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Abstract 
 
A cap on greenhouse gas emissions makes total emissions a fixed common-property resource. 
Population increases under a cap are therefore self-limiting: a population increase raises labor 
and reduces emissions per unit of labor, which lowers incomes and fertility. Because a 
marginal birth under a cap lowers all incomes, a cap induces a negative population 
externality. The externality is substantial in calibrations, about 20 percent of income in steady 
state and 5 percent of income immediately after imposition, or more, per child. Similarly, the 
optimal population may be one-quarter of the natural population in steady state. 
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The Kyoto Protocol lays the groundwork for a system of caps on greenhouse
gas emissions. Emissions caps have been put in place in the EU and have been
proposed for the U.S. and other countries. We show that imposition of an emis-
sions cap bounds an economy’s population and induces a negative population
externality that is large under reasonable assumptions.

These results arise because the level of total emissions is a fixed common-
property resource under a binding cap. (Without a cap, the global environment
may be a fixed common-property resource but the level of total emissions is not.)
Total emissions are constant when a cap binds and equal per-capita emissions
times population, so a rise in population reduces per-capita emissions. Lower
per-capita emissions in turn act to lower incomes and hence fertility. Thus
population increases under a cap are self-limiting.

Because a rise in population under a cap reduces incomes for everyone, the
rise generates a negative externality. A consequence is that the optimal pop-
ulation, meaning the population that would be set by a social planner taking
account of the externality, is lower than the natural population, meaning the
population that would arise absent any policy-induced net incentive to have
children.

We study the natural and optimal populations in a balanced-growth setting
in which output is produced using inputs of labor and greenhouse gas emissions.
Emissions are free until a cap is imposed. Population and hence labor are
determined endogenously from the optimal fertility in a Barro-Becker (1988,
1989) dynastic household model. The setting can describe either a national
economy with a cap imposed under an international agreement or the whole
world under a global cap.

Before a cap is imposed, population grows at a constant, positive rate. If
there is no productivity growth, a cap causes fertility to fall to replacement as
population converges to a steady-state constant. This “Malthusian” outcome is
modified if productivity grows exogenously: the economy instead converges to
a steady state in which the natural and optimal populations rise with a growth
factor (one plus the growth rate) equal to the growth factor for emissions pro-
ductivity divided by the growth factor for labor productivity. Under reasonable
assumptions, this means that the natural and optimal populations fall over time.

We calculate the optimal population sequence and the corresponding se-
quence of optimal taxes on having a child (optimal child taxes). These are
Pigovian taxes that measure the overall policy incentives needed to get house-
holds voluntarily to choose the optimal population.1

Calibrated optimal child taxes are large and thus at odds with tax, welfare,
and schooling policies that subsidize costs of having children. Large optimal
child taxes are also at odds with calls to encourage population growth in order
to maintain the solvency of social security.

1Harford (1998) shows that the optimal child tax equals the present value of the external-
ities the child and the child’s offspring will generate. The optimal taxes in our model have
this property.
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The analysis describes general effects of any cap and requires no assumptions
about how or even whether emissions damage the environment. An assessment
of underlying damages would be needed to determine the optimal level of a cap,
but this is beyond the scope of the current paper.2 The analysis also assumes
an emissions cap is the only source of a population externality: there are no
positive human-capital externalities and no negative congestion externalities.

We first lay out theoretical issues in a relatively minimal setting. Section I
describes the setting. Section II describes the natural population before a cap is
imposed. Section III describes the natural population under a cap. Section IV
describes the optimal population and optimal child taxes under a cap. Section
V shows that the population externality arises because of imperfect property
rights. In section VI, we extend the model to set the stage for calibrations by
adding time costs of children, a more general technology, and exogenously-given
productivity growth. Section VII contains calibrations. Proofs and derivations
are in an appendix at http://www.econ.ucsb.edu/~bohn/papers/CCapp.pdf.

I. Setting

Denote the time-t adult population by Nt and aggregate labor by Lt = ltNt
where lt is per-capita labor. (Throughout, per-capita means per-adult.) A
representative firm operating under perfect competition produces output Yt from
labor and Et units of greenhouse gas emissions according to

Yt = F (Lt, Et), (1)

which is increasing, strictly concave, and exhibits constant returns.3 We ab-
stract from capital and other inputs. We also abstract from productivity growth
until section VI, where we show the analysis holds with exogenously growing
productivity if growing variables are deflated in the standard way with growth
factors.

Constant returns implies that (1) can be written

Yt = Ltf(et), (2)

where et ≡ Et/Lt is the ratio of emissions to labor (compactly, the emissions
ratio) and f is output per unit of labor.

2 Integrated assessment models (e.g. Mendelsohn et al. 1998, Nordhaus and Boyer 2000)
have been used to calculate damages. Adding the damage assumptions of these models to the
current analysis would mean adding environmental state variables and using both population
and emissions (cap) levels as controls. Adding damage assumptions would also cloud analysis
of a cap with assumptions needed to calculate damages. For instance, damages can vary
greatly depending on how one treats “catastrophic” losses that may be difficult to quantify.

Note that Kelly and Kolstad (2001) use an integrated assessment model to calculate the
welfare cost of a marginal child. Their calculated cost is tiny compared with results here.

3 Implicit in (1) is that past emissions do not reduce current output. This simplifies the
analysis and highlights that imposition of a cap alone suffices to induce a population exter-
nality.
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Emissions are free before a cap is imposed so we assume there is a positive
value e+ <∞ at which emissions have zero marginal product, f ′(e+) = 0, with
f ′(et) > 0 for 0 ≤ et < e+. For now, we assume emissions are an essential input
in that f(0) = 0; this is relaxed in section VI where we study a “backstop”
technology that allows output to be positive with zero emissions.

The story is that population and total greenhouse gas emissions grow un-
hindered over time until a transition period indexed t = 0 when emissions are
first recognized to be an issue. Starting at t = 0, government imposes a cap
by creating and auctioning Ê permits in each period, each permit allowing one
unit of emissions in the period so Et ≤ Ê < ∞ for t ≥ 0. Prior to period zero
there is no expectation of any cap; for t ≥ 0, there is perfect foresight that a
perfectly enforced cap is fixed at Ê.4 We treat permits as valid for a single pe-
riod because actual and proposed caps do not have the character of permanent
property rights. The recent Kerry-Boxer bill, for instance, explicitly states that
permits are not property rights and that nothing restricts future government
from terminating or limiting an emission allowance.

In the market for emissions permits, the government is the supplier and
the representative firm is the demander. The firm maximizes profits Ltf(et)−
ptEt−wtLt, where pt is the price of permits and wt is the wage. The first-order
conditions are pt = f ′(et) and wt = w(et) ≡ f(et)− etf

′(et).

The quantity of permits demanded at pt = 0 is e+Lt. If e+Lt < Ê, the cap
does not bind, pt = 0, and et = e+. If e+Lt > Ê, the cap binds, pt > 0, and
et = Ê/Lt < e+. (If e+Lt = Ê, then pt = 0 and et = e+.) Thus the emissions
ratio is e(Lt) ≡ min(e+, Ê/Lt) for any Lt.

Because Lt = ltNt, a cap means the emissions ratio depends on population:

et = e(ltNt) = min(e
+,

Ê

ltNt
). (3)

To highlight the dependence simply, we assume for now that per-capita labor
is fixed and normalized to one. When lt = 1, labor equals the adult pop-
ulation, per-capita emissions equal the emissions ratio e(Nt), and per-capita
output equals f(e(Nt)). In section VI, we generalize by assuming that children
also require parental time, which reduces labor supply.

Population in turn depends on fertility nt ≥ 0. A large number of representa-
tive dynastic households each contain a single adult who chooses nt to maximize
utility; nt is not restricted to integers. When all households choose nt, the adult
population evolves as Nt+1 = ntNt.

We follow Barro and Becker’s (1988) specification of household preferences.
A period-t adult’s utility Ut is the sum of utility u from own consumption ct ≥ 0,

4A fixed cap abstracts from changes in emission rights that might result from improved
understanding of how emissions affect climate. Kelly and Kolstad (1999) estimate that natural
temperature fluctuations mean it may take 90-160 years to resolve uncertainty about how
greenhouse gases affect climate.
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plus utility from children:

Ut = u(ct) + β(nt)Ut+1, (4)

where children are identical and utility from children is the utility of a child
times a weight β that depends on the number of children.

We assume power utility with parameter θ > 0:

u(c) =
1

1− θ
c1−θ; (5)

the power form is needed later to allow for balanced growth. We also assume
that β is a power function with parameters b0 > 0 and b > 0:

β(n) = b0n
1−b, (6)

which is equivalent to assuming the utility an adult derives from grandchildren
is independent of the number of children.5

In Barro and Becker’s original specification, u was restricted to be posi-
tive, which requires θ < 1, and β was restricted to be increasing and concave.
Together these ensure that parental utility rises at a decreasing rate with the
number of children. Jones and Schoonbroodt (2007) and Jones et al (2008) have
shown that parental utility also rises at a decreasing rate with the number of
children if θ > 1 as long as β is decreasing and convex; they argue this case
may better explain historical fertility trends. We therefore consider two cases:
a Barro-Becker case with θ < 1 and b < 1, so u > 0, β′ > 0, and β′′ < 0; and a
Jones-Schoonbroodt case with θ > 1 and b > 1, so u < 0, β′ < 0, and β′′ > 0.
In both cases, u′ > 0 and u′′ < 0.

