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Integrating biodiversity indices
into a multi-species optimal control model
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Abstract: Biodiversity is often adversely affected by human activities. This reduces
social welfare but may be external to private economic decisions. Consequently, these
external effects on biodiversity need to be considered explicitly in economic models,
which is only partly reflected in the literature. Biodiversity is either treated only
implicitly in models of multiple renewable resources, or it is considered in terms of
(genetic) variability or species richness only, but not in terms of biodiversity indices
that simultaneously account for both species richness and evenness. However, both
constitute important dimensions of biodiversity. This paper explores the effects of
integrating such biodiversity indices into an economic optimal control model. It
thus integrates non-use values derived from the existence of multiple renewable or
living resources into a social welfare function. The model considers interactions be-
tween a general economic activity and the growth of two competing living resources.
Conditions for optimal management are derived. Main findings are that a unique
equilibrium that satisfies sufficient optimality conditions can be determined even
though the biodiversity index is non-concave. Compared to a model set-up with a
monotonically increasing, concave value function, steady state stocks are distributed
more evenly and biodiversity is higher when the biodiversity index is applied. How-
ever, the total number of individuals in steady state is higher when a monotonically
increasing, concave value function is applied.
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1 Introduction

Human activities and economic development are a continuous threat to biodiversity,
which has given rise to calls for biodiversity conservation. Heal (2004) makes un-
equivocally clear that biodiversity creates and contributes to economic values. He
distinguishes four categories to which biodiversity positively contributes: ecosystem
productivity, insurance, genetic knowledge, and ecosystem services. Consequently,
biodiversity does increase social welfare though it might be external to individual
considerations of profit maximization. This has to be taken into account when deter-
mining efficient management strategies for the use of renewable and non-renewable
resources. Not accounting for the adverse effects of economic activities on biodiver-
sity would imply attaching a value of zero to it.

Biodiversity is a complex concept for which different definitions exist. According
to the United Nations Convention on Biological Diversity (CBD, 1992) it is ”...the
variability among living organisms from all sources including, inter alia, terrestrial,
marine and other aquatic ecosystems and the ecological complexes of which they are
part [which] includes diversity within species, between species and of ecosystems.”
This definition illustrates that biodiversity concepts can be applied to different orga-
nizational levels, i.e. the species-level or the community-level, and to different spatial
scales (see Armswoth et al. (2004) for an overview of biodiversity concepts). This
paper applies the concept of species-level biodiversity because it is concerned with
the damage that economic activities like the extraction of non-renewable resources,
agricultural activities or soil sealing resulting from construction activities inflict upon
certain living species in a confined area.!

Two general concepts are used to determine species-level biodiversity (Purvis
and Hector, 2000). The first concept takes into account certain features of different
species and calculates pairwise differences between the attributes of these species
(Weitzmann, 1992). This concept can for example be applied to phylogenetic diver-
sity, which would be larger the more the genetic features of the species differ. The
second concept defines a biodiversity index that takes into account the total number
of species as well as the abundances of the different species. This paper follows the

second approach because it investigates the direct impacts of economic activities on

'In the following, the term biodiversity will be used to indicate species-level biodiversity through-
out the paper although this will not always be explicitly mentioned.



relative species abundances. Moreover, it is also widely used by ecologists.

Species-level biodiversity in this second sense has several dimensions. One di-
mension is species richness, which means the number of species within a certain
area. This term was coined by McIntosh (1967) and represents the oldest and most
common measure of biodiversity. The second dimension of species-level biodiversity
is species evenness, which means the variability in the distribution of species abun-
dances within a certain area (Magurran, 2004). While the role of species richness for
biodiversity is intuitively clear, the role of evenness is subtler. From an ecological
point of view, more abundant species usually have a larger influence on the function-
ing of ecosystems than rare species do. Consequently, considering an ecosystem with
the same number of species, diversity increases the more evenly the species abun-
dances are distributed. On the contrary, diversity decreases the more the ecosystem
is dominated by few species (Duelli and Obrist, 2003; Armsworth et al., 2004).

The two dimensions, species richness and species evenness, can be incorporated
into a single measure by calculating so-called diversity indices.? A large number
of these indices exist and they are widely used in ecology to measure species-level
biodiversity (see Magurran (2004) for an overview). However, the explicit integration
of biodiversity into economic models still is scarce and according to a meta study
by Eppink and van den Berg (2007), diversity indices that also account for species
evenness have not been incorporated into economic models at all. If biodiversity is
considered in economic models, it is either treated only implicitly in multi-species
renewable resource models (e.g. Clark, 1976 or Swanson, 1994), or it is considered
in terms of species richness (Li et al., 2001) or (genetic) variability (Brock and
Xepapadeas, 2003).

This paper integrates a biodiversity index that simultaneously accounts for species
richness and evenness into an optimal control model. The inclusion of such a biodi-
versity index allows for interesting insights into the question how economic activities
have to be adjusted if they affect relative species abundances. This would not be
possible if species richness was used to measure biodiversity. Moreover, the paper
explores how a biodiversity index that may induce non-concavity of the current-value
Hamiltonian influences optimal steady state solutions and illustrates how the char-

acteristics of the steady state change compared to the case where the value derived

2Following Good (1953), these indices are also called heterogeneity measures. However, through-
out this paper they will be referred to as diversity or biodiversity indices.



from the living resources is monotonically increasing and concave in absolute stock
sizes and independent of relative stock sizes. In addition, the index used provides a
direct measure for biodiversity and no evaluation technique has to be used to infer
the utility derived from biodiversity from empirical surveys.

