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Abstract

This paper studies optimal auction design when the seller can affect the buyers’ valu-

ations through an unobservable ex ante investment. The key insight is that the optimal

mechanism may have the seller play a mixed investment strategy so as to create correla-

tion between the otherwise (conditionally) independent valuations of buyers. The paper

establishes conditions under which the seller can, in fact, extract the first best surplus

almost fully.
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1 Introduction

In many situations a seller can affect buyers’ valuations by an unobservable ex ante investment

in the object at sale. For example, buyers’ valuations for a house will depend on the effort

spent by the construction company. The company’s effort, such as work care or the quality of

materials, is typically not directly observable. Similarly, in public procurement the contractor’s

cost may depend on, for example, infrastructure investments or the quality of services provided

by the government who acts as the procurer itself. Or, on second hand markets, buyers’

valuations are affected by the unobservable care with which initial owners have treated the

item they sell. A final example is persuasive advertising.

What is the revenue maximizing selling mechanism in this setting? This is the question

I address in this paper. I study a private value environment in which the seller’s investment

raises buyers’ valuations stochastically. Conditional on the seller’s investment, valuations are

conditionally independent. I assume that the seller’s investment is unobservable for buyers

and that buyers’ valuations is their private information. Consequently, if the seller adopts a

pure investment strategy, there are independent private values, and buyers can typically secure

information rents.

The purpose of this paper is to show that the seller can reduce information rents by designing

a mechanism that induces him to adopt a mixed investment strategy. The key insight is that if

the seller randomizes, then, because buyers cannot observe investment, their valuations become

correlated in equilibrium. The seller can use this correlation to reduce buyers’ information rents.

To make this point most transparent, I consider environments in which the seller can exploit

this correlation in the most extreme way and design a mechanism which extracts the full surplus

that is generated by his investment. In fact, if his mixed investment strategy places almost full

probability mass on the efficient investment level, then the seller extracts the first best surplus

almost fully.

To see intuitively why correlation emerges when the seller randomizes, one may think of

an urn model where each urn corresponds to a pure investment strategy by the seller. Buyers’

valuations are drawn independently from one urn, but if the seller randomizes and buyers do

not observe the realized investment, they do not know what the true urn is. Therefore, the
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realization of a buyer’s valuation contains information about the true urn and thus about the

valuation of the rival buyer.

The existence of full surplus extracting selling mechanisms when buyers’ valuations are cor-

related is well–established (see Myerson, 1981, Cremer and McLean, 1988, McAffee and Perry,

1992). The basic idea behind these constructions is to elicit buyers’ beliefs by offering contingent

lotteries whose payoffs depend on the choice of lotteries by rival buyers. Many lotteries exist

which induce buyers to report their beliefs truthfully without leaving them information rents.

I derive conditions such that at least one of those lotteries can be found which, in addition,

makes the seller indifferent between his investment options so that randomizing is optimal.

I begin the analysis with the simplest case with two buyers, two investment opportunities,

and a binary distribution of buyer valuations. In this case, a geometric argument shows that the

seller can implement any mixed investment strategy and fully extract the resulting surplus. I

then demonstrate how this result extends to the case in which there are (weakly) less investments

than possible buyer valuations. A driving force behind these results is that the number of

instruments available to make the seller indifferent between his investments is equal to the

number of buyer types. Hence, with less investments than types the number of instruments

exceeds the number of indifference conditions to be satisfied. This is no longer true when there

are more investments than possible buyer types. Therefore, for this case I confine myself with

considering the model with two buyer types only and demonstrate that there is a mechanism

which yields the seller the first best profit almost fully.

In a related paper, Obara (2008) studies an auction model where buyers can take (hidden)

actions that influence the joint distribution of their valuations. He demonstrates that this

generically prevents the seller from extracting full surplus by a mechanism that implements a

pure action profile by buyers. However, almost full surplus extraction can be attained by a

mechanism which implements a mixed action profile by buyers and has them report not only

their valuation but also the realization of their actions. Similar to my construction, Obara’s

mechanism thus exploits correlation that is created through mixed strategies. In contrast, in

my setup it is the seller who randomizes, and almost full surplus extraction is achieved without

having the seller report about the realization of his action.
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Full surplus extraction results have come under criticism from a variety of angles. First, full

surplus extraction critically relies on risk–neutrality or unlimited liability of buyers (Roberts,

1991, Demougin and Garvie, 1991) or on the absence of collusion by buyers (Laffont and Mar-

timort, 2000). In principle, these concerns apply to a literal interpretation of my construction,

too. However, even if the conditions for full surplus extraction are not met, often the correla-

tion among buyer valuations can still be exploited to some extent.1 The spirit of my argument

is likely to carry over to such situations. In this paper, I consider an environment in which

full surplus extraction is possible, because this allows me to focus on the question if there is a

mechanism which induces the seller to randomize at all.

Second, a recent literature points out that full surplus extraction depends on strong common

knowledge assumptions with respect to the distribution of buyers’ valuations and their higher

order beliefs. Neeman (2004) has shown that full surplus extraction relies on the property that

an agent’s beliefs about other agents uniquely determine his payoff.2 Parreiras (2005) finds that

full surplus extraction fails if the precision of agents’ information is their private information.3

While some work studies optimal (“robust”) design with weaker common knowledge assump-

tions (Chung and Ely, 2007, Bergemann and Schlag, 2008) it is an open issue how a seller can

exploit correlation in such environments. Note, however, that in my setup the joint distribution

of buyers’ valuations emerges endogenously in equilibrium as a result of the seller’s investment.

Therefore, if there are no significant exogenous information sources that affect buyers’ valua-

tions and/or their beliefs, then the common knowledge assumption is simply embodied in the

equilibrium concept, it is not an ad hoc assumption on players’ exogenous beliefs.

A question related to mine has been raised in industrial economics by Spence (1975) who

studies the incentives of a monopolist to invest in product quality. The difference is that

1See e.g. Bose and Zhao (2007) who study optimal design when the agents’ beliefs violate the spanning

condition by Cremer and McLean (1988), or Dequiedt and Martimort (2009) who consider the case when the

designer cannot commit to a grand mechanism but only to bilateral contracts with each agent.
2Neeman and Heifetz (2006) and Barelli (2009) demonstrate that this property is generic. To the contrary,

Gizatulina and Hellwig (2009) point out that the genericity of the “beliefs determine preferences” property

depends on the assumption that beliefs and payoffs are exogenous features of an abstract “type” of the agent.

