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Abstract In this paper, we present a new version of the OPTCON al-

gorithm for the optimal control of nonlinear stochastic systems with special

reference to econometric models. It delivers approximate numerical solu-

tions of optimum control problems with a quadratic objective function for

nonlinear econometric models with additive and multiplicative (parameter)

uncertainties. The algorithm was programmed in C# and allows for deter-

ministic and stochastic control, the latter with open-loop and passive learning

(open-loop feedback) information patterns. We demonstrate the applicabil-
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ity of the algorithm by experiments with a small quarterly macroeconometric

model for Slovenia. This shows the convergence and the practical usefulness

of the algorithm and (in most cases) the superiority of open-loop feedback

over open-loop controls.

KeywordsOptimal control; Stochastic control; Algorithms; Econometric

modeling; Policy applications
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1 Introduction

Optimum control theory has found a great number of applications in many

areas of science from engineering to economics. In particular, there exist

many studies determining optimal economic policies for econometric models.

Most of these optimum control applications use either algorithms for linear

dynamic systems or those that do not take into account the entire stochastic

nature of the econometric model. Examples of the former case are Kendrick

(1981), Coomes (1987), and the references in Amman (1996), for the latter

Chow (1975, 1981). An algorithm that is explicitly aimed at providing (ap-

proximate) solutions to optimum control problems for nonlinear econometric

models and other dynamic systems with different kinds of stochastics is OPT-

CON as introduced by Matulka and Neck (1992). However, so far OPTCON

was severely limited by resting on very restrictive assumptions about the in-

formation available to the decision-maker. In particular, learning about the

econometric model during the process of controlling the economy was ruled

out by assumption. This means that the original algorithm used an open-loop

control scheme for dealing with the stochastic parameters of the economet-

ric model during the computation of optimum control variables. In reality,

however, at each period new information arrives, and econometric models

are regularly re-specified using this information. Therefore, extensions of

the OPTCON algorithm to various possibilities of obtaining and using new

information about the system to be controlled are highly desirable.

In the present paper, we extend the OPTCON algorithm from open-

loop control only (which we label OPTCON1) to the inclusion of passive

3



learning or open-loop feedback control, where the stochastic parameters are

updated in each period. The resulting algorithm is called OPTCON2; it can

deliver approximately optimal solutions to dynamic optimization (optimum

control) problems for a rather large class of nonlinear dynamic systems under

a quadratic objective function with stochastic uncertainty in the parameters

and in the system equations under both kinds of control schemes. In the

open-loop feedback part, it is assumed that in each period new realizations

of both random processes occur, which can be used to update the parameters

of the dynamic system, i.e., of the econometric model. Following Kendrick’s

(1981) approach, the updating of the stochastic parameters uses the Kalman

filter. By this extension, we expect to arrive at more reliable approximations

to the solution of stochastic optimum control problems. Whether this hope

will materialize depends upon the comparative performance of open-loop

feedback versus open-loop control schemes in actual applications. Here we

provide some clue to this issue by performing comparisons of the two control

schemes within a control problem for a small econometric model. This serves

also to show that the OPTCON2 algorithm and its implementation in C#

actually deliver plausible numerical solutions at least for a small problem

with real economic data.

The paper has the following structure: In Section 2, we define the class

of problems to be tackled by the algorithm. Section 3 briefly reviews the

OPTCON1 algorithm. In Section 4, we sketch the theoretical background

and explain the OPTCON2 algorithm. In Section 5, we introduce the small

econometric model for Slovenia SLOVNL, show the applicability and con-

vergence of OPTCON2 as implemented in C#, and compare the quality of
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open-loop and open-loop feedback (passive-learning) controls in Monte-Carlo

simulations for this model. Section 6 concludes. In the Appendix, we give

more details about the updating procedure used for determining the open-

loop feedback control solution.

2 The problem

The algorithm OPTCON is designed to provide approximate solutions to op-

timum control problems with a quadratic objective function (a loss function

to be minimized) and a nonlinear multivariate discrete-time dynamic system

under additive and parameter uncertainties. The intertemporal objective

function is formulated in quadratic tracking form, which is quite often used

in applications of optimum control theory to econometric models. It can be

written as

J =
T
∑

t=S

Lt(xt, ut) (1)

with

Lt(xt, ut) =
1

2







xt − x̃t

ut − ũt







′

Wt







xt − x̃t

ut − ũt






. (2)

xt is an n-dimensional vector of state variables that describes the state of

the economic system at any point in time t. ut is an m-dimensional vector

of control variables, x̃t ∈ Rn and ũt ∈ Rn are given ‘ideal’ (desired, target)

levels of the state and control variables, respectively. S denotes the initial

and T the terminal time period of the finite planning horizon. Wt is the
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weight matrix, which can be written as

Wt =







W xx
t W xu

t

W ux
t W uu

t






, for t = S, ..., T,

where W xx
t , W xu

t , W ux
t and W uu

t are (n× n), (n×m), (m× n) and (m×m)

matrices, respectively. In a frequent special case, Wt is a matrix including a

discount factor α with Wt = αt−1W . Wt (or W ) is symmetric with W xu =

(W ux)′.

The dynamic system of nonlinear difference equations has the form

xt = f(xt−1, xt, ut, θ, zt) + εt, t = S, ..., T, (3)

where θ is a p-dimensional vector of unknown parameters (parameter un-

certainty), zt denotes an l-dimensional vector of non-controlled exogenous

variables, and εt is an n-dimensional vector of additive disturbances (system

error). θ and εt are assumed to be independent random vectors with known

expectations (θ̂ and On, respectively) and covariance matrices (Σθθ and Σεε,

respectively). f is a vector-valued function, f i(.....), is the i-th component of

f(.....), i = 1, ..., n.

3 OPTCON1

The basic algorithm OPTCON determines approximate solutions of optimum

control problems with a quadratic objective function and a nonlinear multi-

variate dynamic system under additive and parameter uncertainties. It com-
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bines elements of previous algorithms developed by Chow (1975, 1981) incor-

porating nonlinear systems but no multiplicative uncertainty and Kendrick

(1981) dealing with linear systems and all kinds of uncertainty. The version

OPTCON1 is described in detail in Matulka and Neck (1992); here its basic

idea is presented only.

It is well known in stochastic control theory that a general analytical solu-

tion to dynamic stochastic optimization problems cannot be achieved even for

very simple control problems. The main reason is the so-called dual effect of

control under uncertainty, meaning that controls not only contribute directly

to achieving the stated objective but also affecting future uncertainty and

hence the possibility of indirectly improving upon the system performance

by better information about the system (see, for instance, Aoki (1989); Neck

(1984)). Therefore only approximations to the true optimum for such prob-

lems are feasible, with various schemes existing for dealing with the problem

of information acquisition.