The paper is organized as follows. Section 2 provides a brief review of the relevant
literature, mainly in the field of the economics of renewable resources and biodiver-
sity. Section 3 introduces different biodiversity indices and explores their properties.
Section 4 develops an optimal control model that incorporates these indices, de-
scribes its analytical features, provides a numerical example and compares steady
state results to a model with a monotonically increasing, concave value function.

Section 5 discusses the model set-up and results before concluding.

2 Literature review

This paper introduces biodiversity indices into a multi-species optimal control model,
where the living resources are damaged by some human-induced economic activity.
The approach is similar to traditional harvesting models, where e.g. fish resources
are harvested due to the possibility of generating profits, which have to be traded
off against harvesting costs. Living resources, such as fish or other animals, usu-
ally do not grow linearly but e.g. according to a logistic growth function and face
natural carrying capacities. The literature on renewable resources considers these
biological constraints and investigates e.g. optimal harvesting programs or efficient
management techniques.

Seminal papers on renewable resources include Gordon (1954), who highlights
that the common property character of fish resources can lead to socially inefficient
harvest. Clark and Munro (1975) use an optimal control approach to determine op-
timality conditions for harvest and resource stocks. Clark (1979) determines optimal
harvesting of a common property resource and compares it to the case of privately
owned fisheries. The standard one-species models of optimal fisheries have been ex-
tended to multiple-species models, where the species interact in different ways (see
e.g. Clark, 1976). These interactions can be competing (Flaaten, 1991), mutualistic
(Wacker, 1999) or predator-prey relationships (Hannesson, 1983).

The second strand of research important to this paper is that of biodiversity in

economic models. Eppink and van den Bergh (2007) provide an extensive review



of how biodiversity has been integrated into economic models, including those con-
sidering the optimal extraction of renewable resources. In these models, a value is
typically attached to renewable resources due to the possibility of harvesting them.
Non-use values have also been captured in these models, e.g. as opportunity costs of
land conservation where agricultural production yields positive returns but impacts
negatively on the species abundances (Skonhoft, 1999; Bulte and Horan, 2003). In
addition, biodiversity can be a determinant for the resilience of an ecosystem against
exogenous events. Perrings and Walker (1997) investigate the optimal management
of ecosystems, where biodiversity and resilience are influenced by human interfer-
ence. Biodiversity is thus often implicitly accounted for but only few papers include
explicit indices to reflect direct or indirect values of biodiversity.

One way to consider biodiversity explicitly is to follow Weitzman (1992), who
defines biodiversity in terms of pairwise differences between several features of dif-
ferent species. Brock and Xepapadeas (2003) build on this approach and establish
an endogenous measure for biodiversity that accounts for the economic value derived
from an ecosystem with genetic diversity. In an earlier paper, they set up a model
where two species compete for one resource and derive optimal management rules
when the economic value derived from ecosystem functions is considered (Brock and
Xepapadeas, 2002). Another way to consider biodiversity explicitly is to integrate
biodiversity indices in terms of species richness into optimal control models. Li and
Loefgren (1998) as well as Li et al. (2001) include information on species richness
into their models to determine optimal paths for the number of species as well as for
single resource stocks. In addition, Eichner and Tschirrhart (2007) use a biodiversity
measure that is based on species abundances and constructed such that divergences
from the natural level of biodiversity negatively impact on utility. They integrate
this measure into a CGE modeling framework. Moreover, Eppink and Withagen
(2009) integrate spatial patterns of biodiversity conservation into a multiregional
CGE model by considering a species-area curve, where the number of species is a
concave function of habitat size.

This paper contributes to the literature by integrating a biodiversity index that
accounts for both species richness and evenness into a multi-species optimal control
model. The construction of the biodiversity index implies that the marginal value
derived from an increase in the stock of one species may be positive or negative, de-

pending on relative stock sizes. This could induce non-concavity of the Hamiltonian



so that the usual sufficient optimality conditions would not apply. Qualitatively, this
is similar to considering living renewable resources that may create both benefits and
damages. One example for such a framework in a one-species model is presented by
Rondeau (2001), who examines an optimal control model where the reintroduction
of a harvested species may induce benefits e.g. from recreational opportunities but
may also induce damages e.g. on human health, while harvesting this species creates
benefits through consumptive use. Another example is presented by Horan and Bulte
(2004), who consider living resources that may either create an economic benefit via
tourism revenues or that induce a stock-dependent damage via agricultural damage
or human mortality. Both frameworks allow for shadow prices that may either be
positive or negative even in an optimal program in a one-species framework. This can
give rise to non-concavity of the Hamiltonian and multiple equilibrium candidates.
A related case is presented by Tahvonen and Salo (1996) who present a dynamic
optimal pollution control model with a concave-convex decay function. They also
find that multiple equilibrium candidates may exist but that the globally optimal

solution may be determined independently of initial stock levels.

