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Abstract

This article contributes to the debate of missing money (e.g. Joskow(2007)) which

has seriously questioned the desirability of caps on scarcity prices in markets with fluc-

tuating demand by emphasizing their potentially negative impact on firms investment

decisions in the long run. A prominent example are recently liberalized electricity

markets, where competition authorities have imposed caps in order to mitigate the

exercise of market power at the spot markets.

In order to shed light on the still incompletely explored impact of such caps in

the long run we analyze investment of strategic firms in base–load and peak–load

technologies in a market with fluctuating demand. We show that under imperfect

competition appropriately chosen caps on scarcity prices not only are beneficial in

the short run but also in the long run, since they lead to a strict increase of invest-

ment in the peak–load technologies, leaving investment in the base–load technologies

unchanged. We furthermore characterize the optimal cap on scarcity prices.
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1 Introduction

Prices at electricity spot markets are highly volatile and typically range from 0$/MWh

to more than 1000$/MWh1. As many experts argue, especially in hours of high demand

and tight supply, electricity markets might very likely be subject to the exercise of market

power.2 Caps on those price spikes have thus been proposed, or are already used to mitigate

market power at electricity wholesale markets during those critical hours.3 In the words

of a Federal Energy Regulatory Commissioner: ”If you cap those prices, you eliminate

any incentive to withhold . . . you may well sell into the market at a capped price as long

as you’re covering your running cost and making a reasonable profit”.4 In the short run,

for fixed investment choice, such caps indeed are welfare enhancing. When taking into

account firms’ investment decisions, however, their desirability is much less clear cut and

the questions involved are not yet well explored in the literature.

Recently, economists have seriously questioned the desirability of capping scarcity prices

in markets with fluctuating demand, arguing that this considerably distorts firms’ invest-

ment decisions. Their argument is clear cut, originating in the findings of the peak–load

pricing literature5, which analyzes firms’ investment incentives under fluctuating demand:

High price spikes during hours of high demand and scarce supply do send accurate price

signals for investment decisions. In equilibrium market prices will be such as to sustain

optimal investment levels. Restricting scarcity prices distorts those price signals and low-

ers firms’ investment incentives. In the literature this is often referred to as a problem of

”missing money”. As Paul Joskow (2007) summarizes in a recent contribution: ”As a re-

sult, many economists assume that the primary source of the missing money problem must

be the price caps and related market power mitigation procedures imposed by regulators.

That is, that the efforts to mitigate market power have had the effect of suppressing energy

prices too much, especially during scarcity conditions when prices should be very high.” As

a reaction to those considerations caps at several wholesale electricity markets have recently

been substantially increased.6

1E.g. wholesale prices at the German market ranged from 0¿/MWh to 2489¿/MWh in 2006.
2Exercise of market power at electricity spot markets has received much attention, compare Borenstein

et al. (2002) for California, Wolfram (1999) for the UK, or Schwarz and Lang (2006) for Germany.
3In the major electricity markets in the US, the PJM and the Californian market wholesale prices are

capped at 1000$/MWh and 2500$/MWh respectively (compare FERC(2000) and FERC(2009)).
4See Walsh (2001).
5For a survey see Crew, Fernando, and Kleindorfer (1995).
6Caps in the Californian electricity market have now been adjusted form 250$/MWh to 2500$/MWh,

see FERC(2000b) and FERC(2009).
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It is the purpose of the present article to contribute to the discussion of ”missing money”

and suppressed scarcity rents. Up to date this discussion has only considered the case of

perfectly competitive markets, we want to extend the focus also to strategically behaved

firms.7 This seems to be a natural consideration: If firms are suspected to behave strate-

gically 2 when producing at the spot market,8 then it seems natural to consider firms to

also behave strategically when making their investment decisions. Notice furthermore that

a contribution to this discussion necessarily has to take into account the fluctuating nature

of spot market demand. Approximation by a single deterministic spot market would erase

occurrence of price spikes and (by construction) eliminate the fundamental problem under

study. That is, the well known results9 obtained for a single spot market in the absence of

fluctuations cannot contribute substantially to the discussion of ”missing money”, neither

for the case of perfect competition nor for strategically behaved firms.

We thus choose to explicitly take into account fluctuating demand at the spot markets,

giving rise to scarcity pricing and price spikes. Notice that under fluctuating demand firms

choose to invest in a mix of different technologies. Base–load technologies (e.g. nuclear

or coal plants), which allow to produce cheaply, have to run most of the time in order

to recover their high investment cost. Peak–load technologies, which are cheap to build,

are used in order to additionally serve more infrequent demand peaks. We then consider

a cap on scarcity prices at the spot market and analyze its impact on strategic firms’

investment decisions and on overall welfare. As we show, too low limits on scarcity prices

lead to a reduction of investment, at least partially confirming the already known findings

of the missing money discussion. In contrast to those results, however, appropriately chosen

limits on scarcity prices do always lead to a strict increase of overall investment of strategic

firms. More specifically, they have a strictly positive impact on investment in the peak–load

technology, leaving investment in the base–load technologies unchanged. We are able to

7Indeed the peak–load pricing literature which analyzes investment incentives under demand fluctuation
does not provide results for the case of strategically behaved firms, we thus extend those results to the case
of imperfect competition, see section 3.

