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The Uncertain Mortality Intensity Framework: Pricing and

Hedging Unit-Linked Life Insurance Contracts

Jing Li∗, Alexander Szimayer

Bonn Graduate School of Economics, School of Economics, University of Bonn

Abstract

We study the valuation and hedging of unit-linked life insurance contracts in a setting

where mortality intensity is governed by a stochastic process. We focus on model risk

arising from different specifications for the mortality intensity. To do so we assume that

the mortality intensity is almost surely bounded under the statistical measure. Further, we

restrict the equivalent martingale measures and apply the same bounds to the mortality

intensity under these measures. For this setting we derive upper and lower price bounds for

unit-linked life insurance contracts using stochastic control techniques. We also show that

the induced hedging strategies indeed produce a dynamic superhedge and subhedge under

the statistical measure in the limit when the number of contracts increases. This justifies

the bounds for the mortality intensity under the pricing measures. We provide numerical

examples investigating fixed-term, endowment insurance contracts and their combinations

including various guarantee features. The pricing partial differential equation for the upper

and lower price bounds is solved by finite difference methods. For our contracts and choice

of parameters the pricing and hedging is fairly robust with respect to misspecification of

the mortality intensity. The model risk resulting from the uncertain mortality intensity is

of minor importance.

Keywords: unit-linked life insurance contracts, mortality model risk, price bounds,

stochastic control
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1. Introduction

Mortality is a major risk factor for life insurance companies and pension funds that

needs to be modeled properly. In recent years, it has been widely accepted that mortality

changes over time in an unpredictable way and stochastic models have been developed to

adequately capture the systematic mortality risk. For stochastic models valuing of mortality-

linked liabilities and determining the required market reserves, see for instance Milevsky and

Promislow (2001), Dahl (2004), Biffis (2005), and Dahl and Møller (2006). Stochastic models

with an emphasis on securitizing mortality risk by introducing survivor bonds as hedging

instruments are discussed by, e.g., Blake et al. (2006) and Cairns et al. (2006). Each mortality

model is a possible description of the mortality risk. Melnikov and Romaniuk (2006) show

that different mortality models perform differently in the risk management of a unit-linked

pure endowment contract and warns us to be careful when choosing one mortality model

against another. In this paper we provide a framework for assessing the mortality model

risk embedded in unit-linked life insurance contracts arising from different specifications for

the mortality intensity.

Unit-linked life insurance contracts are popular and widely used on the insurance mar-

ket.1 They provide either death benefit or maturity benefit or both. The benefits are linked

to an underlying asset with or without certain guarantees so that the policyholders have

the opportunity to participate in the financial market and (eventually) be protected from

the downside development of the financial market. Many unit-linked life insurance contracts

∗Bonn Graduate School of Economics, Adenauerallee 24-42, D-53111 Bonn, Germany, Ph: +49 228
739229, F: +49 228 735048

Email addresses: lijing@uni-bonn.de (Jing Li), szimayer@uni-bonn.de (Alexander Szimayer)
1In the 1990s, united-linked life insurance was very popular in household financial planning. The share of

unit-linked premiums increased from 20% in 1997 to 36% in 2001 of the total life insurance premiums which

accounted for over 10% of the GDP of western Europe, see Swiss Re (2003). Although the enthusiasm in

unit-linked insurance from the policyholder side declined during financial market crashes, e.g., at the end of

2001 and between 2007 and 2010, this business is expected to boom again when the capital market recovers

from the depression. According to Swiss Re (2003), a simple regression analysis shows that a 10% rise in

the stock market led to a 15% increase in single-premium unit-linked sales.
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also embed options in them, e.g., the surrender option allowing the policyholders to termi-

nate the contracts prematurely and the guaranteed annuity option giving the policyholders

the right to convert a lump sum payment at the maturity into annuities at a predetermined

rate. Depending on the payoff structures of the contracts, the effect of the mortality model

risk may also be different. By investigating the effect of the mortality model risk we are able

to know whether its importance is under or over-emphasized for different contract types.

In our paper instead of inputting different mortality models into the same pricing and

hedging problem and comparing their performances as Melnikov and Romaniuk (2006), we

set up a more flexible framework saying that we do not know the exact process of the

mortality intensity but are able to figure out its upper and lower bound under the statistical

measure. Further, we restrict the set of equivalent martingale measures such that the same

bounds apply to the mortality intensity under these measures. This setup allows us to

study various contract types more efficiently and we call it the uncertain mortality intensity

framework, see Avellaneda et al. (1995) for a related framework for pricing stock options

when the volatility process is unknown but bounded.

Within our framework we do not intend to find the fair value of a contract but its price

bounds. The price bounds are solutions to the partial differential equations associated to

a stochastic control problem. The upper price bound is found by choosing the worst-case

mortality intensity at any time during the life time of the contract so that the contract value

is maximized. Whereas the lower price bound is found by setting the mortality intensity

to the best-case value in the sense that the contract value would be minimized. The effect

of our approach is quite similar to that of the practice in traditional life insurance like

pure endowment insurance and term insurance. An insurance company usually puts itself

on the safe side by adjusting the premium by a loading factor defined as a percentage

markup from the actuarially fair value of insurance. This is equivalent to assuming lower

mortality intensity for pure endowment insurance and higher mortality intensity for term

insurance. However, since our approach chooses the worst (or best) possible mortality

intensity dynamically, we are able to deal with more complex contract structures where the

safest mortality intensity at any time also depends on the price of the underlying asset. As
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a result, the higher the difference between the upper and the lower price bounds, the greater

impact would the mortality model risk have on the contracts considered. In this way we

are able to identify whether model risk is potentially deteriorating the fair evaluation of the

contracts.

Further we examine hedging strategies induced by the price bounds. We show that the

induced hedging strategies indeed produce a dynamic superhedge and subhedge under the

statistical measure when the unsystematic mortality risk is eliminated by pooling together

an increasing number of similar contracts. This justifies the bounds for the mortality inten-

sity under the pricing measures. We provide numerical examples investigating fixed-term,

endowment insurance contracts and their combinations including various guarantee features.

The pricing partial differential equation for the upper and lower price bounds is solved by

finite difference methods. For our contracts and choice of parameters pricing and hedging is

fairly robust with respect to misspecification of the mortality intensity, with at most a mis-

pricing of 4% for single premium contracts and at most 2% for periodic premium payment.

We conclude that model risk resulting from the uncertain mortality intensity is of minor

importance.

The structure of the paper is as follows. In Section 2 we describe both the financial

market and the insurance market. In Section 3 we formalize the uncertain mortality intensity

framework. Based on the model setup, we introduce in Section 4 the optimal control rule

of the mortality intensity within its upper and lower bounds so that the price bounds are

found. This enables us to build in mean superhedging strategies which are discussed in

Section 5. Section 6 illustrates the theoretical results by providing a numerical analysis for

different types of unit-linked life insurance contracts. Section 7 concludes.

2. Setup

The model for the financial market and the insurance market is developed subsequently.

Both markets are jointly specified on a probability space (Ω,G,P). The probability P is

called the real world measure and is sometime also referred to as statistical measure. We
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assume that the probability space is large enough to support an n-dimensional Wiener

process W = [W 1,W 2, . . . ,W n] and a random time τ . The time horizon is denoted by T .

The financial market consists of a risky asset with price process S and a riskless money

market account with price process B. The latter is given by Bt = exp{
∫ t

0
r(u) du}, 0 ≤ t ≤ T ,

where the risk-free interest rate r is a deterministic and continuous function. The risky asset

price process S is governed by the stochastic differential equation:

dSt = α(t, St)St dt + σ(t, St)St dW
1
t , 0 ≤ t ≤ T. (1)

where α is the local mean rate of return and σ is the volatility. The dividend structure D

is given by

dDt = q(t, St)Stdt, 0 ≤ t ≤ T. (2)

where q is a continuous deterministic function.2 The financial market modeled in this way is

complete and arbitrage free and is called FS market. Here, FS =
(

FS
t

)

0≤t≤T
is the augmented

natural filtration generated by the stock price process S. Since σ > 0 it follows that the

augmented natural filtration generated by the first component W 1 of the Wiener process

F1 = (FW 1

t )0≤t≤T coincides with the market filtration FS.

The insurance market is modeled by the random time τ denoting the death time of

an individual aged x at the starting time 0.3 For simplicity of notation we will omit the

age variable x in the subsequent discussion of mortality related variables. The filtration

generated by the right-continuous indicator process Ht = 1{τ≤t}, for t ∈ [0, T ], is denoted

H = (Ht)0≤t≤T . The mortality is potentially influenced by an m-dimensional environment

process X = [X1, . . . , Xm] with dynamics

dXt = αX(t, Xt) dt+ ΣX(t, Xt) dWt, 0 ≤ t ≤ T, (3)

2We assume that the coefficients α and σ are regular enough to ensure the existence of a solution to

the SDE (1), see for instance Protter (2004), Ch. V, Sec. 3. Additionally, we assume that α, σ and q are

uniformly bounded and σ is bounded away from zero to ensure the integrability of S, related portfolio value

processes, and to ensure the existence of the measure change from P to an equivalent martingale measure

Q.
3In Section 5 we consider the case of a family of random times (τi)i≥1 and the corresponding contracts.
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where αX is a Rm-valued function and ΣX is a Rn×m-valued function, both regular enough

to ensure the existence of a solution to the SDE. By definition it is clear that X is adapted to

the filtration generated by the Wiener processW , say, F = (Ft)0≤t≤T . Note that F
S ⊆ F, and

further denote the joint filtration by G = F∨H. The financial market model for unit-linked

life insurance contracts is then called the G market.

2.1. Dependence of Financial Market and Insurance Market

The probabilistic connection between W and τ is now formalized. In broad terms we

assume that we are in a setting frequently used in the credit risk literature, see Bielecki

and Rutkowski (2001), part II, for a detailed treatment. In particular, we assume that on

(Ω,G,P) there exists a unit exponentially distributed random variable E1 that is independent

of W and further that there exists a nonnegative F-adapted process ν such that τ can be

represented by

τ = inf

{

t ≥ 0 :

∫ t

0

νs ds ≥ E1

}

, a.s.,

with the usual convention that the infimum over the empty set is ∞, and the integrability

condition
∫ t

0
νs ds < 0 holds almost surely, for all t ≥ 0.