3 Biodiversity indices

The biodiversity indices that are used in this paper build on three basic assumptions.
First, all species are assumed to be equal. Species with different conservation values
or with different contributions to ecosystem functions are not discriminated but
treated equally. Only the relative abundance of a species indicates its ecological
importance. Second, all individuals of the same species are assumed to be equal.
And third, it is assumed that all species abundances are measured and recorded
using appropriate and comparable units (Magurran, 2004).

The group of diversity indices used to represent biodiversity in this paper is based
on an entropy measure that had originally been used in information theory (Renyi,
1961; Hill, 1973). This measure is constructed using the (relative) abundances of the
species and thus (usually) accounts for species richness and species evenness. See

Baumgaertner (2006) for a detailed discussion, part of which is briefly sketched in



the following. The general biodiversity index is constructed as follows:?

Vi@, o) = Vo(x) = (O 1) ™% with w >0 (1)
i=1
and
T .
T = —=n for i1=1,..,n (2)

i1 T

The number of species under consideration is n. The relative abundance of each
species ¢ = 1,...,n is given by r;. This relative abundance is composed of the absolute
abundance, x;, of each species i relative to the sum of the absolute abundances of all
species. As outlined in the introduction, the relative abundances of the species are
important for their role within an ecosystem. All else being equal, the index value
increases with increasing species richness but also with increasing evenness in the
distribution of the relative abundances.

The importance attached to species richness and evenness is determined by setting
the parameter w.? The higher w the higher the value attached to evenness between
the species. Neglecting evenness puts a relatively large weight on rare species. For
different values of w, different biodiversity indices emerge (Baumgaertner, 2006).
There are two extreme cases. For w = 0, only species richness will be measured,
but not evenness. Consequently, the resulting measure is just called Species Rich-
ness (following McIntosh, 1967). It always assumes the value n, reflecting the total
number of species. Biodiversity loss only occurs if a species becomes extinct. For
w — 00, only species evenness will be measured, but not richness. This measure
is called Berger-Parker-Index (Berger and Parker, 1970). It only accounts for the
species that is relatively most abundant. Biodiversity is given by the inverse of the
relative abundance of this species.

All cases in between take into account both species richness and evenness but
vary with respect to the degree of importance attached to either. However, the
qualitative characteristics of these indices are similar as long as 0 < w < oo. One

case that receives special attention in ecology and which will be applied in section 4

3In the following, the variables (z1, ..., 2,) will be collected in the vector (x).

4The parameter w can also be interpreted as the inverse of the elasticity of substitution between
the relative abundances of the different species. For w equal to one, this elasticity is one, for w
greater than one, substitution is relatively inelastic and for w smaller than one, substitution is
relatively elastic.



of this paper is the Simpson-Index for w = 2 (Simpson, 1949). The Simpson-Index
is popular among ecologists because it has a meaningful ecological interpretation. It

is computed as follows:
Va(x) = () i) (3)
i=1

The sum of the squared relative abundances present in the Simpson-Index reflects
the probability that any two individuals drawn randomly from an infinitely large
ecosystem belong to different species. Biodiversity is represented by the inverse of
this expression, so that the Simpson-Index increases with increasing evenness in the
distribution of relative species abundances (Baumgaertner, 2006).

For a given number of species, i.e. for a given value of n, the values of all indices
are larger than 1 and smaller or equal to n, depending on the relative abundances
r;. For a given n and for w > 0, the value of V,(x) decreases with increasing
unevenness in the distribution of relative abundances between the species. The
maximum value n is reached for w > 0 only if all species in an ecosystem have equal
relative abundances, i.e. if r; = % for all ¢. This is a very important and interesting
feature of these biodiversity indices, which will be further discussed below. Consider,
for example, an ecosystem with two species. The biodiversity index then only takes
on the maximum value 2 if both species account for 50% of all individuals. But it does
not matter how large their absolute abundance is. This also implies that increasing
the absolute abundance of one species may lead to an increase in diversity or to a
decrease of diversity, depending on whether this species had been underrepresented
or overrepresented in the sample prior to the change.

In terms of economic thinking, this may seem counterintuitive. Usually, one as-
sumes jointly concave utility functions where an increase in the availability of a good
has a positive marginal utility. However, one can also think of backward-bending
indifference curves where e.g. an increase in income has a negative marginal utility
given that a high level of working hours has been reached. Using a diversity index
in an economic model implies emphasizing the role of evenness in the distribution
between two goods. More importantly, the utilization of diversity indices is widely
used in ecology because the distribution of abundances matters for the functioning
of ecosystems. Consequently, it seems worthwhile to explore the role of diversity in-
dices also in economic models where external effects on relative species abundances

and biodiversity occur.