8Indeed the rationale for the presently imposed price caps exclusively is the mitigation of market power
at the spot market, compare Joskow and Tirole (2007).

9For a single deterministic spot market, under perfect competition all price caps above total marginal cost
are irrelevant, those below total marginal cost lead to a complete stoppage of investment and production.
For the case of strategic investment decisions, independently of spot market competition, firms can fully
determine the market outcome by choosing investment in a single technology. The entire market game can
then be modeled as a static Cournot framework with the optimal price cap at marginal cost (compare for
example Kreps and Scheinkmann (1983) and the subsequent contributions). Those results provide little
insight on the problem of suppressed scarcity rents and missing money, however.
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characterize those caps and finally also determine the optimal cap on scarcity prices.

That is, if firms are suspected to have market power in a market with fluctuating

demand and a cap on scarcity prices is put in place to mitigate the exercise of market

power at the spot market, then an appropriately chosen cap does not lead to a reduction of

firms’ investment incentives. Unlike suggested in the current discussion of missing money

and suppressed scarcity rents, this implies that there is no trade-off to be solved between

the long run and the short run perspective. This new insight arises from the fact that we

explicitly model strategic investment decisions of firms, whereas previous arguments relied

on the hypothesis of competitive investment behavior.10

Since the problem of missing money has been discussed extensively in the context of

investment decisions in liberalized electricity markets, we fit our model to a specific electric-

ity market (the German market) in order to quantitatively illustrate our results. We find

that restriction of scarcity prices below 260 ¿/MWh increase total industry investment for

any market structure based on up to 20 firms.6 Especially for concentrated markets (up to

4 firms) surprisingly low caps on scarcity prices ranging at around 110 ¿/MWh lead to a

dramatic increase of industry capacities and overall welfare (for the case of duopoly total

investment increases by 30%). Our quantitative results thus suggest that for appropriately

chosen caps on scarcity prices welfare can be increased substantially both from a short run

and a long run perspective.

In the literature most of the contributions on price caps under fluctuating demand or

uncertainty analyze static frameworks, which do not consider investment decisions. Among

those most focus on the analysis of cost uncertainty. The case of symmetric information

between firms and regulator regarding cost of production has been analyzed for example

by Pint (1992), or Biglaiser and Riordan (2000). The literature on incentive regulation

analyzes the case of asymmetric information in a static framework, for a survey of the

seminal contributions see Laffont and Tirole (1993), or Laffont and Tirole (2001). All

those approaches do not take into account firms’ investment incentives prior to competing

on the regulated spot markets. As Cowan (2002) and more recently Joskow and Tirole

(2007), or Hogan (2005) point out, those incentives are crucial, however, when evaluating

the desirability of caps on scarcity prices, since they limit price spikes in those markets and

thus distort investment decisions.

Another strand of literature focuses on optimal timing of investment decisions in stochas-

10Since strategic behavior of firms at the spot markets is the justification for caps on scarcity prices, a
thorough analysis of the strategic investment decisions seems to be a natural contribution to this discussion.
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tic continuous time models. The seminal contributions of Dixit (1991) and Dixit and Pindyk

(1994), for the case of perfect competition, has been extended by Dobbs (2004), and in a

recent contribution Roques and Savva (2006) analyze the case of strategically interacting

firms. In this literature, demand typically follows a Brownian process, capacities are as-

sumed to be always fully utilized11. Roques and Savva (2006) show that strategic firms

delay their investment decisions, relative to the case of perfect competition (that is, the

price trigger for investment is higher under strategic interaction, than for a perfectly com-

petitive industry). They find that introduction of a price cap can reduce this problem and

show that the optimal price cap in their framework is given by the investment trigger–price

of a competitive industry. Development of industry demand in those models of optimal

timing is best interpreted as changes in the level of average market demand where changed

price levels trigger instantaneous investment adjustment. Those contributions thus provide

very rich insights on the dynamical timing of strategic firms’ investment decisions. They

abstract, however, from scarcity pricing and price spikes due to fluctuating demand at the

spot markets. Since the discussion of the missing money problem precisely analyzes the

impact of reduced scarcity rents, such framework of optimal timing of investment deci-

sions does not serve our purpose to contribute to this discussion for the case of strategic

investment decisions.

The article is organized as follows: In section 2 we introduce the model. In Section 3

we derive the market equilibrium of the investment game and its existence and uniqueness.

Section 4 characterizes desirable and section 5 optimal caps on scarcity prices. In section

6 we quantify our results for the example of the German electricity market. Section 7

concludes.

2 The Model

Firms can invest in different technologies which allow production at many spot markets.

Spot markets are subject to fluctuating demand, additionally firms might be uncertain

regarding the precise pattern of such fluctuation. Once investment decisions are made,

firms make their production decisions for each single spot market. At the time of production

firms know demand at each spot market. Price spikes at the spot market are limited by

a cap p̄. We denote by q(θ) = (q1, . . . , qn) the vector of outputs of the n firms and by

Q(θ) =
∑n

i=1 qi total quantity produced at each spot market.

11This allows to disregard interaction at the spot market.
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Inverse Demand is given by the function P (Q, θ), which depends on Q ∈ R+, and

the variable θ ∈ R which represents both fluctuation and uncertainty of demand. The

variable θ ∈ R is distributed according to F (θ) with bounded support [θ, θ]. Notice that

the distribution function F (θ) couples frequencies originating from fluctuating demand and

probability mass originating from uncertainty.12

We denote by Q(θ) the quantity where prices start to be zero, 13 the following assumption

has to be satisfied for quantities 0 ≤ qi ≤ Q < Q(θ).