A useful distinction was adapted from the engineering literature by Kendrick

(1981); see also Kendrick and Amman (2006): Open-loop policies neglect

the possibility of receiving information (measurements) during the operation

of the system; open-loop feedback (or passive learning) policies use actual

information to determine the control but do not anticipate future measure-

ments; and closed-loop (or active learning) policies make some use also of

information about future measurements. Given the intricacies of the inter-

play between control and information, even for very simple stochastic control

problems (for example, linear scalar system, time horizon of only two periods)

an exact analytical or even numerical solution is impossible, hence numerical
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approximations are required that make use of simplifying assumptions.

The algorithm OPTCON1 determines policies belonging to the class of

open-loop controls. It either neglects the stochastics of the system alto-

gether (deterministic solution, identical to the Chow algorithm) or assumes

the stochastics (expectation and covariance matrices of additive and mul-

tiplicative disturbances) given once for all at the beginning of the planning

horizon (stochastic solution). The problem with the nonlinear system is tack-

led iteratively, starting with a tentative path of state and control variables.

The tentative path of the control variables for the first iteration is given.

In order to find the corresponding tentative path of the state variables, the

nonlinear system is solved numerically using the Newton-Raphson method

(or alternatively the Gauss-Seidel method).

After the tentative path is found, the iterative approximation of the op-

timal solution starts. The solution is searched from one time path to an-

other until the algorithm converges or the maximal number of iterations is

achieved. During this search the system is linearized around the previous

iteration’s result as tentative path and the problem is solved for the result-

ing time-varying linearized system. The criterion for convergence demands

that the difference between the values of actual and previous iterations be

smaller than a pre-specified number. The approximately optimal solution of

the problem for the linearized system is found under the above-mentioned

simplifying assumptions about the information pattern; then this solution is

used as the tentative path for next iteration, starting the procedure again.

Every iteration, i.e. every solution of the problem for the linearized sys-

tem, has the following structure: the objective function is minimized using
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Bellman’s principle of optimality to obtain the parameters of the feedback

control rule. This uses known results for the stochastic control of LQG prob-

lems (optimization of linear systems with Gaussian noise under a quadratic

objective function). A backward recursion over time starts in order to cal-

culate the controls for the first period S. Next, the optimal values of the

state and the control variables are calculated applying forward recursion, i.e.

beginning with uS and xS at period S and finishing with uT and xT at the

terminal period T . If the convergence criterion is fulfilled, the solution of

the last iteration is taken as the approximately optimal solution of the prob-

lem and the algorithm stops. Finally, the value of the objective function is

calculated for this solution.

4 OPTCON2

4.1 Characteristics of the algorithm OPTCON2

The new version of algorithm, OPTCON2, incorporates both open-loop and

open-loop feedback (passive-learning) controls. The idea of passive learning

corresponds to actual practice in applied econometrics: at the end of each

time period, the model builder (and hence the control agent) observes what

happens, that is, the actual values of state variables, and uses this information

to re-estimate the model and hence improve his/her knowledge about the

system. It should be mentioned that two kinds of errors, namely additive

(random system errors) and multiplicative (‘structural’ errors in parameters)

errors, are taken into account but not possible specification errors, hence we
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assume that no re-specifications of the model are performed. Taking actual

observations into account should contribute to eliminate errors in parameters

or at least to reduce them. This is not trivial because the correction of

structural errors is disturbed by the system error. Using the updated model

shall enable the policy-maker to obtain better predictions for the next period

and to improve the final results. Whether this taking into account of passive

learning really improves the performance of the system is, however, an open

question because the ‘true’ optimum is not known.

In this paper, our main research aim is to obtain evidence on whether

applying passive learning can indeed improve the final solution. The pre-

diction and optimization procedures for open-loop control assume that the

model is known without random disturbances occurring during the optimiza-

tion process. But in reality some random errors will disturb the optimization

process. We consider two kinds of uncertainties, parameter and system errors.

Passive-learning strategy implies observing actual information and using it

in order to adjust the optimization procedure. For the purpose of compar-

ing open-loop and open-loop feedback results, we cannot observe actual and

true values, so we have to resort to Monte-Carlo simulations. We generate

large numbers of random time paths for the additive and multiplicative er-

rors representing how new information in reality could look like. In this way

we create ‘quasi-real’ observations and compare both types of controls, open-

loop and passive-learning (open-loop feedback). The procedure applied looks

like as follows.

We generate MC runs (a number, usually between 100 and 1000) differ-

ent sets of realizations of random noises (εmt )
T
t=S and µm,m = 1, ...,MC runs.
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We assume that there is an unknown ‘real’ model with the ‘true’ parameter

vector θ̂. But the policy-maker (the user of the algorithm) does not know the

real parameters and works with the ‘wrong’ parameters resulting from the

estimates using the realization of the random processes. To simulate this,

we the use the system error generated in each Monte-Carlo run m (εmt )
T
t=S

and create the ‘updated’ parameter θm = θ̂+µm which is used by the policy

maker. After this, the following procedure is run for every random scenario:

We start a forward loop from S to T . In each time period t we determine

an (approximately optimal) open-loop solution for the subproblem, i.e the

problem for the time periods from t to T . Then we fix the predicted x∗

t and

u∗

t for the time period t. We assume to know the realized or actual values of

the state variables xa∗
t at the end of period t, which is, however, disturbed

by the additive errors: the difference between x∗

t = f(xa∗
t−1, x

∗

t , u
∗

t , θ
m, zt) and

xa∗
t = f(xa∗

t−1, x
a∗
t , u∗

t , θ̂, zt) + εmt comes from the random numbers εmt gener-

ated and used for calculating the ’quasi-real’ values. Next, we can use the

new information to update and adjust the parameter estimate θm. After that

we apply the same procedure for the remaining subproblem from t+ 1 to T ,

and so on.

4.2 Detailed description of the algorithm

STEP I: Compute a tentative state path (
◦

xt)
T
t=S by solving the system of

equations f(.....) with the Newton-Raphson algorithm (or Newton-Raphson

with line-search expansion), given the tentative policy path (
◦

ut)
T
t=S.
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STEP II: Generate MC runs paths of random normal distributed system

noises (εmt )
T
t=S and parameter noises µm (θm = θ̂ + µm) using the given

means and covariance matrices. The given covariance matrix is Cholesky

decomposed in order to get the lower-triangular matrix. Applying this to

uncorrelated random numbers produces a vector with the covariance proper-

ties of the system being modeled.

STEP III: For each independent random scenario with (εmt )
T
t=S and µm,

i.e. for each Monte Carlo run m (m = 1, ...,MC runs), do the following

steps:

Step III-1: For each t from S to T find the open-loop solution for the

subproblem (t, ..., T ), i.e. do the steps III-1a-d:

Step III-1a: Nonlinearity loop: repeat the following steps until the stop

criterion is fulfilled, i.e., until the difference between the values of the actual

and the previous iteration is smaller than a pre-specified number or the max-

imal number of iterations is achieved.