4 Biodiversity in an optimal control model

4.1 General modeling framework

In this subsection, the general biodiversity index as described in section 3 is incor-

porated into an optimal control model. The model is set up as follows:

max W :/ e U (Yity ooy Ynt) + V(T18y ooy Tpg)]dt (4)
0
s.t.
Zifit = Gi(ZIIlt, ...,l’nt) — ¢@yzt and Tio = Xz fOl” Z = 1, ., n (5)
and . .
7
Gi(@1e, ooy Ty) = Vizin(1 — ZJ:”) with 0< > 2 <k Vit (6)

j=1

In this model, the instantaneous utility function U(yy, ...yn:) = U(y,) expresses
the net benefit generated by some economic activity, e.g the extraction of non-
renewable resources, construction activities or agricultural activities, at time ¢. The
vector y, = (Y1, ---, Ynt) describes the level or intensity of this economic activity but
it is not further specified. Especially, there is no explicit modeling of the costs related
to this activity. This simple modeling approach has been chosen to clearly identify
the effects of the second factor contributing to social welfare, the biodiversity in-
dex, on the model solutions. The instantaneous utility function is separable in the
components of y, and satisfies the following properties: % =U,, >0V ut;
Uyye <0V 4,t and Uy, =0 ¥V @ # j,t. The vector x; = (21, ..., ;) contains
the stocks of the n renewable or living resources at time ¢. The value derived from
their existence is expressed by the biodiversity index V(xy,...,xn) = V(x;). The
properties of this biodiversity index are crucial for the solutions of the model and
discussed below in more detail.

The case that n may change is not considered here, which implies that no species
becomes extinct and that the number of species cannot be increased. This is rea-
sonable because the economic activity takes place in an environment with a given
ecosystem and thus with a given number of species. It is assumed that a social
planner intends to maximize social welfare by integrating the discounted utility and

value functions over time. In this partial equilibrium model, U(y,) and V(x;) are



both given in money metrics and therefore enter the social welfare function separably.

Conditions (5) and (6) together define the equations of motion for the stocks of
the living resources z;. Note that the growth of each living resource does not only
depend on its own stock size but also on the stock sizes of all other living resources.
In this specification, all living resources compete for the same external resource,
which may be food supply.® In the absence of the other living resources, the biomass
stock of one living resource x; would grow according to a logistic growth function.
The growth function G;(x) defined in (5) would then take on the form of a concave
quadratic function dependent only on z; with G;(0) = 0 and G;(k) =0 V 4. The
maximum growth rate would be reached when the stock is equal to §. The parameter
1; represents the intrinsic growth rate of the stock z;, and k represents the carrying
capacity of the stock.

In addition, it is assumed that the economic activity expressed by y reduces the
stock of the living resource according to the damage coefficient ¢;. Note that there
is one separate control variable y; for each living resource stock ;. This implies that
the damage caused by the economic activity can be controlled separately for each
living resource, which is similar to fishery models with selective harvesting (see e.g.
Clark, 1976). Assuming that the damage was non-selective would impose rigidities
on the model, inducing the possibility of negative shadow prices and the existence of
multiple equilibrium candidates. The more flexible approach has been chosen here
to deliver clear insights into the behavior of the biodiversity index in the model.
Moreover, it is quite possible that economic activities can be executed such that the
damage inflicted upon different living species can be controlled separately.

Note moreover, that this is only one way in which the negative impact of economic
activities on living resources could be modeled. Another possibility would be that
these activities damage the habitat of the living resources, such that the carrying
capacity k would be reduced. However, here the impact occurs in the form of a
flow externality, reducing the biomass stock of the renewable resource whenever the

economic activity is carried out.

>The specification is a modified version of the Gause model (Gause, 1935) as described by Clark
(1976). Especially, it is assumed here that k; = k V i for simplicity.

10



The current-value Hamiltonian reads as follows:®
H =U(y)+V(x)+ Z Ai(Gi(x) — iys) (7)
i=1

The necessary first order conditions are given by expressions (8) and (9):

OH* .
By, =0 = Uy, = o) Vi (8)
oHe . \j N Voo

“ o~ NN = _Gm+;AiGm+Ai+Ai Vi 9)

The conditions given by (8) represent the static optimality conditions for the
optimal level of the economic activity at each point in time. The marginal utility
of this activity has to be equal to its marginal costs. As the costs are not explicitly
considered here, the right-hand-sides of the equations only include the damage on the
living resources caused by the economic activity, evaluated with the corresponding
shadow price, A;, of the living resource z;. With each unit of the economic activity
carried out, a certain share of the stocks of the living resources is destroyed. This
implies opportunity costs because this share of the living resources will not be present
in the future to contribute to reproduction, thus diminishing the own rate of interest
of the living resources. As by assumption U,, > 0 and ¢; > 0, the optimality
conditions in (8) imply that \; > 0V 4.

The conditions given by (9) describe the optimal allocation of each stock of the
living resources over time. The social discount rate p has to be equal to the own rate
of interest of each living resource stock. This own interest rate consists of the growth
rate of the resource stock z; (Giy,), the impact of the resource stock on the growth
rate of all other living resource stocks evaluated with the corresponding shadow
prices (3, :\\—jiji), the increase in its own shadow price (f\—
the existence value derived from this stock, i.e. the increase in the biodiversity index

divided by the shadow price (52).