We then have the following representation

Mt = Ht −

∫ t∧τ

0

νsds , 0 ≤ t ≤ T,

where M is a (P,G)-martingale, see Bielecki and Rutkowski (2001), p.153, Prop. 5.1.3. In

our context the intensity ν is known as mortality intensity.

By specification of τ through E1 and ν and the assumed independence, the σ-fields FT

and Ht are independent given Ft under the real world probability measure P. Although we

may perceive the death probability of the individual, we do not know when the death event

really happens. Hence, τ is an inaccessible G stopping time but not an F stopping time. On

the other hand, the financial market is not influenced by the introduction of τ . Accordingly,

the G market for unit-linked life insurance contracts is free of arbitrage.4 However, given

4In particular any square integrable (F,P)-martingale is also a square integrable (G,P)-martingale. This

is also known as hypotheses (H), see Jeulin and Yor (1979).
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that there are no products to hedge against the mortality risk (that is the fluctuation of

ν and the mortality event indicated by H), the G market is incomplete, and hence, there

should be infinitely many equivalent martingale measures.

2.2. Equivalent Martingale Measures

The set of equivalent martingale measures is studied. Given a probability measure Q

equivalent to P on (Ω,G,G), the Radon-Nikodym density process η of Q with respect to P

is

ηt =
dQ

dP

∣

∣

∣

∣

Gt

= EP(Y |Gt), P− a.s., (4)

for some GT -measurable random variable Y with P(Y > 0) = 1 and EP(Y ) = 1.

Now, we characterize the set of equivalent measure for our setting and also the set of

equivalent martingale measures. The set of equivalent measures is given by Prop. 5.1.3 in

Bielecki and Rutkowski (2001), p.162. Let Q be a probability measure equivalent to the

real world probability measure P with the Radon-Nikodym density of Q with respect to P

defined by (4). Then we can write

ηt = 1 +

∫ t

0

ηu−(ϕudWu + φu dMu), 0 ≤ t ≤ T , (5)

where ϕ and φ are G-predictable stochastic processes. The change of measure affects the

martingales W and M as follows. Define the processes WQ and MQ by

WQ
t = Wt −

∫ t

0

ϕs ds , and MQ
t = Ht −

∫ t∧τ

0

(1 + φu) νu du , 0 ≤ t ≤ T . (6)

Then WQ is a (G,Q)-Wiener process and MQ is an (G,Q)-martingale, and µ = (1 + φ) ν

is the Q-intensity of τ . Moreover, µ can be chosen to be F-adapted, see Remark following

Corollary 5.3.1 in Bielecki and Rutkowski (2001), p.164.

Proposition 1. If Q is an equivalent martingale measure, i.e. Q ∼ P and S/B is a (G,Q)-

martingale, then {W 1Q}t∈[0,T ] is uniquely determined by the market price of risk

ϕ1
t = −

α(t, St)− r(t) + q(t, St)

σ(t, St)
, 0 ≤ t ≤ T . (7)
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Proof of Proposition 1. This follows from the Second Fundamental Theorem, confer Björk

(2009), p.151, Theorem 10.17 and p.204, Sec.14.6.

Proposition 1 indicates that when we restrict to the FS market, there is a unique mar-

tingale measure, which we denote as QFS

. Under any equivalent martingale measure Q, the

dynamics of the stock price is

dSt = (r(t)− q(t, St))St dt + σ(t, St)St dW
1Q
t , 0 ≤ t ≤ T . (8)

However, when we observe the extended market with both the financial and the mortality

risks, we cannot find a riskless benchmark security. Hence, φ, or equivalently, the risk-

neutral mortality intensity is not uniquely defined. Theoretically, among a whole class of

equivalent martingale measures, the insurance companies can choose any one depending on

their risk attitude. We denote the set of equivalent martingale measures by Q, i.e.

Q =

{

Q ∼ P : ϕ1
t = −

α(t, St)− r(t) + q(t, St)

σ(t, St)

}

. (9)

Remark 1. The fair valuation of an insurance liability is carried out under a specific risk-

neutral measure. Choosing the valuation measure in an incomplete market is a difficult

task. Alternatively, the model can be completed by adding asset that cover the entire risk

factors. Biffis and Millossovich (2006) assumes that there is a liquid secondary market where

the insurers can continuously trade their books of policies making it possible to access both

short and long positions. This results into a complete market situation where the valuation

measure is unique. Another possibility to uniquely determine the risk-neutral measure is to

introduce standardized mortality linked products such as longevity bonds which are liquidly

traded on the market, see Blake et al. (2006). However, a fully developed secondary insurance

market does not exist yet and the securitization of mortality risk is still at its infancy stage

with most of the mortality linked securities only being tailored to the customers. Hence, in

this paper, we still assume that there is not a unique market price of mortality risk and that

there are infinitely many martingale measures Q equivalent to P, under which the prices of

the insurance contracts do not allow arbitrage.
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2.3. Examples

The setup described so far accommodates a large class of models discussed in the litera-

ture. We illustrate the use of the environment process X by some prominent examples.

The mean reverting Brownian Gompertz approach of Milevsky and Promislow Milevsky

and Promislow (2001) is given by

νt = ν0 e
gt+σXt , 0 ≤ t ≤ T,

dXt = −bXtdt+ dW 2
t , 0 ≤ t ≤ T, X0 = 0,

(10)

where g, σ, ν0 > 0 and b ≥ 0.

Dahl Dahl (2004) and Dahl and Møller Dahl and Møller (2006) use the extended CIR

model, i.e. ν = X with

dXt = (βt − γtXt) dt + σt

√

XtdW
2
t , 0 ≤ t ≤ T, (11)

where βt, γt and σt are positive bounded functions satisfying 2 βt ≥ σ2
t , 0 ≤ t ≤ T .

Biffis (2005) studies affine processes of the form

dX1
t = γ1(X

2
t −X1

t )dt+ σ1

√

X1
t dW

2
t , 0 ≤ t ≤ T,

dX2
t = γ2(m(t)−X2

t ) dt+ σ2

√

X2
t −m∗(t) dW 3

t , 0 ≤ t ≤ T,
(12)

where γi, σi > 0, i = 1, 2, and the mortality intensity is ν = X1, the stochastic mean

reversion level is ν̄ = X2, m(t) is a suitable demographic basis, and m∗(t) is a time varying

lower boundary for the stochastic drift X2.

The mortality intensity is typically modeled under the statistical measure P. The life

tables are calculated on the basis of real world data. When going to a pricing measure Q,

often structure preserving transformations are allowed for, e.g., Dahl and Møller Dahl and

Møller (2006) relate the P-mortality intensity ν to the Q-mortality intensity µ by assuming

µt = (1 + g(t)) νt, where g is a deterministic continuously differentiable function.

3. Uncertain Mortality Intensity

Our setup is a generically incomplete market model and we cannot obtain a unique price

for a unit-linked life insurance contract. However, we are able to find its price bounds under
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certain assumptions. In this paper, we admit that we cannot perceive the dynamics of the

mortality intensity exactly. Instead of applying a specific mortality model, as is done for

example in Biffis (2005), Dahl (2004), Dahl and Møller (2006), and Milevsky and Promislow

(2001), we assume less stringently that we know the upper and lower bounds of the mortality

intensity. As is shown in our numerical section below, this assumption can be motivated by

a statistical analysis of survival data and the confidence bounds for the estimated mortality

intensity arising there, see, e.g., Lee and Carter (1992). The concept of an uncertain input

parameter to a pricing model is related to Avellaneda et al. (1995). They discus the pricing

and hedging of derivative securities in an incomplete market where the incompleteness is

attributed to the uncertainty of the future volatility of the underlying asset. As suggested

by them, we will use stochastic optimal control techniques to identify the best-case scenario

and the worst-case scenario of the mortality intensity dynamics, to derive the upper and

lower price bounds of the unit-linked life insurance contracts.

The above assumption on the boundedness of the mortality intensity is now made precise.

Assumption 1 (P-Bounds for Mortality Intensity). The mortality intensity ν is an F-

adapted stochastic process satisfying

µ(t) ≤ νt ≤ µ̄(t) , almost surely , 0 ≤ t ≤ T , (13)

where 0 < µ ≤ µ̄ < ∞ are continuous functions on [0, T ].

Remark 2. The bounds µ and µ̄ for ν are assumed to hold almost surely whereas the

examples in 2.3 allow ν to take values in R+. Accordingly, these examples are not included

in our setup once Assumption 1 is invoked. However, these models satisfy the boundedness

condition typically with a high probability when assuming that both, parameters for a model

in 2.3 and the bounds µ and µ̄, here in terms of confidence bounds, are calculated from the

same data set. In fact, by increasing the confidence level for the calculation of µ and µ̄ the

probability is increased of a stochastic model for ν also fulfilling the boundedness condition.

In Section 6 numerical results are obtained when working with a 99.9% confidence bound.

For pricing derivatives the dynamics of the risk factors under an equivalent martingale

measure is relevant. Our market model is incomplete and we can choose between an infinite
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range of equivalent martingale measures, see Proposition 1 and the discussion thereafter. An

incomplete financial market is typically completed by adding assets to the market model such

that all risk factors are traded. However, for insurance risk we can use the diversification

rationale as an alternative. The diversification applies in our setting to the life insurance risk

given by the time of death τ parameterized by the mortality intensity ν. Diversification is

driven by the strong law of large numbers and thus tied to the statistical measure P. Based

on this rationale, pricing must take all the possible scenarios of death events into account.

Consequently, the most suitable equivalent martingale measure should be chosen among all

the possible ones so that the diversification works to eliminate the mortality risk. Since the

possible scenarios of death events do not change under any pricing measure although their

probability distributions are different5, we impose the boundedness assumption under P also

to any pricing measure Q ∈ Q, defined in Eq. (9).

Assumption 2 (Q-Bounds for Mortality Intensity). Let Q be an equivalent martingale

measure given in Eq. (9) with F-adapted mortality intensity µ. Assume that

µ(t) ≤ µt ≤ µ̄(t) , 0 ≤ t ≤ T , (14)

where µ and µ̄ are the same functions as in Assumption 1.

The restricted set of martingale measures satisfying Assumption 2 is now specified.