An adult’s consumption is per-capita income, yt, less the output cost of
having and raising children to reproductive age:

ct = yt − χnt, (7)

where χ is the output cost of a child. Maximum feasible fertility is f(e+)/χ,
which is maximum per-capita output divided by the cost of a child.6

We close the model by assuming the government simply redistributes revenue
from emissions auctions as equal lump sums to households.7 Per-capita income

5Utility from grandchildren is β(nt)β(nt+1)Ut+2. Independence implies β(nt)β(nt+1) =
β(1)β(ntnt+1). Differentiating this with respect to nt and nt+1 yields ntβ

′(nt)/β(nt) =
nt+1β

′(nt+1)/β(nt+1) for any nt > 0 and nt+1 > 0, so nβ′(n)/β(n) is a constant, denoted
1 − b. The solution to the differential equation β′(n)/β(n) = (1 − b)/n is β(n) = b0n1−b.

Conversely, β(nt) = b0n
1−b
t implies β(nt)β(nt+1) = b0n

1−b
t b0n

1−b
t+1 = β(1)β(ntnt+1).

6Utility (4) is infinite if the discount factors given by β are too great. In the Barro-Becker
case, β rises with fertility. We therefore assume β < 1 at the maximum feasible fertility in
the Barro-Becker case to ensure β(n) < 1 for any feasible n, so utility is finite. In the Jones-
Schoonbroodt case, β is infinite at n = 0 and falls with n. In this case we assume b0 < 1,
which implies there is an n◦ < 1 at which β(n◦) = 1 with β(n) < 1 for all n > n◦, so utility
is finite on paths with constant population.

7This abstract from optimal-tax issues caused by public goods and distortionary taxes.
Optimal-tax issues may be important if auction revenue is large, as calibrations below suggest,
or if interactions between environmental policy and distortionary taxes are large–see e.g.
Bovenberg and Goulder (1996).
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is therefore wages plus transfers, TRt = ptEt/Nt = ptet. From the firm’s first-
order conditions, per-capita income equals output per unit of labor:

yt = wt + ptet = f(et). (8)

The policy of auctioning emissions permits and redistributing the revenue
to households is equivalent in the setting here to a policy of issuing and giving
permits to households who then sell them at price pt, and is also equivalent
to a policy of issuing and giving permits to firms owned by households. A
permit auction with redistribution is also equivalent to a policy of imposing
a tax on emissions at rate f ′, which would just hold total emissions to Ê,
and redistributing the revenue to households. In this way, an emissions cap is
equivalent here to a tax on emissions; both a cap and a tax reduce et and hence
individual income.

For use below, the factor share of emissions permits is ptet
wt+ptet

= f ′(et)et
ft

,

which is fully determined by f. This factor share is zero at e+ and becomes
positive as e falls below e+.

A. Fertility Choice

In choosing fertility, a household takes its income as well as the incomes
and fertilities of future generations as given. The latter determine the utility of
children. Generically (dropping time subscripts), the household maximizes

V (n, y, U) ≡ u(y − χn) + β(n)U

by choice of n ∈ [0, y/χ] given y > 0 and finite U, where U > 0 in the Barro-
Becker case and U < 0 in the Jones-Schoonbroodt case.

The first-order condition balances the costs and benefits of children:

Vn(n, y, U) ≡ −u
′χ+ β′U = 0. (9)

The second-order condition, Vnn = u′′χ2 + β′′U < 0, holds by assumptions on
primitives.

Because β is a power function, the marginal value of children β′U becomes
infinite as fertility tends to zero so Vn(n, y, U) → ∞ as n → 0. Because the
marginal utility of consumption is infinite at zero consumption, Vn(n, y, U) →
−∞ as n → y/χ. Continuity of Vn then implies that for any finite y > 0 and
finite U, there is a unique optimal fertility strictly between zero and y/χ.

Income and children’s utility drive fertility. The partial elasticity of fertility
with respect to income is

εn,y ≡
y

n

∂n

∂y
= −

yVny
nVnn

=

[
b

θ
·
c

y
+
χn

y

]−1
, (10)

which is positive by assumptions on primitives.
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The response of fertility to a change in children’s utility depends on the sign
of β′ :

∂n

∂U
=

β′

−Vnn
.

Thus in the Barro-Becker case with β′ > 0, a rise in a children’s utility increases
fertility, and in the Jones-Schoonbroodt case with β′ < 0, a rise in children’s
utility reduces fertility.

II. The Natural Population Before a Cap is Imposed

Before a cap is imposed, a perfect-foresight solution is a steady state with
constant fertility and utility that solves the household’s first-order condition.
To see this, note that in any steady state, (4) implies

U =
u(f(e)− χn)

1− β(n)
. (11)

The steady-state relationship between emissions and fertility is found by sub-
stituting (11) into the first-order condition (9) to eliminate U :

S(n, e) ≡ −u′(f(e)− χn)χ+
β′(n)

1− β(n)
u(f(e)− χn) = 0. (12)

Before a cap is imposed, the emissions ratio is e+. Steady-state fertility n+ is
then the value that solves S(n+, e+) = 0. Such an n+ exists and is unique.8

Steady state utility U+ is the value of (11) at (n+, e+).

In general, n+ may be greater or less than one. It is greater than one as
long as child costs are not too great a fraction of output. To focus on equilibria
in which population grows so any cap would eventually bind, we assume

χ < φf(e+), (13)

where φ ≡ 1/
(
1 + (1−θ)(1−b0)

(1−b)b0

)
< 1. Equation (13) rearranges to S(1, e+) > 0,

which ensures n+ > 1. Then as long as there is no cap, the natural population
grows without bound at constant rate n+ − 1 > 0.

8As n→ f(e+)/χ, u′ →∞, so S(n, e+)→ −∞. In the Barro-Becker case as n→ 0, β′ →
∞, so S(n, e+) → ∞. Because S is continuous, S(n+, e+) = 0 for some n+ ∈ (0, f(e+)/χ).
In the Jones-Schoonbroodt case, 1/(1−β(n))→∞ as n→ n◦ from above (where β(n◦) = 1),
so S(n, e+) → ∞. Because S is continuous, S(n+, e+) = 0 for some n+ ∈ (n◦, f(e+)/χ).

(For n < n◦, β(n) > 1, so S < 0.) From (12), ∂S
∂n

= u′′χ2 − β′u′χ
1−β

+
β′′(1−β)−(β′)2

1−β
u, which

reduces to u′′χ2 + β′′u at n such that S = 0. Because β′′ < 0 and u > 0 in the Barro-Becker
case, and β′′ > 0 and u < 0 in the Jones-Schoonbroodt case, ∂S

∂n
< 0. Hence S crosses zero

only once.
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III. Natural Population Under a Cap

After a cap is imposed, population cannot grow without bound because
this would eventually drive output f(e) below χ so fertility would fall below
replacement. Thus a cap bounds the natural population. Under a regularity
condition described below, the natural population converges monotonically to
a unique steady-state level, denoted Nss, after a cap is imposed. (Throughout,
subscripts ss denotes a variable’s steady-state value.) The mechanism is that
when n+ > 1, population growth under a cap causes et to fall over time, which
impoverishes households and chokes off fertility.

A perfect-foresight path under a cap must satisfy the recursive definition of
utility (4) and the household’s first-order condition (9) for all t. Equations (4)
and (9) can be written as pair of first-order difference equations in {Ut, Nt}t≥0:

Ut = u(f(e(Nt))− χ
Nt+1
Nt

) + β(
Nt+1
Nt

))Ut+1, (14)

and

Vn(t) ≡ β′
(
Nt+1
Nt

)
Ut+1 − u′

(
f(e(Nt))−

Nt+1
Nt

χ

)
χ = 0. (15)

These difference equations and their solution depend on Ê through e. We sup-
press this dependence notationally except when considering how alternative val-
ues of Ê affect the economy.

A steady state is a pair (Uss, Nss) that satisfies (14) and (15) with Ut =
Ut+1 = Uss and Nt = Nt+1 = Nss. The latter implies steady-state fertility
is nss = 1. From (14), Uss satisfies (11) with n = 1 and e = ess = e(Nss)
Compactly, the steady-state condition under a cap is S(1, ess) = 0. We show in
the appendix that S(1, e) crosses zero exactly once on [f−1(χ), e+] so ess exists
and is unique. Because S(1, e+) > 0, it must be that ess < e+ so the cap binds
in steady state. Accordingly, Nss = Ê/ess is also unique and Nss > Ê/e+.

Because an increase in population lowers household income and hence fertil-
ity, one might think that the natural population would necessarily tail off after
a cap is imposed and converge monotonically to the steady-state value Nss. A
complication is that if fertility is too sensitive to changes in population, a pop-
ulation increase from t to t + 1 can reduce fertility so much that population
decreases from t+ 1 to t+ 2. If such “overshooting” were to occur, population
would either converge non-monotonically or fail to converge. To rule out com-
plications from overshooting, we restrict the sensitivity of fertility to changes in
population by assuming

εnt,yt

(
f ′(et)et
f(et)

)
< 1, (16)
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at the steady state and at all t, where εnt,yt is the partial elasticity of fertility
with respect to income (10) and the factor share f ′(et)et/f(et) is also the elas-
ticity of income with respect to population.9 We show in the appendix that: (i)
condition (16) at the steady state is necessary and sufficient for the system (14)
and (15) to have two strictly positive real roots that straddle one, which implies
the system is saddle-path stable; and (ii) condition (16) for all t along the sad-
dle path implies that population converges to Nss from any initial population
N0 and that convergence is monotone from N0 ≤ Nss.