) and the increase in

5Time subscripts are dropped for convenience where this does not lead to confusion. The vari-
ables (z1, ..., z,) and (y1,...,¥n) are collected in the vectors (x) and (y) respectively.
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4.2 Implications of the properties of the biodiversity indices

In this subsection, the properties of the biodiversity indices, especially their reaction
to changes in the stock size of a living resource, and the resulting impacts on the
optimal control model are traced analytically in more detail for different values of w.

Suppose first that w = 0 so that only species richness matters for biodiversity.
This implies that biodiversity will only be measured by means of the total number
of species n and Vj(x) = n. So, as long as n stays constant i.e. as long as no species
is driven to extinction by the economic activity, avo =~ = (0 for i = 1,...,n, and the

conditions in (9) reduce to:

p= Gm+z m+ Vo (10)
J#i

At first sight, this suggests, that the stocks of the living resources are not impor-
tant for the optimal path of the economic activity over time. However, the opportu-
nity costs of destroying shares of the stocks of the living resources are still present in
equations (8), implying that the damage inflicted upon the living resources does still
matter for the optimal path of the economic activity y. This is because decreasing
the stock of the living resources still induces reduced opportunities for future stock
growth.

Suppose now that w = oo so that biodiversity is represented by the Berger-

Parker-Index, which only takes into account speciess evenness. Denote the relatively
1 D T

most abundant living resource stock by ., so that Vio(x) = r, = === From
this it follows that:
OVoolX) _ o = i @i _ = 2igm ™ _ (11)
0y, x2, x2

Note that this partial derivative is negative as long as there exist more species
than just the species m with a positive number of individuals each. This implies
that an increase in the stock of the most abundant species necessarily leads to a
reduction of biodiversity and thus to a decrease in utility derived from this stock
increase. The reason for this is obvious: Increasing the stock size of the species
that is already dominant in the sample increases the unevenness and thus decreases

diversity. On the other hand, an increase in the abundance of any non-dominant

12



species x; with ¢ # m will necessarily increase biodiversity:

Welx) 1 ,
o, 7. >0 V i#m (12)

As it is the aim of the paper to consider species richness and evenness simulta-
neously, it will be assumed from now on that V(x) is given by the Simpson-Index
with w = 2. This is sensible because the Simpson-Index has a meaningful ecological
interpretation. In addition, the Simpson-Index is "one of the most meaningful and
robust diversity measures available” (Magurran, 2004).” Morcover, the Simpson-
Index is representative for all cases in which 0 < w < oo. The derivatives presented
below have also been derived for the general case, and qualitative features, especially
the results derived from equation (15), also hold in general. Consequently, the as-
sumption w = 2 does not entail any loss of generality. Note also that for illustrative
purposes, the number of species will from now on be reduced to n = 2. It follows
that:

Va(ar,2) = Va(x) = (r{ +13) 7" (13)
with
T
T, + Zo

ri = for i=1,2 (14)

Partially differentiating V5(x) with respect to x; yields the following derivative:®

<0, 1> x9;
Voo = =25 Vo(x)* x (01 +22) P [aa(mn — )] { =0, mi=as;  (15)
> 0, 1 < Io.

It is obvious that the effect of an increase in the abundance of one species does
not necessarily lead to an increase in the value of the biodiversity index. If x is
underrepresented in the sample, i.e. x; < 9, an increase in its stock size will lead
to higher biodiversity. But if it is overrepresented in the sample, i.e. z; > x9, an
increase in its stock size will lead to lower biodiversity. This is the main difference

to other renewable resource models where the marginal utility of the stock usually

It should be noted here that the Simpson-Index puts a relatively large emphasis on evenness
compared to richness. However, this is appropriate here because the model considers an environment
with a fixed number of species.

8The partial derivative V., can be constructed analogously.
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is positive for all stock sizes.’

If all species are equally abundant, i.e. x; = 2’ V i, the derivative of V5(x) with
respect to each x; is zero. That is, diversity has reached its maximum value, n, and
will not further increase with an increase in the relative abundance of any species
because all species are equally abundant. (Sufficient conditions for a maximum are
verified below.) However, biodiversity will decline whenever the size of any stock
diverges from x’ because evenness is no longer fully satisfied. This holds for all w.

Constructing the general Hessian matrix composed of the second partial deriva-

tives of V5(x), one receives the following:

Voo V. toroyed ) 2(al-6adsad)
He%(x)):< >:< Vot T ) (16)

V. v —2(z{—6zFz3+3) dz132(—3z7+a3)
GEE e

The eigenvalues and the determinant of this Hessian are as follows:

EVi(He) = W >0 (17)
EVy(He) = W (18)
Det(He) = —dloy - 25)° (19)

(2% + 23)!
This allows to draw important conclusions for the curvature of the biodiversity

index V5(x). Two cases can be distinguished:

Case 1: 1 = 5. In this case, the first partial derivatives of the biodiversity index,
Ve, and V,,, are zero and V,(x) assumes the critical value n = 2. Moreover, it now
holds that the first eigenvalue E'Vi(He) is zero while the second one is negative. In
addition, the determinant of He is zero. From this it follows that He is negatively
semi-definite and thus V5(x) is locally concave for 1 = z5. Consequently, the critical

value n = 2 is proven to be a maximum.