They show that when an agent’s beliefs derive from available information, then generically beliefs do uniquely

determine payoffs.
3For a related observation when agent’s can acquire information about each other see Bikhchandani (2009).
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in Spence the monopolist cannot price discriminate between consumers. There seems to be

surprisingly little work in the mechanism design literature that considers optimal design with

an ex ante action by the designer. Instead, most work focusses on optimal design with ex

ante actions by agents, such as investments in their valuation or information acquisition (e.g.,

Rogerson, 1992, Cremer et al., 1998, Bergemann and Välimäki, 2002, to name only a few).

The paper is organized as follows. The next section presents the model. Section 3 derives

the first best benchmark. In section 4, the seller’s problem is described, and section 5 contains

the main argument. Section 6 concludes. All proofs are in the appendix.

2 Model

There are one risk–neutral seller and two risk–neutral buyers i = 1, 2. The seller has one good

for sale. Buyer i’s valuation for the good is denoted by θi. For simplicity, buyers’ valuations

are assumed to be symmetric and can take on the values 0 < θ1 < . . . < θK . In what follows,

i, j ∈ {1, 2} indicates a buyer’s identity, and k, ℓ ∈ {1, . . . , K} indicates a buyer’s type. The

distribution of buyers’ valuations depends on a costly ex ante investment z ∈ {z1, . . . , zM} by

the seller. Investing zm costs c(zm) = cm. Given zm, the probability with which a buyer has

valuation θk is pmk. I assume pmk > 0 for all m, k. This rules out deterministic investment

technologies and captures buyer heterogeneity. Let

pm =








pm1

...

pmK








be the type distribution conditional on investment zm. Buyers’ valuations are assumed to be

conditionally independent, conditional on z. Moreover, I assume that buyers cannot directly

observe the seller’s investment choice.

The seller may randomize between investments. A mixed investment profile is denoted by

ζ = (ζm)m, where ζm is the probability with which the seller chooses zm. In the analysis, an

important role will be played by the set of totally mixed investment profiles denoted by

∆̊M = {ζ |
∑

m

ζm = 1, ζm > 0 ∀m = 1, . . . , M}.
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If the seller adopts ζ , the unconditional probability that a buyer’s valuation is θk is
∑

n pnkζn.

By Bayes’ rule, conditional on observing valuation θk, a buyer’s belief that investment is zm is

qkm = pmkζm/
∑

n pnkζn, and his belief that his rival has valuation θℓ is µkℓ(ζ) =
∑

m qkmpmℓ.

Let µk(ζ) be the corresponding belief (column) vector. Hence, we can write

µk(ζ) =
∑

m

qkmpm. (1)

Since
∑

m qkm = 1, this means that the buyer’s belief about his rival is a convex combination

of the type distributions. Intuitively, this is because one’s own valuation is a noisy signal of the

true investment. This observation will be useful below.

The basic point of the paper rests on the insight that if the seller adopts a mixed investment

strategy, then valuations are correlated from the point of view of buyers. The reason is that a

buyer cannot observe the investment realization. One may think of an urn model where each

pure investment corresponds to one urn. Buyers’ valuations are drawn independently from from

one urn, but a buyer does not know from which one. Therefore, the realization of a buyer’s own

valuation contains information about the urn and thus about the valuation of the rival buyer.

The objective of the paper is to explore whether the seller can exploit this correlation to

extract full surplus. Cremer and McLean (1988, Theorem 2) have shown that full surplus

extraction is closely related to a certain form of correlation which requires that beliefs be

convexly independent. Formally, a set of vectors (vk)k is convexly independent if no vector is

the convex combination of the other vectors, that is, for no k there are weights βℓ ≥ 0 with
∑

ℓ 6=k βℓ = 1 so that

vk =
∑

ℓ 6=k

βℓvℓ.

3 First best

As a benchmark, consider the situation in which the buyers’ valuation is public information.

In that case, the seller optimally offers the good to the buyer with the maximal valuation at

a price equal to that valuation. Therefore, for each realization of valuations, the seller can

extract the full ex post surplus max{θ1, θ2}, yielding a profit of

πFB(z) = E[max{θ1, θ2} | z] − c(z).
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At the investment stage, the seller chooses z so as to maximize π(z). Suppose there is a unique

first best investment level zm̄ given by

zm̄ = arg max
z

πFB(z).

4 Seller’s problem

I now turn to the case in which the seller’s investment is unobservable and the buyers’ valuations

are their private information. Therefore, the seller designs a mechanism which makes the

assignment of the good and payments conditional on communication by the buyers. I consider

the following timing.4

1. Seller proposes and commits to a mechanism.

2. Seller privately chooses an investment.5

3. Buyers privately observe their valuation.

4. Buyers reject or accept the contract.

– If a buyer rejects, he gets his outside option of zero.

5. If buyers accept, the mechanism is implemented.

In general, a mechanism specifies for each buyer a message set, the probability with which a

buyer gets the object, and payments from buyers to the seller contingent on messages submitted

by the buyers in stage 5. A mechanism induces a Bayesian game between the players which

starts at date 2. In equilibrium the seller’s investment is a best reply against buyers’ reporting

strategies, and buyer’s reporting strategies are best replies against the seller’s investment and

the rival buyer’s reporting strategy. The objective of the seller is to design a revenue maximizing

mechanism subject to the constraint that an equilibrium is played in the induced game.6

The revelation principle implies that an equilibrium outcome of any mechanism can also be

attained as an equilibrium outcome of a direct and incentive compatible mechanism. A direct

4A similar timing is adopted in Cremer et al. (1998). If the stages 1 and 2 are swapped, signaling issues

may contaminate the analysis.
5My results would hold a forteriori and under weaker assumptions if the seller could ex ante commit to an

investment strategy.
6Implicit in this formulation of the seller’s problem is the (standard) assumption that the seller can select

his most preferred equilibrium.
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mechanism asks each buyer to announce his type after stage 3 and before stage 4, and consists

of an assignment rule

xkℓ = (x1
kℓ, x

2
ℓk), 0 ≤ x1

kℓ, x
2
ℓk ≤ 1, x1

kℓ + x2
ℓk ≤ 1,

which specifies the probabilities x1
kℓ, x2

ℓk with which buyer 1 and 2 obtain the good, conditional

on the buyers’ type announcements (θ1, θ2) = (θk, θℓ). Moreover, it consists of a transfer rule

tkℓ = (t1kℓ, t
2
ℓk),

which specifies the transfers t1kℓ, t2ℓk which buyer 1 and 2 pay to the seller, conditional on the

buyers’ type announcements (θ1, θ2) = (θk, θℓ). In vector notation:

xi
k =








xi
k1

...

xi
kK








, tik =








tik1

...

tikK








.