Assumption 1 [Demand]

(i) Inverse demand P (Q, θ) is twice continuously differentiable14 in Q with Pq(Q, θ) < 0

and Pq(Q, θ) + Pqq(Q, θ)qi < 0.

(ii) P (Q, θ) is differentiable in θ, with Pθ(Q, θ) > 0 and Pθ(Q, θ) + Pqθ(Q, θ)qi > 0.

We are interested in a situation, where firms can invest into several different technologies.

Those come at different levels of investment cost and allow for producing at different levels of

marginal cost. In the case of electricity markets this corresponds to the different electricity

generation technologies such as nuclear, lignite–, coal–, and gas–fired power plants. For the

formal model, we will analyze only the case of two different technologies (”peak–load” and

”base–load”), in order to keep the notational burden limited. Throughout the article we

will comment, however, how our results could be extend to the case of more technologies.

Assumption 2 [Technologies] Firms can invest in the two different technologies (k, c) and

(k1, c1). Constant marginal cost of investment are given by k and k1 respectively and the

corresponding marginal cost of production are given by c, and c1 respectively. Wlg we

assume15 c > c1 and k < k1.

Since demand fluctuates over time, it is optimal for firms to invest into a mix of tech-

nologies. Technology (k, c) is relatively cheap to build, but produces at high marginal cost.

Those units will serve only higher realizations of demand (”peak–load”). Technology (k1, c1)

12That is, the associated density f(θ) will not integrate to 1, but to the total number of spot markets
analyzed. Even though this detail will not be relevant when solving our general framework, it should be
explicitly emphasized at this point.

13In case prices remain positive we can set Q(θ) = ∞. In order to ensure a bounded solution we then
have to assume limQ→∞ P (Q, θ) < c for each θ ∈ (−∞,∞].

14We denote the derivative of a function g(x, y) with respect to the argument x, by gx(x, y), the second
derivative with respect to that argument by gxx(x, y), and the cross derivative by gxy(x, y).

15Whenever one technology has both lower production and lower investment cost we obtain a corner
solution with one technology strictly dominating.
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allows to produce more cheaply, however, it has to run a larger fraction of time, in order

to justify its high investment cost (”base–load”). We denote investment of some firm i in

technology (k1, c1) by x1
i and total investment16 of firm i in both technologies by xi (that

is, investment in technology (k, c) is then given by (xi− x1
i )). For given investment (xi, x

1
i )

we can now pin down cost of firm i for producing some quantity qi at a spot market:

C(qi, xi, x
1
i ) =





c1 qi for 0 < qi ≤ x1
i

c qi for x1
i < qi ≤ xi

∞ for xi < qi

(1)

That is firms’ investment determines their cost function, allowing them to produce at

the spot markets. Firms make simultaneous production decisions for each spot market.

Since demand is known to firms at the time of making their production decisions, produced

quantities are contingent on the demand scenarios θ ∈ [θ, θ]. We can now state firm i’s

expected profit when choosing investment given by (xi, x
1
i ) and production schedules given

by q(θ) for all θ.

πi

(
xi, x

1
i , q

)
=

∫ θ

θ

[
min {p̄, P (Q(θ), θ)} qi(θ)− C(qi(θ), xi, x

1
i )

]
dF (θ)− k1x

1
i − k

(
xi − x1

i

)
.

We are interested in pure strategy, perfect Bayesian equilibria of the game. We denote

the equilibrium investment profile by (x∗, x1∗) and the corresponding industry investments

by (X∗, X1∗).

We conclude this section by identifying those cases, where indeed investment in tech-

nology (k, c) could take place.17 First, in absence of a cap on scarcity prices, investment

in technology (k, c) can only be profitable whenever k < Eθ[P (0, θ) − c]. If this condi-

tion is not satisfied, firms will not invest in technology (k, c), independently of caps on

scarcity prices at the spot markets. Second, for caps very close to marginal cost of pro-

duction c , firms will not find it profitable to invest in technology (k, c), since they cannot

recover cost of investment. The lowest cap which yields positive investment ρ̄0 is defined

by: ρ̄0 = {p̄ : Eθ[min{ρ̄0, P (0, θ)} − c] = k}. We thus restrict attention to caps p̄ ≥ ρ̄0 ≥ c

throughout the article.

16The cumulative representation of investment levels crucially simplifies the derivation of the optimal
investment strategies, allowing to entirely disentangle the decision regarding total investment xi and in-
vestment in the ”base–load” technology x1

i (i.e. cross derivatives of firms’ profits wrt xi, x
1
i will cancel,

making the verification of second order conditions tractable).
17We will identify those case where investment in both technologies takes place after having analyzed the

market game in section 3.
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3 Market Equilibrium

In this section we characterize equilibrium investment of strategic firms for a given cap on

scarcity prices p̄ . We first analyze the case of strategic investment in a single technology

(theorem 1) and then the case of two different technologies (theorem 2). As a benchmark,

we finally determine investment decisions under perfect competition (theorem 3).