Step III-1a-i: Initialization for the backward recursion:

HT+1 = On×n, h
x
T+1 = On,

hc
T+1 = 0, hs

T+1 = 0, hp
T+1 = 0.

Step III-1a-ii: Backward recursion: do steps [1]-[7] for each time period

from T until t. This is analogous to the procedure in OPTCON1.
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[1] Compute the expected values of the parameters of the linearized system

of equations:

At = (In − Fxt
)−1Fxt−1

, (4)

Bt = (In − Fxt
)−1Fut

, (5)

ct =
◦

xt − At
◦

xt−1 − Bt
◦

ut, (6)

ξt = (In − Fxt
)−1εt, (7)

Et−1(ξt) = (In − Fxt
)−10n = 0n, (8)

Σξξ
t = Covt−1(ξt, ξt) = (In − Fxt

)−1Σεε[(In − Fxt
)−1]′, (9)

where all derivatives are evaluated at the reference values
◦

xt−1,
◦

xt,
◦

ut, zt,

and
◦

εt. Here the time-invariant nonlinear system f(.....) is approximated by

a time-varying linear system of equations.

[2] Compute the derivatives of the parameters of the linearized system with

respect to θm:

DAt = [(In − Fxt
)−1 ⊗ Ip][Fxt,θAt + Fxt−1,θ], (10)

DBt = [(In − Fxt
)−1 ⊗ Ip][Fxt,θBt + Fut,θ], (11)

dct = vec[((In − Fxt
)−1Fθ)

′]−DAt
◦

xt−1 −DBt
◦

ut, (12)
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where all derivatives are evaluated at the same reference values as above.

[3] Calculate the influence of the stochastic parameters: compute all the

matrices the cells of which are defined by:

[ΥAKA
t ]i,j = tr[KtD

at,jΣθθ(Dat,i)′], i = i, ..., n; j = 1, ..., n, (13)

[ΥBKA
t ]i,j = tr[KtD

at,jΣθθ(Dbt,i)′], i = i, ...,m; j = 1, ..., n, (14)

[ΥBKB
t ]i,j = tr[KtD

bt,jΣθθ(Dbt,i)′], i = i, ...,m; j = 1, ...,m, (15)

[υAKc
t ]i = tr[KtD

ctΣθθ(Dat,i)′], i = i, ..., n, (16)

[υBKc
t ]i = tr[KtD

ctΣθθ(Dbt,i)′], i = i, ...,m, (17)

[υcKc
t ] = tr[KtD

ctΣθθ(Dct)′], i = i, ...,m. (18)

[4] Convert the objective function from ‘quadratic-tracking’ to ‘general quadratic’

format:

W xx
t = αt−1W xx, (19)

W ux
t = αt−1W ux, (20)

W uu
t = αt−1W uu, (21)

wx
t = −W xx

t x̃t −W xu
t ũt, (22)
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wu
t = −W ux

t x̃t −W uu
t ũt, (23)

wc
t =

1

2
x̃tW

xx
t x̃t + ũtW

ux
t x̃t +

1

2
ũ′

tW
uu
t ũt. (24)

[5] Compute the parameters of the function of expected accumulated loss:

Kt = W xx
t +Ht+1,

kx
t = wx

t + hx
t+1.

(25)

Λxx
t = ΥAKA

t + A′

tKtAt,

Λux
t = ΥBKA

t +B′

tKtAt +W ux
t At,

Λxu
t = (Λux

t )′,

Λuu
t = ΥBKB

t +B′

tKtBt + 2B′

tW
xu
t +W uu

t ,

(26)

λx
t = υAKc

t + A′

tKtct + A′

tk
x
t ,

λu
t = υBKc

t +B′

tKtct +B′

tk
x
t +W ux

t ct + wu
t ,

λs
t =

1

2
tr[KtΣ

ξξ
t ] + hs

t+1,

λp
t =

1

2
υcKc
t + hp

t+1,

λc
t =

1

2
c′tKtct + c′tk

x
t + wc

t + hc
t+1.

(27)

[6] Compute the parameters of the feedback rule for T, ..., t:

Gt = −(Λuu
t )−1Λux

t ,

gt = −(Λuu
t )−1λu

t .
(28)
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[7] Compute the parameters of the function of minimal expected accumu-

lated loss:

Ht = Λxx
t − Λxu

t (Λuu
t )−1Λux

t ,

hx
t = λx

t − Λxu
t (Λuu

t )−1λu
t ,

hc
t = λc

t −
1

2
(λu

t )
′(Λuu

t )−1λu
t ,

hs
t = λs

t ,

hp
t = λp

t .

(29)

Step III-1a-iii: Repeat the following steps [1]-[2] for the time periods

t, ..., T :

[1] The expected approximately optimal policies are computed using the

feedback rule:

- for the time period t: u∗

t = Gtx
a∗
t−1 + gt;

- for the time periods t′ = t+ 1, ..., T : u∗

t′ = Gt′x
∗

t′−1 + gt′ .

[2] The approximately optimal values of the state variables are calculated:

- for the time period S: xa∗
S−1 =

◦

xS−1;

- for the time period t: x∗

t = f(xa∗
t−1, x

∗

t , u
∗

t , θ
m, zt);

- for the time periods t′ = t+ 1, ..., T : x∗

t′ = f(x∗

t′−1, x
∗

t′ , u
∗

t′ , θ
m, zt′).

Step III-1a-iv: If the stop criterion for the non-linearity loop is not ful-
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filled, set (
◦

xt,
◦

ut)
T
t = (x∗

t , u
∗

t )
T
t=S and start the search for the optimal values

again (go to step III-1a-ii).

If the stop criterion is achieved, the approximately optimal solution (x∗

t , u
∗

t )
T
t

is found. Then go to the next step III-1b. It should be noted that after sev-

eral runs of nonlinearity loop only the solution (x∗

t , u
∗

t ) for the time period t

will be taken as the optimal solution. The calculations of the pairs (x∗

t′ , u
∗

t′)

for other periods have to be done again, taking into account the re-estimated

stochastic parameters for all periods.

Step III-1b: Calculate the following for only one time period t:

xa∗
t = f(xa∗

t−1, x
a∗
t , u∗

t , θ̂, zt) + εmt .

Step III-1c: Update the stochastic parameters θm using the Kalman filter

and the actual (realized) values of the variables xa∗
t :

[1] Prediction:

x̂t/t−1 = f(xa∗
t−1, x̂t/t−1, u

∗

t , θ
m
t−1/t−1

, zt) = x∗

t , θmt/t−1
= θmt−1/t−1

,

Σxx
t/t−1

= F x
θt−1Σ

θθ
t−1/t−1

(F x
θt−1)

′ + Σεε
t ,

Σxθ
t/t−1

= (Σθx
t/t−1

)′ = F x
θt−1Σ

θθ
t−1/t−1

, Σθθ
t/t−1

= Σθθ
t−1/t−1

.