10

Fertility along the perfect-foresight natural path (equilibrium natural fer-
tility, η) is a function of population and the level of the cap, nt = η(Nt | Ê).
Because Ê enters the model only through (3) as a determinant of et, equilibrium
fertility is homogeneous of degree zero: η(Nt | Ê) = η(ξNt | ξÊ) where ξ > 0 is
a constant. In words: fertility at population Nt under cap Ê equals fertility at
population ξNt under a cap ξÊ, because both have the same et.

Figure 1a illustrates equilibrium natural fertility in the Barro-Becker case.
Equilibrium fertility in figure 1a lies below n+ and falls with Nt to the steady
state at Nss. To understand this, note that a cap has no effect on income as
long as Nt ≤ Ê/e+ so the cap does not bind, but reduces income once the cap
binds. Reduced income in turn reduces fertility increasingly as Nt rises above
Ê/e+. Because the cap eventually binds and utility is determined recursively,
utility is less than U+ as soon as a cap is imposed, which also acts to reduce
fertility for all Nt in the Barro-Becker case.

Figure 1b illustrates equilibrium natural fertility in the Jones-Schoonbroodt
case. Equilibrium fertility lies above n+ and rises as long as the cap does not
bind, then peaks and falls below n+ as Nt becomes closer to Nss. This reflects
opposing income and utility effects. As in the Barro-Becker case, income declines
as Nt rises above Ê/e+, and utility is less than U+. In the Jones-Schoonbroodt
case, however, reduced utility raises fertility. This lifts fertility above n+ when
a cap is imposed and causes fertility to rise with Nt for Nt ≤ Ê/e+ and also
for Nt slightly above Ê/e+. For Nt sufficiently close to Nss, the income effect
dominates and fertility lies below n+. Because fertility first rises in the Jones-
Schoonbroodt case, steady-state population tends to be greater in it than in the
Barro-Becker case.

9Condition (16) is not very strong. Because
f′(e)e
f(e)

< 1, the condition holds if εn,y ≤ 1. On

the other hand, if εn,y > 1 then fertility tends to fall off sharply as a declining emissions ratio
reduces income, so the factor share may remain small and (16) can still easily hold. Condition
(16) can be ensured by assumptions on primitives. For instance, b ≥ θ implies εn,y ≤ 1 so
(16) holds.

10One can show that (16) is sufficient for monotone convergence in the Barro-Becker case
for all N0. For the Jones-Schoonbroodt case, the condition N0 ≤ Nss is violated only in the
(empirically implausible) circumstance in which Ê < essN0 so the cap immediately forces
e0 below ess, which means et rises after the transition period to get to ess. For N0 > Nss
in the Jones-Schoonbroodt case, technical difficulties concerning monotonicity may arise–see
appendix.
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Population dynamics after a cap is imposed can be traced from the equilib-
rium fertility function. Figure 2 illustrates dynamics in the Barro-Becker case.

To minimize graphical clutter in figures 2 and 3, we choose units so e+ = 1 and
normalize the population at t = 0 so N0 = 1. First consider an emissions freeze,
meaning a cap set at the emissions level Ê = e+N0 = 1 that would otherwise
occur in the uncapped economy at t = 0. Without a cap, fertility would be n+

in period 0, at point a in the figure. When the cap is imposed, fertility instead
jumps down to η(N0 | 1) = η(1 | 1), at b on the fertility function. In period 1,

9



the economy is therefore at c with population N1 = η(N0 | 1)N0 = η(N0 | 1)
and fertility η(N1 | 1). The economy then iterates down the fertility function
and converges to population Nss with fertility η(Nss | 1) = 1.

Equilibrium fertility functions for caps other than a freeze can be derived
from the fertility function for a freeze. For example, consider Ê = 0.75, a 25-
percent cut from the uncapped emissions level e+N0 = 1 in period 0. Because
η is homogeneous of degree zero, nt = η(Nt | 0.75) = η(Nt/0.75 | 1), so fertility
at population Nt and cap Ê = 0.75 equals fertility at population Nt/0.75 and
Ê = 1. Graphically, this means the fertility function for a 25-percent emissions
cut, η(· | 0.75), is the fertility function for a freeze, η(· | 1), shifted 25 percent
of the distance to the vertical axis–see figure 3. (Because Nss = Ê/ess is
proportional to Ê, steady-state fertility given a 25-percent cut is also 0.75 times
steady-state fertility under a freeze, as in the figure.) By similar reasoning,
fertility functions for caps that do not immediately bind (cases with Ê > e+N0)
lie to the right of η(· | 1).

Any cap eventually binds and leads to the same steady-state emission ratio
ess. The impact effect of imposing a binding cap is to reduce e0 from e+ to
Ê/N0; subsequent dynamics take et the rest of the way to ess. The greater the
value of Ê and hence the lower the impact reduction in e0, the greater is the
adjustment of et after period 0.

IV. Optimal Population

A household is small compared with total population so in maximizing util-
ity, it ignores the reduction in the emissions ratio and hence in everyone’s future
income caused by having a child. A social planner maximizing the utility of the
representative household would take account of this externality.11 We first char-

11Stern (2007) stresses the importance of ethical judgements made in discounting the util-
ities of future generations. The social planner discounts future generations’ utilities at the
representative dynasty’s own internal discount rate.
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acterize the planner’s choice of an optimal population sequence and show that
this sequence converges monotonically to a steady-state level N∗

ss that is unique
under a regularity condition on f and is less than the natural steady-state pop-
ulation. (Stars denote optimal values throughout.) Thereafter we compare the
natural and optimal population sequences to characterize the externality.

The planner at t = 0 takes N0 as given and chooses population levels
N1, N2, ... to maximize (4), which expands to

U0 = u(c0) +
∞∑

t=1



t−1∏

j=0

β(nj)


u(ct), (17)

where nt = Nt+1/Nt and ct = f(e(Nt))− χnt are functions of Nt.
12

The first-order conditions for the optimal population sequence are

dU0
dNt+1

=



t−1∏

j=0

β(nj)


 1

Nt
V ∗Nt+1

(Nt, Nt+1, Nt+2) = 0, (18)

for all t ≥ 0, where

V ∗Nt+1
(Nt, Nt+1, Nt+2) ≡ −u

′(ct)χ+ β′(nt)u(ct+1) + β(nt)
nt+1
nt

u′(ct+1)χ

−
β(nt)

nt
u′(ct+1)f

′(e(Nt+1))e(Nt+1). (19)

More compactly, the first-order conditions consist of the difference equations

V ∗Nt+1
(Nt, Nt+1, Nt+2) = 0, (20)

for t ≥ 0.13

An optimal steady state satisfies V ∗Nt+1
(N∗

ss, N
∗
ss, N

∗
ss) = 0 and implies a

constant emissions ratio e∗ss ≡ Ê/N∗
ss. Define

S∗(n, e) ≡ −u′(c)χ+ β′(n)u(c) + β(n)u′(c)

[
−f ′(e)e

n
+ χ

]
, (21)

where c ≡ f(e)−χn. The right-hand side of (19) reduces to S∗(1, Ê/N∗
ss) when

population is constant at N∗
ss, so S

∗(1, e∗ss) = 0 is the condition for an optimal
steady state. A root e∗ss exists and lies strictly between ess and e+, because
S∗ = (1− β)S − βu′f ′e/n is continuous in e with S∗(1, ess) = −βu

′f ′e < 0 and

12 In the household problem above, we took fertilities nt, nt+1, ... to be the controls. We use
population levels Nt,Nt+1, ... as controls in the planner’s problem to focus on the externality
from an additional person.

13We assume the second-order conditions hold. Note that V ∗
Nt+1

is time-independent so

solutions to the planner’s problem starting at arbitrary t > 0 have the same first-order con-
ditions (20) as the problem at t = 0. This implies that the optimal population sequence is
time-consistent.
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S∗(1, e+) = (1 − β)S(1, e+) > 0. Because ess < e∗ss, the steady-state optimal
population N∗

ss = Ê/e∗ss is less than the steady-state natural population Nss.

In what follows, we assume N∗
ss is unique and also assume (16) holds at N∗

ss.
Under these conditions, we show in the appendix that the optimal population
converges to N∗

ss from any given initial population N0. A sufficient condition for

uniqueness is ∂
∂e

[
f ′e
f

]
≤ 0, which says the emissions share rises monotonically as

a cap increasingly restricts emissions. Then S∗(1, e) increases strictly at points
where S∗(1, e) = 0 so S∗ can cross zero only once; details are in the appendix.

As in the case of the natural population above, fertility along the perfect-
foresight optimal path is a function of population and the level of the cap,
nt = η∗(Nt | Ê), where η∗ is homogeneous of degree zero. When a cap is imposed
at t = 0, optimal fertility jumps from n+ to η∗(Nt | Ê). The jump is always
downward in the Barro-Becker case but may be upward or downward in the
Jones-Schoonbroodt case. Optimal fertility approaches n∗ss = 1 as population
converges to N∗

ss.