Theorem 1 (Market Equilibrium, Single Technology) The market game where
firms can invest in the technology (k, c) has a unique equilibrium which is symmetric. In-
dustry investment X∗(p̄) is characterized by

X∗(p̄) =





X :

θ̃p̄(x,p̄)∫

θ̃X(x)

[
P (X, θ) + Pq (X, θ)

X

n
− c

]
dF (θ) +

θ∫

θ̃p̄(x,p̄)

(p̄− c) dF (θ) = k





. (2)

θ̃X (x) ∈ [θ, θ] is the demand scenario from which on firms are capacity constrained and

θ̃p̄(x, p̄) ∈ [θ, θ] is the demand scenario from which on the cap starts to be binding.

Proof See appendix 7. ¤

In order to provide some intuition for the equilibrium–characterization in theorem 1, we

first determine the range of relevant caps, which are binding at least at some spot markets.

We denote by ρ̄∞ that cap, which in equilibrium is reached only for the highest demand

realization θ, it is defined by:

˜̄ρ∞ =
{
p̄ : p̄ = P (X∗(p̄), θ)

}
.

All higher caps p̄ ≥ ˜̄ρ∞ are never binding. In other words, the demand realization where the

cap starts to be binding θ̃p̄ (x, ρ̄∞) is at or above the range of relevant demand realizations.18

Formally this corresponds to θ̃p̄ (x, ρ̄∞) > θ, leading to the elimination of the second term on

the LHS of (2). For the absence of caps on scarcity prices, i.e never–binding caps, the first

order condition has a straightforward intuition: The LHS is expected marginal revenue

of investment X, whereas the RHS is just marginal cost k of investment in technology

(k, c). Note that on the LHS expectation is taken only over those spot markets, where the

additional unit installed would actually be used (i. e. the lower limit of integration is θ̃X(x)

and not θ). The reason is, that additional investment only contributes to marginal revenue

for those spot markets, where it is actually used.

We thus observe that only caps in the range p̄ ∈ [ρ̄0, ρ̄∞] yield truly interior solutions

with positive investment and binding cap at some spot markets. Characterization of the

18Remember θ has been defined on R, the distribution of uncertainty has the support [θ, θ], however.
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corresponding equilibrium in expression (2) again equates expected marginal revenue of

investment with its marginal cost. As in the case without binding cap, when calculating

expected marginal revenue, the firm considers only those spot markets, where the addi-

tional investment in technology (k, c) is actually being used (i.e. integration starts at θ̃X).

Marginal revenue in scenario θ is given by the well known expression (P − Pqx − c), until

the cap is binding at θ̃p̄. From there on, marginal revenue equals to (p̄− c).

After having analyzed the case of investment in a single technology, we turn towards

extending those results to the case of investment in two different technologies. We will

focus on those cases where the technologies (k1, c1) and (k, c) have sufficiently different cost

of production. This allows to ensure existence of a well behaved symmetric equilibrium.

Firms’ investment decisions for a continuum of infinitely close technologies has been treated

in Zoettl (2008). We are able to determine a unique equilibrium, which is given as follows:

Theorem 2 [Market Equilibrium, Two Technologies] The market game, where firms can
invest in the two different technologies (k, c) and (k1, c1) has a unique equilibrium, which is
symmetric. Industry investment (X∗(p̄), X1∗) is characterized by

X∗(p̄) =





X :

θ̃p̄(x,p̄)∫

θ̃X(x)

[
P (X, θ) + Pq (X, θ)

X

n
− c

]
dF (θ) +

θ∫

θ̃p̄(x,p̄)

(p̄− c) dF (θ) = k





(3)

X1∗ =





X :

θ̃X(x)∫

θ̃X1(x)

[
P (X, θ) + Pq (X, θ)

X

n
− c1

]
dF (θ) +

θ∫

θ̃X(x)

(c− c1) dF (θ) = k1 − k





. (4)

θ̃X1 (x, p̄) is the demand scenario, from which on investment in the base–load technology

(k1, c1) is binding, and θ̃X (x, p̄) is the demand scenario from which on firms produce at the

marginal cost of the peak–load technology c.

Proof See appendix 7. ¤
When comparing the case of investment in a single technology (theorem 1) and invest-

ment in two technologies (theorem 2), we observe that total investment X∗(p̄) remains

entirely unaffected, if firms can choose to additionally invest in the base–load technology

(k1, c1). Clearly, this does not imply that investment in technology (k, c) remains unchanged

with respect to the single technology case. In contrast, having the option to choose also from

technology (k1, c1), firms in the market equilibrium find it cheaper to invest the amount

X1∗ in technology (k1, c1) and only the remaining units X∗−X1∗ will be chosen from tech-

nology (k, c). That is, in the market solution, as given by theorem 2, firms determine their

9



total investment X∗ based on the ”least efficient”19 technology available as characterized

by expression (3).

The investment decision X1∗ in the more efficient technology solves the trade off of

replacing some units of technology (k, c) by units of technology (k1, c1), as formalized in

expression (4): The cost of replacing the marginal unit of technology (k, c) by a unit of

technology (k1, c1) is given by (k1 − k), the RHS of (4). This has to equal the extra profits

generated by that unit. Those come through two channels, which are given by the LHS of

expression (4). First marginal spot market profits are changed for all demand realizations

where capacity of technology (k1, c1) is binding, i.e. for θ ∈ [θ̃X1, θ̃X ]. Second it allows to

produce one extra unit of output at (lower) marginal cost c1 instead of c for all demand

realizations θ ∈ [θ̃X , θ].