9Two exceptions are Rondeau (2001) and Horan and Bulte (2004), who account for the possibility
of negative marginal utility in a one-species framework.

14



Case 2: 11 # x9. Inthis case, the eigenvalues of He necessarily are of different signs
and the determinant of He is negative, so that He is indefinite and no conclusions

can be drawn for the curvature properties of V5(x).

As the Simpson-Index is locally concave in z; only for 7 = x5 and not for all com-
binations of x; and z,, also the Hamiltonian will not necessarily be jointly concave
in the control and state variables on the whole domain. This will make a special
analysis of the equilibrium candidates necessary. A concave Hamiltonian (together
with the condition of non-negative shadow prices) would ensure that there exists
a unique equilibrium which would necessarily be a maximum and thus part of an
optimal solution. However, the non-concavity of the Hamiltonian requires a more

subtle analysis here.

4.3 Analytical features of the model

Rearranging equations (8), one receives the value of y; as the following function:

Note that equation (8) requires that the shadow prices \; have to be positive in
an optimal solution for all i. Inserting y; = Y;(\;) into the growth functions given
by (6) and rearranging the terms of the conditions in (9), the equations of motion
for the two state variables x; and z» and the two co-state variables A\; and A9 can
be derived:

z; = Gi(x) — ¢:Yi(Ni) = Yizi(1 — ijlx]) — U, (dih) Vi (21)
Xi=Xip = Gia) = Vi, = > NGy Vi (22)
J#i

Conditions (21) and (22) describe the optimal dynamics of the system in state-
costate space. To complete the necessary conditions for optimal solutions, the fol-
lowing transversality conditions are needed in addition to the initial conditions given
in (5):

tli)n;) Ainxie >0 Vi (23)

Setting Xl = Xg =2y = o9 = 0, the general steady state conditions of the system

15



read as follows:

T = @K(ZAJ) Vi (24)
w1 - Z25)
_ V:f—i-z XG:E
)\i _ i JF ) I . 9
e Vi (25)

To be able to solve these conditions analytically, it is assumed that the instan-
taneous utility function U(y) takes on the form of the isoelastic function U(y) =
In(y1) + In(yz). Tt follows that Yi(\;) = U, ' (¢ihi) = ﬁ for i = 1,2. The steady

state conditions then are given by:

_ ¢1Y1()\_1) Al - 1
T = — = — & N\ = 26
L) g (1 am) L Gix) (20)
$2Ya(No) Ao _ 1
Ty = — = — & = 27
2 77[]2(]- _ xl—’:xg) 77112(1 _ xl-’:mg) 2 G2(X) ( )
~ Vi + AaGag,
— e hkh 2
A o= G (28)
— Vg +MGig
— ] Y 2
Ao = G, (29)

Considering the system (26 — 29), one can plug A\, from equation (27) into equa-
tions (28) and (29) and solve the remaining three equations for A;, each then de-
pending only on 77 and z3. These functions can then be plotted as surfaces in a
3D diagram. The intersection of all three surfaces constitutes the equilibrium of the

system. The three resulting steady state conditions read as follows:

_ 1
F =\ = 30
G2z
Va + o
Fy = 2(x) 31
p=h= o (31)
p_G2z2 _ V*
Fy=X =20 7 32
3=\ . (32)

These equations represent isoclines in three dimensions. Note that an increase
in Ay would shift the two isoclines (31) and (32) down, when depicting the isoclines

in a 3D diagram with x; and x5 at the base and A; on the vertical axis. Equation
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(30) gives the combinations of x; and x5 for which @, = 0. Equation (31) gives the
combinations for which &, = 0 and A\; = 0. Equation (32) gives the combinations
for which 4, = 0 and Ay = 0. The equilibria of the system are determined by the
intersection of all three surfaces. As all three functions are non-linear, a graphical
illustration of all three surfaces in a 3D diagram can be quite confusing. However,
it is possible to depict the intersections of all three surfaces with one another in a
contour plot in x1-z9 space. Equilibria occur where all three contours intersect. This

is illustrated by a numerical example below.

4.4 Numerical example

This subsection presents a numerical example for a two-species renewable resource
model with a biodiversity index. Parameter values used are presented in Table 1.
Species 2 features a higher intrinsic growth rate than species 1 but the same carrying
capacity. Moreover, species 2 is damaged less by the same level of economic activity

than species 1.

Parameter values
0.01 || ¥1 | 0.04 || ¢1 | 0.2
100 || 99 | 0.10 || ¢ | 0.1

Table 1: Parameter values for Model 1 with w = 2 and n = 2.

Figure 1 depicts the intersections of the three isoclines in x1-zo space. The red
lines depict the intersections of the surfaces described by equations (31) and (32).
The green and the blue lines depict the intersections of the surface described by
equation (30) with the ones described by (31) and (32) respectively. The illustration
shows that only one real-valued equilibrium exists. The corresponding steady state
values are given in Table 2. The eigenvalues of the Jacobian of the dynamic system
evaluated at the steady state values have been computed. Two eigenvalues are
positive while the other two are negative, which reveals that the determinant of the
Jacobian is negative and shows that the steady state is a saddle.

