s) and the kurtosis (k) on CVaR, 

respectively. c0 is the regression constant and ε denotes the error term. In 

addition, α serves as a notation for the confidence level chosen in calculating 

CVaR.  

As will emerge from the results presented in Section 4, there is a significant 

degree of multi-collinearity in the model above (see formula 6). It is a known 

fact that this restricts the analytical interpretation of the results, namely the 

regression coefficients given by the model. In particular, the main problem 

with multi-collinearity is that the effects of the different explanatory variables 

in explaining the resultant variable cannot be separated.  

In order to eliminate multi-collinearity, factor analysis was applied. However, 

in carrying out the factor analysis, we decided not to reduce the number of 

variables. Instead of taking this route, our intention was to express the 
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influence of the original explanatory variables on CVaR in terms of 

“independent dimensions”. As will be seen later, the positive effect of this 

proved to be the maintenance of the high explanatory power of the original in 

the new model.  

This new model was built on the factors which we derived from the factor 

analysis. These were used as new explanatory variables and CVaR was kept as 

a resultant variable. The linear regression model containing the variables 

mentioned above takes the following form: 

 ∗∗ +⋅+⋅+⋅+⋅+= εα 443210 321
FcFcFcFccCVaR FFFF

  (7) 

In both models, i.e. in models 6 and 7, we used a cross-sectional sample of 600, 

since the sample size was equal to the number of equities considered. 

3 Portfolio Selection with Higher Moments  

3.1 Optimisation by Conditional Value at Risk 

CVaR was introduced into portfolio optimisation quite recently by Rockafellar 

and Uryasev (2000, 2002) as an alternative to VaR. Let R1,R2,...,RT
13

 

 be a 

sample set of return vectors. For a particular realisation of asset returns, i.e. for 

a specific return vector k the loss on a portfolio can be determined as: 

,,
1

ik

n

i
ik

T
p RxRxL

k ∑
=

−=−=  (8) 

where Tx is the transpose of the vector of portfolio weights x . 

                                                 
13 The number of elements in the sample set equals the number of the return observations in the 
time series of returns, while the dimension of the vectors is equal to the number of assets in the 
portfolio.  
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In order to identify the portfolio with the minimum CVaR at a minimum mean 

rate of return R*, as it is shown by Rockafellar and Uryasev (2000), the 

following linear programming problem has to be solved: 

 
∑
=−

+=
T

k
k

x
u

T
xCVaR

1, )1(
1),(min
α

ζζ
ζ

 

(9) 

subject to  

 
*,)(1

1
RRx

T

T

k
k

T ≥− ∑
=

 

 ,0≥++ kk
T uRx ζ  

 Tkuk ,...,2,1 ,0 =≥  

 .,...,2,1 ,0 ,1
1

nixx i

n

i
i =≥=∑

=

 

By solving (9) we find the optimal portfolio weights x* as well as the 

corresponding VaR ζ *14

3.2 Higher Moment Portfolio Optimisation 

.   

The multi-objective portfolio problem considered here is consistent with Lai 

(1991), Chunhachinda et al. (1997) and Davies et al. (2006). We argue that the 

investor has a preference for higher mean and skewness, whilst disliking large 

variance and kurtosis values. We have, therefore, a multi-objective 

optimisation problem with four competing objectives but we can simplify this 

problem by restricting the variance to unity and isolating its effect on the 

remaining objectives. Our portfolio selection model can, therefore, be 

                                                 
14 Rockafellar and Uryasev (2000, 2002) pointed out that minimising CVaR requires also 
identifying the corresponding VaR ζ *. Usually, but not necessarily, ζ * is also the global 
minimum VaR. 
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formulated in the following way. In the first step, the following multiple 

objectives have to be optimised independently:  

 
fn

T rxRxEZ 11 )(max ++=  

[ ]33 ))((max RERxEZ T −=  

[ ]44 ))((min RERxEZ T −=  

(10) 

 

 

 subject to  

  
1

1
1 ,1 +

=

−== ∑ n

n

i
i

T xxxVx  

  ,,...,2,1 ,0 nixi =≥  

where xn+1 indicates the proportion of money invested at the risk free rate rf. 

In this step we separately optimise mean return (Z1), skewness (Z3) and kurtosis 

(Z4). We search for the portfolio with the highest expected return (Z1
*) in the 

mean-variance space, the portfolio with the highest skewness (Z3
*) in the 

skewness-variance space and the portfolio with the lowest kurtosis (Z4
*) in the 

kurtosis-variance space. In all cases we restrict our choice to unit variance 

portfolios. It should be noted that, usually there exists no single portfolio which 

is optimal with respect to all the three criteria, and so, as a result, we take the 

set of non-dominated portfolios for which a more favourable portfolio cannot 

be found - in the sense that it cannot have a higher mean return at the same 

level of skewness and kurtosis, a higher skewness at the same level of mean 

return and kurtosis or a lower kurtosis at the same level of mean return and 

skewness. 