We conclude the discussion of theorem 2 by identifying those cases where indeed an

interior solution with 0 < X1∗ < X∗ obtains. In section 2 we already established conditions

such that X∗ > 0. We now have to verify that investment X1∗ in technology (k1, c1) remains

within the admissible bounds of X1∗ > 0 and X1∗ < X∗. Violation of either of those two

conditions brings us back to the single technology case of theorem 1. First, whenever

technology (k1, c1) is very unattractive,20 then only technology (k, c) is active. Second, if

technology (k1, c1) is always more attractive21 than technology (k, c), then only technology

(k1, c1) is active in the market equilibrium.

In the subsequent sections 4 and 5 we will analyze the impact of a cap on scarcity prices

on the market equilibrium and determine desirable and optimal levels of such cap. Evalua-

tion of the market equilibrium already at this point reveals a striking property: Investment

in the base–load technology (k1, c1) is independent of the cap p̄, which only has an impact

on investment in the peak–load technology (k, c). This result follows immediately from the

equilibrium conditions specified in theorem 2. Caps matter only at the spot markets with

high demand, when prices are high due to tight supply at the capacity bound X∗ (i.e. for

θ ∈ [θ̃p̄, θ]). Investment in the base–load technology (k1, c1) is driven exclusively by the

trade-off of replacing technology (k, c) by technology (k1, c1). This tradeoff is independent

of the level of the cap on scarcity prices, however. This observation will have significant

importance in the subsequent sections, and is thus briefly summarized in corollary 1.

Corollary 1 In any market equilibrium, where firms invest in both technologies (i.e.

19More precisely that is the technology which is cheapest to invest, but most expensive to produce with,
given by (k, c).

20That is expression (4) yields X1∗ ≤ 0.
21That is expressions (3) and (4) yield X1∗ ≥ X∗.
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0 < X1∗ < X∗), a change of the cap p̄ leading to higher total investment X∗(p̄), leaves

investment X1∗ in technology (k1, c1) unchanged.22

We briefly discuss, how those results would extend to the case of more than two tech-

nologies. Suppose firms can invest also in a third, even more efficient technology (k2, c2)

with c2 < c1 and k2 > k1. Adopting the cumulative definition of investment levels, we

denote total investment by X∗, total investment in technologies (k2, c2) and (k1, c1) by X1∗

and investment in technology (k2, c2) by X2∗. The equilibrium conditions for investment

levels X∗ and X1∗ remain unchanged and are given by expressions (3) and (4). Congruent

to expression (3), investment X2∗ solves the trade off of replacing units of technology (k1, c1)

by units of technology (k2, c2). Analogous to corollary 1, again only total investment X∗

, but not investment in the base–load technologies (now (k1, c1) and (k2, c2))) are affected

by a change of the cap on scarcity prices.

It should be explicitly emphasized that a unique symmetric equilibrium obtains only

for investment in a limited number of sufficiently different technologies, but not for the

limit case of finitely many technologies. Then a symmetric equilibrium generally fails to

exist. As Zöttl(2008) shows for a continuum of technologies, existence and uniqueness of

the symmetric equilibrium can be reestablished for smooth investment functions, however.23

That is, we obtain existence and uniqueness of a symmetric equilibrium both for the case

of a limited number and a continuum of technologies, but not for the limit case of finitely

many technologies, where asymmetric equilibria of the investment game arise.24

Throughout this article we focus on those cases, where a unique symmetric equilibrium

of the investment game obtains. We do not formally analyze the limit case of sufficiently

similar technologies, leading to asymmetric market outcomes. This would increase the

22In principle the same holds true for caps that lead to lower total investment. A reduction of total
investment could lead to a corner solution where firms stop to invest in the peaking technology (k, c),
however. Investment in the single technology (k1, c1) would then depend on the cap p̄, however. Such
corner solution cannot result from an increase of total investment.

23For a finite number of technologies firms investment decisions necessarily have to be step functions. In
a continuous framework firms are able to choose smooth investment schedules.

24Interestingly this parallels the findings on supply function equilibria. In a seminal article Klemperer and
Meyer (1989) show existence and uniqueness of differentiable supply functions for a continuous distribution
of demand uncertainty. Bolle (1992) and Green and Newberry (1992) apply those findings in order to model
firms’ behavior at electricity spot markets. In a subsequent contribution Fehr and Harbord (1993) analyze
the market game where firms bid discrete supply functions and find that symmetric equilibria in discrete
supply functions fail to exist for the limit case of finitely small bid-steps. Nevertheless, depending on
the precise purpose, both discrete and continuous supply function frameworks enjoy unchanged popularity
when modeling firms’ behavior at electricity spot markets.
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notational and computational burden of the present article considerably. Furthermore, as

shown in appendix 25, potentially arising asymmetric equilibria are asymmetric only with

respect to investment in technology (k1, c1), but still exhibit symmetric total investment

level X∗. Following the insights provided by corollary 1, a cap on scarcity prices only

has an impact on total investment X∗ characterized by expression (3), however. Desirable

and optimal caps, as analyzed in the remainder of this article, can thus be determined

independently of the nature of equilibrium investment in technology (k1, c1). That is, also

for the limit case of similar technologies, when asymmetric equilibria arise, the findings of

theorems 4, 5, and 6 would continue to hold true.