(30)

[2] Correction:
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Σθθ
t/t = Σθθ

t/t−1
− Σθx

t/t−1
(Σxx

t/t−1
)−1Σxθ

t/t−1
,

θmt/t = θmt/t−1
+ Σθx

t/t−1
(Σxx

t/t−1
)−1[xa∗

t − x∗

t ] and x̂t/t = xa∗
t .

(31)

Thus the update results in the new values θmt/t and Σθθ
t/t. The proof of (30)

and (31) is given in the Appendix.

Step III-1d: Set θm = θmt/t and Σθθ = Σθθ
t/t

and run the procedure for the next starting period. This loop is finished

when t = T and the approximately optimal open-loop feedback control and

state variables for all periods are found.

Step III-2: Compute the expected welfare loss:

J∗ =
T
∑

t=S

Lt(x
a∗
t , u∗

t ) (32)

with

Lt(x
a∗
t , u∗

t ) =
1

2







xa∗
t − x̃t

u∗

t − ũt







′

Wt







xa∗
t − x̃t

u∗

t − ũt






. (33)

5 An application

The algorithm OPTCON2 was implemented in C#. In order to test its con-

vergence, we use a very simple small macroeconometric model for Slovenia.

Section 5.1 gives the details of this model. Optimization results of this model

for two different open-loop policies, a deterministic and a stochastic case, are
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presented in Section 5.2. In Section 5.3, we describe the comparison between

results of open-loop controls and passive-learning (open-loop feedback) con-

trol solutions.

5.1 The model SLOVNL

We consider a small nonlinear macroeconometric model of the Slovenian

economy, to be called SLOVNL (SLOVenian model, Non-Linear version).

SLOVNL consists of 8 equations, 4 of them behavioral and 4 identities. The

model includes 8 state variables, 4 exogenous non-controlled variables, 3 con-

trol variables, and 16 unknown (estimated) parameters. The quarterly data

for the time periods 1995:1 until 2006:4 yield 48 observations and admit a

full-information maximum likelihood (FIML) estimation of the parameters

and the covariance matrices for the parameter and system errors. The start

period for the optimization is S = 1 (2004:1) and the end period is T = 12

(2006:4).

Model variables used in SLOVNL

Endogenous (state) variables :
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x[1] : CR real private consumption

x[2] : INV R real investment

x[3] : IMPR real imports of goods and services

x[4] : STIRLN short term interest rate

x[5] : GDPR real gross domestic product

x[6] : V R real total aggregate demand

x[7] : PV general price level

x[8] : Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate

u[2] GR real public consumption

u[3] M3N money stock, nominal

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] IMPDEF import price level

z[3] GDPDEF domestic price level

z[4] SITEUR nominal exchange rate SIT/EUR

Model equations :

The first four equations are estimated by FIML, the remaining equations are identities.

Standard deviations are given in brackets.
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CRt = 240.9398 + 0.740333 CRt−1 + 0.111727 GDPRt (1− TaxRatet
100 )

(189.7449) (0.1115) (0.0330)

− 1.007353 (STIRLNt − Pi4t) − 4.773533 Pi4t

(2.5848) (2.4966)

INV Rt = 75.41731 + 0.932211 INV Rt−1 + 0.264523 (V Rt − V Rt−1)

(176.8549) (0.1423) (0.0924)

− 0.455511 (STIRLNt − Pi4t) − 2.981241 Pi4t

(6.9044) (3.1277)

IMPRt = IMPRt−1 + 0.826449 (V Rt − V Rt−1) − 38.14954 SITEURt

(0.0724) (18.9336)

STIRLNt = 0.811606 STIRLNt−1 − 0.000877 (M3N)t
PVt

· 100

(0.1375) (0.0008)

+ 0.002746 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

PVt = GDPRt

V Rt

·GDPDEFt + IMPRt

V Rt

· IMPDEFt

Pi4t = PVt−PVt−4

PVt−4

· 100

The objective function penalizes deviations of objective variables from

their ‘ideal’ (desired, target) values. The ‘ideal’ values of the state and control
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variables (x̃t and ũt, respectively) are chosen as follows:

Table 1: ‘Ideal’ values

CR INV R IMPR STIRLN GDPR V R PV Pi4 TaxRate GR M3N
1% 1% 2% -0.25 1% 1.5% 0.75% 3 25.2 1% 1.75%

We use growth rates (denoted by % in Table 1) for calculating the ‘ideal’

values for most variables, starting from the last given observation (t = S−1).

For Pi4 and TaxRate, we use constant values; for STIRLN , we use a linear

decrease of 0.25 per quarter.

The weights for the variables, i.e. the matrix W in the objective function,

are first chosen as shown in Table 2a (‘raw’ weights) to reflect the relative

importance of the respective variable in the (hypothetical) policy-maker’s

objective function. These ‘raw’ weights have to be scaled or normalized ac-

cording to the levels of the respective variables to make the weights compa-

rable. To do so, the ‘raw’ weights are multiplied by normalization coefficients

NC i = (ML/MAi)2, where ML is the mean of the series with the largest

values and MAi is the mean of the respective series i. The ‘correct’ weights

obtained in this way are shown in Table 2b. The weight matrix is assumed

to be constant over time (no discounting).

Next, we apply the algorithm to this optimization problem for determin-

ing approximately optimal fiscal and monetary policies for Slovenia under the

assumed objective function and the econometric model SLOVNL. We run two

different experiments: In experiment 1, we compare two open-loop solutions,

a deterministic case where the variances and covariances of the parameters

are ignored, and a stochastic case where the covariance matrix is taken into
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Table 2: Weights

2a: ‘raw’ weights 2b: ‘correct’ weights

variable weight variable weight
—————— ———– —————— ————
CR 1 CR 3.457677
INV R 1 INV R 12.16323
IMPR 1 IMPR 1.869532
STIRLN 1 STIRLN 216403.9
GDPR 2 GDPR 2
V R 1 V R 0.333598
PV 1 PV 423.9907
Pi4 0 Pi4 0
TaxRate 2 TaxRate 37770.76
GR 2 GR 63.77052
M3N 2 M3N 0.090549

account. In experiment 2, we compare the quality of the open-loop and the

open-loop-feedback solutions. Our exercise is not meant to determine actu-

ally optimal policies for Slovenia during the period considered (for this, the

quality of the econometric model is not sufficient); instead, we want to obtain

information about the convergence and the applicability of the OPTCON2

algorithm as implemented in C#.

5.2 Experiment 1: open-loop control

For experiment 1, we discuss two different open-loop solutions: deterministic

and stochastic. The deterministic scenario means that all parameters of

the model are known with certainty. In the stochastic case, the covariance

matrix of the parameters as estimated by FIML is used but no updating of

information occurs during the optimization process.