In the second step, given the investor’s preferences [α β γ] among the different 

objectives, the following polynomial has to be minimised: 
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where d1, d3 and d4 denote the deviations from the optimal policies, Z1
*, Z3

*and 

Z4
* derived in the first step, respectively. Hence, the objective function in the 

second step can be interpreted as minimisation of the deviations from each 

single optimal strategy. Thereby, each deviation is weighted accordingly to its 

preference parameter α, β and γ, respectively. 

4 Empirical Study 

4.1 Data  

The data for the regression analysis were taken from Standard and Poor’s 

Emerging Market Database (S&P’s EMDB). In total, we utilised 600 series of 

US dollar-based, individual equity returns from, again in total, 22 of the 

world’s emerging markets. All variables in the cross-section regression models 

were calculated based on the time series of weekly returns on these equities. 

The time period stretched from the 28th of February 1997 until the 31st of 

December 2006 and so comprised almost 10 years. The emerging markets 
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involved in the study (with the number of equities taken from the particular 

stock market in brackets) were:  

Argentina (9), Brazil (35), Chile (27), China (97), Czech Republic (4), Egypt 

(11), Hungary (7), India (62), Indonesia (16), Israel (23), Korea (61), Malaysia 

(48), Mexico (23), Morocco (10), Peru (11), Philippine Islands (22), Poland 

(5), Russia (6), South Africa (27), Taiwan (44), Thailand (30) and Turkey (22). 

For portfolio optimisation we relied on DataStream as a source of data, 

including equity index (total) returns from 21 countries15

Table 1

. Here a time series of 

weekly returns for more than 12 years, covering the period from the 3rd of 

February 1997 until the 29th of September 2008, was utilised. Asset allocation 

decisions were simulated by creating emerging market portfolios from the 

viewpoint of US investors. This can be regarded as a normal decision-making 

process of a hedge fund focusing on investments in emerging markets.  

 summarises the descriptive statistics for all countries considered. The 

Jarque-Bera statistics clearly indicate the non-normality of all the market 

returns.  

<< Table 1 about here>> 

4.2 Regression Analysis 

In Table 2 the results given by model (6) are summarised and presented at 95 

as well as 99 percent confidence level for CVaR. It can be observed that, 

despite the fact that, at the 99 percent level, the explanatory power is somewhat 

lower (but still around 90%), at both confidence levels it is high. In addition, 

all the regression coefficients are significantly different from zero at the 5 

                                                 
15 Among the countries mentioned above, Israel was omitted since, in this case, the data were 
not available for the time period prior to 1999.  



 14 

percent significance level. Moreover, with the exception of the regression 

constant at the 99 percent confidence level for CVaR, they are also significant 

at the 1 percent level. It is also worth mentioning that the signs of the 

regression coefficients are in agreement with the intuitive expectations outlined 

in Section 2. In particular, the positive sign of the regression coefficient for the 

standard deviation and the kurtosis indicate that an increase in the value in the 

respective variable − given that other conditions are unchanged − results in an 

increase in the value of CVaR. At the same time, the negative sign of the 

coefficient for the expected return as well as for the skewness refer to the fact 

that an increase in the value of the above-mentioned variables goes together 

with a decrease in the value of CVaR. This interpretation, however, has only a 

limited value due to the presence of multi-collinearity.  

<< Table 2 about here>> 

There is a high degree of multi-collinearity in model (6)16

Table 3

. The presence of 

multi-collinearity is already suggested by the pair-wise correlation terms 

between the different explanatory variables. The correlation matrix is presented 

in . The high correlation between skewness and kurtosis is most 

conspicuous with a value above 0.8. At the same time, the correlation terms 

between mean and standard deviation, standard deviation and skewness as well 

as that one between standard deviation and kurtosis are also not negligible 

(values approximately 0.45, 0.46 and 0.33, respectively). 

<< Table 3 about here>> 

                                                 
16 The multi-collinearity was tested by 2χ test. The value of the test statistics has proved to be 

326.4362 =χ  while the critical value at 5 percent significance level is 592.122
6;05,0 =χ  (the 

degree of freedom is 6). 
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The most important results of the factor analysis carried out in order to 

eliminate multi-collinearity, are presented in Table 4 and Table 5. For 

extracting the relevant factors Principal Component Analysis (PCA) was 

applied, and, as a method for rotation, varimax with Kaiser-normalisation was 

used. 

<< Table 4 about here>> 

As seen in Table 4, in the four-dimensional space determined by the 

explanatory variables of model (6), 42% of the total variance is due to the first, 

26% to the second, 25% to the third and 7% to the fourth factor, respectively. 

Despite the fact that only a relatively low proportion of the total variance can 

be explained by the fourth factor, we decided to retain it with the intention of 

building a new regression model. As emphasised earlier, this was motivated by 

the intention of retaining the high explanatory power of the original model. 

The factors can be identified based on the rotated component matrix (see Table 

5). The correlation terms in the matrix suggests that the first factor embodies 

the combined effects of skewness and kurtosis. The standard deviation is 

predominantly represented by the second, while the mean is by the third factor, 

respectively. The fourth factor shows a noteworthy correlation only with the 

skewness (0.516), and so it seems obvious to identify it as a factor expressing 

the skewness effect. 