As a benchmark for the strategic market game, we now briefly state the solution for the

case of perfect competition. The critical spot market scenarios are determined analogously

to those of theorem 2, now for the case of perfectly competitive behavior at all spot markets,

however.26

Theorem 3 (Equilibrium under Perfect Competition) In a perfectly competitive

market industry investment (X̂1, X̂(p̄)) is uniquely characterized by

X̂(p̄) =





X :

θ̂p̄(x,p̄)∫

θ̂X(x)

[P (X, θ)− c] dF (θ) +

θ∫

θ̂p̄(x,p̄)

(p̄− c) dF (θ) = k





(5)

X̂1 =





X :

θ̂X(x)∫

θ̂X1(x)

[P (X, θ)− c1] dF (θ) +

θ∫

θ̂X(x)

(c− c1) dF (θ) = k1 − k





. (6)

The welfare maximum is implemented without cap on scarcity prices. Any binding cap

leads to a reduction of investment and total welfare.

Proof See appendix 7 ¤
It is worthwhile to notice that the lowest non binding cap under perfect competition,

̂̄ρ∞ = P (X̂(̂̄ρ∞), θ), will play an important role in the following section. It is given by

the market price obtained under perfect competition for the highest possible demand real-

ization. Under perfect competition overall welfare is maximized, if scarcity prices remain

uncapped. Distortion of this market outcome by a binding cap will always reduce equilib-

rium investment choices and welfare. We can thus conclude that for a perfectly competitive

industry a limitation of scarcity prices is never desirable under demand fluctuation. This

25See appendix 7.
26From θ̂X1 (x, p̄) on investment in the base–load technology (k1, c1) is binding, from θ̂X (x, p̄) on firms

produce at marginal cost c, from θ̂X (x) on total investment is binding, and from θ̂p̄ (x, p̄) on also the cap
is binding.
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replicates the arguments of the missing money problem as put forth e.g. by Hogan(2005)

or Joskow(2007). As we show in the subsequent section, however, this is not true for

strategically behaved firms.

4 Desirable Caps on Scarcity Prices

As argued by Hogan(2005) or Joskow(2007), limiting scarcity prices in a framework of

fluctuating spot market demand leads to problems of missing money, implying a reduction

of firms’ investment incentives and welfare. This argument up to date has been made

exclusively under the hypothesis of a perfectly competitive market. The extension to the

case of strategic investment seems to be an important contribution to this discussion: Caps

on scarcity prices are designed in order to limit the exercise of market power of strategically

behaved firms at the spot markets, indeed only then the use of such caps is justifiable. It

thus seems most natural to also consider strategic behavior of firms when making investment

decisions. We want to shed light on this issue and provide insight on the design of such

caps for strategic investment decisions prior to fluctuating demand.

As already established in section 2, also under strategic behavior caps close to marginal

cost c of production (i.e. p̄ ∈ [c, p̄0]) will completely eliminate equilibrium investment in

technology (k, c) and lead to a reduction (or emlimination) of investment in technology

(k1, c1). Such caps on scarcity prices are thus never desirable to introduce, the results

obtained under perfect competition and under strategic behavior coincide.

It remains to explore, however, if higher caps p̄ ∈ [p̄0, ˜̄p∞] could be beneficial for the

case of strategically behaved firms. As we find, under imperfect competition, indeed there

always exist binding caps on scarcity prices which lead to an increase of total investment

and overall welfare. In line with corollary 1, only investment in technology (k, c) is affected,

whereas investment X1∗ in technology (k1, c1) remains unchanged.

Theorem 4 (Investment and Welfare Enhancing Caps on Scarcity Prices)

. (i) Denote by MR the highest marginal equilibrium revenue without cap on scarcity

prices27. A cap p̄ ∈ [
MR, ρ̄∞

]
increases equilibrium investment in technology (k, c)

and leaves investment in technology (k1, c1) unchanged. It furthermore leads to an in-

crease of consumer surplus and total welfare, and lowers average prices as compared

to the market game without cap.

27I.e. MR = maxθ{P (X∗(ρ̄∞), θ) + Pq(X∗(ρ̄∞), θ)X∗(ρ̄∞)
n } − c

13



(ii) Total investment X∗, investment X1∗ in technology (k1, c1), and total welfare under

imperfect competition, remain strictly below the first best solution for any cap p̄ ≥ 0.

Proof See appendix 7. ¤

Let us first discuss why caps p̄ ∈ [
MR, ρ̄∞

]
lead to increased total investment in the

market equilibrium. The equilibrium characterization (3) of theorem 2 reveals that any cap

at or above the highest possible marginal revenue increases marginal spot market profits

of investment in those spot markets where it is binding, as compared to a situation with-

out cap. In the new market equilibrium with binding cap, however, expected marginal

spot market profits must again be equal to marginal cost of investment k of the peaking

technology (k, c). This can only be achieved by decreasing marginal spot market profits in

scenarios with non–binding cap, i.e. by increasing investment in technology (k, c).28 Notice

that the findings of theorem 4 do not allow to characterize the most desired cap from the

interval
[
MR, ˜̄ρ∞)

, but just establishes that introduction of any of those caps is desirable.