Definition 1. Given that Assumption 1 holds, denote by Qb the set of equivalent martingale

measures Q ∈ Q that satisfy Assumption 2, i.e.

Qb =
{

Q ∈ Q : µ ≤ µ ≤ µ̄, where µ is the Q-intensity of τ
}

. (15)

In Section 4 we establish upper and lower price bounds for specific unit-linked life in-

surance contracts. Subsequently, in Section 5 we show that the upper price bound indeed

5This indicates that given the same the confidence bound, the confidence level under the equivalent

martingale measure Q is not identical with the confidence level under the real world measure P. We assume

that the difference in the confidence level is not significantly big.
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leads to the cheapest superhedge once diversification is applied such that the biometric risk

is eliminated. The respective results for the lower price bound and the most expensive

subhedge follows analogously.

4. Pricing Unit-Linked Life Insurance Contracts

4.1. Payoff Structures

Now we introduce a unit-linked life insurance contract with Markovian payoff structures

to the G market. The contract has the life time of T years. It may be obtained by the

policyholders upon upfront single payment or a continuous flow of premiums6. When the

policyholder dies at τ < T , the contract pays Ψ(τ, Sτ ) immediately. When he survives

time T , the payment is Φ(ST ). The policyholder is entitled to this payoff structure if he

pays the premium required. We assume that the cumulated premium payment at time t

is At = A0 +
∫ t

0
Γ(u, Su) du where Γ refers to the instantaneous premium payment rate on

the annual basis. Through a concrete definition of Ψ, Φ and A, we obtain different types of

contracts. Some examples are:

• Term insurance: Ψ(τ, Sτ ) > 0, for τ ≤ T , and Φ(ST ) = 0, for τ > T .

• Pure endowment insurance: Ψ(τ, Sτ) = 0, for τ ≤ T , and Φ(ST ) > 0, for τ > T .

• Endowment insurance: Ψ(τ, Sτ ) > 0, for τ ≤ T , and Φ(ST ) > 0 for τ > T .

• Single premium: At = A0 = constant.

• Periodic premium: At is increasing in t.

The contract cash flows specified by the functions Φ, Ψ, and Γ have to satisfy certain

integrability conditions. These are summarized below.

6In reality, periodic premiums are paid monthly or yearly. We assume the continuous flow of premiums

just for illustration simplicity.
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Assumption 3. The functions Φ, Ψ, and Γ satisfy the following integrability conditions

EQ

[

|Φ(ST )|+

∫ T

0

|Ψ(t, St)|+ |Γ(t, St)| dt

]

< ∞ ,

where Q is an equivalent martingale measure.

Note that if the condition holds for a specific Q ∈ Q then it holds for any other equivalent

martingale measure. The reason is that all equivalent martingale measures coincide on FS
T

and the random variable where the expectation is taken is FS
T -measurable.

Unit-linked life insurance contracts can also have exotic features not covered by our

setup, e.g., a surrender guarantee or a guaranteed annuity option. In case of a surrender

guarantee the policyholder can surrender the contract and receives the surrender payment

replacing all payments afterward originally specified by Φ, Ψ and Γ. The surrender payment

may or may not be linked to the underlying asset. If the contract specifies a guaranteed

annuity rate a at which the policyholder has the right to convert the terminal payment into

annuities at time T , then the terminal value of the contract becomes the original terminal

value times a call option on the annuity rate.7 Unit-linked life insurance contracts with

exotic features are important contract types. They can be discussed when extending our

framework. However, in this paper we work with unit-linked life insurance contracts with

rather simple payoff structures as was specified at the beginning of this section. By this

we can explain the method we adopt to analyze the risk management of unit-linked life

insurance contracts under mortality model risk.

4.2. Arbitrage Free Prices and Price Bounds

Fix an equivalent martingale measure Q ∈ Q with mortality intensity µ. An arbitrage

free price of the contract (Φ,Ψ,Γ) is given by the conditional expectation of the discounted

cashflow under Q, see, e.g., Björk (2009). Decomposing the contract into its components the

arbitrage free prices of the death benefit V µ,Ψ, the survival benefit V µ,Φ, and the premium

7The payoff is Φ(ST ) ·max(1, aEQ[
∫∞

T
exp{−

∫ u

T
(r + µs)du}]).
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V µ,Γ are:

V µ,Ψ
t = BtE

Q
[

B−1
τ 1{t<τ≤T}Ψ(τ, Sτ )|Gt

]

, V µ,Φ
t = BtE

Q
[

B−1
T 1{τ>T}Φ(ST )|Gt

]

,

V µ,Γ
t = BtE

Q

[
∫ T

t

B−1
u 1{u<τ≤T}Γ(u, Su) du

∣

∣

∣

∣

Gt

]

,

and the arbitrage free price of the aggregate contract V µ is then

V µ
t = V µ,Ψ

t + V µ,Φ
t − V µ,Γ

t , 0 ≤ t ≤ T .

The arbitrage free prices for a life insurance contract and its components under a specific

equivalent martingale measure Q can be given in a more explicit form. Duffie et al. (1996)

have shown that

V µ,Ψ
t = 1{τ>t}B̂tE

Q

[
∫ T

t

B̂−1
u Ψ(u, Su)µu du

∣

∣

∣

∣

Ft

]

, V µ,Φ
t = 1{τ>t}B̂tE

Q
[

B̂−1
T Φ(ST )

∣

∣

∣
Ft

]

,

V µ,Γ
t = 1{τ>t}B̂tE

Q

[
∫ T

t

B̂−1
u Γ(u, Su) du

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T , (16)

where B̂. = exp{
∫ .

0
(r(s)+µs) ds} represents a mortality risk adjusted money market account

that also depends on the choice of Q via µ.

According to the so-called reduced forms above we can consider the contract price as the

discounted value of a fictitious security whose dividend payment at t is Ψ(t, St)µt − Γ(t, St)

and final payment is Φ(ST ). The fictitious discount factor is B̂. In this fictitious world, we

can ignore the mortality risk in the form of τ and consider the insurance contract merely as

a contingent claim on the fictitious financial market.

From now on, we discuss the pricing problem within the class of equivalent martingale

measures Qb where the mortality intensity is bounded from below and from above, i.e. we

suppose that Assumptions 1 and 2 hold. The worst case that may happen to the insurance

company with regard to the death benefit, the survival benefit, the premium and the contract

price, respectively, is

V̄ Ψ
t = ess sup

Q∈Qb

V µ,Ψ
t , V̄ Φ

t = ess sup
Q∈Qb

V µ,Φ
t , V Γ

t = ess inf
Q∈Qb

V µ,Γ
t ,

and

V̄t = ess sup
Q∈Qb

V µ
t , 0 ≤ t ≤ T .

14



In view of the results of Duffie et al. (1996) presented above, we can transfer the problem of

choosing the best or worst equivalent martingale measure Q ∈ Qb to the problem of choosing

the best or worst mortality intensity µ ∈ Ut, where Ut is the set of F-predictable processes

µ on [t, T ] such that µ(s) ≤ µs ≤ µ̄(s), for t ≤ s ≤ T . In particular, we may write

V̄ Ψ
t = 1{τ>t} ess sup

µ∈Ut

B̂tE
Q

[
∫ T

t

B̂−1
u Ψ(u, Su)µu du

∣

∣

∣

∣

Ft

]

, (17)

V̄ Φ
t = 1{τ>t} ess sup

µ∈Ut

B̂tE
Q
[

B̂−1
T Φ(ST )

∣

∣

∣
Ft

]

, (18)

V Γ
t = 1{τ>t} ess inf

µ∈Ut

B̂tE
Q

[
∫ T

t

B̂−1
u Γ(u, Su) du

∣

∣

∣

∣

Ft

]

, (19)

and

V̄t = 1{τ>t} ess sup
µ∈Ut

B̂tE
Q

[
∫ T

t

B̂−1
u Ψ(u, Su)µu du+ B̂−1

T Φ(ST )−

∫ T

t

B̂−1
u Γ(u, Su) du

∣

∣

∣
Ft

]

.

(20)

By specifying the stock price dynamics with (8), we have actually fixed the equivalent

martingale measure on FS. Instead of looking for the optimal martingale measure on the G

market, we convert the problem into looking for the F-adapted process µ. The expressions

in (17-20) are stochastic control problems with control process µ. The prices V µ,Φ and V µ,Γ

depend on µ monotonously. When considering Q ∈ Qb, the highest arbitrage free price for

the death benefit V̄ Φ
t is obtained for µ = µ, and the lowest value for the premium income

V Γ is obtained for µ = µ̄. With regard to V̄ Ψ and V̄ , we apply stochastic control techniques

to obtain the respective solutions.

The stock price process S is Markovian and the payoff functions are simple in the sense

that they depend on time and the current value of the stock price. This suggest the standard

setup of a stochastic control problem with state variable (t, s), feedback control µ ∈ U(t, s),

and maximization problem

v̄(t, s) = sup
µ∈U(t,s)

Et,s

[

∫ T

t

B̂t

B̂u

Ψ(u, Su)µu du+
B̂t

B̂T

Φ(ST )−

∫ T

t

B̂t

B̂u

Γ(u, Su) du

]

, (21)

where U(t, s) = {µ : [t, T ]× R+ 7→ R+ : µ(u) ≤ µ(u, x) ≤ µ̄(u) , all t ≤ u ≤ T, x ∈ R+} and

Et,s denotes the expectation conditional on S(t) = s under the measure QFS

. Recall, that

15



B̂ also depends on µ and in particular B̂t

B̂u
= exp{−

∫ u

t
r(s) + µ(s, Ss) ds}. Observe that the

term inside the conditional expectation is FS
T -measurable.

According to the theorem of the Hamilton-Jacobi-Bellman equation (Confer Yong (1997)

as well as Yong and Zhou (1999)), v̄ is the solution to:

0 = sup
µ∈U(t,s)

{Lv̄(u, s) + Ψ(u, s)µ(u, s)− Γ(u, s)− v̄(u, s)[µ(u, s) + r(u)]} , (22)

Φ(s) = v̄(T, s) . (23)

where

Lf(u, s) =
∂f

∂u
(u, s) + (r(u)− q(u, s)) s

∂f

∂s
(u, s) +

1

2
σ2(u, s) s2

∂2f

∂s2
(u, s). (24)

The part of (22) that is depending on the control µ is given by [Ψ(u, s)− v̄(u, s)]µ(u, s) and

is linear in µ. Hence, we obtain pointwise

sup
µ∈U(t,s)

[Ψ(u, s)− v̄(u, s)]µ(u, s) =











[Ψ(u, s)− v̄(u, s)]µ̄(u), if Ψ(u, s) ≥ v̄(u, s),

[Ψ(u, s)− v̄(u, s)]µ(u), if Ψ(u, s) < v̄(u, s).