The results given by the new regression model, which was built on the factors 

provided by the factor analysis, are summarised in Table 6 (see model (7)).17

                                                 
17 We saved the factor loadings as new variables for further analysis. From this we obtained 
600 values for each of the 4 factors. 

 In 

fact, similarly to model (6), two versions are presented, one at 95 percent, and a 
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second at 99 percent confidence level for CVaR, respectively. The table shows 

not only the regression coefficients but also the components of the explanatory 

power which are attributable to the different factors. The decomposition of the 

explanatory power in the new model is only possible because of the (linear) 

independence of factors. The mathematical consequence of this, on one hand, 

is that the value of the regression coefficient belonging to a specific factor is 

independent from those of the other factors, whilst, on the other hand, the 

explanatory power component of each factor does not change by the inclusion 

or exclusion of different factors into and from the model. 

<< Table 5 about here>> 

It can be seen in Table 6 that all the regression coefficients of both versions of 

model (7) are significant at 1% level. In addition, coinciding with our declared 

aim, it can also be seen that the explanatory power is the same as that of the 

versions of model (6).18

<< 

 

Table 6 about here>> 

Based on the results presented in Table 6, we can conclude that it is 

predominantly the second factor, which represents the effect of the standard 

deviation, which is responsible for the volatility in the value of CVaR (in 

particular at 95 percent confidence level for CVaR the explanatory power 

component attributable to it is 91.3%, while at 99 percent level the respective 

value is 77%). It is not so striking, given that the standard deviation is also a 

risk measure. It is therefore, understandable that the factor dominated by the 

standard deviation correlates highly with the risk measured by CVaR. At 95 

                                                 
18 For the sake of comparison see Table 2. 
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percent confidence level for CVaR in the magnitude of the explanatory power 

component, the second factor is followed by the third - which is, however, 

dominated by the mean, with a much lower contribution than that of the second 

factor, at 3.8%.  At 99 percent confidence level, the fourth factor, in which the 

skewness effect is “condensed”, has the second highest contribution (6.1%). 

The first factor, which embodies the joint effect of the skewness and kurtosis, 

together with the skewness dominated fourth factor have contributed to the 

explanatory power with only about 2% at 95 percent confidence level for 

CVaR, but with almost 10% at 99 percent confidence level! 

Based on the results shown above, we can conclude that, with an increase in 

the confidence level for calculating CVaR, the explanatory power component 

of those factors related to the non-normality characteristics of the return 

distribution, i.e. those ones dominated by the skewness and kurtosis, increases.  

4.3 Portfolio Analysis 

In our analysis we compare different approaches which take into account 

higher moments with the standard mean-variance framework. Essentially, we 

evaluate three different types of portfolio strategy: the classical mean-variance 

approach, mean-CVaR strategies and higher moment optimisation. In this way, 

the minimum-variance (MVP) and the tangency portfolio (TP) constitute our 

base case and benchmark scenario19

                                                 
19 For a detailed description of these strategies see e.g. Eun-Resnick (1994). 

. They are compared to their CVaR 

counterparts located in the mean-CVaR space, which we call the minimum-

CVaR (MCVaR) and the mean-equivalent tangency portfolio (TP-CVaR). For 

the sake of comparability, the TP-CVaR is constructed so that it provides the 

same mean return as the tangency portfolio but at the lowest possible CVaR. 
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Both the MCVaR and the TP-CVaR are evaluated at two different confidence 

levels - 95 and 99 percent. Finally, we account for higher moments explicitly 

by the multi-objective optimisation and pay special attention to different 

combinations of preference parameters for the mean (α), skewness (β), and 

kurtosis (γ). 

We analyse the different portfolio strategies in an ex post setting, using all data 

in our sample for parameter estimation. This procedure counters any effects 

which may arise from estimation risk and so allows us to focus on important 

differences or similarities among the portfolio strategies. 

4.3.1 Mean-Variance versus Higher-Moment Optimisation  

Table 7 presents the higher moments and downside risk metrics of all the 

optimal portfolio strategies considered. Table 8 shows the corresponding 

portfolio weights. As we know from the Jarque-Bera test statistics presented in 

Table 1, the equity index returns from none of the countries are normally 

distributed. If they were, minimising either the variance, the VaR or the CVaR 

would make no difference and so the mean-CVaR strategies and the mean-

variance strategies would coincide. Consequently, we observe (in the first 

panel of Table 7) a large variation in the resulting portfolio return distributions. 

<<Table 7 about here>> 

Looking at the moments of the different portfolio return distributions, it is clear 

that, by definition, the MVP must provide the lowest portfolio variance among 

all strategies. Thus, the MCVaR strategies cannot decrease the variance any 

further in order to reduce the CVaR; instead they must trade mean-variance 

efficiency for an improvement in CVaR. This effect is the more pronounced, 
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the more we raise the confidence level. Indeed, the standard deviation then 

rises from its minimum of 1.93% to 1.97% at 95 percent confidence level and 

to 2.20% at 99 percent confidence level, respectively. At the same time, the 

mean return level varies only slightly (by 1 basis point) around the 0.29% level 

of the MVP. The same applies to the CVaR-counterparts of the tangency 

portfolio.  In these cases there is an increase in the standard deviation from the 

mean-variance optimum of 2.11% to 2.13% at 95 percent, and to 2.37% at 99 

percent confidence level. Interestingly, the improvement in CVaR is achieved 

mainly by pushing the portfolio distribution to the right. Skewness increases 

from -0.49 to 0.08 in the minimum risk case and from -0.52 to -0.27 in the 

tangency portfolio case. Hence, the CVaR strategies support the investors’ 

inherent preference for right skewed return distributions. The effect on the 

kurtosis, however, is mixed and no clear pattern can be observed, except for a 

sharp decline in the case of the TP-CVaR99%, where the kurtosis is halved from 

3.08 to 1.50. 