A. The Population Externality

To compare the optimal and natural population paths, note that the first-
order conditions for the optimal population are not satisfied along the natural
path. From (19) and the definition of Vn(t) in (15),14

V ∗Nt+1
(Nt, Nt+1, Nt+2) = Vn(t)− β(nt)

nt+1
nt

Vn(t+ 1)

−
β(nt)

nt
u′(ct+1)f

′(e(Nt+1))e(Nt+1),

so the first-order conditions that characterize the natural path (Vn(t) = 0 for
all t) imply that V ∗Nt+1

equals the population externality along the natural path:

V ∗Nt+1
(Nt, Nt+1, Nt+2) = −

β(nt)

nt
u′(ct+1)f

′(e(Nt+1))e(Nt+1) < 0. (22)

From (18), V ∗N1
= N0

dU∗

0

dN1
is the period-0 population times the change in a

parent’s utility at t = 0 caused by a marginal child. More generally, the analogue

14From (15),

Vn(t)− β(nt)
nt+1

nt
Vn(t+ 1)

= [−u′(ct)χ+ β
′(nt)Ut+1]− β(nt)

nt+1

nt
[−u′(ct+1)χ+ β

′(nt+1)Ut+2]

= −u′(ct)χ+ β
′(nt)[Ut+1 − β(nt)

nt+1

nt

β′(nt+1)

β′(nt)
Ut+2] + β(nt)

nt+1

nt
u′(ct+1)χ

= −u′(ct)χ+ β
′(nt)u(ct+1) + β(nt)

nt+1

nt
u′(ct+1)χ,

where the final step uses (4) and the power form of β, which implies nβ′(n) = (1− b)β(n) so

β(nt)
nt+1
nt

β′(nt+1)

β′(nt)
= β(nt+1).

12



of (17) for the planner at an arbitrary period t, denoted U∗t , can be differentiated

to yield V ∗Nt+1
= Nt

dU∗

t

dNt+1
, so the aggregate population externality measured by

(22) is the period-t adult population times the change in an adult’s utility for
any t ≥ 0.

The term −f ′(et+1)et+1 in (22) is the aggregate real externality measured in
units of output at t+1 and β(nt)u

′(ct+1)/nt converts this into units of parents’
(period-t) utility. There are two interpretations of the real part. The first
is the loss of output caused by a marginal birth: the derivative of f(e(Nt+1))
with respect to population is −f ′(et+1)et+1/Nt+1; summing over the population
Nt+1 gives an aggregate loss of −f ′(et+1)et+1. The second is the dilution of rents
from auction revenue caused by a marginal birth. When government auctions E
permits, it receives total revenue ptE = f ′E that it redistributes as equal lump
sums so each person indirectly receives emission revenue f ′e.With an additional
birth at t, the population at t + 1 loses the revenue f ′(et+1)et+1 that goes to
the additional person.

Each adult at t+1 loses consumption of f ′(et+1)et+1/Nt+1, which is a utility
loss of u′(ct+1)f ′(et+1)et+1/Nt+1 for each child of a parent at t. From (4), a
parent’s utility is the weight β(nt) times the utility of a child so multiplying
the child’s per-capita utility loss by β(nt) and summing over the Nt individuals
alive in period t gives an aggregate externality in terms of parents’ utility of
−Ntβ(nt)u

′(ct+1)f
′(et+1)et+1/Nt+1, which is the right-hand side of (22).

From (22), the population externality equals zero in the uncapped economy
because f ′(e+) = 0. Thus in the uncapped economy, the natural and optimal
populations are equal, so we can conclude it is the imposition of the cap that
induces the population externality and causes the optimal and natural popula-
tions to differ. Also from (22), the optimal population at t + 1 in the capped
economy is less than the natural population at t+ 1 for any t.

Condition (22) captures the population externality from marginal birth at
t with all population levels after t + 1 given. A birth at t, however, creates a
new dynasty whose members increase populations after t+ 1 and also generate
externalities. To derive an expression for the overall externality from a marginal
birth, let V ∗(N) denote the maximized value of the planner’s problem written
generically as a function of the population the planner inherits, N . Because the
problem is time-invariant, V ∗ satisfies the Bellman equation

V ∗(N) = max
n
{u(f(e(N))− χn) + β(n)V ∗(nN)}, (23)

for all feasible N , and optimal fertility n∗ = η∗(N |Ê) satisfies the first-order
condition

V ∗n ≡ −u′(f(e(N))− χn)χ+ β′(n)V ∗(nN) + β(n)N
dV ∗

dN
(nN) (24)

= Vn(n, f(e(N)), V
∗(nN)) + β(n)N

dV ∗

dN
(nN) = 0.

As in the derivation of (22), the household sets Vn = 0 so β(n)N
dV ∗

dN
(nN) cap-

tures externalities. Because the value function by construction assumes optimal

13



fertility for the entire future, the externality term in this case captures all future
externalities.

To re-express β(n)N dV ∗

dN
(nN) explicitly as a sum of future single-period

externalities, the envelope theorem applied to (23) breaks dV
∗

dN
(nN) into current

and future terms:

dV ∗

dN
(n∗tN

∗
t ) =

dV ∗

dN
(N∗

t+1) (25)

= −u′(f(e(N∗
t+1))− χn∗t+1)f

′(e(N∗
t+1))

e(N∗
t+1)

N∗
t+1

+ β(n∗t+1)n
∗
t+1

dV ∗

dN
(N∗

t+2). (26)

By reapplying (25) iteratively to eliminate successive future derivatives of V ∗,
we obtain

dV ∗

dN
(N∗

t+1) = −
1

N∗
t+1

∞∑

i=1



i−1∏

j=1

β(n∗t+j)


u′(c∗t+i)f ′(e(N∗

t+i))e(N
∗
t+i), (27)

where c∗t+i = f(e(N∗
t+i))−χn

∗
t+i. In (27), the overall externality from a marginal

birth in period t is a discounted sum of all future population externalities caused
by the birth, evaluated along the optimal path.

B. Pigovian Taxes on Having Children

We compute the sequence of child taxes that would be needed to change
fertility and population from natural to optimal levels, assuming that resulting
revenue is redistributed to households as equal lump sums. Formally, let τ t
denote the tax per child and let n̄t denote the average over households of nt in
t, so each household pays child taxes τ tnt and receives lump-sum revenue τ tn̄t.
One can think of τ t as aggregating into single number the combined effect of a
range of actual policies that affect the net incentive to have children.15

Zero child taxes by definition results in the natural population. With child
taxes, overall child costs include taxes and overall transfers includes lump-sum
redistributions of child-tax revenue, so the household generically maximizes
u(w+TR−χn− τn)+β(n)U taking w, TR = pE/N + τ n̄, and τ as given. The
first-order condition is

Vn(n,w + TR,U |τ) ≡ −u′(w + TR− χn− τn)(χ+ τ) + β′U = 0. (28)

15Examples include filing-status differences, personal exemptions, public-school spending
levels and regulations that affect public-school quality, and welfare eligibility rules and benefits
levels. (In an overlapping-generations model in which parents have children partly to provide
for own old age, τ t might also include the reduced incentive to have children caused by social
security.) There is no guarantee that a given population policy can be implemented in practice.
Extracting taxes from parents with low income may sometimes be difficult, for instance, and
some ways of preventing population growth may be ethically unacceptable.

14



To implement the optimal population sequence, each optimal tax τ∗t must
be set so n∗t , which solves (24), also solves (28). Setting V ∗n from (24) equal
to Vn from (28) and noting that wt + TRt − τ∗tn

∗
t = f(e(N∗

t )) and Ut+1 =
V ∗(N∗

t+1) along the optimal path, τ∗t must satisfy u′(f(e(N∗
t )) − χn∗t )τ

∗
t =

−β(n∗t )N
∗
t
dV ∗

dN
(N∗

t+1). From (27),

τ∗t =
β(n∗t )N

∗
t

u′(c∗t )

(
−
dV ∗

dN
(N∗

t+1)

)

=
β(n∗t )

n∗t

∞∑

i=1



i−1∏

j=1

β(n∗t+j)


 u′(c∗t+i)

u′(c∗t )
f ′(e(N∗

t+i))e(N
∗
t+i). (29)

Two things follow. First, whether or not the cap imposed at t = 0 binds
immediately, optimal taxes are positive for all t ≥ 0. This is because popula-
tion will grow to exceed Ê/e+ after a finite number of periods, at which time
f ′(e(N∗

t+i))e(N
∗
t+i) > 0 so the discounted value in (29) is strictly positive for

all t ≥ 0. Second, optimal child taxes are Pigovian, as in Harford (1998): the
optimal tax at arbitrary period t equals the discounted present value of the
externalities generated by a child and all descendants of the child. The terms
f ′(e(N∗

t+1))e(N
∗
t+1) are the real externalities and the other terms can be written

as the number of descendants in a future period times products of single-period
discount factors.16

V. Permanent Property Rights

The population externality can be thought of as resulting from imperfect
property rights. This section shows there is no population externality if govern-
ment issues permanent emissions rights instead of permits valid for only a single
period. With single-period permits, a marginal birth means more individuals
share a given total amount of emissions rights in the next period so next-period
per-person emission rights are diluted. With permanent rights, on the other
hand, total rights to emit in the next period are given and hence not diluted.
Instead, when a household has an additional child, it is the emission rights of
the household’s own children that are diluted. This provides a disincentive to
have children equal to that induced by optimal Pigovian taxes.