We show the graphical results for two variables, GDPR and GR. Each
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figure shows the optimization results for the deterministic and the stochastic

case and the ‘ideal’ and historical values of the respective variable.

0 2 4 6 8 10 12
3450

3500

3550

3600

3650

3700

3750

3800

3850

3900

3950

 

 

GDP_det
GDP_stoch_OL
GDP_target
GDP_hist

Figure 1: Deterministic vs. stochastic open-loop case (GDP )
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Figure 2: Deterministic vs. stochastic open-loop case (GR)
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Figures 1 and 2 show that both the deterministic and the stochastic solu-

tion approximate the ‘ideal’ values rather well. This is also supported by the

values of the objective function, which is 2,618,460.238 in the uncontrolled

solution, 904,385.766 in the deterministic solution and 918,296.046 in the

stochastic solution, showing a considerable improvement of the system per-

formance. An interesting detail is that the deterministic and the stochastic

open-loop solutions are very similar, which goes in line with previous findings

in related studies Neck and Karbuz (1995).

In both cases (deterministic and stochastic) the algorithm needs 3 non-

linearity runs to converge. The entire procedure requires 2 seconds for the

deterministic case and 4 seconds for the stochastic case on a personal com-

puter with 2 GHz Intel Core 2 Duo CPU and 4GB RAM. The results show

that the algorithm OPTCON2 (OL-strategy) is applicable for determining

optimal open-loop controls at least for small nonlinear econometric models.

5.3 Experiment 2: open-loop feedback control

The aim of the experiment 2 is to compare open-loop and open-loop feedback

controls. There is a problem how to compare both strategies, because open-

loop controls do not take into account random disturbances occurring during

the optimization process. In order to make both strategies comparable, we

need some adjustments for the open-loop controls: First we calculate the

open-loop controls (u∗

t )
T
t=S for all periods, using the generated θm (θm =

θ̂ + µm). Then we assume to know the ‘true’ model with the parameters

θ̂ and system error εmt and calculate the actual values of open-loop states
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(xa∗
t = f(xa∗

t−1, x
a∗
t , u∗

t , θ̂, zt)+εmt , t = S, ..., T ). So the policies stay unchanged

but the state variables are calculated taking into account the disturbances

µm and εm. The open-loop feedback solution is determined according to the

algorithm given in Section 4. In this way, a comparison of both strategies

under simulated ‘real’ uncertainty (disturbances) becomes possible.
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Figure 3: Open-loop vs. open-loop feedback control, value of objective func-
tion (100 Monte Carlo runs)

Figure 3 shows results from a representative Monte-Carlo simulation, dis-

playing the value of the objective function (loss) arising from applying OPT-

CON2 under 100 independent random Monte Carlo runs. Blue diamonds

represent open-loop feedback results, red squares open-loop results. One can

see from this figure that in most runs the blue diamonds are below the red

squares (here: in 66 out of 100). This means that open-loop feedback controls

give better results (lower values of the cost function) in the majority of the

cases investigated. But one can also recognize that there are many outliers.
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After having run many simulations (with different numbers of Monte Carlo

runs), we can summarize our findings as follows:

• In 60-75 percent of the cases, open-loop feedback controls give better

results than open-loop controls.

• Many outliers occur both in the open-loop and the open-loop feedback

case.

• For open-loop controls, outliers seem to be more frequent.

The last result is somewhat unexpected. Outliers mean that (passive)

learning may not improve the quality of the final results; it even may worsen

them. One possible way out of this problem is to introduce weights in the

update structure. Recalling equation (31), which describes the correction

procedure, we extend the correction term for θ by a weighting parameter Vt:

θt/t = θt/t−1 + VtΣ
θx
t/t−1

(Σxx
t/t−1

)−1[xa∗
t − x∗

t ], 0 < Vt ≤ 1. (34)

Adjusting the updating procedure in this way, we expect to get better results

under open-loop feedback control.

Using constant values for Vt does not improve the open-loop feedback

results much. The main reason for the outliers can be understood from

recognizing that we have two kinds of uncertainty in our problem, additive

(random system error) and multiplicative error (‘structural’ error in the pa-

rameters). The updating procedure aims at reducing the ‘structural’ error

but can be disturbed by the random system error. Usually, this influence

of the random system error can be expected to be especially strong at the
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beginning of the planning period. Thus, we propose to give less weight to

revisions called for by learning during the earlier periods of the planning hori-

zon than during the later periods. Taking this consideration into account, we

introduced a time-dependent weighting parameter Vt. We tried two different

schemes:

• Vt =
t

T−1
,

• Vt =























0.1, 1 ≤ t ≤ 1

3
T

0.5, 1

3
T < t ≤ 2

3
T.

1, 2

3
T < t ≤ T

According to our simulations, the weighted open-loop feedback scheme with

the parameter Vt =
t

T−1
gives better results, so in the simulations presented

next we use this variant.

From a Monte-Carlo simulation to compare the system performance under

open-loop (OL) and weighted open-loop-feedback (wOLF) control, the results

look like as in Figure 4, again showing the values of the objective function

against the number of the Monte Carlo run. Blue diamonds represent wOLF

and red squares OL results.

We can see that in this simulation wOLF control gives better results:

there are more blue diamonds below red squares (44 out of 50) and nearly

no wOLF outliers. However, in some simulations we obtain outliers also for

wOLF like those shown in Figure 5. Due to a particular constellation of

parameter and system errors, wOLF control fails in the 70th Monte Carlo

run. But also here wOLF gives less outliers and in most cases blue diamonds

are below red squares (here: 77 out of 100).
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Figure 4: Open-loop vs. weighted open-loop feedback, value of objective
function (50 Monte Carlo runs)
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Figure 5: Open-loop vs. weighted open-loop feedback, value of objective
function (100 Monte Carlo runs)
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After running many simulations we can summarize our finding as follows:

• In 70-80 percent of the cases considered, weighted open-loop feedback

controls give better results than open-loop controls.

• Weighted open-loop feedback controls result in less outliers than open-

loop controls.

Using a weighting scheme for parameter updating increases the number

of runs where passive learning controls result in better values of the objective

function than the control scheme without learning. Additionally, we could

achieve a decrease of the number of outliers by introducing wOLF controls.

6 Concluding remarks

The objective of our research is an extension of the OPTCON algorithm

to make more reliable. We developed the new algorithm, OPTCON2, em-

bodying open-loop feedback in addition to open-loop control policies. It was

programmed in the computer language C# and shown to converge for a

small econometric model. The main improvement described in this paper

consists in learning about stochastic parameters during the control process.

A comparison of open-loop control (without learning) and open-loop feed-

back control (with passive learning) shows that weighted open-loop feedback

control in a majority of the cases investigated outperforms open-loop control

for the small econometric model of Slovenia.