A mechanism is incentive compatible if each buyer has an incentive to announce his type

truthfully, given his beliefs about the rival buyer’s type. Note that since a buyer’s beliefs

about the rival buyer’s type depend upon his conjectures about the seller’s investment strategy,

incentive compatibility has to be defined for given conjectures.7 I denote by ζc = (ζc
m) the

conjecture of a buyer that the seller has chosen investment zm with probability ζc
m. The expected

probability of winning and the expected transfers of type k of buyer i, conditional on ζc, when

he announces type ℓ are then respectively given as

K∑

r=1

xi
ℓrµkr(ζ

c) = 〈xi
ℓ, µk(ζ

c)〉,

K∑

r=1

tiℓrµkr(ζ
c) = 〈tiℓ, µk(ζ

c)〉,

where 〈·, ·〉 denotes the scalar product. The mechanism is incentive compatible, conditional on

ζc if for all i, k, ℓ:

θk〈x
i
k, µk(ζ

c)〉 − 〈tik, µk(ζ
c)〉 ≥ θk〈x

i
ℓ, µk(ζ

c)〉 − 〈tiℓ, µk(ζ
c)〉. (ICc)

Finally, the seller needs to make sure that buyers participate in the mechanism at stage 4.

The mechanism is individually rational, conditional on ζc, if for all i, k:8

θk〈x
i
k, µk(ζ

c)〉 − 〈tik, µk(ζ
c)〉 ≥ 0. (IRc)

7I use the word “conjecture” for a buyer’s beliefs about the seller’s strategy so as to distinguish these beliefs

from his beliefs about the rival buyer’s type.
8If it is optimal for the seller to exclude one buyer i, he can do so by setting xi = ti = 0.
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A mechanism that is incentive compatible and individually rational, conditional on ζc, is called

feasible, conditional on ζc.

The seller’s problem is to choose a mechanism (x, t) and an investment profile ζ which

maximizes his profit subject to the constraint that the mechanism be feasible, conditional

on the buyers’ conjecture ζc and the equilibrium requirement that the buyers’ conjecture be

correct: ζc = ζ . Let

πm =
∑

k,ℓ

[t1kℓ + t2ℓk]pmkpmℓ − cm (2)

be the seller’s profit from investment zm. The seller’s problem is thus

max
x,t,ζ

∑

πmζm s.t. (ICc), (IRc), ζc = ζ.

The constraint ζc = ζ can be eliminated by inserting it directly in the feasibility constraints

(ICc), (IRc). In what follows, I can therefore ignore the distinction between the actual and the

conjectured investment strategy and consider the problem

max
x,t,ζ

∑

πmζm s.t.

θk〈x
i
k, µk(ζ)〉 − 〈tik, µk(ζ)〉 ≥ θk〈x

i
ℓ, µk(ζ)〉 − 〈tiℓ, µk(ζ)〉, (IC)

θk〈x
i
k, µk(ζ)〉 − 〈tik, µk(ζ)〉 ≥ 0. (IR)

5 Mechanisms with endogenous correlation

When the seller is restricted to use a pure investment strategy zm, a buyer’s belief is independent

of his type: µk = pm for all k. In that case, a buyer can typically secure an information rent.

The basic insight of this paper is that randomizing between investments may allow the seller to

concede no information rent to buyers. For randomizing to occur in equilibrium, the mechanism

has to leave the seller indifferent between all investments that he uses with positive probability.

My approach to the seller’s problem is to first examine if there are mechanisms that permit an

equilibrium of the induced game in which the seller randomizes and extracts the full surplus.

If that is the case, I say that the respective investment strategy is FSE-implementable.

I focus on extraction of the full ex post efficient surplus. From now on fix x to be the ex

post efficient allocation rule which assigns the object to the buyer with the highest valuation.
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I assume that ties are broken by tossing a fair coin. Thus,

xi
kℓ =







0 if k < ℓ

1/2 if k = ℓ

1 if k > ℓ.

I say that an investment strategy ζ = (ζm)m is FSE-implementable if there is a feasible

mechanism (x, t) so that

(IR) is binding for all types k, (FSE)

πm = πn if ζm, ζn > 0, and πm ≥ πn if ζm > 0, ζn = 0. (IND)

Condition (FSE) means that, given ζ , agents get no rents. Hence, the seller extracts the full

surplus. (IND) means that, given the mechanism, it is optimal for the seller to adopt the

investment strategy ζ . To describe the set of FSE-implementable strategies, I proceed in two

steps. I first construct mechanisms which satisfy (FSE) for given ζ and then look among those

for one which satisfies (IND).

Ex post efficient surplus extracting mechanisms

The construction of surplus extracting mechanisms follows the existing literature. I consider

payment rules where buyer i’s payment consists of a base payment bi
k that depends on his own

report θk only and a contingent payment τ i
kℓ which depends on the rival’s announcement θℓ

as well. Intuitively, contingent payments serve to elicit a buyer’s belief: when valuations are

correlated, there exist contingent payments that entail zero expected payments when telling

the truth yet (arbitrarily) large expected payments when lying. Base payments then serve to

extract the buyer’s gross utility from truth-telling and may be interpreted as entry fees.

I focus on symmetric mechanisms which treat buyers symmetrically: b1
k = b2

k and τ 1
kℓ = τ 2

kℓ.

This allows me to consider only buyer 1 and omit the superindex i. All arguments carry over

to buyer 2. The vector of contingent payments is

τk =








τk1

...

τkK








.
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The next result shows that for constructing full surplus extracting mechanisms, one needs

only construct contingent payments which (a) are orthogonal to buyer type k’s belief µk and

(b) whose projection on the other buyer types’ beliefs is sufficiently large. Base payments are

then automatically determined by the efficient allocation rule and the buyers’ beliefs.

Lemma 1 A feasible full surplus extracting mechanism (x, t) exists if and only if there are

contingent payments τ with9

〈τk, µk〉 = 0, (SE1)

〈τℓ, µk〉 ≥ θk〈xℓ, µk〉 − θℓ〈xℓ, µℓ〉, ℓ 6= k (SE2)

In this case, base payments are pinned down by bk = θk〈xk, µk〉.

The condition (SE1) and bk = θk〈xk, µk〉 make sure that the buyer’s utility from reporting

truthfully is zero, thus the seller extracts the full ex post surplus. The condition (SE2) guar-

antees truthtelling: the expected payments of a lie of type k, 〈τℓ, µk〉 + bℓ, are large enough so

that lying would give negative utility.