The results above show that the mean-CVaR strategies indeed change the 

higher moments of the portfolio distribution and the direction of the change is 

mainly consistent with the investors’ preference. Nevertheless, these strategies 

manipulate the portfolio distribution rather indirectly, since their main 

objective is to minimise the tail risk at a given return level.  

In contrast, the higher moment portfolio optimisation explicitly takes skewness 

and kurtosis preference into account. The results of these strategies are given in 

the second panel of Table 7 for a varying set of preference parameters. First, 

note that the results of the mean-variance tangency portfolio (TP) and those of 

the [1 0 0] are almost identical. Considering that in the latter case there is 
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neither preference for a higher skewness nor for a lower kurtosis, the higher 

moment optimisation framework is expected to provide the portfolio with the 

highest excess return over the risk-free rate to a unit of variance. This is exactly 

the tangency portfolio in the mean-variance context. Small differences between 

TP and [1 0 0] are only due to numerical issues in the portfolio optimisation 

routine. The other two particular higher moment portfolios are those with the 

unit of pure skewness/variance preference [0 1 0], and the unit of pure 

kurtosis/variance preference [0 0 1]. The [0 1 0] portfolio comprises nearly 

100% equities from Malaysia and features by far the highest skewness (3.63), 

but, in return for this, provides the poorest mean (0.10) and the highest kurtosis 

(42.52). In contrast, the first three portfolio moments of the [0 0 1] strategy 

deviate less markedly from the mean-variance case but the decrease from 2.95 

to 0.06 in the kurtosis is remarkable. 

In addition to the three optimal portfolio with respect to a single moment [1 0 

0], [0 1 0], and [0 0 1], we consider three reasonable combination of the 

preference parameters: the case of equal (unit) preference for all moments [1 1 

1], higher preference for the mean than for the skewness and kurtosis [2 1 1], 

and the higher preference for the mean than the skewness and no preference for 

the kurtosis [2 1 0]. The resulting portfolio moments show that the PGP indeed 

manipulates the portfolio return distribution in the desired directions. 

Nevertheless, it is still difficult to conclude how “risky” a certain portfolio 

strategy is by looking only at the portfolio moments. This is the main drawback 

of the PGP, since neither calibrating the preference parameters nor interpreting 

the portfolio moments is intuitive. It is more natural for an investor to think in 

terms of risk-budgets, that is to say, “how much loss is acceptable”. The 

downside risk measures support this view of risk. Thus, if we look at the VaR 
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and CVaR measures, we can see that the PGP strategies are more risky than a 

simple mean-variance portfolio, although we account for the higher moments 

explicitly. Hence, the interaction of all moments on the tail risk is hard to 

evaluate in advance. For instance, while the [1 1 1] and [2 1 1] strategies 

provide reasonable results, the [2 1 0] portfolio is hardly a sound portfolio 

strategy. It does offer more favourable skewness values but costs a huge 

decline in the mean-variance efficiency and increases the kurtosis considerably. 

Compared to the mean-variance tangency portfolio (TP), its mean return 

decreases by one third from 0.36% to 0.22%, its variance triples from 2.11% to 

6.23%, and its kurtosis is, at 19.25, more than six times larger. The CVaR is 

also about three times larger than that of the TP. Consequently, accounting for 

higher moments explicitly, demands a very complex calibration of the 

preference parameters. In contrast, it is much easier to use the CVaR as a risk 

measure, which also results in more favourable, but even more balanced, 

portfolio moments. Furthermore, the optimal portfolio weights in Table 8 show 

another important difference between the mean-CVaR and the PGP portfolios: 

the latter are less diversified and invested in only 2 to 4 countries, whilst the 

mean-CVaR portfolios are invested in 6 to 9. 

4.3.2 The Effect of Model Risk 

To emphasise the effect of model risk, we calculate the downside risk measures 

in two different ways. On the one hand, the VaR and CVaR are derived from 

the empirical portfolio return distribution and, on the other hand, we simply 

plug the estimated mean and standard deviation into the standard formula for 

normally distributed returns: 
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where φ(.) denotes the standard normal density function and Nα is the α-

quantile of the standard normal distribution. In formulae (12) and (13) E(L) and 

)(Lσ stand for the expected (mean) loss and the standard deviation of loss, 

respectively. 