16 In detail,

β(n∗t )

n∗t



i−1∏

j=1

β(n∗t+j)


 u

′(c∗t+i)

u′(c∗t )
=



i−1∏

j=1

n∗t+j





i−1∏

j=0

β(n∗t+j)

n∗t+j

u′(c∗t+j+1)

u′(c∗t+j)


 ,

where
∏i−1
j=1 n

∗

t+j = L∗t+i/L
∗

t+1 is the number of descendants at time t + i per child born at

time t+ 1. The terms
β(n∗t+j)

n∗
t+j

u′(c∗t+j+1)

u′(c∗
t+j

)
can be interpreted as single-period discount factors.

Specifically, if individuals could trade consumption loans that are settled by their children,
β(n∗t+j)

n∗
t+j

u′(c∗t+j+1)

u′(c∗
t+j

)
would be the market-clearing price in period j of a loan that pays one

consumption unit in period j + 1.
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To formalize this, suppose the government at t = 0 simply gives the house-
hold rights to emit π0 = Ê/N0 units of greenhouse gases each period in per-
petuity. A household in period t with permanent rights to emit πt units rents
these to the firm at the competitive price pt = f ′ in the period, then leaves
an equal share to each child so emission rights evolve as πt+1 = πt/nt. The
latter captures the dilution of each child’s inheritance from a marginal child
and implies πt = e(Nt) for all t. The household earns wage wt = f − etf

′ and
consumes ct = wt+πtpt−χnt = f(et)−χnt. We show in the appendix that the
natural population sequence with such permanent, inheritable emissions rights
is the optimal sequence.

Permanent property rights exist in the real world for land. Permanent emis-
sion rights would be similar except that they would be created on paper by
government and be rights to the revenue from one unit of emissions per-period,
forever. Permanent emission rights mean the government at t = 0 binds all
future governments, which may be difficult to achieve in practice. Permanence
would fail if future governments were to tax or reallocate emission rights, which
may benefit a majority of voters. With heterogeneous agents, for instance, dy-
nasties with a heritable preference to have more children would over time form a
relatively impoverished majority that would gain from redistribution. Similarly,
permanence might be problematic if governments were to change the cap level
in response to new information about the environmental effects of greenhouse
gas emissions.

VI. Extensions

To set the stage for calibrations, we extend the model in three ways:

A. Time costs of children

To now we have ignored the substantial time parents devote to children. To
include such time costs, assume each adult has a unit endowment of time that is
devoted either to work or having children, and suppose having a child requires
a constant amount of parental time, ψ, in addition to output χ. (We continue
to abstract from pure leisure.) Time spent having a child reduces labor supply
so lt = 1− ψnt becomes variable, total labor supply Lt = (1− ψnt)Nt must be
distinguished from population Nt, and the emissions ratio depends on fertility:

et = min

(
e+,

Ê

(1− ψnt)Nt

)
. (30)

An increase in nt has an additional (productivity-increasing) effect: greater
fertility reduces labor, driving up et.

With time costs, the cost of a child depends on the wage w(e) and becomes
χ + ψw(et), the sum of the output cost and foregone wages.17 Because the

17The marginal cost of a child to the planner is also χ + ψw(e). From the planner’s
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household takes the wage and transfers of permit revenue TRt = ptEt/Nt as
given in maximizing utility, these replace income as exogenous determinants
of fertility. In equilibrium, household income is the sum of wage income and
transfers, and equals labor times output per unit of labor:

yt = (1− ψnt)w(et) + f ′(et)Et/Nt = (1− ψnt)f(et),

which replaces (8). The generic household first-order condition becomes

Vn(n,w, TR,U) ≡ −u
′ ((1− ψn)w + TR− χn) · (χ+ ψw) + β′U = 0.

These changes carry through the resulting dynamics in a straightforward way
and are easily incorporated into calibrations. Notably, the function S defined
in (12) gains terms and becomes

S(n, e) ≡ −u′((1− ψn)f(e)− χn)(χ+ ψw(e))

+
β′(n)

1− β(n)
u((1− ψn)f(e)− χn). (31)

Roots of the resulting steady-state conditions S(n+, e+) = 0 and S(1, ess) = 0
exist. These roots are steady-state values of fertility before a cap is imposed, n+,
and of the emissions ratio after a cap is imposed, ess. Condition (13), which
ensures n+ > 1, gains a time-cost term ψf(e+) and becomes χ + ψf(e+) <
φf(e+). The steady-state natural population is

Nss =
Ê

(1− ψ)ess
. (32)

The planner’s problem with time costs similarly implies a steady-state optimal
emissions share e∗ss with ess < e∗ss < e+, and steady-state optimal population
N∗
ss = Ê/[(1− ψ)e∗ss] < Nss.18

With time costs, population increases that lower et and hence wt also reduce
the time cost of having children. The reduced cost acts to increase natural and
optimal fertilities during the transition to the steady state. We allow for time
costs ψ ≥ 0 in the remainder of the paper.

B. Backstop Technology

To now we have also assumed it is impossible to produce output without
generating emissions. This is restrictive given that a common assumption in

perspective, c = (1 − ψn)f(e) − χn implies dc
dn

= −(χ + ψf(e)) + (1 − ψn)f ′(e) de
dn
. For

e = e+, f(e) = w(e) and f ′(e) = 0 so dc
dn

= −(χ + ψw(e)). For e < e+, de
dn

= ψe
1−ψn

, so
dc
dn
= −(χ+ ψf(e)) + ψf ′(e)e = −(χ+ ψw(e)).

18The condition for an optimal steady state is S∗ = S − β(n)
n
u′(c)(1 − ψn)f ′(e)e = 0.

A technical caveat is that uniqueness of ess and e∗ss requires regularity conditions. These
conditions are detailed in the appendix and are satisfied in the calibrations below.
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integrated assessment models is that a “backstop” technology may permit pos-
itive output to be produced without emissions.19 Formally, the value of f(0) is
the backstop level of output per unit of labor.

Steady-state natural and optimal populations still exist with a positive back-
stop as long as f(0) is low enough. Specifically, if f(0) < χ/(1−ψ), then there is
an e = f−1(χ/(1−ψ)) > 0 at which the marginal utility of consumption is infi-
nite so S(1, f−1(χ/(1−ψ))) < 0, with S as defined in (31), and the steady-state
analysis in section III holds, mutatis mutandis. Moreover if f(0) ≥ χ/(1 − ψ)
but

f(0) < fB ≡
χ

φ− ψ
, (33)

then S(1, 0) < 0, and again the reasoning of section III implies there is a unique
steady-state natural emissions ratio ess > 0 defined by S(1, ess) = 0.

If f(0) > fB, on the other hand, the natural population does not converge
to a steady-state value. Instead, fertility converges to the unique root nss of
S(nss, 0) = 0.

20 The root satisfies nss > 1 so population grows without bound,
the emissions ratio converges to zero, f(et) converges to f(0), and per-capita
output converges to (1 − ψnss)f(0). In the limit as e → 0, concavity im-
plies f ′(e)e → 0 so the population externality vanishes, and optimal fertility
converges to the same limit nss as natural fertility. However, the population ex-
ternality exists for all t ≥ 0 and the welfare results in section IV apply.21 Most
importantly, natural fertility exceeds optimal fertility and the optimal child tax
is positive. Because these hold for all t ≥ 0, the natural population exceeds the
optimal population even in the limit.

The backstop output level f(0) is key to knowing the economy’s fate under a
cap. As long as f(0) < fB , a cap will ultimately cause the economy to converge
to a steady state in which output is low enough to choke off fertility, even if
the cost of eliminating almost all emissions is small: fertility in this case would
remain high right after a cap is imposed and e would continue to drop until
output eventually falls enough to choke off fertility. Unfortunately, it may be
hard to know how much the economy would produce at e = 0 from experience
at e = e+. Calibrations below explore the role of f(0).

C. Productivity Growth

To add productivity growth, we replace the production function (1) with

Yt = F (Ltλ
t, Etα

t), (34)

19 e.g. Nordhaus and Boyer (2000), Kelly and Kolstad (2001).
20The limit conditions change when f(0) > fB . For the natural population, S(nss, 0) =

0 replaces S(1, ess) = 0 (which applies when f(0) < fB). For the optimal population,
S∗(n∗ss, 0) = 0 replaces S∗(1, e∗ss) = 0, where S∗ is as defined in footnote 18. In the non-
generic case with f(0) = fB , both natural limit conditions reduce to S(1, 0) = 0 and both
optimal limit conditions reduce to S∗(1, 0) = 0.

21Because etltNt = Ê, a value et = 0 is inconsistent with Ê > 0. For this reason, there is no
meaningful ess equal to zero, but allocations with et > 0 in which et → 0 are still meaningful.
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where λ ≥ 1 is an exogenously given growth factor for labor productivity and
α ≥ 1 is an exogenously given growth factor for emissions productivity. Greater
emissions productivity αt means that fewer emissions are generated in producing
a given amount of output from a given amount of labor.