Note that the steady state stock Z, is larger than z;, but that the two stocks are
very evenly distributed. This results in a high steady state value of the biodiversity
index, V5. Note also that 7, is much higher than ¢;, which is due to the fact that

the damage coefficient ¢, and the steady state shadow price Ay are smaller than ¢,
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Figure 1: Contour plot: Intersections of the three isoclines in x;-x5 space.

Steady state values
T 19.6457 | g1 2.3084
To 21.6043 | yo 12.6925
A1 2.1660 |V 1.9955
Ao 0.7879

Table 2: Steady State values for Model 1 with w = 2 and n = 2.

and \; respectively. The shadow prices depend among other things on the marginal
value of the biodiversity index Vz,. As 7y < Zy, it directly follows that Vz, > 0 while
Vz, < 0, which influences the shaodw prices in the way that A1 > o

As the biodiversity index is not concave for all combinations of x; and z, it is
necessary to explicitly check the sufficient conditions for the steady state to be a

maximum. In order to do so, the Hessian matrix of the current-value Hamiltonian
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evaluated at the steady state values is analyzed in the following:

—0.1877 0 0 0
0 —0.0062 0 0
Hesse(H®) |stst= (33)
0 0 —0.0045  0.0006
0 0 0.0006 —0.0035

The four eigenvalues of this Hessian are: (—0.1877,—0.0062, —0.0048, —0.0032).
The determinants of the leading principal minors are: Det; = —0.1877, Dety, =
0.0012, Dets = —5.25 x 107%, and Dety, = 1.77 x 1078, It can be observed that all
four eigenvalues of the Hessian are negative and that the signs of the leading principal
minors alternate, starting with a negative sign of Det;. Consequently, the current-
value Hamiltonian is concave at the steady state. Moreover, both shadow prices are
necessarily positive in steady state. Consequently, sufficient optimality conditions
are fulfilled, which proves that there is a unique optimal steady state that solves
the dynamic system. Also note that the off-diagonal elements of the Hessian are
very close to zero, while all diagonal elements of the Hessian are negative. Sufficient
optimality conditions will be fulfilled as long as this is the case and the off-diagonal

elements of the Hessian are sufficiently close to zero.

4.5 Comparison to a model with a strictly increasing, con-

cave value function

This subsection compares the results derived in subsection 4.4 with those derived in

a model where increases in the stocks of the living resources always add positively

to the value derived from the existence of these resources. That is it compares the

results derived so far to the case where V,, > 0 holds for both living resources at

all times and independently of the relative stock sizes and where V' (x) is strictly

concave in x; and xy. To exemplify this, consider the following value function:
In(zy) +In(z2) 3

Vnew(ajlva@) - 3 + 1 (34}

The first partial derivatives of V' (x) with respect to both stock sizes now are
positive for all possible combinations of stock sizes. Moreover, the function is strictly

concave for all ;1 and xy. This concrete functional form of the value function has
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been chosen to make it comparable to the biodiversity index. Its values are confined
to the interval [1,2], which also holds for the biodiversity indices for n = 2.

The value function (34) has been substituted into the maximization problem (4-
6) instead of the biodiversity index in order to compare results. For comparison,
the model presented in subsection 4.4, which incorporates the biodiversity index,
is referred to as the first or the "non-concave” model while the model presented in
this subsection is referred to as the second or the ”concave” model. Solutions for
the real-valued equilibrium values of the concave model are given in Table 3. The
arrows indicate the change with respect to the results derived in the non-concave
model. The value given in the last row of Table 3, V5, is the steady state value of
the Simpson-Index. Note that this biodiversity index had not been considered in the
welfare maximization problem here, so V5 represents ex-post biodiversity, observed
after the maximization with the new value function. Applying the new value function
implies that both parts of the welfare function, i.e. U(y) and V,,¢,,(X), are now strictly
concave on the whole domain so that the current-value Hamiltonian is also jointly
concave in the control and state variables. Moreover, optimality conditions require
that both shadow prices are positive in equilibrium. The properties of the Hessian
matrix of the current-value Hamiltonian have also been analyzed. As expected, all
eigenvalues of the Hessian are negative. Consequently, the steady state fulfills the

usual sufficient optimality conditions.

Steady state values
7y 186029 || ¢ 20573 |
Ty 26.1029 v, 14.4334
A 2.4304 Vo 1.52317 |
Ao 0.6928 |

Table 3: Steady State values for Model 2 with Ve, (71, 22) and n=2

Comparing the steady values of concave model presented here to that of the
non-concave model, one can see that the steady state stock of the more abundant
species, T, increased while that of the less abundant species, z;, decreased. This
implies that the distribution of the species abundances has become more uneven. In
both model settings, restrictions on the shadow prices are such that both \; and

Mo have to be greater than zero in steady state. In the second model setting, the
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shadow price of the more abundant species, Ao, decreased and the corresponding

control variable, 7, increased. The increase in 7, directly follows from the decrease
1

GaX2

variable corresponding to the less abundant steady state stock, 7.

in X\ as g = . The inverse holds in analogy for the shadow price and the control

Most importantly, the solution in the second model setting does no longer depend
on relative stock sizes. This implies that the evenness of the distribution of relative
species abundances does no longer matter for optimization. Instead, now the abso-
lute abundances of the living resources are important. The result is that the ex-post
value of the Simpson-Index decreased considerably. While the Simpson-Index took
on a value of nearly 2 in the first example, it now declines to approximately 1.5. On
the other hand, it can be observed that the total number of individuals in steady
state, i.e. Ty + Tg, increased by 8.5% from 41.2 to 44.7. This result confirms expec-
tations in that the choice of the value function influences the degree of evenness in
the distribution of relative species abundances in steady state. Choosing a strictly
increasing, concave value function induces steady states with lower evenness and thus

with lower biodiversity in a setting with a given number of species n.