The later approach indicates the extent to which model risk can deteriorate our 

optimal choice. For instance, looking at the CVaR, one can see that the risk 

metrics which were derived under the assumption of normally distributed 

returns underestimate the historical values in all cases except for the [1 1 1] 

strategy. Therefore, estimating the CVaR with only the first two moments is 

not sufficient, since one must also account for the higher moments. The picture 

changes if we compare the parametrical and empirical VaR. At 99 percent 

confidence level, the results still tend to support the fact that parametrically 

derived values underestimate their empirical counterpart. Except for the [0 0 1] 

strategy, all empirically derived downside risk measures are larger than, or 

equal to, their parametrical counterparts. In contrast, at the 95 percent 

confidence level, the results from the mean-variance and mean-CVaR 

strategies in the first panel show the opposite pattern while the higher moment 

strategies in the second panel show mixed results. Furthermore, comparing the 

same downside risk measures at different confidence levels or the VaR with 

respect to the CVaR at the same confidence level, shows that the downside risk 

measures increase more sharply in the empirical case than in the parametrical 
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case. Consequently, the empirical tail distribution is much more risky than the 

normal distribution indicates. 

<<Table 8 about here>> 

4.3.3 Mean-Variance versus Mean-CVaR Efficient Portfolios in 

Respect of Higher Moments 

 
Finally, we present in Figure 1 all mean-variance efficient portfolios and all 

mean-CVaR efficient frontiers in varying moment spaces. Of course, all mean-

variance efficient portfolios in the mean-variance space represent the well 

known efficient frontier. We can see from the upper left graph that all mean-

CVaR efficient portfolios are dominated by the mean variance optimal 

portfolios and that the mean variance sub-optimality of the mean-CVaR 

portfolios increases with the confidence level. This is true by definition and 

would change in favour of the mean-CVaR portfolios if we would plot all 

portfolios in a mean-CVaR space. This graph, however, does not show the 

properties of these portfolios in respect of the higher moments. Therefore, we 

plot all portfolios in the mean-skewness space (upper right graph), the 

skewness-variance space (lower left graph) and the mean-kurtosis space (lower 

right graph).20

                                                 
20 We omit the kurtosis variance and the kurtosis skewness spaces, because they show no clear 
pattern. 

 The mean-skewness space graph supports our assumption, that 

the mean-CVaR portfolio trades mean-variance efficiency for more a 

favourable skewness value and that this effect becomes more pronounced at 

higher confidence levels. Compared to the mean variance optimal portfolios, 

the mean-CVaR portfolios shift to the right and provide higher skewness 

values at the same mean level. Note that the sharp change of direction at the 
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end of the mean-CVaR99% portfolios is not due to a sharp decline in volatility 

(which can be concluded from the upper left graph) but, potentially, to the 

associated sharp decline of the kurtosis - as the lower right graph indicates. The 

upper right graph exhibits two interesting features. First, the skewness 

decreases from the minimum risk portfolios as we move to moderate risk levels 

but then increases steadily. The latter fact is intuitive, since the degree of 

diversification decreases with higher portfolio variance, but, with lower 

diversification, the skewness increases. The reason lies in the sub-additivity 

property of the skewness and hence diversification decreases the skewness. 

<<Figure 1 about here>> 

Consequently, we can conclude that mean-CVaR portfolios manipulate not 

only the tail distribution but the whole portfolio return distribution. Therefore, 

accounting for higher moments can implicitly and intuitively be achieved by 

replacing the variance with CVaR. 

5 Conclusion 

In the paper we attempted to reveal some characteristics of a prosperous risk 

measure, the conditional value at risk (CVaR), which can be utilised in 

portfolio optimisation. In particular, the main aim was to study the extent to 

which the CVaR is determined by the moments of the return distribution and 

what consequences this relationship has in portfolio allocation. 

Firstly, the relationship between the conditional value at risk (CVaR) and the 

first two central moments of return distribution (namely the mean and the 

standard deviation) as well as the skewness and kurtosis which can be 

generated from the third and the fourth moment, was studied empirically. We 
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relied on a cross-section database including 600 equities from 22 emerging 

markets of the world. The method applied was linear regression combined with 

factor analysis. Eventually, a factor model was constructed in order to 

eliminate multi-collinearity from the original model. 

Portfolio optimisation was then performed. On an ex post basis, different 

approaches which take into account higher moments were compared with the 

standard mean-variance framework. We considered the minimum variance 

portfolio (MVP) and the tangency portfolio (TP) as well as their counterparts in 

the mean-CVaR framework (MCVaR, TP-CVaR), each at different confidence 

levels (95%, 99%). In addition, we solved in the presence of conflicting higher 

moment preferences the multi-objective portfolio optimisation problem for 

different sets of preferences. As a part of the ex post analysis, the pair-wise 

comparison of the different higher moment metrics of the mean-variance and 

the mean-CVaR efficient portfolios were also made. 

For portfolio optimisation the equity (price) index returns of 21 emerging stock 

markets were used. Asset allocation decisions were simulated by creating 

emerging market portfolios from the viewpoint of US investors. This can be 

regarded as a normal decision-making process of a hedge fund focusing on 

investments into emerging markets. 