Seller indifference

The second step is to ask when there are transfers that leave the seller indifferent between his

investment opportunities. By re–arranging (2), the seller’s profit from investment zm can be

written as

πm = 2
∑

k

pmk〈τk, pm〉 + 2〈b, pm〉 − cm, (3)

where b is the (column) vector whose k-th component is bk. 〈τk, pm〉 can be interpreted as the

expected (contingent) payment from buyer 1 conditional on buyer 1 being type k, where the

expectation is taken from the seller’s perspective, i.e. with respect to pm.

5.1 Full surplus extraction and seller indifference

I now look for FSE-implementable strategies. By Lemma 1 this amounts to looking for con-

tingent payments that satisfy (SE1), (SE2), and (IND) with πm given by (3). To build in-

tuition, I begin with the “binary–binary case” in which there are only two types and two

9If it does not create confusion, I shall drop the dependency of µ on ζ.
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µ1

µ2τ̄1

τ̄2

p1

p2

Figure 1: Full ex post surplus extracting mechanisms.

investments. A geometric argument shows that any mixed investment strategy by the seller is

FSE-implementable in the binary–binary case.

5.1.1 The binary–binary case

Suppose there are two types k = 1, 2 and two investments z1, z2. I assume that the “low”

investment z1 is more likely than the “high” investment z2 to bring about the low valuation

θ1: p11 > p21. This implies that a low valuation buyer assigns a higher probability than a high

valuation buyer to the event that he faces a low valuation rival buyer: µ11 > µ21 for all ζ ∈ ∆̊2.

Figure 1 illustrates the setup. The horizontal axis displays the first, and the vertical axis the

second component of a vector. As probability vectors, p1, p2, µ1, µ2 are located on a line where

the components sum to one. Since µk is a convex combination of p1 and p2, µk is in between

p1 and p2. Moreover, since observing θ1 (resp. θ2) increases the likelihood that investment is

low (resp. high), µ1 is flatter than µ2.
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I now illustrate the construction of surplus extracting mechanisms. By (SE1), the contingent

payments τk are orthogonal to the beliefs µk. By (SE2), they have to be directed so that the

projection on µℓ, ℓ 6= k is large enough. In the figure, τ̄k is meant to indicate the shortest

transfer vector so that the projection on µℓ is just long enough to meet (SE2). Hence, all

vectors τk on the dashed lines that are longer than τ̄k extract the full surplus.

Next, consider seller indifference. By (3):

πm = 2[pm1〈τ1, pm〉 + pm2〈τ2, pm〉] + 2〈b, pm〉 − cm.

The key observation is that the sign of the “projection” 〈τk, pm〉 is determined by the fact that

the beliefs µ1 and µ2 are convex combinations of the type distributions p1 and p2. Note that

this implies that the line (hyperplane) through µk separates the points µk, pk jointly from the

points µℓ, pℓ, ℓ 6= k. So, because contingent payments are orthogonal to beliefs, the projections

of the type distributions on contingent payments can be signed unambiguously:

〈τ1, p1〉 < 0, 〈τ2, p1〉 > 0,

〈τ1, p2〉 > 0, 〈τ2, p2〉 < 0.

As a consequence, π1 decreases in the length of τ1 and increases in the length of τ2, while π2

increases in the length of τ1 and decreases in the length of τ2. Thus, an intermediate value

argument implies that a solution to the indifference condition π1 = π2 can be found by either

increasing τ1 or τ2. Accordingly:

Proposition 1 In the binary–binary case, any ζ ∈ ∆̊2 is FSE-implementable.

Let me emphasize the three main properties used. First, beliefs are convexly independent.

Second, the type distributions and beliefs are ordered in a way that µk and pk can jointly be

separated from µℓ and pℓ, ℓ 6= k. Third, the seller can be made indifferent by an intermediate

value argument. Next, I turn to the case when there are (weakly) fewer types than investments.

5.2 Less investments than types: K ≤ M

I develop the argument according to the three properties used in the binary–binary case.

Convex independence of beliefs

12



Cremer and McLean (1988, Theorem 2) have shown that, if beliefs are not convexly independent,

full surplus extraction mechanism may not exist. In my setup, convex independence of beliefs

might, in principle, depend on the endogenous investment strategy ζ . However, the next

lemma shows that for totally mixed investment strategies this is not the case. Rather, convex

independence is a property of the primitives (pm)m only. To state the lemma, define by

q̄km =
pmk

∑

n pnk

the probability with which investment zm has realized conditional on observing θk when the

seller adopts the uniform investment strategy which places weight 1/M on each investment.

Denote by q̄k the corresponding probability (column) vector.

Lemma 2 Let (pm)m be linearly independent. Then (µk(ζ))k is convexly independent for all

ζ ∈ ∆̊M if and only if (q̄k)k is convexly independent.

The proof uses Farkas’ lemma and the fact that beliefs are convex combinations of the type

distributions. In light of Theorem 2 by Cremer and McLean (1988), Lemma 2 makes clear

that if (q̄k)k is not convexly independent, then the seller will, in general, not be able to create

correlation that allows him to extract full surplus. While the seller might still benefit from

creating correlation also in this case, the construction of optimal mechanisms is demanding

already in the case with exogenous beliefs (see Bose and Zhao, 2007). To focus on the question

when randomizing by the seller can occur at all, I restrict attention to the case in which beliefs

are convexly independent, and impose:

Assumption 1 (pm)m is linearly independent, and (q̄k)k is convexly independent.

Notice that if there are only two investments and more than two types, then Assumption 1

cannot be satisfied. The reason is that beliefs are convex combinations of the type distributions.

Thus, all beliefs are located on the line connecting p1 and p2, and are thus not convexly

independent.

Ordering of type distributions and beliefs

In the binary–binary case, the ordering of beliefs and type distributions allows a separation

argument. More precisely, the type distribution associated to an investment and the belief of

the type which provides the strongest evidence for this investment can jointly be separated

13



from all other type distributions and beliefs. I now show how this feature carries over to the

general case. Recall that a buyer of type k assigns probability qkm = pmkζm/
∑

n pnkζn to the

event that investment zm has realized. Consider a type which provides, among all types, the

strongest evidence that zm has occurred:

κ(ζ, m) ∈ arg max
k

qkm.

It turns out that, as in the binary-binary case, pm and µκ(ζ,m) can be jointly separated from

all other type distributions and beliefs in environments in which κ(ζ, m) is independent of ζ .