The maximizer µ⋆ is thus

µ⋆(t, s) =











µ̄(t), if Ψ(t, s) ≥ v̄(t, s),

µ(t), if Ψ(t, s) < v̄(t, s).

(25)

Plugging the pointwise maximizer in (22) gives

0 = Lv̄(u, s) + Ψ(u, s)µ⋆(u, s)− Γ(u, s)− v̄(u, s)[µ⋆(u, s) + r(u)] , (26)

Φ(s) = v̄(T, s) . (27)

In fact, the calculation above produces a candidate v̄ for solution of the maximization

problem (21). Moreover, we want this candidate v̄ to solve the more general problem (20) in

the sense that 1{τ>t} v̄(t, St) = V̄t = ess supQ∈Qb V
µ
t . We will show this in Theorem 1 below.

To do so we require the following integrability condition.

16



Assumption 4. Denote v ∈ C1,2 the solution to the partial differential equation in (26-27).

Assume the following integrability condition holds

EQ

[

∫ T

0

(

∂v

∂s
(t, St) σ(t, St)St

)2

dt

]

< ∞ .

Theorem 1. Given the setup in Section 2, suppose Assumptions 1-3 hold. Denote v̄ ∈ C1,2

the solution to the boundary value problem in (26) with terminal condition (27) and suppose

that Assumption 4 holds. Then

1{τ>t} v̄(t, St) = ess sup
Q∈Qb

V µ
t , 0 ≤ t ≤ T .

In particular, the mortality intensity µ⋆ that maximizes the contract value is given by (25).

Proof of Theorem 1. First, we have to establish that indeed 1{τ>t} v(t, St) = V µ⋆

t where µ⋆

is the optimal control given in (25). Ito’s lemma gives

dv(t, St) =

(

∂v

∂t
(t, St) + (r(t)− q(t, St))St

∂v

∂s
(t, St) +

1

2
σ(t, St)

2 S2
t

∂2v

∂s2
(t, St)

)

dt

+σ(t, St)St

∂v

∂s
(t, St) dW

1Q
t .

Now, v satisfies (26) by assumption and thus can be written as

dv(t, St) = (r(t) v(t, St)− (Ψ(t, St)− v(t, St))µ
⋆(t, St) + Γ(t, St)) dt

+σ(t, St)St

∂v

∂s
(t, St) dW

1Q
t .

The differential is a linear stochastic differential equation with formal solution

v(u, Su) = e
∫ u

t
r(s)+µ⋆(s,Ss) ds

(

v(t, St)−

∫ u

t

e−
∫ w

t
r(s)+µ⋆(s,Ss) dsσ(w, Sw)Sw

∂v

∂s
(w, Sw) dW

1Q
w

−

∫ u

t

e−
∫ w

t
r(s)+µ⋆(s,Ss) ds (Ψ(w, Sw)µ

⋆(w, Sw)− Γ(w, Sw)) dw
)

.

Set u = T and recall that v(T, ST ) = Φ(ST ). Then

e−
∫ T

t
r(s)+µ⋆(s,Ss) dsΦ(ST ) = v(t, St)−

∫ T

t

e−
∫ u

t
r(s)+µ⋆(s,Ss) dsσ(u, Su)Su

∂v

∂s
(u, Su) dW

1Q
u

−

∫ T

t

e−
∫ u

t
r(s)+µ⋆(s,Ss) ds (Ψ(u, Su)µ

⋆(u, Su)− Γ(u, Su)) du .

17



Solving for v(t, St) and taking the expectation with respect to Ft we obtain

v(t, St) = EQ
[

e−
∫ T

t
r(s)+µ⋆(s,Ss) dsΦ(ST )

∣

∣

∣
Ft

]

+EQ

[
∫ T

t

e−
∫ u

t
r(s)+µ⋆(s,Ss) ds (Ψ(u, Su)µ

⋆(u, Su)− Γ(u, Su)) du

∣

∣

∣

∣

Ft

]

,

where the martingale part vanishes because of Assumption 4. Recalling the reduced form

representation of V µ = V µ,Ψ + V µ,Φ − V µ,Γ in (16) we see that the candidate v is indeed a

value function, i.e. 1{τ>t} v(t, St) = V µ⋆

t , for 0 ≤ t ≤ T .

Next, the optimality of µ⋆ and the corresponding value function v is established. We fix

a measure Q ∈ Qb and as usual denote by µ the mortality intensity under Q. Define the

F-adapted process Uµ by

Uµ
t = B̂tE

Q

[

B̂−1
T Φ(ST ) +

∫ T

t

B̂−1
u Ψ(u, Su)µu du−

∫ T

t

B̂−1
u Γ(u, Su) du

∣

∣

∣
Ft

]

, 0 ≤ t ≤ T ,

such that V µ
t = 1{τ>t} U

µ
t , 0 ≤ t ≤ T . Define the accompanying martingale Mµ by

Mµ
t = EQ

[

B̂−1
T Φ(ST ) +

∫ T

0

B̂−1
u Ψ(u, Su)µu du−

∫ T

0

B̂−1
u Γ(u, Su) du

∣

∣

∣
Ft

]

, 0 ≤ t ≤ T .

Verify that EQ|MT | < ∞ by Assumptions 2 and 3 and Mµ is indeed an (Q,F)-martingale.

Now, Q coincides with QFS

on FS
T and for the process Uµ⋆

and Mµ⋆

defined by

Uµ⋆

t = B̂⋆
t E

Q

[

B̂⋆−1
T Φ(ST ) +

∫ T

t

B̂⋆−1
u Ψ(u, Su)µ

⋆(u, Su) du−

∫ T

t

B̂⋆−1Γ(u, Su) du
∣

∣

∣
Ft

]

,

Mµ⋆

t = EQ

[

B̂⋆−1
T Φ(ST ) +

∫ T

0

B̂⋆−1
u Ψ(u, Su)µ

⋆(u, Su) du−

∫ T

0

B̂⋆−1
u Γ(u, Su) du

∣

∣

∣
Ft

]

,

where B̂⋆
· = exp{

∫ .

0
(r(s) + µ⋆(s, Ss)) ds}, for 0 ≤ t ≤ T , it holds that Uµ⋆

t = v̄(t, St) and

Mµ⋆

is an FS-adapted (Q,F)-martingale. For η ∈ {µ, µ⋆} we can connect Uη and Mη via

Mη
t = e−

∫ t

0
(r(s)+ηs) ds Uη

t +

∫ t

0

e−
∫ u

0
(r(s)+ηs) dsΨ(u, Su) ηu du−

∫ t

0

e−
∫ u

0
(r(s)+ηs ds Γ(u, Su) du ,

or, alternatively, in the form of the stochastic differential

dMη
t = e−

∫ t

0
(r(s)+ηs) ds dUη

t − (r(t) + ηt) e
−
∫ t

0
(r(s)+ηs ds Uη

t dt

+e−
∫ t

0
(r(s)+ηs) ds Ψ(t, St) ηt dt− e−

∫ t

0
(r(s)+ηs) ds Γ(t, St) dt , 0 ≤ t ≤ T .
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Solving for dUη
t yields

dUη
t = (r(t) + ηt)U

η
t dt−Ψ(t, St) ηt dt + Γ(t, St) dt+ dM̂η

t , 0 ≤ t ≤ T ,

where dM̂η
t = e

∫ t

0
(r(s)+ηs) ds dMη

t is a (Q,F)-martingale since r and η are uniformly bounded

by a deterministic constant. The next step is to define the difference process

Xµ
t = Uµ⋆

t − Uµ
t , 0 ≤ t ≤ T .

The terminal value ofXµ is Xµ
T = Uµ⋆

T −Uµ
T = Φ(ST )−Φ(ST ) = 0. The stochastic differential

of Xµ is given by

dXµ
t = dUµ⋆

t − dUµ
t

=
[

(r(t) + µt)X
µ
t +

(

Uµ⋆

t −Ψ(t, St)
)

(µ⋆(t, St)− µt)
]

dt+ dM̂µ⋆

t − dM̂µ
t .

The above differential can be interpreted as a linear stochastic differential with formal solu-

tion

Xµ
u = e

∫ u

t
r(s)+µs ds

(

Xµ
t +

∫ u

t

e−
∫ w

t
(r(s)+µs) ds(dM̂µ⋆

w − dM̂µ
w)

−

∫ u

t

e−
∫ w

t
r(s)+µs ds

[

Uµ⋆

w −Ψ(w, Sw)
]

[µ⋆(w, Sw)− µw] dw
)

, 0 ≤ t ≤ u ≤ T .

Set u = T , solve for Xµ
t and recall Xµ

T = 0. Taking the expectation conditioned on Ft

eliminates the (Q,F)-martingale and

Xµ
t = EQ

[
∫ T

t

e−
∫ w

t
r(s)+µs ds

[

Uµ⋆

w −Ψ(w, Sw)
]

[µ⋆(w, Sw)− µw] dw

∣

∣

∣

∣

Ft

]

Recall that Uµ⋆

t = v̄(t, St) and µ ∈ Qb, i.e., µ(t) ≤ µt ≤ µ̄(t), for 0 ≤ t ≤ T . Then by

the definition of µ⋆ in (25) we have that the integrand inside the conditional expectation

is nonnegative. This implies that Xµ
t ≥ 0 or, equivalently, v̄(t, St) ≥ Uµ

t , for 0 ≤ t ≤ T .

Multiplying on the indicator process 1{t<τ} we obtain

1{t<τ} v̄(t, St) ≥ V µ
t , 0 ≤ t ≤ T ,

for all Q ∈ Qb and corresponding Q-mortality rate µ, establishing the optimality.
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Remark 3. The lower bound of the arbitrage free prices V t = ess infQ∈Qb V µ
t can be obtained

analogously. The minimizer µ⋆ is obtained by swapping µ and µ̄ in (25). The solution to

the partial differential equation (26) where µ⋆ is replaced by µ⋆ with terminal condition (27)

is denoted v. Then 1{t<τ} v(t, St) = ess infQ∈Qb V µ
t .