We also examined the extent to which model risk can deteriorate our optimal 

portfolio choice. In doing so, the VaR and CVaR values from the underlying 

empirical dataset were compared and contrasted with those assuming a normal 

distribution. The conclusions of the study can be summarised as follows: 
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Firstly, the explanatory power of the factor model built on the factors given by 

principal component analysis as explanatory variables and CVaR as a resultant 

variable proved to be very high for both confidence levels for CVaR. 

Furthermore, all the regression coefficients were significant at the 1 percent 

level. However, the explanatory power of this factor model decreased with an 

increase in the confidence level for calculating CVaR. 

Secondly, for the volatility in the value of CVaR, the factor conveying the 

effect of standard deviation has predominantly proved to be responsible. At the 

same time, it is remarkable that the strength of the influence of this factor 

decreased as the confidence level for CVaR increased. In addition, parallel to 

the decrease in the effect of the factor dominated by the standard deviation, the 

effect of the factors dominated by the skewness and kurtosis, i.e. those factors 

representing the non-normality characteristics of the distribution, increased as a 

result of an increase in the confidence level for CVaR. 

Thirdly, considering the effect of model risk, it has been deduced that the 

empirical tail distribution is much more risky than the normal distribution 

indicates. 

Finally, it has been shown that minimising CVaR can be regarded as a 

substitute for higher moment portfolio optimisation. This can be explained by 

the implied preference for a higher skewness (and mean) and a lower kurtosis 

(and standard deviation). Indeed, it became obvious from our empirical 

analysis that the portfolios in the mean-CVaR framework clearly trade mean-

variance efficiency for more skewness and less kurtosis. In other words, 

optimising CVaR seems to support the investors’ preference for higher 

skewness and lower kurtosis. 
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Appendix 

Table 1 

Descriptive Statistics of Weekly Emerging Market Returns 
The table presents the basic statistics of weekly returns of 21 emerging market indices ranging from the 3rd of 
February 1997 until the 29th of September 2008. All returns are calculated from the S&P Emerging Market 
Database (S&P’s EMDB) Investible Indices. We report the mean, the standard deviation (Std.), the skewness 
(Skew.), the kurtosis (Kurt.) and the Jarque-Bera test from in total 608 simple returns.  

Argentina 0.21 5.26 -0.36 1.97 108.74 0.39 5.17 -0.05 1.68 69.90
Brazil 0.43 5.54 -0.44 0.53 26.08 0.48 4.47 -0.26 2.34 142.30
Chile 0.21 3.20 -0.31 2.08 116.05 0.24 2.73 -0.27 2.15 122.05
China 0.25 5.36 -0.08 4.57 518.07 0.22 5.35 -0.08 4.60 525.69
Czech 0.42 3.96 -0.36 0.98 36.03 0.32 3.54 -0.40 1.56 76.02
Egypt 0.33 4.18 0.25 0.94 27.63 0.41 4.21 0.52 2.33 160.64
Hungary 0.34 4.51 -0.20 2.00 102.74 0.32 4.10 -0.08 2.86 202.73
India 0.31 4.33 -0.48 2.21 144.66 0.35 4.09 -0.45 2.39 161.44
Indonesia 0.34 8.65 1.34 17.08 7443.63 0.37 5.97 0.64 6.14 977.57
Korea 0.34 6.10 0.35 2.45 160.34 0.35 5.23 0.23 1.90 94.10
Malaysia 0.10 5.69 3.64 42.88 47139.12 0.11 4.69 2.97 32.14 26614.78
Mexico 0.35 4.36 -0.24 2.26 131.60 0.38 3.77 -0.26 2.09 114.87
Morocco 0.34 2.62 -0.04 3.43 292.49 0.31 2.39 0.04 4.77 563.81
Peru 0.36 3.55 -0.34 1.98 108.50 0.38 3.44 -0.32 1.73 84.40
Philippines -0.02 4.73 0.51 5.73 842.17 0.04 3.99 0.28 3.62 332.16
Poland 0.24 4.62 -0.13 1.38 48.61 0.17 3.99 -0.10 1.99 99.11
Russia 0.53 7.37 -0.06 4.90 597.32 0.78 7.61 1.26 11.68 3556.34
South Africa 0.27 4.06 -0.41 2.02 118.05 0.33 3.15 -0.43 3.02 244.88
Taiwan 0.07 4.31 0.01 1.57 60.82 0.09 4.05 0.01 1.68 69.72
Thailand 0.14 6.00 1.48 12.24 3946.47 0.15 5.22 1.36 8.79 2105.95
Turkey 0.48 7.81 0.25 2.29 135.87 0.79 6.73 0.41 2.70 197.31

Std. (%) Skew. Kurt.*
Jarque-
Bera** Mean (%) Std.  (%)

Weekly returns in US-Dollar Weekly returns in local currencies

Skew. Kurt.*
Jarque-
Bera**Mean (%)

 
*Here, we report the excess kurtosis. 
**The test hypothesis of normally distributed returns can be rejected at a confidence level less than 1% for all 
countries. 
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Table 2 

Results of the Multi-Linear Regression Analysis 
The table shows the regression parameters of a multi-linear regression model testing the influence of the mean 
return (E), the standard deviation of return (σ), the skewness (s) and kurtosis (k) on CVaR: 