In what follows, I will focus on such environments.10 The next lemma shows that κ(ζ, m) is

independent of ζ if and only if a monotone likelihood ratio condition is satisfied.

Assumption 2 For all m there is a k = k(m) so that for all ℓ, n, n 6= m, ℓ 6= k:

pmk

pmℓ

≥
pnk

pnℓ

. (4)

Lemma 3 κ(ζ, m) is independent of ζ if and only if Assumption 2 holds. In this case, κ(ζ, m) =

k(m).

Assumption 2 says that for each investment zm there is one observation k whose likelihood

ratio relative to any other observation ℓ is the highest among all investments. Lemma 3 says

that this is the case if and only if observation k provides the strongest evidence for investment

zm irrespective of the “prior” distribution ζ with which investments are drawn.

I can now show that the type distribution pm and the belief µκ(m) can jointly be separated

from all other vectors pn, n 6= m, and µℓ, ℓ 6= κ(m):

Lemma 4 Suppose Assumptions 1 and 2 hold, and let ζ ∈ ∆̊M . Then for all m and for all

numbers smn > 0, n 6= m, there is a vector µ⊥
κ(m) ∈ R

K so that

〈µ⊥
κ(m), µκ(m)〉 = 0, (5)

〈µ⊥
κ(m), pm〉 < 0, (6)

〈µ⊥
κ(m), pn〉 = smn for n 6= m. (7)

Moreover,

〈µ⊥
κ(m), µℓ〉 > 0 for ℓ 6= κ(m). (8)

10This is somewhat stronger than needed, but makes the argument more transparent.
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Recall that two vectors are separated by a hyperplane if the scalar products of these vectors with

the hyperplane’s orthogonal vector have opposite signs. In Lemma 4, µ⊥
κ(m) is an orthogonal

vector of a hyperplane, which by (5) passes through µκ(m). The properties (6) and (7) say that

the hyperplane separates the type distribution pm from all other pn, n 6= m, and, moreover,

that the projections of the orthogonal vector on the type distributions pn, n 6= m are of a given

magnitude smn. This properties follow from the fact that the type distributions are linearly

independent and beliefs are convex combinations of the type distributions. Below, the numbers

smn will be chosen in the construction of transfers.

Property (8) says that the belief vectors µℓ, ℓ 6= κ(m) are all located on the same side of the

hyperplane. In fact, (7) implies that they are located on the same side as the type distributions

pn, n 6= m. Together with (5) and (6), this means that the hyperplane separates µκ(m) and pm

from all other vectors. Also property (8) is due to beliefs being convex combinations of the

type distributions.

The left panel of Figure 2 illustrates Lemma 4 for the case M = K = 3. Each point

in the simplex corresponds to a probability vector over {1, 2, 3}. Any line through a point

corresponds to a hyperplane that passes through this point. The dashed line through µκ(1)

indicates a hyperplane with normal vector µ⊥
κ(1). The hyperplane separates the points p1 and

µκ(1) jointly from all the other points. Lemma 4 says that under Assumptions 1 and 2 such a

separation is always possible.

Lemma 4 constitutes the first step in the construction of transfers. As in the binary–binary

case, I will define the transfer τk as an appropriate orthogonal vector of type k’s belief. Consider

first types k for which there is an m with k = κ(m). Lemma 4 specifies orthogonal vectors for

these types, yet not uniquely. To guarantee that for each type k there is a unique orthogonal

vector, I assume that no type can provide the strongest evidence for two different investments.

Assumption 3 If m 6= m′, then κ(m) 6= κ(m′).

Together with Lemma 4, Assumption 3 implies that for each type distribution, there is a

different belief so that the two can be separated from all other type distributions and beliefs.

This is again illustrated by the left panel of Figure 2. Observe that for each m a distinct µκ(m)

can be found so that the points pm and µκ(m) can jointly be separated from all other points.
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Figure 2: Orderings of beliefs and type distributions.

The right panel in Figure 2 depicts a constellation which is not covered by Assumption 3.

There is no hyperplane that separates µ3 and exactly one type distribution pm jointly from all

other points. Indeed, consider any hyperplane passing through µ3 that leaves µ1 and µ2 on the

same side. Such a hyperplane corresponds to a line located in between the two dashed lines.

Therefore, if µ1 and µ2 are separated from µ3, the points p1 and p2 are always on the “other”

side. It follows that there is no m with κ(m) = 3. With three investments and three types,

this implies that Assumption 3 is violated.

Assumptions 2 and 3 hold, for example, under symmetry conditions. Suppose that there

are as many investments as types, and investment zm brings about type k = m with some

probability ρ and any other type with probability (1 − ρ)/(K − 1) < ρ. Then κ(m) = m,

implying Assumptions 2 and 3.

After having specified orthogonal vectors for all µk with k = κ(m) for some m, I next

specify orthogonal vectors for types ℓ for which there is no m with ℓ = κ(m). For such a

type, I define the corresponding orthogonal vector such that the projection on all other belief

vectors is positive. By the separating hyperplane theorem, this is always possible since beliefs

are convexly independent. Formally, choose µ⊥
ℓ so that

〈µℓ, µ
⊥
ℓ 〉 = 0 and 〈µk, µ

⊥
ℓ 〉 > 0 ∀k 6= ℓ. (9)

Hence, orthogonal vectors µ⊥
k are now defined for all k, and I set

τk = λkµ
⊥
k .
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Then (5) and the left part of (9) imply (SE1). Moreover, (8) and the right part of (9) imply

(SE2) whenever λk is large enough, that is,

λk ≥
θℓ〈xk, µℓ〉 − θℓ〈xℓ, µℓ〉

〈µ⊥
k , µℓ〉

≡ λ̄k.

Intermediate value argument

In the final step of the construction, I choose the numbers smn in Lemma 4 so that, similarly

to the binary–binary case, an intermediate value argument can be used to make the seller

indifferent. Consider profits (3). I split up the sum in types k for which there is an m with

k = κ(m) and all other types:

πm = 2pmκ(m) 〈µ
⊥
κ(m), pm〉

︸ ︷︷ ︸
λκ(m) + 2

∑

n 6=m

pmκ(n) 〈µ
⊥
κ(n), pm〉

︸ ︷︷ ︸
λκ(n) + (10)

< 0 = snm > 0

+2
∑

ℓ:∄n with κ(n)=ℓ

pmℓ〈µ
⊥
ℓ , pm〉λℓ + 2〈b, pm〉 − cm.