We assume the output cost of a child grows with the level of labor produc-
tivity λt so we replace the household budget (7) with

ct = yt − λtχnt.

Including productivity in this way can be thought of an assumption about hu-
man capital: greater productivity means greater human capital, which requires
that more resources be put into each child.22

A growing economy is equivalent to a non-growing economy with productivity-
adjusted variables and parameters, marked with tildes. The key state variable
is growth-adjusted population, Ñt ≡ Ntλ

t/αt. Also define ñt ≡ ntλ/α; this
is the growth factor for productivity-adjusted population and for total emis-
sions, which rise over time because of population growth (nt) and labor pro-
ductivity growth (λ), and decrease because of growth in emissions productivity

(α). In addition, define ẽt ≡ min(e
+, Ê

(1−ψ̃ñt)Ñt
), ỹt ≡ (1 − ψ̃ñt)f(ẽt) = yt/λ

t,

w̃t ≡ f(ẽt) − f ′(ẽt)ẽt, χ̃ ≡ χα/λ (so χ̃ñt = χnt), ψ̃ ≡ ψα/λ (so ψ̃ñt = ψnt),

β̃(ñt) ≡ λ(1−θ)β(ñtα/λ) = λ(1−θ)β(nt), Ũt ≡ Ut/λ
(1−θ)t, τ̃ t ≡ τ t(α/λ)/λ

t, and

T̃Rt = f ′(ẽt)Et/Ñt + ñtτ̃ t.

With these definitions (and TRt = f ′(et)Et/Nt + ntτ t) :

u((1− ψnt)wt + TRt − (λ
tχ+ τ t)nt) + β(nt)Ut+1

= λ(1−θ)t
[
u((1− ψ̃ñt)w̃t + T̃Rt − (χ̃+ τ̃ t)ñt) + β̃(ñ)Ũt+1

]
,

so choosing n to maximize u((1− ψn)w + TR− (χ+ τ)n) + β(n)U with given

(w, TR,U) is equivalent to choosing ñ to maximize u((1 − ψ̃ñ)w̃ + T̃R − (χ̃ +

τ̃)ñ)+ β̃(ñ)Ũ with given (w̃, T̃R, Ũ). The equivalent problem has the same form
as the problem without productivity growth except that growth-adjusted (tilde)
variables replace regular variables. Along any equilibrium path, consumption is
c̃t = (1− ψ̃ñt)w̃t + T̃Rt − (χ̃+ τ̃ t)ñt = (1− ψ̃ñt)f(ẽt)− χ̃ñt. All analysis from
previous sections goes through with growth-adjusted variables replacing regular
variables.

Before a cap it imposed, the emissions ratio is ẽt = e+ and household income
follows y+t ≡ (1−ψ̃ñt)f(e

+)λt. A perfect-foresight solution is pair (ñ+, Ũ+) with
Ũ+ = u((1− ψ̃ñ+)f(e+)− χ̃ñ+)/(1− β̃(ñ+)), where ñ+ is optimal given Ũ+. In
any solution, the growth-adjusted population grows at rate ñ+−1 in all periods

22The term λt corresponds roughly to Becker’s (1960) “child quality.” The proportionality
of the output cost of a child to λt ensures that child costs do not vanish or explode as a
fraction of income merely because productivity grows. This implies a balanced-growth path
with constant nt in the uncapped economy, which simplifies comparisons with the capped
economy.

19



without a cap. Because Et = ẽt(1− ψ̃ñ+)Ñt and ẽt = e+, emissions grow at the
same rate ñ+ − 1 before a cap is imposed. We assume χ̃ + ψ̃f(e+) < φ̃f(e+),

where φ̃ = 1/
(
1 + (1−θ)(1−β̃(1))

(1−b)β̃(1)

)
< 1, so ñ+ > 1.23 This implies that growth

of Ñt eventually would drive Êt
(1−ψ̃ñt)Ñt

below e+, so any cap would eventually

bind.

Growth-adjusted population is bounded under a cap and converges to a
steady-state value Ñss. Thus unless α = λ, the actual population Nt changes
over time. Specifically, ñss = nssλ/α = 1 implies that actual fertility converges
to the steady-state value nss = α/λ. This is a balanced-growth condition.
Namely, the production function (34) implies that output growth arises from
growth in the two inputs ltNtλ

t and Etα
t. In steady state with actual fertility

constant at nss, effective labor (1−ψnss)Ntλ
t has growth factor nssλ. Because

emissions are capped at Ê, the input Etα
t has growth factor α. Balanced growth

requires nssλ = α, or nss = α/λ. By the same logic, steady-state optimal fertility
satisfies n∗ss = α/λ.

A simple intuition for the balanced-growth condition is that growth in labor
productivity (λ) introduces an increasing trend in each person’s emissions foot-
print, and growth in emissions productivity (α) introduces a decreasing trend in
each person’s emissions footprint. On net, exogenous productivity growth there-
fore introduces growth in per-capita emissions with the factor λ/α per period.
To hold total emissions constant in steady state, this means that population
must fall with factor λ/α, or equivalently, that steady-state population must
rise with factor α/λ.

Thus if productivity growths of emissions and labor are equal (α = λ),
population is constant in steady state. If labor productivity grows but emissions
productivity is constant (λ > 1 and α = 1), population shrinks at the rate of
labor productivity growth. On the other hand, population grows forever if
emissions productivity grows more rapidly than labor productivity (α > λ).

It is useful to distinguish three growth rates in the capped economy in steady
state. Output per person and hence living standards always grow with factor
λ. With balanced growth under an emissions cap, total output grows with the
emissions-productivity factor α. Because total output grows with factor α and
total output divided by population grows with factor λ, population grows with
factor α/λ. The outcome is Malthusian modified for productivity growth: living
standards and total output continue to grow as long as λ and α are positive,
and population grows (or shrinks) unless α = λ.

Note that taxes in the transformed economy, τ̃ t ≡ τ t(α/λ)/λ
t, are taxes

per growth-adjusted child. To express the optimal Pigovian taxes τ̃∗t as taxes
per actual child (τ∗t ), it is necessary to divide out the factor (α/λ)/λt. The
actual tax grows with factor λ, as does actual income along the optimal path,

23Emissions have increased historically, consistent with ñ+ > 1. If future fertility were to
decline sufficiently due to changes in tastes or if α/λ were to fall sufficiently, then ñ+ could fall
below one. Emissions growth without a cap would then become negative and the emissions
problem would vanish over time.
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y∗t ≡ (1− ψ̃ñ
∗
t )f(ẽ

∗
t )λ

t. In the calibrations below we eliminate the growth factor
by reporting optimal taxes as shares of income

{τ/y}∗t ≡
τ∗t
y∗t
=

τ̃∗tλ/α

(1− ψ̃ñ∗t )f(ẽ
∗
t )
.

VII. Calibrations

To assess the magnitude of the population externality, we calibrate the model
to a growth-adjusted economy with annual steady-state population growth of
1.4 percent, per-capita output growth of 1.7 percent, and aggregate emissions
growth of 1.8 percent, which were actual world growth rates over 1990-2005.24

We take a period to equal 30 years. Thus n+ = 1. 52, ñ+ = n+λ/α = 1.72,
α = 1.48, and λ = 1.67.25 The value of b0 is chosen so the household’s first-
order condition holds given these three growth rates. We choose units so ẽ+ = 1,
f(1) = 1, and Ñ0 = 1.

We consider two simple production functions.26 One, which we refer to as
Cobb-Douglas, is

f(ẽ) = f0ẽ
f1(f2 − ẽ)1−f1 , (35)

where f0, f1 ∈ (0, 1), and f2 are parameters. Under (35), the factor share of
emissions rises monotonically and approaches f1 as ẽ declines to zero. Note that
(35) may be derived from three primitive assumptions: (i) each unit of labor is
used to produce two intermediate goods in amounts y1 and y2 according to the
linear technology y1 + y2 = f2; (ii) a unit of intermediate good 1 generates a
unit of emissions so ẽ = y1, whereas intermediate good 2 generates no emissions;
and (iii) output per unit of labor is a Cobb-Douglas function f0y

f1
1 y

1−f1
2 .27

For any f1, units choices pin down f0 and f2: ẽ+ = 1 implies f ′(1) = 0
so f2 = 1/f1; and this plus f(1) = 1 implies f0 = [f1/(1 − f1)]

1−f1 . To set
f1, we assume it costs 3 percent of output to reduce emissions by 25 percent,
so f(0.75) = 0.97. This implies f1 = 0.483. A 3-percent cost is in the range
of estimates in Stern (2007). We also evaluate a 2-percent cost below, which
implies f1 = 0.371.

24 see World Resources Institute (2008).
25Specifically n+ = exp(30 · .014) = 1. 52. From section VI, per-capita income grows with

factor λ so λ = exp(30 · .017) = 1. 67. Also, total emissions grow at the same rate as
productivity-adjusted population, so ñ+ = n+λ/α = exp(30 · .018) = 1.72. This implies
α = n+λ/ñ+ = 1.48.

26A more general approach would be to start with assumptions about values of f at a
number of values of ẽ, and then use spline interpolations to approximate f over [0, 1]. This
alternative approach would require dealing with technical issues not central to the current
paper, such as ensuring appropriate limit behavior at ẽ = 0 and ẽ = 1, and ensuring sufficient
continuity of derivatives of f .