ε+⋅++σ⋅+⋅+= σα kcs.ccEccCVaR ksE0  (α is the confidence level for CVaR and ε stands for the error 
term). The data were taken from S&P’s EMDB. In total, 600 series of US dollar-based, individual equity returns 
were utilised from 22 emerging markets. All variables in the cross-section regression model were calculated 
based on the time series of weekly returns on these equities. The time period stretched from the 28th of February 
1997 until the 31st of December 2006. The results are presented for 95 and 99 percent confidence level in 
calculating CVaR.  

c0 cE cσ cs ck R² (%)

CVaR95% = f(E,σ, s, k) 0.011** -0.998** 1.989** -0.014** 0.001** 96.80

CVaR99% = f(E,σ, s, k) 0.006* -1.210** 3.053** -0.044** 0.003** 89.90
 

 *   Significant at 5% level. 
 ** Significant at 1% level. 
 

Table 3 

The Correlation Matrix of the Explanatory Variables  
Here the pair-wise correlation terms between the mean (E), the standard deviation (σ), the skewness (s) and 
kurtosis (k), i.e. the explanatory variables of the multi-linear regression model are presented.    

Mean (E) Std. (σ) Skew. (s) Kurt. (k)

Mean (E) 1.000 0.445 0.068 0.000
Std. (σ) 1.000 0.464 0.329
Skew. (s) 1.000 0.831
Kurt. (k) 1.000
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Table 4 

Total Variance Explained 
The table summarises the results of the factor analysis carried out in the four-dimensional space determined by 
the mean (E), the standard deviation (σ), the skewness (s) and kurtosis (k). For extracting the factors Principal 
Component Analysis (PCA) was applied. 

F1 1.689 42.217 42.217

F2 1.024 25.591 67.808

F3 1.014 25.355 93.163

F4 0.273 6.837 100

Cum. variance 
explained (%)

Variance 
explained (%)EigenvalueFactor

 

Table 5 

Rotated Component Matrix 
The rotated component matrix given by the factor analysis is shown here. As a method for rotation, varimax with 
Kaiser-normalisation was used.  

F1 F2 F3 F4

Mean (E) -0.014 0.218 0.976 0.009
S.D. (σ) 0.209 0.943 0.248 0.080
Skewness (s) 0.815 0.263 0.018 0.516
Kurtosis (k) 0.990 0.135 -0.016 -0.021
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Table 6 

Results of the Factor Model 
The table presents the regression coefficients of the factor model developed based on factor loadings provided by 

the factor analysis. The model is given in the form of ∗∗
α ε+⋅+⋅+⋅+⋅+= 44F3F2F1F0 FcFcFcFccCVaR

321
    

where α is the confidence level for CVaR and ε* denotes the error term. Instead of getting a reduction in the 
number of variables, the intention was to express the influence of the original explanatory variables (E, σ, s, k) 
on CVaR in terms of “independent dimensions”. Therefore, in order to keep the high explanatory power of the 
original multi-linear regression model, we kept all the four factors given by the factor analysis. The 
decomposition of the explanatory power into the components attributable to the different factors is also reported 
in the table.   

c0* cF1 cF2 cF3 cF4 R²

CVaR95% = f(F1, F2, F3, F4) 0.131** 0.004** 0.035** 0.007** -0.003**

Explanatory power (%) - 1.00 91.30 3.80 0.70

CVaR99% = f(F1, F2, F3, F4) 0.197** 0.011** 0.052** 0.011** -0.015**

Explanatory power (%) - 3.40 76.90 3.50 6.10

96.80

89.90

 
** The respective parameter is significant at 1% level. 
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Table 7 

Higher Moments and CVaR of Ex Post Optimal Portfolio Strategies 
The table reports the higher moments and downside risk metrics of 12 different portfolio strategies. The dataset 
comprises the simple, weekly returns of 21 emerging market indices stretching from the 3rd of February 1997 
until the 29th of September 2008. All returns are calculated from the S&P Emerging Database Investible Indices. 
We use all observations to estimate the parameters. The MCVaR strategies minimises the CVaR at a specific 
confidence level, while the TP-CVaR strategies minimise the CVaR at the same return level as that of the the 
tangency portfolio. The sub-index refers to the confidence level which was applied in optimising CVaR. The 
higher moment optimisation is performed for different preference levels [α β γ], where α denotes the preference 
for the mean-variance trade-off, β for the skewness-variance trade-off and γ for the kurtosis-variance trade-off. 
We calculate the mean, the standard deviation (Std.), the skewness (Skew.), the excess kurtosis (Kurt.), the VaR 
and CVaR at different confidence levels. “Empirical” denotes the VaR and CVaR values from the underlying 
dataset while “Parametrical” stands for the values assuming a normal distribution. 