Observe that by Lemma 4, 〈µ⊥
κ(m), pm〉 < 0 and 〈µ⊥

κ(n), pm〉 = snm > 0. Because κ(m) 6= κ(n)

by Assumption 3, this implies that πm decreases in λκ(m) and increases in λκ(n), n 6= m. This

property can be used to construct transfers that leave the seller indifferent. I have the following

proposition.

Proposition 2 Under Assumptions 1 to 3, any ζ ∈ ∆̊M is FSE-implementable.

To see how the construction works, consider the case with M = 3 investments. The coeffi-

cients snm can be chosen in such a way that a change of λκ(m) changes all profits πn, n 6= m at

the same rate.11 Now, consider some constellation with λk ≥ λ̄k, and suppose that profits are

ranked, e.g., as π3 > π1 > π2. Now increase λκ(1). Since this decreases π1 and raises π2, there

will be a point λ′
κ(1) at which equality holds: π1 = π2. Moreover, at this point it is still true

that π3 > π1, because also π3 increases in λκ(1). Next, increase λκ(3). This decreases π3 and

raises π1 and π2. In fact, because π1 and π2 increase at the same rate, the equality π1 = π2 is

maintained when λκ(3) is increased. Hence, there will be a point λ′
κ(3) at which equality holds

between all three profits, and the seller is indifferent.

11This works for snm =
∏

n′ 6=m
pn′κ(n).
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Proposition 2 provides conditions so that any totally mixed strategy is FSE-implementable.

Therefore, it directly implies that the seller can attain a profit arbitrarily close to the (ex ante)

first best surplus by implementing an investment strategy which places almost full mass on the

first best investment:

Proposition 3 Under the conditions of Proposition 2, the seller can approximately attain the

ex ante first best surplus πFB.

For the seller to attain approximate first best, only investment strategies which are close

to the first best investment need to be FSE-implementable. Therefore, Proposition 3 holds

under weaker conditions than those of Proposition 2, which guarantees FSE-implementability

for all totally mixed strategies. In fact, suppose that κ(ζ, m) is independent of ζ and that

Assumption 3 holds in a neighborhood around the first best investment strategy (instead of

globally for all ζ). Then the same argument that I presented is applicable to show that any

totally mixed strategy in this neighborhood is FSE-implementable, and accordingly, the seller

can approximately attain the first best.

5.3 More investments than types

The previous section shows that when there are fewer investments than types, any totally

mixed strategy is FSE-implementable. When there are more investments than types, this will

no longer be true in general. The reason is that the number of transfers available to make the

seller indifferent is equal to the number of types. Thus, there are K instruments only to satisfy

M − 1 ≥ K equations (plus non–negativity constraints on the instruments).

For this reason, I now specialize the analysis in two respects. First, I focus exclusively

on the question whether the seller can approximately attain the first best profit. Second, for

tractability reasons I confine myself with considering the case with two types k = 1, 2.

5.3.1 Two types

Assume that “low” investments are more likely to bring about the low valuation: pm1 > pn1

if m < n. The next result shows that the seller can almost fully extract the ex ante first best

surplus.
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Proposition 4 Suppose there are two types. Then the seller can approximately attain the first

best profit πF B

The idea behind the proof is to let the seller randomize between the first best investment

zm̄ and, say, the next smaller investment zm̄−1. As in the binary–binary case, transfers can be

found which make the seller indifferent between these two investments. In fact, any multiple

of these transfers leaves the seller indifferent, too. The remaining question is then whether

within this set of transfers one can be found so that, in addition, the seller (weakly) prefers

the investment zm̄ over all other investments zm. This essentially boils down to the question

how the difference in profits πm̄ − πm changes as transfers are increased. It turns out that this

change is always positive, once the probability ζm̄ with which the seller plays zm̄ is sufficiently

large. Therefore, if transfers are increased, πm̄−πm becomes arbitrarily large, making the seller

prefer zm̄ over zm.

What facilitates the analysis in the two type case is that all type distributions and beliefs

are ordered on a one–dimensional line. This imposes enough structure to determine the size of

the projections of type distribution pm on transfers τk, which, in turn, is needed to figure out

the change in the profit difference πm̄ − πm. In higher dimensions there is no such restriction

on the location of type distributions and beliefs.

6 Discussion and Conclusion

Let me discuss some assumptions underlying the analysis. First, while I have considered a

private values auction model, all my results will go through for more general mechanism design

problems with general allocation spaces and (gross) utility functions of agents, including inter-

dependent values models. The reason is that by Lemma 1, it is essentially enough to construct

appropriate contingent transfers which are orthogonal to an agent’s beliefs. The specific form

of agents’ willingness to pay is irrelevant for the construction of contingent payments, it only

pins down base payments. Similarly, the restriction to two symmetric buyers is not substantial

and just keeps notation simple.

What is more substantial is the restriction to simple type spaces with the property that

any belief goes along with a distinct valuation (“beliefs determine preferences”). A situation in
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which this need not be true is when buyers possess (imperfect) private information ex ante, and

the information they receive after the seller’s investment is only additional information. In such

a case, convex independence of beliefs and thus full surplus extraction may fail (see, e.g. Neeman

2004, or Parreiras 2005). As argued earlier, then the construction of optimal mechanisms is

demanding already in the case in which the seller cannot affect beliefs. I therefore focus on

simple type spaces.

Furthermore, I have confined the analysis to mechanisms which do not condition on a

report by the seller. While under the assumptions of Propositions 2 and 4, mechanisms with

buyer reports only cannot be improved upon, this may change once these assumptions are

violated: because the seller, after having observed the realization of his investment, holds

private information, too, allowing for mechanisms with seller reports could extend the set of

implementable outcomes. In fact, Obara (2008) shows that when it is buyers who choose ex ante

actions, having them report about the realizations of their actions, can be beneficial. However,

in Obara’s setup, agents’ transfers in the extended mechanism can be constructed by standard

orthogonality conditions. In my setup, this is not true, because here the seller’s transfers are

the payments by buyers. Therefore, in my setup, the transfers in the extended mechanism have

to respect, in addition, a sort of budget balance condition. Dealing with this requires a rather

different line of argument. I leave the full analysis for future research.

I conclude with noting that my analysis raises the more general question about strategies

by which a mechanism designer can influence the joint distribution of the agents’ valuations.