Furthermore, all those caps lead to an increase of investment in technology (k, c), but

have no impact on investment X1∗ in the base–load technology (k1, c1). The intuition for

this result has already been provided in the context of corollary 1. We are finally able

to show that total investment and investment in the base–load technology (k1, c1) remain

always strictly below the investment levels of the first best solution.

In the subsequent theorem we provide a characterization of the desirable caps established

in theorem 4 in terms of the highest market price reached under perfect competition. Under

relatively mild assumptions on the demand function29 the highest possible market price

reached under perfect competition ̂̄p∞ could lend itself as a welfare enhancing cap on scarcity

prices:

Theorem 5 (Capping Scarcity Prices at the Highest Competitive Price)

Suppose demand can be decomposed such that P (X, θ) = a(θ) + b(θ)P̃ (X). A cap

p̄ ∈ [̂̄p∞, ρ̄∞
]

strictly increases investment in technology (k, c), but leaves investment in

28This generalizes the intuition obtained for a single deterministic spot market. In the absence of a price
cap, marginal profits of the single spot market have to equal marginal cost of investment (i.e. P (X∗) −
Pq(X∗)/n− c = k). All price caps at or above marginal revenue will increase capacity choice. The optimal
price cap in the deterministic framework is suited to implement the first best outcome and is given by
marginal revenue, i.e. p̄ = P (X∗)− Pq(X∗)/n = c + k), i.e. the optimal price cap equals to total marginal
cost. With fluctuating demand at the spot market this logic can be applied only to the highest demand
realizations, typically the first best outcome cannot be reached, however.

29These do not seem necessary, but they allow for a very intuitive proof.
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technology (k1, c1) unchanged. It leads to an increase of consumer surplus and total welfare,

and lowers average prices as compared to the market game without cap.

Proof See appendix 7. ¤

Note the implications of this results from a policy maker’s perspective. For example

in electricity markets, regulators typically have quite detailed information on demand and

cost. Thus, calculating ̂̄p∞ by modeling the competitive benchmark seems relatively easy,

while basically nothing is known for the case of market power. Theorem 5 connects the

cases of perfect competition and oligopoly, giving a clear cut policy result.

Let us finally point out that theorems 4 and 5 do not contradict the result of theorem 3,

where we established that under perfect competition a distortion of scarcity prices is never

desirable. As we approach the case of perfect competition (n →∞), the range of desirable

caps on scarcity prices vanishes.

5 Optimal Cap on Scarcity Prices

As we have shown in section 4, for strategically behaved firms we can always identify a

range of binding caps on scarcity prices that strictly increase total equilibrium investment

and thus are desirable from a welfare point of view. Interestingly such caps leave investment

in the base–load technology (k1, c1) unchanged. We have not yet determined the optimal

limit on scarcity prices, which is characterized in the following theorem. In order to do so

we need to make regularity assumptions on the distribution of θ.30

Theorem 6 (Optimal Cap on Scarcity Prices) Suppose demand can be decomposed

such that P (X, θ) = θ + P̃ (X) and the hazard rate h(θ) := f(θ)
1−F (θ)

is increasing.31 Then

there exists a unique optimal cap p̄∗ which is uniquely characterized by:

−Pq(X
∗(p̄∗), θ̃p̄)

X∗(p̄∗)
n

=
1− F (θ̃p̄)

f(θ̃p̄)
. (7)

p̄∗ is increasing in the number of firms n.

Proof See appendix 7. ¤
30Recall that in theorem 4 and 5, we could not make statements about monotonicity without further

assumptions on the distribution.
31In order to prove the theorem it is sufficient to assume Pqθ = 0, such that demand can be decomposed

such that P (Q, θ) = v(θ) + P̃ (Q). Then, the hazard rate of the transformed random variable v(θ) would
have to be increasing. In the theorem we present a slightly less general statement for easier exposition.
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Let us point out the trade off that has to be solved for the optimal cap on scarcity

prices. Recall from expression (3) of theorem 2 that firms choose total investment in

order to equate expected marginal revenue of investment with marginal cost. Lowering a

given cap affects expected marginal revenue and thus, the firms’ investment decisions. We

observe two effects: On the one hand, lowering the cap by an increment decreases marginal

revenue in all scenarios where the cap has been binding. The expected marginal loss equals

[1−F (θ̃p̄)]. On the other hand, the cap becomes binding also in lower demand scenarios and

thereby marginally increases expected revenue by −Pq(X
∗, θ̃p̄)xif(θ̃p̄).32 Condition (7), as

stated in theorem 6, balances those two effects. Note that the first effect lowers investment

incentives, while the second effect encourages investment. At high caps, the first effect is

necessarily small (the cap is binding only at few spot markets), such that the second effect

always dominates. It depends on the exact distribution of θ, whether the optimal cap lies

in
[
MR, ˜̄ρ∞)

, or below, however.

6 Quantitative Illustration: Restricting Scarcity

Prices in the German Electricity Market

Since the problem of missing money has been intensively discussed in the context of invest-

ment decisions in liberalized electricity markets, we now provide some empirical illustration

of our results for the case of a specific electricity market. For reasons of data availability

we analyze the German electricity market, the quantitative results obtained are unlikely to

change substantially for other electricity markets, however. Our aim is to fit the theoretical

model as closely as possible to the data of the German Electricity market for the year 2006.