The next task is to apply OPTCON2 to larger and better (in terms of the

theoretical and statistical quality) macroeconometric models. Because of the
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expected huge amount of computational, this will probably have to be done

by parallel computing. Additional comparisons of the policy performance

with respect to the postulated objective function are desirable; for example,

we will calculate controls determined by straightforward heuristic optimiza-

tion procedures (see Gilli and Winker (2009)) and assess their performance

as compared to the more sophisticated ones calculated by OPTCON2. Some

other improvements will have to be done in the algorithm and the present

version of the computer program, as for instance concerning the calculation of

the covariances in the linearized model. Moreover, major extensions will have

to include various schemes of active learning to deal with the dual nature of

the control under uncertainty along the lines of Kendrick (1981) for the linear

case. Another challenge consists in incorporating rational (forward-looking)

expectations and hence a non-causal structure in the dynamic system; see

Amman and Kendrick (2000) for the linear case.

7 Appendix: Update of stochastic parame-

ters

The update of the parameters in OPTCON2 is performed using the Kalman

filter. In our case, the predicted parameter values are corrected using the

actual observations of the state (endogenous) variables xa∗.

At the start of step III-1c in Section 4.2, the predicted values of x̂t/t−1 = x∗

t

are already calculated and θmt/t−1
= θmt−1 is known.

Step 1: Get the predicted values of the covariance matrices Σθθ
t/t−1

, Σxx
t/t−1
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and Σθx
t/t−1

.

Following Kendrick (1981), we start with the general case

Σt/t−1 = E{(xt − x̂t/t−1)(xt − x̂t/t−1)
′| Y },

where Y is the set of actual observations.

First we show that

Σt/t−1 = FxΣt−1/t−1F
′

x + Σεε

+1

2

∑

i

∑

j e
iej

′

tr(F i
xxΣt−1/t−1F

j
xxΣt−1/t−1).

(35)

Denote by Σt−1/t−1 = Σ the known covariance. We consider the system of

equations

xt = ft(xt−1, xt, ut, θ, zt) + εt

and expand it to second order (Taylor expansion) around the path (xa∗
t−1, u

∗

t ) =

(x̂t−1/t−1, u
∗

t ):

xt ≈ ft(x̂t−1/t−1, xt, u
∗

t , θ, zt) + [Fx][xt−1 − x̂t−1/t−1] + [Fu][ut − u∗

t ]

+1

2

∑

i e
i[xt−1 − x̂t−1/t−1]

′F i
xx[xt−1 − x̂t−1/t−1]

+1

2

∑

i e
i[ut − u∗

t ]
′F i

uu[ut − u∗

t ]

+
∑

i e
i[ut − u∗

t ]
′F i

ux[xt−1 − x̂t−1/t−1] + εt,

(36)
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where Fx and Fu are the first derivatives of f with respect to x and u,

respectively; F i
uu = ∂2f i

∂u2 , F
i
ux = ∂2f i

∂u∂x
and F i

xx = ∂2f i

∂x2 are the second derivatives

of f .

Set ut = u∗

t in (36) and get

xt = ft(x̂t−1/t−1, xt, u
∗

t , θ, zt) + Fx[xt−1 − x̂t−1/t−1]

+1

2

∑

i e
i[xt−1 − x̂t−1/t−1]F

i
xx[xt−1 − x̂t−1/t−1] + εt.

(37)

Taking the expected value of (36) with data through period t− 1 and setting

ut = u∗

t yields:

x̂t/t−1 ≈ ft(x̂t−1/t−1, x̂t/t−1, u
∗

t , θ, zt)

+1

2
E(

∑

i e
i[xt−1 − x̂t−1/t−1]

′F i
xx[xt−1 − x̂t−1/t−1].

(38)

Because of the rule E(x′Ax) = x̂Ax̂+tr(AΣ) we get

x̂t/t−1 ≈ ft(x̂t−1/t−1, x̂t/t−1, u
∗

t , θ, zt) +
1

2

∑

i

eitr[F i
xxΣt−1/t−1]. (39)
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Using (39) and (37), we write:

xt − x̂t/t−1 = Fx[xt−1 − x̂t−1/t−1]

+1

2

∑

i e
i[xt−1 − x̂t−1/t−1]F

i
xx[xt−1 − x̂t−1/t−1] + εt

−1

2

∑

i e
itr[F i

xxΣt−1/t−1].

(40)

Now we can write Σt/t−1 in a more detailed way as

Σt/t−1 = E{(xt − x̂t/t−1)(xt − x̂t/t−1)
′}

= E{F ′

x[xt−1 − x̂t−1/t−1][xt−1 − x̂t−1/t−1]
′Fx}

+1

4
E{[

∑

i e
i[xt−1 − x̂t−1/t−1]F

i
xx[xt−1 − x̂t−1/t−1]]

×[
∑

j e
j[xt−1 − x̂t−1/t−1]F

j
xx[xt−1 − x̂t−1/t−1]]

′}

+E{εtε
′

t}+
1

4
E{[

∑

i e
itr[F i

xxΣt−1/t−1]][
∑

j e
jtr[F j

xxΣt−1/t−1]]
′}

−1

2
E{[

∑

i e
i[xt−1 − x̂t−1/t−1]F

i
xx[xt−1 − x̂t−1/t−1]]

×[
∑

i e
itr[F i

xxΣt−1/t−1]]
′}.

(41)

34



With E{[xt−1 − x̂t−1/t−1][xt−1 − x̂t−1/t−1]
′} = Σt−1/t−1 and E{εtε

′

t} = Σεε,

we obtain

Σt/t−1 = F ′

xΣt−1/t−1Fx

+1

4

∑

i

∑

′

j E{[[xt−1 − x̂t−1/t−1]F
i
xx[xt−1 − x̂t−1/t−1]]

×[[xt−1 − x̂t−1/t−1]F
j
xx[xt−1 − x̂t−1/t−1]]

′}

+Σεε + 1

4
[
∑

i e
itr[F i

xxΣt−1/t−1]][
∑

j e
jtr[F j

xxΣt−1/t−1]]
′

−1

2
[
∑

j e
jtr[F j

xxΣt−1/t−1]][
∑

i e
itr[F i

xxΣt−1/t−1]]
′.

(42)

Adapting the rule (see Kendrick (1981, Appendix F))

E[(x′Ax)(x′Bx)] = 2tr[AΣBΣ] + tr[AΣ]tr[BΣ]
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to the second term of (42), one obtains

Σt/t−1 = F ′

xΣt−1/t−1Fx +
1

2

∑

i

∑

j e
iej

′

tr[F i
xxΣt−1/t−1f

j
xxΣt−1/t−1]

+1

4

∑

i

∑

j e
iej

′

tr[F i
xxΣt−1/t−1]tr[F

j
xxΣt−1/t−1]

+Σεε + 1

4
[
∑

i e
itr[F i

xxΣt−1/t−1]][
∑

j e
jtr[F j

xxΣt−1/t−1]]
′

−1

2
[
∑

j e
jtr[F j

xxΣt−1/t−1]][
∑

i e
itr[F i

xxΣt−1/t−1]]
′.