A case in point is disclosure. Standard models of disclosure (e.g. Bergemann and Pesendorfer,

2007, Ganuza and Penalva, 2009) typically fix a selling format such as a first price auction and

ask how much information the seller optimally wants to disclose to bidders. If the seller has

some discretion over the selling format, then disclosing information in ways such that bidders’

information is correlated may be beneficial.
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Appendix

Proof of Lemma 1 For a mechanism with base payments bk and contingent payments τk, the

feasibility constraints (IC) and (IR) are respectively:

θk〈xk, µk〉 − 〈τk, µk〉 − bk ≥ θk〈xℓ, µk〉 − 〈τℓ, µk〉 − bℓ ∀k, ℓ, (11)

θk〈xk, µk〉 − 〈τk, µk〉 − bk ≥ 0 ∀k, (12)

where (12) is binding if the full surplus is extracted. With this, the if-part is obvious (simply

define tkℓ = τkℓ + bk). For the only-if-part, define bk = θk〈xk, µk〉 and τkℓ = tkℓ − bk. It is

straightforward to verify (SE1) and (SE2). Q.E.D.

Proof of Lemma 2 Let ζ ∈ ∆̊M . Define by αk =
∑

n pnkζn the probability of type k, and

recall that qkm = pmkζm/αk is the posterior over investments conditional on k given ζ . Let qk

be the corresponding probability (column) vector. The lemma follows from the two following

claims:

(a) (q̄k)k is convexly independent if and only if (qk)k is convexly independent.

(b) If (pm)m is linearly independent, (µk(ζ))k is convexly independent if and only if (qk)k is

convexly independent.

As for (a). By Farkas’ lemma (see Ok, 2007, p. 482), (q̄k)k is convexly independent if and

only if for all k there is a xk ∈ R
M so that

〈xk, q̄ℓ〉 ≥ 0 ∀ℓ 6= k and 〈xk, q̄k〉 < 0. (13)

Observe that for all ℓ

q̄ℓm =
αℓ

ζm

∑

n pnℓ

pmℓζm

αℓ

=
αℓ

ζm

∑

n pnℓ

qℓm. (14)

Let yk ∈ R
M be defined by the components ykm = xkm/ζm. Then (13) is equivalent to

αℓ
∑

n pnℓ

〈yk, qℓ〉 ≥ 0 ∀ℓ 6= k and
αk

∑

n pnk

〈yk, qk〉 < 0 (15)

⇔ 〈yk, qℓ〉 ≥ 0 ∀ℓ 6= k and 〈yk, qk〉 < 0. (16)

Consequently, using again Farkas’ lemma, (qℓ)ℓ is convexly independent, and this proves (a).

As for (b). Consider an arbitrary index k and probability weights βℓ, ℓ 6= k. By (1):

µk =
∑

ℓ 6=k

βℓµℓ ⇔
∑

m

qkmpm =
∑

ℓ 6=k

βℓ

∑

m

qℓmpm ⇔
∑

m

(qkm −
∑

ℓ 6=k

βℓqℓm)pm = 0. (17)
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Now, if (qk)k is convexly independent, then there is an m′ so that qkm′ −
∑

ℓ 6=k βℓqℓm′ 6= 0. Since

(pm)m is linearly independent, the right equation is, therefore, violated. Hence, also the first

equation is violated, but this means that (µk)k is convexly independent. As for the reverse,

suppose (µk)k is convexly independent so that the first equation is violated. Then also the third

equation is violated, and hence qkm −
∑

ℓ 6=k βℓqℓm 6= 0 for some m. But this means that (qk)k

is convexly independent. Q.E.D.

Proof of Lemma 3 Note that κ(ζ, m) = k if and only if

pmkζm
∑

n pnkζn

≥
pmℓζm

∑

n pnℓζn

∀ℓ 6= k (18)

⇔
∑

n

(pmkpnℓ − pmℓpnk)ζn ≥ 0 ∀ℓ 6= k. (19)

Observe that the inequality is true for all ζ if and only if the term in brackets under the sum

are positive for all n 6= m. But this is equivalent to Assumption 2. Q.E.D.

Proof of Lemma 4 As to (5) to (7). Fix m. First, I write the system of M equations given by

(5) and (7) in matrix notation. Define the K×M-matrix A = (µκ(m), p1, . . . , pm−1, pm+1, . . . , pM)

and the row vector v = (0, sm1, . . . , sm,m−1, sm,m+1, . . . , smM) ∈ R
M . Then the equations in (5)

and (7) can be stated as

(µ⊥
κ(m))

T A = v, (20)

where the superscript T indicates the transposed. I have to show that for all v there is a solution

µ⊥
κ(m) to (20). Indeed, observe that the M vectors µκ(m), pn, n 6= m, are linearly independent.

This is so since the M − 1 vectors pn, n 6= m, are linearly independent by Assumption 1, and

µκ(m) is a convex combination of all pn’s with a positive weight on pm. Hence, the matrix A

has rank M , and a solution µ⊥
κ(m) to (20) exists.

As for (8). I begin with the remark that under Assumption 1, for all k, ℓ there is a strict

inequality in (4) for some m and n. To the contrary, suppose that there are k, ℓ 6= k so that

pmk/pnk = pmℓ/pnℓ for all m and n, then

(q̄km)−1 =

∑

n pnk

pmk

=

∑

n pnℓ

pmℓ

= (q̄ℓm)−1. (21)

It follows that q̄k = q̄ℓ, a contradiction to the convex independence of (q̄k)k posited in Assump-

tion 1.
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I now show inequality (8). The fact that 〈µ⊥
κ(m), µκ(m)〉 = 0 and (1) imply

〈µ⊥
κ(m), pm〉 = −

ακ(m)

pmκ(m)ζm

∑

n 6=m

pnκ(m)ζn

ακ(m)

〈µ⊥
κ(m), pn〉 =

∑

n 6=m

pnκ(m)ζn

pmκ(m)ζm

〈µ⊥
κ(m), pn〉. (22)

Using this in (1) for µℓ gives

〈µ⊥
κ(m), µℓ〉 =

pmℓζm

αℓ

〈µ⊥
κ(m), pm〉 +

∑

n 6=m

pnℓζn

αℓ

〈µ⊥
κ(m), pn〉 (23)

=
∑

n 6=m

[

−
pnκ(m)ζn

pmκ(m)ζm

·
pmℓζm

αℓ

+
pnℓζn

αℓ

]

〈µ⊥
κ(m), pn〉 (24)

=
∑

n 6=m

ζn

αℓ

[

−
pnκ(m)pmℓ

pmκ(m)

+ pnℓ

]

〈µ⊥
κ(m), pn〉. (25)

By Assumption 2, the term in the square bracket is non–negative for all n, ℓ, and, by the remark

at the beginning, is positive for some n, ℓ. Together with the fact that 〈µ⊥
κ(m), pn〉 > 0 by (7),

this yields the claim. Q.E.D.