Remark 4. The value maximizing mortality µ⋆ in(25) is FS-adapted. However, the set of

admissible controls is much larger allowing for F-adapted control processes. Obviously, the

information generated by the environment process X is not needed for finding the maximal

arbitrage free price. This result can be explained by properties of our model. The risk intro-

duced by X cannot be hedged since no liquidly traded assets are available for trading and

potentially eliminating the associated risk. Further, the bounds µ and µ̄ in Assumptions 1

and 2 are almost sure bounds and do not depend on the environment process X . Both

properties together explain that the optimal control process µ⋆ can be determined based

on FS, the information generated by the traded asset with price process S.

Remark 5. We can summarize the optimal control rule concerning the death benefit,

the survival benefit, the premium and the whole contract as follows so as to obtain their

worst-case and best-case values.

worst case best case

death benefit µ̄ if Ψ ≥ v̄Ψ µ if Ψ ≥ vΨ

µ if Ψ < v̄Ψ µ̄ if Ψ < vΨ

survival benefit µ µ̄

premium µ̄ µ

whole contract µ̄ if Ψ ≥ v̄ µ if Ψ ≥ v

µ if Ψ < v̄ µ̄ if Ψ < v

The worst-case value of the contract is its upper price bound and the best-case value is the

lower price bound of the contract.

Theorem 1 indicates that the price bound of an insurance contract usually cannot be

obtained by keeping µ to its lower or upper bound. The simple rule of keeping µ to its lower

or upper bound is only possible for some special cases. Here are two examples:
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Pure endowment insurance with single premium. In this case, we have Ψ = 0 and Γ = 0,

and hence the value of µ is irrelevant for the death benefit part and the premium part. The

maximal value for the survival benefit and is obtained by setting µ = µ and then is v̄ = v̄Φ,

on (0, T ]. Similarly, the minimal value for the survival benefit is obtained by setting µ = µ̄

and then v = vΦ, on [0, T ).

Term insurance with single premium or periodic premiums. The death benefit takes the

form Ψ(t, s) = Kegt with g ≤ r or Ψ(t, s) = St. In the former case, we have

vµ,Ψ(t, s) = K Et,s

[
∫ T

t

exp

(

−

∫ u

t

(r(s)− g)s ds

)

exp

(

−

∫ u

t

µs ds

)

µu du

]

≤ K Et,s

[
∫ T

t

exp

(

−

∫ u

t

µs ds

)

µu du

]

≤ K

(

1− Et,s

[

exp

(

−

∫ T

t

µu du

)])

≤ K ≤ Kegt = Ψ(t, s),

and in the latter case, there is

vµ,Ψ(t, s) = Et,s

[

exp

(

−

∫ τ

t

r(s)ds

)

Sτ 1{τ≤T}

∣

∣

∣

∣

τ > t

]

≤ Et,s

[

exp

(

−

∫ τ

t

r(s)ds

)

Sτ

∣

∣

∣

∣

τ > t

]

= s = Ψ(t, s).

In both cases we know that vµ = vµ,Ψ − vµ,Γ ≤ vµ,Ψ ≤ Ψ and therefore the maximum

(minimum) value is obtained when µ is set to µ̄ (µ). In the single premium case we have

v̄ = v̄Ψ and v = vΨ, on [0, T ). In the periodic premium case we have v̄ = v̄Ψ − vΓ and

v = vΨ − v̄Γ, on [0, T ).

4.3. Connection to American-style Financial Contracts

We return to the partial differential equation for a given µ:

0 = Lv(u, s) + Ψ(u, s)µ(u, s)− Γ(u, s)− v(u, s) [µ(u, s) + r(u)], t ≤ u ≤ T, (28)

with terminal condition v(T, s) = Φ(s). If we allow µ to move between [0,∞) which is

beyond its original bounds, by setting

µ(u, s) =











0, if v(u, s) > Ψ(u, s)

∞, if v(u, s) ≤ Ψ(u, s)

(29)
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for t ≤ u < T , we force the contract to stop immediately when the contract value reaches

the death benefit from above so that v(u, s) ≥ Ψ(u, s) is always satisfied. This is equivalent

to an optimal stopping problem, whose linear complementarity formulation is

[Lv(u, s)− Γ(u, s)− r(u) v(u, s)] [v(u, s)−Ψ(u, s)] = 0,

Lv(u, s)− Γ(u, s)− r(u) v(u, s) ≤ 0, and v(u, s)−Ψ(u, s) ≥ 0,

for t ≤ u < T , with adjusted terminal condition v(T, s) = max(Φ(s),Ψ(T, s)). Similar to Dai

et al. (2007) where the prepayment of mortgage loans is discussed, (28) together with (29)

can be visualized as the penalty approximation to the linear complementarity formulation

following the theory of variational inequalities of free boundary problems.

Remark 6. Equation (29) specifies the optimal control of µ within a broader bound which

corresponds to the larger set of martingale measure Q defined by (9). Setting µ = µ⋆ in

(28), where µ⋆ is given in (25), can be viewed as using a suboptimal stopping strategy which

does not necessarily yield v(u, s) ≥ Ψ(u, s). The value function of the optimal stopping

problem will produce a superhedge. In contrast the upper price bound v̄ based on Qb cannot

produce a superhedge in general. However, a superhedge will arise when diversification of

the unsystematic mortality risk is taken into account.

5. Hedging Unit-Linked Life Insurance Contracts

The upper and lower price bounds for unit-linked life insurance contracts in Theorem 1

and Remark 3 suggest the implementation of hedging strategies related to these bounds. The

financial risk driven by S can be eliminated by these strategies since the risk is represented by

a traded asset. In contrast, the mortality risk cannot be eliminated in general. The trading

strategies corresponding to the upper (lower) price bound cannot produce a superhedge

(subhedge) for a specific single contract. However, mortality risk can be diversified by

considering a sufficiently large number of policyholders, and then a superhedge (subhedge)

can be produced in the limit.

We consider a community of policyholders of size N where the contracts for each indi-

vidual are identical and given by (Φ,Ψ,Γ). Further, we assume that the death times of the
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policyholders (τi)i=1,...,N are independent given FT .
8 The number of individuals that have

died until t is denoted by XN
t and the number of policyholders that are still alive at time t

is denoted by X̄N
t , respectively, i.e.

XN
t =

N
∑

i=1

1{τi≤t} , and X̄N
t = N −XN

t =
N
∑

i=1

1{t<τi} , 0 ≤ t ≤ T . (30)

Fix as input parameter the potentially misspecified mortality intensity µ̃ = (µ̃(t, St))0≤t≤T

that is Markovian with state vector (t, St). Compute the price of the contract of a policy-

holder who is alive at time t as solution ṽ to

Lṽ(t, s)−Γ(t, s)+ µ̃(t, s) [Ψ(t, s)− ṽ(t, s)]−r(t)ṽ(t, s) = 0, and ṽ(T, s) = Φ(s), (31)

where L is given in (24).

The potentially misspecified value Ṽ N of the outstanding contracts is thus given by the

number of living policyholders X̄N times the corresponding value ṽ, i.e.

Ṽ N
t = X̄N

t ṽ(t, St) , 0 ≤ t ≤ T . (32)

In the formulation of Ṽ N in (32) we have two potential sources of error. Firstly, the individual

contract may be incorrectly priced by ṽ and secondly, the mortality risk cannot be hedged

in our setup and thus the jumps of X̄N will introduce a further error. In the following we

analyze the error when setting up a hedging portfolio based on (32).

The hedging strategy and resulting portfolio processes are now specified. Let the left-

continuous and adapted process hN denote the holdings in the risky asset S. (We do not have

to specify the holding in the money market account since we are considering self-financing

strategies and can use the budget constraint.) The portfolio process V N with initial value

V N
0 is defined by the stochastic differential equation

dV N
t = (V N

t − hN
t St) r(t) dt+ hN

t (dSt + dDt) + X̄N
t Γ(t, St) dt−Ψ(t, St) dX

N
t . (33)

8The underlying model in Section 2.1 is extended canonically, i.e., take an i.i.d. family of r.v.s

(En)n=1,...,N that are unit exponentially distributed and independent of W . Then define the death times

(τn)n=1,...,N by τn = ess inf{t ≥ 0 :
∫ t

0
νs ds ≥ En}, n = 1, . . . , N .
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The portfolio process is self-financing given the inflow of premium payment rate Γ of the

active contracts X̄N and the discrete time outflows of the death benefits Ψ at times the

individuals pass away given by XN . The hedge implied by (32) is given by

hN
t = X̄N

t

∂ṽ

∂s
(t, St) , 0 ≤ t ≤ T . (34)

It is clear that the price ṽ and the corresponding hedge ratio h are both determined by

the assumed mortality intensity µ̃. For a specific choice of µ̃ the resulting hedging error

is analyzed under the real world measure P. The error has two additive components: a

jump-martingale component capturing unsystematic mortality risk, and a predictable finite

variation component which is determined by the systematic mortality risk.

Theorem 2. Fix µ̃ = µ̃(t, s) and determine ṽ as the solution to (31). Fix the size of the

community of policyholders N and then define hN by (34). For the corresponding portfolio

process V N in (33) the hedging error EN relative to Ṽ N given in (32) is defined by EN =

V N − Ṽ N . Then the hedging error and has the following P-dynamics:

dEN
t = EN

t r(t) dt+ X̄N
t [Ψ(t, St)− ṽ(t, St)] [µ̃(t, St)− νt] dt+ [ṽ(t, St)−Ψ(t, St)] dM

N
t ,

with initial value EN
0 = V N

0 − N ṽ(0, S0). Moreover, MN = XN −
∫ ·

0
X̄N

t νt dt is a P-

martingale.