(43)

This shows that (35) is true.

(35) can also be rewritten for the augmented system ẑt/t−1 =













x̂t/t−1

........

θmt/t−1













:

Σt/t−1 = F ′

zΣt−1/t−1Fz +Σεε +
1

2

∑

i

∑

j

eiej
′

tr[F i
zzΣt−1/t−1F

j
zzΣt−1/t−1] (44)
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and in matrix form:

Σt/t−1 =







F x
x F x

θ

F θ
x F θ

θ







t−1







Σxx Σxθ

Σθx Σθθ







t−1/t−1







F x
x F x

θ

F θ
x F θ

θ







′

t−1

+







Σεε 0

0 0







+1

2

∑

i∈I

∑

j∈I e
iej

′

tr(







F i
xx F i

xθ

F i
θx F i

θθ













Σxx Σxθ

Σθx Σθθ







t−1/t−1

×







F j
xx F j

xθ

F j
θx F j

θθ













Σxx Σxθ

Σθx Σθθ







t−1/t−1

).

(45)

Notice that

fx = f(x̂t−1/t−1, x̂t/t−1, u
∗

t , θ, zt), f θ = θt−1

and

F x
x =

∂fx

∂x
, F x

θ =
∂fx

∂θ
, F θ

x =
∂f θ

∂x
= 0, F θ

θ =
∂f θ

∂θ
= I.
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Then we obtain

Σt/t−1 =













Σxx
... Σxθ

.... ....

Σθx
... Σθθ













t/t−1

=













F x
xΣ

xx(F x
x )

′ + F x
θ Σ

θx(F x
x )

′ + F x
xΣ

xθ(F x
θ )

′ + F x
θ Σ

θθ(F x
θ )

′
... F x

xΣ
xθ + F x

θ Σ
θθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σθx(F x
x )

′ +Σθθ(F x
θ )

′
... Σθθ













t−1/t−1

+













Σεε
... 0

.... ...

0
... 0













t−1

+













Π
... 0

... ...

0
... 0













,

(46)

where

Π = 1

2

∑

i∈I

∑

j∈I e
iej

′

tr(







F i
xx F i

xθ

F i
θx F i

θθ













Σxx Σxθ

Σθx Σθθ







t−1/t−1

×







F j
xx F j

xθ

F j
θx F j

θθ













Σxx Σxθ

Σθx Σθθ







t−1/t−1

)

= 1

2

∑

i∈X

∑

j∈X eiej
′

tr[







F i
xxΣ

xx + F i
xθΣ

θx F i
xxΣ

xθ + F i
xθΣ

θθ

F i
θxΣ

xx + F i
θθΣ

θx F i
θxΣ

xθ + F i
θθΣ

θθ







×







F j
xxΣ

xx + F j
xθΣ

θx F j
xxΣ

xθ + F j
xθΣ

θθ

F j
θxΣ

xx + F j
θθΣ

θx F j
θxΣ

xθ + F j
θθΣ

θθ







t−1/t−1

].

(47)
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Using this result for the system considered in this paper, Fθθ = 0 and

Σxx
t−1/t−1

= Σxθ
t−1/t−1

= 0, we get

Π =
1

2

∑

i∈I

∑

j∈I

eiej
′

tr(0) = 0.

Then the component matrices can be rewritten as

Σxx
t/t−1 = F x

θt−1Σ
θθ
t−1/t−1(F

x
θt−1)

′ + Σεε, (48)

Σxθ
t/t−1 = (Σθx

t/t−1)
′ = F x

θt−1Σ
θθ
t−1/t−1, (49)

Σθθ
t/t−1 = Σθθ

t−1/t−1. (50)

Step 2: Get the corrected values Σxx
t/t, Σ

xθ
t/t and Σθθ

t/t.

In order to calculate these three matrices, one can use the Bayesian method

(in case of a normal distribution, it is equivalent to the Kalman Filter),

adopting either weighted-least-square or maximum-likelihood estimate (see

Bryson and Ho (1975, Chapter 12)).

First, we consider the general case with measurement error. We consider

the system of ’real’ observations

yt = ht(xt) + ζt (51)
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with E(ζ) = 0 and cov(ζ) = Σζζ .

We will later take into account that in our case yt is equal to the actual

observation xa∗
t = f(x̂t−1/t−1, x

a∗
t , u∗

t , θ̂, zt) + εt and thus applying to (51), we

set ht(xt) = xt and ζt = 0. We use here εt as short-hand notation for the

generated εmt .

Since the conditional distribution p(x/y) is Gaussian, the unconditional maximum-

likelihood and weighted-least-square estimates coincide and are given by the

conditional mean E(x|y) = x̂t/t. Thus according to Kendrick (1981, Ap-

pendix D), p(x/y) has the following form:

p(x/y) =
1

(2π)
n
2 |ζ|

1

2

×exp{−
1

2
([x− x̄− P xy(P yy)−1[y − ȳ]]ζ−1[x− x̄− P xy(P yy)−1[y − ȳ]])},

(52)

where P =







P yy P yx

P xy P xx






is the covariance of (y, x), x̄ = E(x) and ȳ = E(y).

(52) is a normal distribution with mean

E(x/y) = x̄+ P xy(P yy)−1[y − ȳ]

and covariance

Σ = P xx − P xy(P yy)−1(P xy)′.
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After some calculations the following can be obtained (see Kendrick (1981,

Appendix D, equations (D-39)-(D-41))):

E(x|y) = x̄+ [P xxhx][h
′

xP
xxhx + Σζζ

+1

2

∑

i

∑

j e
iej

′

tr[hi
xxP

xxhj
xxP

xx]]−1[y − ȳ]

(53)

and

Σ = P xx − [P xxhx][hxP
xxh′

x + Σζζ

+1

2

∑

i

∑

j e
iej

′

tr[hi
xxP

xxhj
xxP

xx]]−1[hxP
xx],

(54)

where P xx = E{[x− x̄][x− x̄]′}, P xy = P xxhx and

P yy = hxP
xxh′

x + Σζζ + 1

2

∑

i

∑

j e
iej

′

tr[hi
xxP

xxhj
xxP

xx].

hx and hxx are the first and the second derivatives, respectively.

(53) and (54) are the corrections/updates of the mean and the covariance

in the general case. We have to adapt the equation (54) to our system.

With the following notations

P xx = Σt/t−1, Σ = Σt/t, hx = hx,t,

we obtain the estimate of Σ from (54):

Σt/t = [I − Vthx,t]Σt/t−1, (55)
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where

Vt = Σt/t−1h
′

x,t[hx,tΣt/t−1h
′

x,t + Σζζ

+1

2

∑

i

∑

j e
iej

′

tr(hi
xxΣt/t−1h

j
xxΣt/t−1)]

−1.