Proof of Proposition 2 I construct λk ≥ λ̄k so that πm = πn for all m, n. Let

snm =
∏

n′ 6=m

pn′κ(n), sn =
∏

n′

pn′κ(n). (26)

Then profits in (10) become

πm = 2pmκ(m)〈µ
⊥
κ(m), pm〉λκ(m) + 2

∑

n 6=m

snλκ(n) + (27)

+2
∑

ℓ:∄n with κ(n)=ℓ

pmℓ〈µ
⊥
ℓ , pm〉λℓ + 2〈b, pm〉 − cm.

Observe that if λκ(m) is increased, then, since 〈µ⊥
κ(m), pm〉 < 0 and because κ(m) 6= κ(n), n 6= m,

the profit πm decreases, while all πn, n 6= m, increase. Moreover, all πn, n 6= m increase at the

same rate 2sm. Therefore, if λκ(m) is increased, then the difference πn −πn′ is unaffected for all

n, n′ 6= m. I now exploit this property to construct the desired λ step by step.

Let λ′ ∈ R
K with λ′

k ≥ λ̄k for all k. If πm(λ′) = πn(λ′) for all m, n we are done. Otherwise,

consider the investments that give the lowest payoff:

Nmin(λ′) = {n | πn(λ′) = min
m

πm(λ′)}. (28)

Moreover, denote by m̂ the next best investment, which is given by:

πm̂(λ′) > min
m

πm(λ′), πm̂(λ′) ≤ πm(λ′) for all m 6∈ Nmin(λ′). (29)
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Now consider an arbitrary n0 ∈ Nmin(λ′). Because πm̂ decreases and πn0
increases continuously

in λκ(m̂), there is a λ′′
κ(m̂) > λ′

κ(m̂) so that πm̂(λ′′) = πn0
(λ′′), where λ′′ has the same components

as λ′ except of the κ(m̂)-th component, which is λ′′
κ(m̂).

Moreover, because all πn, n 6= m̂ increase at the same rate as λ′
κ(m) is increased to λ′′

κ(m),

we also have that πm̂(λ′′) = πn(λ′′) for all n ∈ Nmin(λ′), so that at λ′′:

Nmin(λ′′) = Nmin(λ′) ∪ {m̂}. (30)

Now proceed repeatedly in the same manner. After at most M steps, this yields a λ with

λk ≥ λ̄k for all k, at which all πm are the same. Q.E.D.

Proof of Proposition 4 Consider the investment strategy ζ which places probability 1−η on

the first best investment zm̄ and probability η on zm̄−1. (If m̄ = 1, then randomizing between

zm̄ and zm̄+1 works.) I show that for all η smaller than some η̄ > 0, ζ is FSE-implementable.

Consequently, the seller’s ex ante profit gets arbitrarily close to the first best profit as η goes

to zero.

By (3), the profit difference between investment m̄ and any other investment n 6= m̄ is

πm̄ − πn = 2[pm̄1〈µ
⊥
1 , pm̄〉 − pn1〈µ

⊥
1 , pn〉]λ1 (31)

+2[pm̄2〈µ
⊥
2 , pm̄〉 − pn2〈µ

⊥
2 , pn〉]λ2

+T1,

where T1 is a constant independent of λ1, λ2. Hence, the seller is indifferent between m̄ and

m̄ − 1 if and only if

λ1 = −
pm̄2〈µ

⊥
2 , pm̄〉 − pm̄−1,2〈µ

⊥
2 , pm̄−1〉

pm̄1〈µ
⊥
1 , pm̄〉 − pm̄−1,1〈µ

⊥
1 , pm̄〉

λ2 + T2 (32)

for some constant T2. With this, I can compare the profit of m and any other investment n:

πm̄ − πn = 2

{

−
pm̄2〈µ

⊥
2 , pm̄〉 − pm̄−1,2〈µ

⊥
2 , pm̄−1〉

pm̄1〈µ⊥
1 , pm̄〉 − pm̄−1,1〈µ⊥

1 , pm̄−1〉
· [pm̄1〈µ

⊥
1 , pm̄〉 − pn1〈µ

⊥
1 , pn〉] (33)

+[pm̄2〈µ
⊥
2 , pm̄〉 − pn2〈µ

⊥
2 , pn〉]

}
· λ2 + T3,

where T3 is some constant. I now show that when η = 0, the coefficient in the curly brackets

in front of λ2 is strictly positive for all n 6= m̄, m̄− 1. By continuity, this coefficient will still be

strictly positive for all small η > 0. This implies that by raising λ2, the difference πm̄ − πn can
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µ̄⊥
1

µ̄⊥
2

pn′′

pn′

pm̄ = µ1 = µ2

pm̄−1

Figure 3: Ordering of beliefs and type distributions for M > K = 2 and η = 0.

be made arbitrarily large while keeping πm̄ − πm̄−1 equal to zero. Therefore, the seller prefers

the investments zm̄ and zm̄−1 over all other investments, and randomizing between zm̄ and zm̄−1

is optimal.

Indeed, for η = 0, it holds that µ1 = µ2 = pm̄ and, given the orientation of µ⊥
1 and µ⊥

2 :

µ⊥
1 =




−pm̄2

pm̄1



 , µ⊥
2 =




pm̄2

−pm̄1



 . (34)

Thus, we have that 〈µ⊥
1 , pm̄〉 = 〈µ⊥

2 , pm̄〉 = 0 and 〈µ⊥
1 , pn〉 = −〈µ⊥

2 , pn〉 for all n. Figure 3

illustrates.

With this, the coefficient in front of λ2 gets
{

−
−pm̄−1,2〈µ

⊥
2 , pm̄−1〉

−pm̄−1,1〈µ⊥
1 , pm̄−1〉

· [−pn1〈µ
⊥
1 , pn〉] + [−pn2〈µ

⊥
2 , pn〉]

}

(35)

= 〈µ⊥
1 , pn〉[−

pm̄−1,2

pm̄−1,1
· pn1 + pn2]. (36)

I now argue that this expression is positive. Observe first that the term in the square brackets

is positive if and only if

−(1 − pm̄−1,1)pn1 + pm̄−1,1(1 − pn1) > 0 ⇔ pm̄−1,1 > pn1 ⇔ n > m̄ − 1. (37)
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Observe moreover (see Figure 3),

〈µ⊥
1 , pn〉 > 0 ⇔ n > m̄. (38)

These two observations imply that the term in front of λ2 in (33) is strictly positive for all

n 6= m̄, m̄ − 1. This completes the proof. Q.E.D.
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