5 Discussion and conclusion

Biodiversity is often considered in terms of species richness only. Doing so implies
that biodiversity loss only occurs when a species becomes extinct (Baumgaertner,
2006). This decline in species richness tends to receive special attention because
species extinction is irreversible. Conserving species therefore means preserving a real
option value in the sense that the function of a certain species and its contribution
to ecosystem services, which might not be known today, will still be available in the
future (Heal, 2004). However, Chapin et al. (2000) point out that "human activities
influence the relative abundances of species more frequently than the presence or
absence of species”. They emphasize that changes in species evenness respond more
quickly to human interference than changes in species richness do and that changes
in species evenness have important impacts on ecosystems and their functioning long
before a species is threatened by extinction (Chapin et al., 2000). So more generally,
biodiversity loss can also occur when relative species abundances change.
Consequently, the aim of this paper was to set up a model that introduces a bio-

diversity index that accounts for both species richness and evenness into an optimal
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control model. The model includes two living resources which grow according to a
logistic growth function but which compete with one another for the same external
resource that sustains their growth. Moreover, both living resources are damaged by
an economic activity according to some damage parameter. The economic activity
yields a net benefit represented by a utility function that is strictly increasing and
jointly concave in the controls. Biodiversity is introduced into the model by using
a value function that reflects the value derived from the existence of the two liv-
ing resources. In a first setting, this value is represented by the Simpson-Index, a
biodiversity index widely accepted by ecologists. In a second setting, this value is
represented by a monotonically increasing, concave value function. This allows to
contrast the application of an ecologic concept that accounts for the role of evenness
in ecosystems with that of an economic concept that emphasizes the role of abso-
lute abundances for utility. To my knowledge, this is the first paper that studies
the effects of introducing such a biodiversity index into an optimal control model
and compares its application to that of a monotonically increasing, concave value
function.

When using the biodiversity index, the signs of the marginal values of the resource
stocks necessarily are of opposite signs as long as x; # z2. As a consequence,
the marginal value of the less abundant species is positive while that of the more
abundant species is negative. Moreover, the biodiversity index is locally concave only
for 1 = x5 but not on the whole domain. This could induce non-concavity of the
current-value Hamiltonian. However, this paper shows that it is possible to derive a
unique equilibrium that satisfies sufficient conditions for a welfare maximum in spite
of using a non-concave value function to express the value of the living resources. In
addition, the analysis presented indicates that the properties of the biodiversity index
crucially influence the equilibrium of the model. Once biodiversity is considered in
the optimization problem, the stock sizes are distributed more evenly in steady state.
This in turn implies, that using a monotonically increasing, concave value function
to express the value of the living resources induces an equilibrium with lower species
evenness and thus with lower biodiversity.

Several limitations apply to the simple model presented in this paper. First, the
economic activity that yields utility via the utility function U(y) is not modeled in
much detail. A natural extension of the model would be to consider benefits and

costs of this activity separately. One would then also be able to contrast the decision
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of a private economic agent, say a company, that does not care for biodiversity with
the decision of a social planner that takes biodiversity into account. Consequently,
such a set up would allow to determine efficient policy measures, e.g. an optimal tax
on the economic activity, in order to internalize external damages.

Second, one could argue that the flexible control approach presented in this paper
is not fully realistic because damages caused by economic activities and inflicted upon
living resources can not be controlled separately. However, a more rigid control
approach with only one control variable would complicate the analysis and cause
problems that would divert attention from the effects of introducing the biodiversity
index in the model. In a setting with two species, using a more rigid control approach
would allow for one shadow price to be negative as long as the other one is positive
and sufficiently large. This leads to the appearance of several steady states, no
matter if one uses the biodiversity index or the concave, monotonically increasing
value function in the maximization framework. Moreover, it would be harder to prove
sufficient optimality conditions. Consequently, the more flexible control approach has
been chosen here to show in a simple but clear setting that the biodiversity index can
be used as a value function to express the non-use values derived from the existence
of living resources in order to determine a unique and optimal steady state of the
system.

Third, the model in this paper does not include spatial aspects. Living resources
are not static but continuously change their location. In particular, they can wander
between sites affected by the economic activity and e.g. protection sites. Con-
sequently, possible extensions include the consideration of site selection and site
preservation. All this is deferred to future research.

In spite of these limitations, the paper presents important insights of how consid-
ering biodiversity indices influences the optimal solution of multiple-species optimal
control models. It can be seen as a starting point for further research building richer

models and addressing the mentioned limitations.
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