Proof of Theorem 2. Write the stochastic differential of the portfolio value process using the

definitions of the strategy hN in (34) and the risky assets dynamics in (1) and (2):

dV N
t =

[

V N
t − X̄N

t

∂ṽ

∂s
(t, St)St

]

r(t) dt+ X̄N
t

∂ṽ

∂s
(t, St) [α(t, St) + q(t, St)]St dt

+X̄N
t

∂ṽ

∂s
(t, St) σ(t, St)St dWt + X̄N

t Γ(t, St) dt−Ψ(t, St) dX
N
t

= V N
t r(t) dt+ X̄N

t

∂ṽ

∂s
(t, St) (α(t, St)St dt + σ(t, St)St dWt)−Ψ(t, St) dM

N
t

−X̄N
t

[

∂ṽ

∂s
(t, St) [r(t)− q(t, St)]St − Γ(t, St) + Ψ(t, St) νt

]

dt .
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To the last line we apply the partial differential equation (31) and then

dV N
t = V N

t r(t) dt+ X̄N
t

∂ṽ

∂s
(t, St) [α(t, St)St dt + σ(t, St)St dWt]−Ψ(t, St) dM

N
t

+X̄N
t

[∂ṽ

∂t
(t, St) +

1

2
σ2(t, St)

∂2ṽ

∂s2
(t, St)− r(t) ṽ(t, St)

+[µ̃(t, St)− νt] [Ψ(t, St)− ṽ(t, St)]− ṽ(t, St) νt

]

dt .

Using the product rule we obtain the stochastic differential of Ṽ N = X̄N ṽ(·, S):

dṼ N
t = X̄N

t

[

∂ṽ

∂t
(t, s) + α(t, St)St

∂ṽ

∂s
(t, s) +

1

2
σ(t, St)

2 S2
t

∂2ṽ

∂s2
(t, St)− ṽ(t, St) νt

]

dt

+X̄N
t σ(t, St)St

∂ṽ

∂s
(t, s) dWt − ṽ(t, St) dM

N
t .

Now collect the terms from the two equations above to compute stochastic differential of

the hedging error EN = V N − Ṽ N :

dEN
t = EN r(t) dt+ X̄N

t [µ̃(t, St)− νt] [Ψ(t, St)− ṽ(t, St)] dt

+[ṽ(t, St)−Ψ(t, St)] dM
N
t .

Finally, to verify that MN is a P-martingale see Bielecki and Rutkowski (2001), Proposition

5.1.3., p. 153.

Remark 7. The stochastic differential equation for hedge error EN in Theorem 2 has the

straight-forward solution

EN
t = e

∫ t

0
r(s) ds

(

V N
0 −N ṽ(0, S0)

)

+

∫ t

0

e
∫ t

u
r(s) ds X̄N

u [Ψ(u, Su)− ṽ(t, Su)] [µ̃(t, Su)− νu] du

+

∫ t

0

e
∫ t

u
r(s) ds [ṽ(u, Su)−Ψ(u, Su)] dM

N
u .

Suppose that the community of policyholders is very large, then the following corollary

gives a limit result.

Corollary 1. In the setting of Theorem 2 define the scaled hedging error ĒN
t by

ĒN
t =

1

N
EN

t , 0 ≤ t ≤ T .
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Assume that the following limit exists limN→∞ V N
0 /N =: v, then

sup
0≤t≤T

∣

∣ĒN
t − Ē∞

t

∣

∣

P
→ 0 ,

where

Ē∞
t = e

∫ t

0
r(s) ds (v − ṽ(0, S0))

+

∫ t

0

e
∫ t

u
r(s) ds e−

∫ u

0
νs ds [Ψ(u, Su)− ṽ(u, Su)] [µ̃(u, Su)− νu] du .

Proof of Corollary 1. See Appendix A.

Remark 8. Corollary 1 can be applied to the upper price bound v̄ with mortality intensity µ⋆

defined in (25), see Theorem 1. The normalized hedge error ĒN converges uniformly in

probability to Ē∞ by Corollary 1. And the P-dynamics of Ē∞ are given by

dE∞
t = E∞

t r(t) dt+ e−
∫ t

0
νu du [Ψ(t, St)− v̄(t, St)] [µ

⋆(t, St)− νt] dt , 0 ≤ t ≤ T .

Observe that Ē∞ is of finite variation and, assuming a nonnegative initial value, E∞
0 ≥ 0,

is nondecreasing. To see this, recall that by Assumption 1 the realized mortality rate ν is

bounded, i.e. µ(t) ≤ νt ≤ µ̄(t), 0 ≤ t ≤ T . The value function v̄ and mortality intensity

µ⋆ are specified such that [Ψ(t, St)− v̄(t, St)] [µ
⋆(t, St)− νt] is nonnegative. Accordingly, the

upper price bound v̄ indeed produces a superhedge when we are allowed to diversify the

unsystematic mortality risk by the law of large numbers.

6. Numerical Results

In this section we analyze several unit-linked life insurance contracts in the uncertain

mortality intensity framework. In addition to providing price bounds we also produce the

optimally controlled regions of the mortality intensity.

As the underlying asset we take the S&P 500 index in the USA with the starting price

S0 = 1073. The dividend rate is assumed to be 0. We adopt the assumption that the

volatility is constant over the time with σ = 0.1833. With regard to the interest rate, we

assume that it is constant over the time with r = 0.03. The life insurance contracts that we
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payoff Ψ(τ, Sτ ) at τ payoff Φ(St) at T

(death) (survival)

I Sτ max(S0e
g1T , ST )

II S0e
g1τ max(S0e

g1T , ST )

III max(S0e
g1τ , Sτ ) ST

IV max(S0e
g1τ , Sτ ) max(S0e

g1T , ST )

V min(S0e
g2τ , Sτ) min(S0e

g2T , ST )

VI min(max(S0e
g1τ , Sτ), S0e

g2τ ) min(max(S0e
g1T , ST ), S0e

g2T )

Table 1: Payoff structures for different life insurance contracts.

study are described in Table 1 where g1 = 0.02 refers to the minimum guarantee rate and

g2 = 0.06 refers to capped rate.

The policyholders are supposed to be 40 years old at the beginning and the contract

lasts 30 years. In Figure 1, we display the forecast of the mortality intensity ν̂ over the

next 30 years based on the model and results of Lee and Carter (1992). Additionally, upper

and lower bounds are included corresponding to a pointwise 99.9% confidence interval, see

Appendix C for details. In the following, these bounds are assumed to be the mortality

bounds µ and µ̄ for Assumptions 1 and 2.

We consider both the single premium and the periodic premium cases. In the single

premium case, we calculate the lump sum amount a policyholder needs to pay if the mortality

intensity moves in the most adverse way from the viewpoint of the insurance company such

that the discounted benefit payment is maximized in expectation. In the periodic premium

case, we assume that the policyholder pays continuously a prespecified cash flow until he

dies. The prespecified cash flow is defined to be a fixed amount which is obtained by meeting

the following fair premium principle.

Definition 2. A unit-linked life insurance contract is fair if and only if the expected payment

to the policyholder equals the expected premium paid by the policyholder at the initial date

under the measure Q ∈ Qb with Q-mortality intensity ν̂.
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Figure 1: The forecast of the mortality intensity including bounds based on pointwise 99.9% confidence

level.

6.1. Single Premium Case

We first analyze the single premium case. In Figure 2 we present the optimally controlled

regions where µ should be set to its lower bound µ or to its upper bound µ̄ so that the upper

price bounds of the contracts are obtained.

For contract type I, µ needs merely to be set to its lower bound µ during the whole life

time of the contract. By looking more closely at its payoff structure, we see that the reason

is self-evident. The present value of the survival payoff exceeds the present value of the

death benefit. Therefore, the contract value v(t, St) is always greater than the death benefit

Ψ(t, St). According to Theorem 1, we will obtain the upper price bound by always setting

µ to µ. However, in most cases, we cannot follow the simple rule of restricting to one bound

of µ. The dynamic control scheme recommended in Theorem 1 should be implemented to

get the price bounds.

For contract types II-IV, the upper bound and the lower bound regions of the mortality

intensity are divided slightly below or at the minimum guarantee curve S0e
g1t, 0 ≤ t ≤ T .

When the asset price remains at a much lower level than the minimum guarantee curve,
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Figure 2: Optimally controlled regions for µ (single premium)

the chance for the policyholder to participate in the earnings of the risky asset is very

low. The policyholder has higher possibility to obtain the minimum guaranteed amount

which, however, increases at a lower rate than the investment in the riskless money market

amount. Hence, it is optimal if the policyholder is able to quit the contract for the better

investment alternative. The mortality intensity µ should be set to µ̄. On the other hand,

if the asset price is high enough, the policyholder can benefit more from the risky asset

which is even protected by the minimum guarantee, and hence, a higher mortality intensity

becomes optimal.

For contract type V, we also see that the upper-left part of the figure is the µ-region

and the lower-right part is the µ̄-region. The two regions are divided near the curve of the

capped amount S0 e
g2t, 0 ≤ t ≤ T . When the asset price is well above this curve it is optimal

to keep the mortality intensity to its minimum µ. The policyholder has a high possibility of

obtaining the capped amount growing at rate g2 which is higher than risk-free rate of r. On

the contrary, when the asset price is lower than the capped amount, the immediate death
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benefit is higher than any later proceeds from the contract. The mortality intensity should

be set to its upper bound µ̄. The payoff structure of the contract type VI is the mixture

the contract types IV and V, and hence, the optimally controlled regions of µ shown in

Figure 2 (f) is also the mixture of Figure 2 (d) and 2 (e).

In Table 2 we present the pricing results of the single premium case by inserting different

scenarios of the mortality intensity to the examples we have presented in Table 1.

Ψ Φ µ = µf µ = µ µ = µ̄ µ ∈ [µ, µ̄] µ ∈ [0,∞)

lower upper lower upper

I Sτ max(S0e
g1T , ST ) 1267.4 1275.2 1257.8 1257.8 1275.2 1073.0 1307.5

II S0e
g1τ max(S0e

g1T , ST ) 1228.4 1242.7 1211.0 1203.8 1248.0 795.1 1357.3

III max(S0e
g1τ , Sτ ) ST 1109.6 1102.4 1118.4 1102.2 1118.7 1073.0 1357.2

IV max(S0e
g1τ , Sτ ) max(S0e

g1T , ST ) 1303.9 1304.6 1303.2 1301.2 1306.4 1075.3 1357.3

V min(S0e
g2τ , Sτ ) min(S0e

g2T , ST ) 916.4 916.2 916.8 914.3 918.7 855.6 1071.0

VI min(max(S0e
g1τ , Sτ ) min(max(S0e

g1T , ST ) 1147.3 1147.6 1146.9 1143.8 1150.7 1010.4 1252.9

, S0e
g2τ ) , S0e

g2T )

Table 2: Contract prices with different scenarios of the mortality intensity (single premium)

In the fourth to the sixth columns the mortality intensity is not dynamically controlled

but only set to the forecasted value, its lower bound and its upper bound respectively.