Mean (%) Std. (%) Skew. Kurt. VaR95% VaR99% CVaR95% CVaR99% VaR95% VaR99% CVaR95% CVaR99%

µ-σ/CVaR Strategies

MVP 0.29 1.93 -0.49 2.32 2.77 5.85 4.38 7.20 2.88 4.19 3.69 4.85
MCVaR95% 0.30 1.97 -0.26 2.54 2.59 5.25 4.23 7.27 2.94 4.28 3.76 4.95

MCVaR99% 0.28 2.20 0.08 2.47 3.31 5.62 4.70 6.68 3.33 4.83 4.25 5.57

TP 0.36 2.11 -0.52 3.08 3.10 5.79 4.72 8.11 3.10 4.54 3.98 5.25
TP-CVaR 95% 0.36 2.13 -0.42 3.17 2.89 5.95 4.62 8.16 3.13 4.58 4.02 5.30

TP-CVaR99% 0.36 2.37 -0.27 1.50 3.36 6.12 5.15 7.55 3.54 5.15 4.53 5.96

Higher Moment Strategies

[1 0 0] 0.36 2.11 -0.50 2.95 3.05 5.86 4.70 8.03 3.10 4.54 3.98 5.25
[0 1 0] 0.10 5.62 3.63 42.52 7.35 14.73 12.41 18.57 9.14 12.97 11.49 14.87
[0 0 1] 0.30 3.07 -0.14 0.06 4.94 6.76 6.35 8.32 4.75 6.84 6.03 7.88
[1 1 1] 0.28 3.62 0.21 0.48 5.73 8.25 7.39 9.07 5.67 8.14 7.18 9.36
[2 1 1] 0.29 3.06 -0.05 0.13 4.95 6.83 6.32 8.02 4.74 6.82 6.01 7.85
[2 1 0] 0.22 6.23 1.77 19.25 8.37 14.70 12.98 22.15 10.03 14.27 12.63 16.38

Empirical (%) Parametrical (%)
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Table 8 

Ex Post Optimal Portfolio Weights 
We allow for weekly rebalancing and also utilise all observations to estimate the parameters. The dataset 
comprises weekly returns of 21 emerging market indices ranging from the 3rd of February 1997 until the 29th of 
September 2008. All returns are calculated from the S&P Emerging Database investible indices. The MCVaR 
strategies minimises the CVaR at a specific confidence level while the TP-CVaR strategies are constructed to 
minimise the CVaR at the same return level as the tangency portfolio. The sub-index refers to the confidence 
level which was applied in optimising CVaR. The higher moment optimisation is performed for different 
preference levels [α β γ], where α denotes the preference for the mean-variance trade-off, β for the skewness-
variance trade-off and γ for the kurtosis-variance trade-off. We calculate the mean, the standard deviation (Std.), 
the skewness (Skew.), the kurtosis (Kurt.), the VaR and CVaR at different confidence levels. 

[1 0 0] [0 1 0] [0 0 1] [1 1 1] [2 1 1] [2 1 0]

Argentina 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brazil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chile 18.89 12.60 1.88 0.00 0.00 0.00 0.00 0.00 28.45 0.00 22.85 0.00
China 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Czech 1.82 0.00 0.00 12.49 9.88 5.05 13.86 0.00 0.00 0.00 0.00 0.00
Egypt 10.32 9.02 0.00 10.83 6.81 0.00 8.59 0.00 44.26 70.27 49.28 0.00
Hungary 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
India 2.39 0.00 0.00 0.26 0.00 0.00 2.36 0.00 0.00 0.00 0.00 0.00
Indonesia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 38.63
Korea 0.00 1.06 6.82 2.31 2.08 17.78 3.97 0.00 27.30 0.00 19.59 0.00
Malaysia 2.86 6.52 13.09 0.00 0.00 0.00 0.00 98.78 0.00 0.00 0.00 0.00
Mexico 0.00 0.00 0.00 3.08 0.00 0.00 3.96 0.00 0.00 0.00 0.00 0.00
Morocco 46.32 54.94 45.67 49.58 55.85 50.92 47.41 1.22 0.00 0.00 0.00 0.00
Peru 8.50 12.82 19.50 16.62 19.67 17.02 15.93 0.00 0.00 0.00 0.00 0.00
Philippines 1.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Poland 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Russia 0.00 0.00 0.00 3.71 3.56 1.03 1.92 0.00 0.00 0.00 0.00 0.00
South Africa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Taiwan 7.68 2.62 8.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Thailand 0.00 0.43 4.24 0.00 0.00 0.00 0.00 0.00 0.00 29.73 8.05 61.37
Turkey 0.00 0.00 0.00 1.12 2.16 8.20 2.00 0.00 0.00 0.00 0.00 0.00

MVP

µ-σ/CVaR (%) Higher Moment (%)

Min-
CVaR95%

Min-
CVaR99% TP

TP-
CVaR95%

TP-
CVaR99%
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Figure 1: Mean-Variance and Mean-CVaR Efficient Frontiers in Higher Moment Spaces 
This figure depicts all mean variance efficient portfolios and all mean-CVaR efficient frontiers in varying moment spaces. These are the mean-variance space (upper left graph), 
the mean skewness space (upper right graph), the skewness variance space (lower left graph), and the mean-kurtosis space (lower right graph). The various moments are 
calculated using a two-step procedure. Firstly, we calculate the mean-variance and mean-CVaR efficient portfolio weights. Secondly, using these portfolio weights, we calculate 
the corresponding moments (mean, standard deviation, skewness and kurtosis) in respect of the historical return distribution. 
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