27The Cobb-Douglas form matters. If output per unit of labor were a CES function of y1
and y2 with an elasticity other than one, the factor share of emissions would approach either
zero or one as ẽ→ 0, which may be undesirable to impose.
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The Cobb-Douglas production function does not allow for a positive back-
stop. To study cases with a backstop and to get a sense of how sensitive the
results are to the assumed form of the production function, we also consider
cases with the abatement-cost specification used in many integrated assessment
models,

f(ẽ) = 1− (1− g0)(1− ẽ)g1 , (36)

where g0 and g1 are parameters and the backstop output level is f(0) = g0. An
interpretation of (36) is that a unit of labor gives a unit of output along with
a unit emissions if no resources are devoted to abatement, and that the cost of
abating 1− ẽ units of emissions is (1− g0)(1− ẽ)g1 units of output.28

When we use the abatement-cost specification without a backstop, we set
g0 = 0 and set g1 by again assuming it costs 3 percent of output to reduce
emissions by 25 percent, so g1 = 3.32. When we consider positive backstops,
we leave the curvature g1 unchanged and simply assume positive values of g0,
which proportionately reduces abatement costs at any ẽ.

We assume children have an output cost of χ = 0.138 and a time cost of
ψ = 0.110. Details are in the appendix. Briefly, the output cost is obtained from
the sum of expenditures by families on children and expenditures on K-12 and
college education. The time cost is obtained by assuming the difference between
male and female labor-force participation rates is due solely to time devoted to
having children so that with zero children, the average participation rate would
equal the current male participation rate (0.76) instead of the current average
of male and female participation rates (0.685). The time cost implies that per-
capita labor in the uncapped economy is 1− ψ̃ñ+ = 0.833, so per-capita income
is ỹ+ = (1− ψ̃ñ+)f(e+) = 0.833.

A. Baseline

We first study a baseline calibration with Cobb-Douglas production and
Barro-Becker utility with θ = b = 0.8.29 The value of θ is in the range implied
by estimates of the elasticity of intertemporal substitution in consumption.30

The assumption that θ = b follows Jones and Schoonbroodt (2007) and Jones et
al. (2008). Note that the utility a parent gets from the consumption of children

is β(n)u(c) = b0
1−θ [nc

1−θ
1−b ]1−b where 1−θ

1−b is the relative weight placed on per-child

28The factor share of emissions under the abatement-cost specification has a knife-edge,
which partly motivates why we use Cobb-Douglas for most calibrations. Namely, without a
backstop, the factor share rises monotonically from zero at ẽ = 1 to one at ẽ = 0, but with
any positive backstop, the factor share rises from zero at ẽ = 1 to a peak at an interior value
of ẽ, then falls to zero at ẽ = 0.

29The numerical procedures are described in the appendix.
30The parameter θ is the inverse of the (dynastic) elasticity of intertemporal substitution in

consumption. Values of the (non-dynastic) elasticity of intertemporal substitution have been
estimated using different approaches and data; a reasonable range of implied (non-dynastic)
θ-values might be 0.5-5.0–see e.g. Ogaki and Reinhardt (1998), Bansal and Yaron (2004).

22



consumption as opposed to the number of children. Values 1−θ
1−b ≈ 1, or θ ≈ b,

seem reasonable.31

Because population is normalized to Ñ0 = 1 in the transition period and per-
capita labor before a cap is imposed is 0.833, emissions at t = 0 would be 0.833
without a cap. In most calibrations we assume emissions are frozen at t = 0 so
Ê = 0.833. Steady-state emissions ratios and per-capita incomes are invariant

to Ê, but steady-state natural and optimal populations, Ñss =
Ê

(1−ψ̃)ẽss
and

Ñ∗
ss =

Ê

(1−ψ̃)ẽ∗ss
, are proportional to Ê.

Steady-state results for the baseline are in the first two rows of table 1. The
growth-adjusted steady-state natural population is Ñss = 9.16, which is 9.16
times Ñ0. The steady-state emissions ratio is 0.101 times the emissions ratio
without a cap. The reduced emissions imply substantial impoverishment: per-
capita output falls from ỹ+ = 0.833 before a cap is imposed to ỹss = 0.408 in
the natural steady state.

The growth-adjusted optimal population in steady state under a cap is 2.39
times the growth-adjusted population in the transition period. Thus in steady

31 If the total consumption of all of a parent’s children, nc, is an economic resource for the
parent and the parent’s fertility choices reflect care about this resource, then parents may be
modelled as maximizing nc. When θ = b, the term β(n)u(c) depends on precisely nc.
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state, the natural population is almost four (9.16/2.39) times the optimal pop-
ulation. The optimal emissions ratio is higher than the natural emissions ratio
in steady state and equals 0.386 times the uncapped ratio. Accordingly, per-
capita optimal output, 0.721, exceeds per-capita natural output and is 13.5
percent below uncapped output.

The equilibrium fertility functions (figure 4a) imply that the natural and
optimal populations converge smoothly from Ñ0 = 1 to steady-state values.
After five generations, the growth-adjusted natural population is Ñ5 = 6.84, for
instance, and after ten generations it is Ñ10 = 8.97, not far from the steady-state
value of 9.16.

Figure 5 shows the actual natural and optimal populations in the baseline.
Without a cap, population increases exponentially. With a cap in steady state,
the natural and optimal populations grows at rate (α − λ)/λ = −0.113 under
the parametrizing assumptions here, so both actual populations peak after a
cap is imposed and then fall.

Turning to fiscal variables, a cap yields auction revenue equal to 45.7 percent
of output in the natural steady state and 36.5 percent of output in the optimal
steady state. These numbers are large given that the Federal spending share
over 1990-2005 averaged about 20 percent of output. Emissions revenues are
large because a cap leads to relatively great impoverishment in steady state.
Emissions revenue is smaller right after the cap is imposed but increases sharply
as the emissions ratio falls below one. For a freeze, for instance, revenue jumps
from 0.7 percent of output at t = 0 to 27.1 percent of output at t = 1.

The optimal child tax in steady state is 21.1 percent of per-capita income.32

To get a sense of this, personal income in the U.S. is (very) roughly $55,000 per
adult per year, which may be interpreted as uncapped income (ỹ+) measured
in dollars per year (converted from units of output per efficiency unit of labor
per generation). Steady-state optimal income (ỹ∗ss), which is 13.5 percent less
than uncapped income, would then be about $48,000. Thus a child tax of 21.1

32 Income excludes redistributions of child-tax revenue, so a tax of 21.1 percent of income is
equivalent to a tax of 17.4 (= 21.1/1.211) percent of income plus redistributions of child-tax
revenue.
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percent is equivalent to a tax of about $10,000 each year for 30 years (the
length of a generation in the model) for each child.33 An alternative sense is
that the annual cost of a child is about $13,000 (of which about $6,000 is time
costs). The optimal child tax therefore raises the full cost of a child in steady
state by about three-quarters, from $13,000 to $23,000, to just under one-half
($23,000/$48,000) of income.

The time path of the optimal child tax for a freeze is in table 2, row 1. At
t = 0, for instance, the tax is 5.2 percent of income, and at t = 1, it is 11.6
percent of income, a bit more than one-half of the steady-state value. The tax
path following an emissions cut is generally higher than following a freeze. The
optimal child tax for a 25 percent cut (Ê = 0.62), for instance, is 12.2 percent
of income at t = 0 and 15.5 percent of income at t = 1. (Optimal tax sequences
converge to the same steady-state tax rate regardless of Ê.)

B. Sensitivity Analysis—Utility

In rows three and four of table 1, we report steady-state values for a Jones-
Schoonbroodt case with θ = b = 1.25. (All sensitivity analyses change one
assumption from the baseline.) As noted in section III, a value θ > 1 means
that reduced children’s utility under a cap leads parents to increase fertility.
This causes a fertility burst after a cap is imposed (figure 4b) relative to the
Barro-Becker case, driving up the steady-state natural population to 17.0 times
the transition-period population. As a result, the optimal child tax is higher
than in the baseline, equalling 36.3 percent of income in steady state. Along
the transition path, the optimal child tax for a freeze is 7.0 percent of income at
t = 0 and 15.8 percent of income at t = 1. The ratio of the natural to optimal
steady-state populations Ñss/Ñ∗

ss is about four, as in the baseline.

The different shapes of the fertility functions in the Barro-Becker and Jones-
Schoonbroodt cases (figures 4a and 4b) arise because a greater value of θ = b,
operating through children’s utility, makes equilibrium fertility less responsive
to income. Because population drives income, fertility is therefore less respon-
sive to population when θ = b is high. Assuming a greater θ = b may make
sense if one believes fertility is not very sensitive to economic variables. In the
current context, this is a pessimistic assumption: steady-state population, im-
poverishment, and optimal child taxes can be quite large if θ = b is great. For
instance, rows five and six of table 1 show the steady state for a more extreme
Jones-Schoonbroodt case with θ = b = 2. In this case the steady-state natu-
ral population is 44.1 times the transition-period population, and steady-state
income is ỹss = 0.195. Lower income means a larger f ′ and hence a larger pop-

33Kelly and Kolstad (2001) calculate welfare costs from a marginal child in the range $200-
$800. Such costs are tiny compared with costs of $10,000 per year for 30 years. Kelly and
Kolstad implicitly assume a backstop output of f(0) = .93 and also assume that population
grows at an exogenously given rate that itself decreases at an exogenously given rate. With
their production function in our model, the optimal policy would be to drive the emissions
ratio to zero in steady state. This does not happen in their calculations because they assume
growth slows enough so the backstop is never reached.
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ulation externality; the optimal steady-state child tax is 95.7 percent of income
when θ = b = 2.34 The ratio of the natural to optimal steady-state populations
Ñss/Ñ

∗
ss is again about four.