The seventh and eighth columns show the results when the mortality intensity µ lies in

[µ, µ̄]. When µ is controlled least optimally, we obtain the lower price bound in the seventh

column; while the upper price bound in the eighth column is obtained when µ is controlled

most optimally. Furthermore, we present the case when µ lies in [0,∞). This is an unrealistic

representation of the mortality risk, which corresponds to the choice of the optimal equivalent

martingale measure within the whole class of Q so that the price is minimized (column 9) or

maximized (column 10). As we have discussed in Section 4.3, the maximized price is equal

to the price of a pure American-style financial contract. The upper price is the initial wealth

required for setting up a superhedge when diversification of the unsystematic mortality risk

is ignored, see Remark 6.

As we have analyzed previously, for contract type I we follow the simple rule of keeping

to µ (µ̄) in order to obtain the upper (lower) price bound. This is can be seen once again

in Table 2. While for the other contract types, the prices obtained by simply inserting µ
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and µ̄ as well as µf over the time interval [0, T ] all lie within the lower and the upper price

bounds. However, when we observe the differences between the two price bounds, we find

they are not significantly big.9 Even for contract type II where we see the largest gap, it has

not exceeded 4% of the contract price. Hence, for the pricing purpose, it does not matter

too much which scenario of the mortality intensity we implement into the pricing problem

as long as it is a reasonable scenario within its confidence interval. This result indicates that

mortality model risk does not have a huge effect on the risk management of unit-linked life

insurance contracts we focus on, see Table 1. This argument is also valid when we increase

the confidence level of the mortality intensity. In Table 3 we present the lower and upper

price bounds at the different confidence levels of 99.9%, 99.99% and 99.999%. We notice

that the differences between the lower and the upper price bounds are although wider but

have not varied too much over the different confidence levels.

Ψ Φ 99.9% 99.99% 99.999%

lower upper lower upper lower upper

I Sτ max(S0e
g1T , ST ) 1257.8 1275.2 1254.8 1277.2 1252.2 1278.7

II S0e
g1τ max(S0e

g1T , ST ) 1203.8 1248.0 1198.7 1251.1 1194.0 1253.7

III max(S0e
g1τ , Sτ ) ST 1102.2 1118.7 1100.4 1121.5 1099.0 1124.0

IV max(S0e
g1τ , Sτ ) max(S0e

g1T , ST ) 1301.2 1306.4 1300.7 1306.9 1300.2 1307.3

V min(S0e
g2τ , Sτ ) min(S0e

g2T , ST ) 914.3 918.7 913.9 919.1 913.5 919.5

VI min(max(S0e
g1τ , Sτ ) min(max(S0e

g1T , ST ) 1143.8 1150.7 1143.1 1151.3 1142.5 1151.9

, S0e
g2τ ) , S0e

g2T )

Table 3: Price bounds for different confidence levels (single premium)

Melnikov and Romaniuk (2006) show that different mortality models display different

risk management performances for unit-linked pure endowment contracts. These are not

contradictory results but give us the hint that mortality model risk can be alleviated by

contract design. For contract type I and contract types III-VI, both the death benefit and

9To present this issue into more detail we show the differences between the upper and lower price bounds

over the life time of the contracts depending on the price of the underlying in Figure B.4 in Appendix B.

Although the maximal difference for contract type II in Figure B.4 (b) is near 400 when the underlying asset

price is near 6000, it is not crucial when we take it into consideration that the possibility for the underlying

asset price to rise to such a high level from the starting value of 1073 is quite small.
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the terminal payment are strongly associated with the performance of the underlying asset.

Hence the contracts are more a financial product than an insurance product. For contract

type II as well as the unit-linked pure endowment insurance in Melnikov and Romaniuk

(2006), the death benefit is either a deterministic amount independent of the index perfor-

mance or is zero. The risk profiles of the death benefit before time T and the survival benefit

at time T are quite different which makes it crucial to know whether the death event may

take place earlier or later.

6.2. Periodic Premium Case

Now we come to the periodic premium case. We consider the same payoff structures

as before, see Table 1. However, the policyholder does not need to pay the premium at

the beginning but pays it in arrears during the life time of the contract but maximally

till his death time. For simplicity, we assume that the premium is paid continuously at a

constant instantaneous rate Γ which is determined according to the fair contract principle

given in Definition 2. If the mortality intensity develops as forecasted, the contract price

should be 0 at the beginning. Since it is usually not the case, a different scenario of the

mortality intensity will ex post lead to the situation that the premiums are either overpaid

or underpaid by the policyholders on average. In the former case, the insurance company

earns on average a surplus due to the misspecification of the mortality risk. However, in the

latter case, it will find itself losing money. Because ex ante the insurance company has no

complete information about the future, it is safe for it to be pessimistic and to assume the

worst-case scenario for the pricing purpose.

In Figure 3 we see how µ should be optimally controlled so that the contract prices

obtained enable the insurance company to stay on the safe side. Due to the introduction of

the periodic premium payment, the insurance company bears higher risk that earlier death

of the policyholder stops it from collecting the initial investment but does not reduces its

obligation of benefit payment. Hence, we see that the optimally controlled regions look

totally different in comparison with Figure 2.

For contract type I, it is not optimal to keep to the lower bound of µ any more. During
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Figure 3: Optimally controlled regions of µ (periodic premium)

the early life time of the contract, the policyholder has not paid too much premium. This

indicates that once he dies prematurely, he has the right to get the value of the underlying

asset only at trivial costs. Hence, it is optimal if µ takes the upper bounded value. As the

policyholder survives most part of the contract’s life, he should have already paid a great

part of the premium. At this time, the optimal µ depends on the spot price of the underlying

asset again. When S is very high, it is still profitable to stop the contract as immediate as

possible, that is, to set µ to µ̄, because to go on paying the premium will not bring more

benefit in expectation. On the contrary, if S is very low, the policyholder would prefer to

pay the premium so that he gets the chance to receive a higher survival benefit. In this case,

µ should optimally be set to µ.

For contract type II, the higher the underlying asset price is, the higher is the possibility

that the policyholder will obtain a higher survival benefit, whose advantage outweighs the

premium to be paid, and hence, µ is optimal. In contrast, the lower the underlying asset price

is, the higher is the possibility that the policyholder can only receive the guaranteed amount
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at the increasing rate of g1. Since g1 < r, further premium payment is not worthwhile

for the policyholder and a higher mortality intensity, namely, µ̄ would be better. We also

see that the critical asset price that divides the two regions decreases with time. This

is due to the fact that the premium that has already been paid are sunk costs and the

choice of the optimal scenario only depends on the balance between the future benefit and

premium payment. Hence, as time moves on, the advantage of the higher survival benefit

over premium payment already reveals at a lower level of S in comparison with the previous

stage.

For contract type III, the mortality intensity should always be set to µ̄, meaning that it

is always optimal to stop the contract as soon as possible. The present value of the death

benefit is always great or equal than the present value of the survival benefit. Hence, an

optimal mortality intensity should also be µ̄.

Contract type IV has similar payoff structure as contract type III except that the survival

benefit also provides a minimum guarantee. The minimum guarantee for the terminal date T

has trivial effect during most life time of the contract where the optimally controlled region

is identical to the region in contract type III. Only when the contract is close to the maturity

date does the minimum guarantee for the survival benefit matter for the optimal choice of

µ. When the asset price is very close to the minimum guarantee, the death benefit is close

to the spot asset price and is lower than the continuation value even when the periodic

premium payment is taken into account. In this case, µ should be set to its lower bound µ.

Contract type V sets a limit to both the death benefit and the survival benefit. When

the asset price during the early life time of the contract is high enough, the return rate of

the insurance contract is g2 > r, and the policyholder would be willing to keep paying the

premium so that the contract keeps alive and that he earns more than a pure investment in

the financial market. In this case, µ is optimally set to µ to count for this worst-case scenario

from the perspective of the insurance company. Moreover, we see the non-monotonicity in

the critical asset price. This is due to two effects. On the one hand, as the cap increases with

the time, the critical value of S should also increase with the time. On the other hand, when

the contract is farther away from the maturity date, the policyholder has more premium to
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pay. His incentive of continuing the contract is big only when he knows the possibility that

the return of the contract keeps at a higher level. When the asset price is not high enough,

due to the premium payment, it is usually optimal if the contract stops as soon as possible

and µ should be set to µ̄.

Contract type VI is a mixture of contract type IV and contract type V. Therefore, the

optimally controlled regions are a combination of Figure 3 (d) and (e).

Profit and Loss of Insurance Company

True Mortality Intensity

Ψ Φ Γ µf µ = µ µ = µ̄ µ ∈ [µ, µ̄]

lower upper

I Sτ max(S0e
g1T , ST ) 67.02 0.00 3.36 -3.40 10.84 -10.67

II S0e
g1τ max(S0e

g1T , ST ) 65.04 0.00 -1.67 -0.33 22.95 -17.85

III max(S0e
g1τ , Sτ ) ST 58.32 0.00 10.36 -26.80 10.36 -26.80

IV max(S0e
g1τ , Sτ ) max(S0e

g1T , ST ) 68.94 0.00 10.63 -12.91 10.63 -12.91

V min(S0e
g2τ , Sτ ) min(S0e

g2T , ST ) 48.46 0.00 8.32 -9.83 8.81 -10.32

VI min(max(S0e
g1τ , Sτ ) min(max(S0e

g1T , ST ) 60.66 0.00 9.56 -11.62 9.95 -12.00

, S0e
g2τ ) , S0e

g2T )

Table 4: Contract prices for different scenarios of the mortality intensity (periodic premium).