(56)

Moreover, we know that in our case

ht(xt) = Ixt

and ζt does not exist. Therefore the observation relationship for the aug-

mented system ẑt/t−1 =













x̂t/t−1

........

θmt/t−1













is (see Kendrick (1981, Appendix L))

yt =

[

I
... 0

]







xt

θt







and the derivative is

hz =

[

hx
... hθ

]

=

[

I
... 0

]

with hx =
∂h

∂x
and hθ =

∂h

∂θ
.
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The second derivatives are defined as

hi
zz =













hi
xx

... hi
xθ

. . . . . . . . . . . .

hi
θx

... hi
θθ













=













0
... 0

. . . . . .

0
... 0













.

Therefore hi
zzΣt/t−1 = 0 and thus tr(hi

zzΣt/t−1h
j
zzΣt/t−1) = 0. Moreover, (55)

and (56) can be rewritten for the system in zt :

Σt/t = [I − Vthz,t]Σt/t−1, (57)

where

Vt = Σt/t−1h
′

z,t

×[hz,tΣt/t−1h
′

z,t +
1

2

∑

i

∑

j e
iej

′

tr(hi
zzΣt/t−1h

j
zzΣt/t−1)]

−1.
(58)

If one uses the information about h specified above, it yields

Vt =













Σxx ... Σxθ

. . . . . .

Σθx ... Σθθ













t/t−1













I

. . .

0













[

[

I
... 0

]

×













Σxx ... Σxθ

. . . . . .

Σθx ... Σθθ

























I

. . .

0













]−1.

(59)
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Thus

Vt =













Σxx
t/t−1

. . . . . .

Σθx
t/t−1













[Σxx
t/t−1

]−1

=













I

. . . . . .

Σθx
t/t−1

(Σxx
t/t−1

)−1













.

(60)

Substitution of (60) into (57) yields

Σt/t =













Σxx
t/t

... Σxθ
t/t

. . . . . .

Σθx
t/t

... Σθθ
t/t













= [I − Vthz,t]Σt/t−1 = (













I
... 0

. . . . . .

0
... I













−













I

. . . . . .

Σθx
t/t−1

(Σxx
t/t−1

)−1













[

I
... 0

]

)













Σxx ... Σxθ

. . . . . .

Σθx ... Σθθ













t/t−1

=













0
... 0

. . . . . . . . . . . .

−Σθx
t/t−1

(Σxx
t/t−1

)−1
... I

























Σxx ... Σxθ

. . . . . .

Σθx ... Σθθ













t/t−1

.

(61)
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Then the following holds:

Σxx
t/t = 0, (62)

Σθx
t/t = 0, (63)

and

Σθθ
t/t = Σθθ

t/t−1 − Σθx
t/t−1(Σ

xx
t/t−1)

−1Σxθ
t/t−1. (64)

Step 3: Get the corrected θ̂t/t.

Use (53), i.e. the values estimated with the Kalman Filter from the pre-

vious step:

E(x|y) = x̄+[P xxhx][h
′

xP
xxhx+Σζζ+

1

2

∑

i

∑

j

eiej
′

tr[hi
xxP

xxhj
xxP

xx]]−1[y−ȳ].

With the following notation

E(x|y) = x̂t/t, x̄ = x̂t/t−1, P xx = Σt/t−1,

we obtain x̂t/t:

x̂t/t = x̂t/t−1 + Vt[yt − hx,tx̂t/t−1], (65)

where Vt is defined in Eq. (56).
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For the augmented system in ẑ =







x̂

θm






, we obtain

ẑt/t = ẑt/t−1 + Vt[yt − hz,tẑt/t−1],

where Vt is defined in Eq. (60).

Again with hz,t = [hx,t
... hθ,t] = [I

... 0] we get







x̂

θm







t/t

=







x̂

θm







t/t−1

+













I

. . . . . . . . .

Σθx
t/t−1

(Σxx
t/t−1

)−1













[yt − [I
... 0]







x̂t/t−1

θmt/t−1






]

=













yt

. . . . . . . . .

θmt/t−1
+ Σθx

t/t−1
(Σxx

t/t−1
)−1[yt − x̂t/t−1]













.

(66)

Thus, with yt = xa∗
t ,

x̂t/t = xa∗
t ,

θmt/t = θmt/t−1
+ Σθx

t/t−1
(Σxx

t/t−1
)−1[xa∗

t − x̂t/t−1].

(67)

46



8 Acknowledgements

An earlier version of this paper was presented at the 3rd International Con-

ference on Computational and Financial Econometrics (CFE 09), Limassol,

Cyprus. Financial support by the EU-HRM Program, Marie Curie Research

Training Network COMISEF is gratefully acknowledged.

References

Amman, H., 1996. Numerical methods for linear-quadratic models. In: Am-

man, H. M., Kendrick, D. A., Rust, J. (Eds.), Handbook of Computational

Economics. Vol. I. Elsevier, Amsterdam, Ch. 13, pp. 587–618.

Amman, H. M., Kendrick, D. A., 2000. Stochastic policy design in a learning

environment with rational expectations. Journal of Optimization Theory

and Applications 105 (3), 509–520.

Aoki, M., 1989. Optimization of Stochastic Systems. Topics in Discrete-Time

Dynamics, 2nd Edition. Academic Press, New York.

Bryson, A. E., Ho, Y.-C., 1975. Applied Optimal Control. Optimization,

Estimation, and Control. Hemisphere, Washington, DC.

47



Chow, G. C., 1975. Analysis and Control of Dynamic Economic Systems.

John Wiley & Sons, New York.

Chow, G. C., 1981. Econometric Analysis by Control Methods. John Wiley

& Sons, New York.

Coomes, P. A., 1987. PLEM: A computer program for passive learning,

stochastic control experiments. Journal of Economic Dynamics and Con-

trol 11, 223–227.

Gilli, M., Winker, P., 2009. Heuristic optimization methods in econometrics.

In: Belsley, D. A., Kontoghiorghes, E. J. (Eds.), Handbook of Computa-

tional Econometrics. John Wiley, Chichester, Ch. 3, pp. 81–119.

Kendrick, D. A., 1981. Stochastic Control for Economic Models. McGraw-

Hill, New York.

Kendrick, D. A., Amman, H. M., 2006. A classification system for economic

stochastic control models. Computational Economics 27, 453–481.

Matulka, J., Neck, R., 1992. OPTCON: An algorithm for the optimal control

of nonlinear stochastic models. Annals of Operations Research 37, 375–401.

Neck, R., 1984. Stochastic control theory and operational research. European

Journal of Operations Research 17, 283–301.

Neck, R., Karbuz, S., 1995. Optimal budgetary and monetary policies under

uncertainty: a stochastic control approach. Annals of Operations Research

58, 379–402.

48