The optimal child tax is smaller the lower the value of θ = b. With low
enough θ = b, fertility would respond very elastically to changes in population
so a cap would act like a switch that turns off fertility, and the optimal child tax
could be quite small. To examine whether this occurs with plausible parameter
values, we consider a Barro-Becker case with θ = b = 0.4. (Steady-state details
are in the appendix.) The resulting Ñss is still 4.97 times the transition popu-
lation (and Ñ∗

ss = 1.43 so Ñss/Ñ
∗
ss = 3.47), and the optimal steady-state child

tax is still 10.7 percent of income. To obtain Pigovian taxes below 10 percent,
one would have to assume even lower values of θ = b.

We also examined how results change when θ 
= b so 1−θ
1−b deviates from one.

Holding b = 0.8 constant, 1−θ1−b = 0.8 implies a steady-state natural population
that is 9.36 times the transition-period population and an optimal steady-state
child tax that is 18.7 percent of income. (Steady-state details are in the ap-
pendix.) When 1−θ

1−b = 1.25, the steady-state natural population is 8.91 times
the transition-period population and the optimal steady-state child tax is 22.4
percent of income. Thus moderate deviations of 1−θ1−b from one yield results close
to baseline results.

C. Sensitivity Analysis—Technology

There is debate about the true cost of reducing emissions. To evaluate the
importance of cost assumptions, rows seven and eight of table 1 report steady-
state results when f is parameterized by assuming it costs 2 percent of output
to reduce emissions by 25 percent (f(0.75) = 0.98), instead of 3 percent as in
the baseline.

Resulting steady-state natural income is slightly higher than in the baseline,
0.418 instead of 0.408, but steady-state optimal income is lower, 0.665 instead
of 0.721. The difference between ỹ∗ss and ỹss declines because lower costs of re-
ducing emissions mean the externality term f ′(e)e in (22) is lower. Accordingly,
the optimal child tax falls from 21.1 percent in the baseline to 18.0 percent with
the lower cost of reducing emissions. Note however that steady-state emission
ratios are much reduced: ẽss is only 0.059 instead of 0.101 in the baseline; and
ẽ∗ss is 0.233 instead of 0.386. Consequently, Ñss and Ñ∗

ss are roughly two-thirds
greater than in the baseline but their ratio remains about four. Intuitively, when
it is less costly to reduce emissions, incomes and hence fertility are higher at
any given population, and steady state is reached only when populations are so
high and emissions ratios so low that incomes are at levels similar to incomes
in the baseline.

Finally, we consider the abatement-cost specification (36) with backstop pro-
duction levels of 0, 0.2, 0.4, and 0.6. Table 3 describes resulting steady states.

34This is equivalent to a tax of 48.9 (= 95.7/1.957) percent of income plus redistributions
of child-tax revenue.

26



To start, comparison of the first two rows of the table with the first two rows of
table 1 shows the effects of changing from a Cobb-Douglas to an abatement-cost
specification with no backstop. Steady-state natural and optimal populations
fall by a bit less than one-half and factor shares of emissions rise, but optimal
child taxes change relatively little, rising from 21.1 percent to 24.9 percent of
income. Comparing rows of table 3, we see that as the assumed value of the
backstop rises, impoverishment as well as population externalities are reduced,
so steady-state populations rise and optimal taxes fall.

Under baseline utility assumptions, the critical value of the backstop output
level is fB = 0.507. Thus for all production functions with f(0) < 0.507, the
natural economy converges to a steady state with constant (growth-adjusted)
population, and for production functions with f(0) > 0.507, the economy con-
verges to the backstop at ẽ = 0 and population increases forever. Although
these long-term outcomes differ greatly, the paths of the economy for the first
few periods after transition are similar. We illustrate this by reporting in table
2 the time paths of the optimal child tax for different production functions. Un-
der the abatement-cost specification with f(0) = 0.6, for instance, abatement
costs at any ẽ are reduced by 60 percent compared with abatement costs with
f(0) = 0. The tax as a share of income in the transition period when f(0) = 0.6
is similarly about one-half of the tax share when f(0) = 0. When f(0) = 0.6,
the tax share peaks in the third period after transition but is still about one-half
of the share in the baseline, then approaches zero in steady state.35

From table 3, the ratio of the natural to the optimal steady-state populations
varies between about three and five for the cases with f(0) < 0.507. In the
effective-backstop case with f(0) = 0.6, both Ñss and Ñ∗

ss go to infinity but
their ratio converges to about 3.4.

VIII. Conclusion

In Malthus, consumption tends to subsistence and total population tends
to a constant. In Solow-type neoclassical growth models, additional population
produces additional output under constant returns so total population can rise
without bound. In the current paper, output is produced from labor and a
fixed environmental resource, total emissions, which is sometimes essential in
that output per unit of labor falls to zero as the ratio of emissions to labor falls
to zero. Then constant returns instead implies that total population is limited:
as population and hence labor grow, the relative amount of the fixed factor falls,
which drives down per-capita output and limits population growth.

This logic relies on changes in factor ratios as population grows and is inde-
pendent of the name of the fixed resource. If land is fixed, greater population
raises the ratio of labor to land. If land were also assumed to be essential,

35Population growth remains positive when f(0) = .6 as the emissions ratio converges to
zero: ñt converges to 1.16 and population growth nt = ñt(α/λ) converges to 1.03. In the limit,
n∗t converges to the same limit of 1.03. This is substantially lower than population growth of
n+ = 1.52 in the uncapped economy.

27



overcrowding would ultimately drive down per-capita output enough to choke
off population growth, unless productivity also were to grow over time.

The result that population converges to a steady-state constant is modified
in the presence of exogenous factor-augmenting productivity growth. Then the
growth-adjusted population converges a steady-state constant, which means the
actual population has a growth factor that converges to the growth factor for
emissions productivity divided by the growth factor for labor productivity. Be-
cause actual per-capita emissions have been rising, this ratio of growth factors
currently appears to be less than one. In steady state, a ratio less than one
means the actual and optimal populations decrease over time.

The focus of the current paper is on the population externality induced by
a cap that fixes total emissions. A robust finding is that this externality is
substantial under reasonable assumptions.36 In our baseline calibration, for
instance, the optimal Pigovian tax on each child is about 20 percent of income,
and the Pigovian tax is higher in some other calibrations. Similarly, the steady-
state natural population is about four times the steady-state optimal population
in the baseline, and ranges between about three and five times the optimal
population in other calibrations.

36The analysis identifies four circumstances under which the population externality induced
by a cap might not be large: if marginal utilities fall off very slowly (utility curvatures θ and
b are small) so imposition of a cap by itself would rapidly turn off population growth; if θ
and b differ greatly and θ > b; if the output cost of eliminating all emissions is small; or
if fertility and productivity trends change so global emissions decline on their own without
policy intervention. There appears to be little empirical support for any of these.
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Table 1. Steady States

Case Regime Ñss ẽss ỹss f ′ẽ/f {τ/y}∗ss

Barro-Becker (baseline, θ = b = .8) natural 9.16 .101 .408 .457
optimal 2.39 .386 .721 .365 .211

Jones-Schoonbroodt, θ = b = 1.25 natural 17.0 .054 .306 .469
optimal 4.26 .216 .572 .423 .363

Jones-Schoonbroodt, θ = b = 2 natural 44.1 .021 .195 .469
optimal 11.1 .083 .373 .478 .957

2 percent cost of ẽ = .75 natural 15.6 .059 .418 .357
optimal 3.96 .233 .665 .311 .180

Table 2. Time Paths of Optimal Child Taxes

Case {τ/y}∗0 {τ/y}∗1 {τ/y}∗2 {τ/y}∗3 {τ/y}∗4 {τ/y}∗ss

baseline, Cobb-Douglas .052 .116 .152 .174 .199 .211
abatement cost, f(0) = 0 .055 .141 .195 .223 .237 .249
abatement cost, f(0) = .2 .047 .124 .174 .203 .219 .237
abatement cost, f(0) = .4 .037 .101 .142 .166 .179 .201
abatement cost, f(0) = .6 .026 .079 .093 .100 .098 0

Table 3. Steady States with Abatement-Cost Production at Different Backstops

Case Regime Ñss ẽss ỹss f ′ẽ/f {τ/y}∗ss

f(0) = 0 natural 4.84 .190 .374 .842
optimal 1.58 .586 .805 .431 .249

f(0) = .2 natural 6.75 .137 .405 .493
optimal 1.86 .497 .775 .409 .237

f(0) = .4 natural 15.6 .059 .438 .168
optimal 2.84 .325 .702 .348 .201

f(0) = .6 natural ∞ 0 .532 0
optimal ∞ 0 .532 0 0
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