As we have shown in Section 5, the hedging strategies based on the upper price bound will

ensure the insurance company to build a superhedging position if enough policyholders are

pooled together. In Table 4 we present the average profit and loss for the insurance company

on a single contract for different scenarios of the realized mortality intensity. In column 4 the

constant instantaneous premium rate Γ is given which enables the contract price to be zero

under the assumption that the mortality intensity moves as is forecasted in the future, see

also column 5 for zero profit and loss. However, in reality, mortality risk cannot be forecasted

with certainty. In column 6 and 7 we show what the contract price would be if the mortality

intensity keeps to its lower bound (the extreme case of the longevity risk) and to its upper

bound respectively. Column 8 and 9 display the lower price bound when the mortality

intensity develops in the most favorable way for the insurance company and the upper price

bound when it develops the most unfavorably. The results are qualitatively similar for all

contracts. Exemplarily we discuss contract type I. We see that a lower mortality intensity
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than the forecast is of no risk to the insurance company. The benefit to be paid is less than

the premium to be collected on average. The insurance company also does not suffer from

the model risk if the mortality intensity develops in the most favorable way as is indicated in

column 8. If the mortality intensity is higher than forecasted (column 7) or changes its value

in the most unfavorable way (column 9) to the insurance company, the insurance company

will find itself not being able to fulfill its obligation totally with the premium collected. All

the prices under different scenarios of the mortality intensity lie within the lower price bound

and the upper price bound that have been found dynamically according to Theorem 1. The

upper price bound theoretically enables the insurance company to manage the financial risk

dynamically under the model risk concerning the mortality intensity. However, when we

compare it to the premium payment rate, we see it counts for about 2 months’ premium,

or equivalently, about 1% of the whole amount of premium expected to be collected, which

for the insurance company may not be a large amount. Similar results can be found in the

other contract types which indicates once again that mortality model risk has little price

impact for contracts considered here.

7. Conclusion

We have investigated the influence of mortality model risk on unit-linked life insur-

ance contracts. This investigation is undertaken within an uncertain mortality intensity

framework where we assume reasonable bounds for the unknown mortality intensity. The

magnitude of the mortality model risk can be easily identified by carrying out a stochastic

control analysis and establishing upper and lower price bounds of unit-linked life insurance

contracts, see Theorem 1. In addition, superhedging strategies are suggested under mortal-

ity model risk when assuming that the number of policyholders is large, see Theorem 2 and

Corollary 1.

We show that when the risk profiles of the death benefit and the survival benefit are not

significantly different, the effect of the mortality model risk may not be very large indeed.

The contract prices in our examples have little sensitivity with respect to changes in the

mortality intensity. For the single premium version the overall contract price differences
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were well below 4%. In the periodic premium case the deviation from the fair price was in

the same range, and was not exceeding a six month premium income. In this case, other

risk sources such as interest rate risk and equity risk deserve more attention than mortality

model risk.

Our framework can be extended in many useful directions. The setup can be directly

extended to include an American feature where the policyholder has the right to quit the

contract for a pre-specified payoff, the surrender guarantee. Further, other risk factors such

as interest rate risk and other facets of equity risk such as volatility risk can be included

in the setup. The so extended framework can then be analyzed for model risk by similar

methods as used here.

Appendix A. Proof of Corollary 1

Proof of Corollary 1. Take the integral representation of the hedge error EN in Remark 7

and divide this by N to obtain ĒN . Using the triangular inequality we can study each

of the three expressions separately and establish uniform convergence in probability to the

corresponding counterpart in Ē∞. The first expression yields

1

N
e
∫ t

0
r(s) ds

(

V N
0 −N ṽ(0, S0)

)

→ e
∫ t

0
r(s) ds (v − ṽ(0, S0)) for N → ∞ ,

by the assumption v = limN→∞ V N
0 /N . The convergence is uniform in t since r is determin-

istic and the integral
∫ t

0
r(s) ds is a deterministic and continuous function. Accordingly, the

expression e
∫ t

0
r(s) ds is uniformly bounded by a constant on the compact [0, T ].

The error in the second expression is then

RN
t =

∫ t

0

e
∫ t

u
r(s) ds

(

X̄N
u

N
− e−

∫ t

0
νs ds

)

[Ψ(u, Su)− ṽ(u, Su)] [µ̃(u, Su)− νu] du ,

where we have deducted the integral part of Ē∞. Then we can establish the following

uniform bound

sup
0≤t≤T

|RN
t | ≤ sup

0≤t≤T

∣

∣

∣

∣

X̄N
t

N
− e−

∫ t

0
νs ds

∣

∣

∣

∣

∫ T

0

e
∫ T

t
r(s) ds |Ψ(t, St)− ṽ(t, St)| |µ̃(t, St)− νt| dt .
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The bound depends on N only in the first component. The second component is almost

surely finite, and we are left to show that the first component vanishes in probability. To

do so, consider

e−
∫ t

0
νs ds Y N

t =
X̄N

t

N
− e−

∫ t

0
νs ds , or, equivalently, Y N

t =
1

N

N
∑

i=1

1{t<τi} e
∫ t

0
νs ds − 1 .

Then Y N is a local P-martingale, see Bielecki and Rutkowski (2001), Lemma 5.1.7., p. 152.

Moreover, Y N is square integrable since we assume that ν is uniformly bounded in t, and

therefore

[Y N , Y N ]t =
1

N2

∑

{τi≤t}

e2
∫ τi
0

νs ds ,

is uniformly bounded in t by a deterministic constant on the compact [0, T ]. Doob’s maximal

quadratic inequality then gives

E

(

sup
0≤t≤T

|Y N
t |2

)

≤ 4E
(

[Y N , Y N ]T
)

≤
4

N
e2

∫ T

0
µ̄(s) ds = O(1/N) ,

Accordingly, sup0≤t≤T |Y N
t | tends to zero in L2(P) and hence in probability. This establishes

the uniform convergence of RN to zero in probability.

Finally, consider the third expression

ZN
t =

1

N

∫ t

0

e
∫ t

u
r(s) ds [ṽ(u, Su)−Ψ(u, Su)] dM

N
u .

The process ZN is a P-martingale with quadratic variation

[ZN , ZN ]t =
1

N2

∫ t

0

e2
∫ t

u
r(s) ds [ṽ(u, Su)−Ψ(u, Su)]

2 dXN
u .

Note that we can find a localizing sequence of stopping times (σn)n≥1 such that the stopped

process (ṽ(·, S)−Ψ(·, S))σn is uniformly bounded by a deterministic constant, say Cn. Thus,

without loss of generality we may assume that (ṽ(·, S)−Ψ(·, S)) is indeed bounded by real

number, say by C > 0. Then ZN is square integrable and by Doob’s maximal quadratic
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inequality we obtain

E

(

sup
0≤t≤T

|ZN
t |2

)

≤ 4E
(

[ZN , ZN ]T
)

=
4

N
E

[
∫ T

0

e2
∫ T

t
r(s) ds [ṽ(t, St)−Ψ(t, St)]

2 e−
∫ t

0
νs ds νt dt

]

≤
4

N
e2

∫ T

0
|r(s)|ds C2

∫ T

0

µ̄(t) dt = O(1/N) .

This implies the uniform convergence of ZN to zero in L2(P) and hence in probability. The

localizing sequence (σn)n≥1 will give in general the result of the uniform convergence of ZN

to zero in probability.

Appendix B. Figure B.4

(a) I (b) II (c) III

(d) IV (e) V (f) VI

Figure B.4: Differences between upper and lower price bounds (single premium).

Appendix C. The Bounds of the Mortality Intensity

The bounds of the mortality intensity are obtained through the Lee-Carter model. The

Lee-Carter model in Lee and Carter (1992) and its various extensions, see, e.g., Lee (2000),
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have been used successfully to forecast the death rates of the population in many developed

countries, such as USA, Canada, Japan, Chile, Belgium, Austria and Australia.

Lee and Carter (1992) describe the logs of the age-specific death rates m(t, x) by a linear

function of an unobserved period-specific intensity index kt with age-specific parameters ax

and bx.
10 After the estimation of ax and bx as well as kt in the past, a time series model

is applied to describe the dynamics of k so as to forecast its future development, based on

which the central death rate is forecasted and its confidence interval was found. The link

between the central death rate and the mortality intensity is mt =
∫ t+1

t
νu du.

11 Assuming

that there would be no extreme change with the mortality intensity within one year, the

same confidence interval that bounds the death rate should also be a suitable bound for the

mortality intensity. The age-specific parameters we use in this paper are presented in Table

C.5.

Concerning the mortality index k, we take the ARIMA time series model estimated by

Lee and Carter but without the dummy term, namely, kt = kt−1 − 0.365+ et. The standard

error of the estimation (see) is assumed to be 0.651 and k0 is equal to −18. Also for the

sake of simplicity, we make the assumption that there are no estimation errors with the

age-specific parameters. The uncertainty of the mortality forecast is supposed to be only

attributed to the random behavior of the mortality index k. Under this assumption, we

obtain that the confidence interval of the mortality intensity at confidence level p by

µ40+t ∈
[

exp
(

a40+⌊t⌋ + b40+⌊t⌋ (k0 − ⌊t⌋ 0.365)− q b40+⌊t⌋ see
√

⌊t⌋
)

,

exp
(

a40+⌊t⌋ + b40+⌊t⌋ (k0 − ⌊t⌋ 0.365) + q b40+⌊tu⌋ see
√

⌊t⌋
)]

,

for 0 ≤ t ≤ 30, and q = Φ−1((1 + p)/2).

10The constraint serves to normalize the solutions, see Lee and Carter (1992). It should be pointed out

that here x denotes the age of an individual at time t instead at time 0 as we have referred to in the previous

part. We allow this abuse of notation to keep consistent with the literature on the Lee-Carter model. In

the later part, we always refer x to the age of an individual at time 0.
11Focusing only on the policyholders who are aged x at time 0, we omit x in the index and denote the

central death rate at time t as mt.
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Table C.5: The age-specific parameters ax and bx

x ax bx

40-44 -5.51323 0.05279

45-49 -5.09024 0.04458

50-54 -4.65680 0.03830

55-59 -4.25497 0.03382

60-64 -3.85608 0.02949

65-69 -3.47313 0.02880

70-74 -3.06117 0.02908

75-79 -2.63023 0.03240

80 -2.20498 0.03091
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