As established in Corollary 1, desirable caps do only have an impact on total investment,

but not on investment in base–load technologies. We can thus restrict attention to quantify

total market investment, according to expression (3) this is determined by the cost of the

peak–load technology, given by open cycle gas turbines.

In order to use our theoretical model for the analysis, we chose to make the following

specifications. We assume linear fluctuating demand P (Q) = θ − bQ. We furthermore

determine average production– and investment–cost. We then determine firms’ investment

choice for different degrees of market power and different price-caps by making use of ex-

pressions (3) and (5). In order to assess the robustness of our results, we do not perform

32Note that marginal revenue in scenario θ without binding cap is Pq(X∗, θ)xi + P (X∗, θ) and thus, a
binding cap p̄ = P (X∗, θ̃p̄) increases marginal revenue in scenario θ̃p̄ by −Pq(X∗, θ̃p̄)xi > 0.
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the analysis for single parameter values, but rather for plausible ranges of parameter dis-

tributions. This concerns the following parameters of the model: The demand elasticity

(determined by the slope of the demand function, b), marginal cost of production, c, and

marginal investment cost, k of the peak–load technology. From the possible ranges of those

parameters, our algorithm selects one random combination in each iteration. The resulting

distributions of investment and welfare differences give an impression of the sensitivity of

our results to changes in the parameters. In the following we provide some details on the

relevant ranges of our cost and demand parameters.

Market demand: To construct fluctuating market demand, we start with hourly market

prices (from the European Energy Exchange (EEX)33) and hourly quantities consumed

(from the Union for the Co-ordination of Transmission of Electricity (UCTE)34) for the

year 2006. We chose the value of b in line with other studies on energy markets. Most

studies that estimate demand for electricity35 find short run elasticities between 0.1 and

0.5 and long run elasticities between 0.3 and 0.7. The relevant range of prices is around

P = 100 ¿/MWh and corresponding consumption is approximately Q = 50 GW. In our

simulations we thus use a uniform distribution of b on the interval [0.004, 0.007], which

corresponds to elasticities between 0.5 and 0.29. In order to illustrate our results concerning

welfare maximizing caps on scarcity prices as analyzed in section 5 we fit a shifted Weibull

distribution over the observed frequencies.

Production cost: The major components of variable production cost are gas prices36 and

prices for CO2 emission allowances.37 The average TTF gas price in 2006 was 20 ¿/MWh

and CO2 permissions traded on average for 9.30 ¿/MWh.38 The efficiency of gas turbines

currently ranges at around 37, 5%.39 The resulting daily production cost for the year 2006

was on average 66.30 ¿/MWh. In order to assess robustness of our results, however, we

consider uniformly distributed errors (±10%) and thus consider average marginal cost to

be in the interval [59.67, 72.93] ¿/MWh.

33See www.EEX.com
34See www.UCTE.org
35See, for example, Lijsen (2006) for an overview of recent contributions on that issue.
36Daily values from the Dutch Hub TTF, corrected for transportation cost.
37Daily data taken from the EEX. The emission-coefficient for natural gas is set by the German ministry

of environment at 56t CO2/TJ which corresponds to 0.2016t CO2/MWh.
38Recall that we do not use the averages but the daily values in our simulation.
39See Gas Turbine World Handbook (2006).
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Figure 1: Total Industry investment over caps on scarcity prices for different degrees of

concentration. Means and 95%-confidence intervals.

Investment Cost: Since we analyze investment incentives based solely on one year, we

break down investment cost to annuities.40 In order to take construction time of gas turbine

plants into account, we consider investment cost on the basis of data from the year 2000.

We assume perfect foresight, i.e. all cost components have been predicted accurately by the

firms at the time of their investment decision. We base investment cost on the following two

studies: First, a study on the German energy market commissioned by the German Par-

liament, with scenarios for investment decisions summarized in Weber and Swider (2004).

Second, Energiereport III, a study conducted by the Institute of Energy Economics EWI

(2000) for the German Ministry of Economics. Based on those studies we determine a

plausible range of relevant annuities given by [28558, 39692] ¿/MWa.

Results: We determine industry capacity choice for different number of firms, and for

different caps on scarcity prices. Figure 1 shows mean values (solid black lines) and 95%

confidence intervals for industry capacity choice as a function of those caps (for different

number of firms). We observe that especially for concentrated markets surprisingly low

caps lead to a dramatic increase of total industry investment (in the case of duopoly total

40The results will thus only yield a benchmark for current profitability of investment. Provided, however,
that yearly demand is increasing over time (and that strategic timing of investment is not an issue) our
procedure should yield accurate predictions, even though once installed capacities cannot be removed the
subsequent year.

18



investment is increased by up to 30%). Observe furthermore that, in line with the findings

of theorem 3 (and the existing literature, e.g. see Joskow (2007)), for the case of perfect

competition any binding cap leads to reduced industry capacity. We observe that caps

below 260 ¿/MWh increase industry capacity for any market structure based on up to 20

firms.

We then analyze the impact of limiting scarcity prices on overall welfare. The left graph of
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Figure 2: Left: Welfare over caps on scarcity prices for different degrees of concentration.

Right: Optimal caps over market concentration. Means and 95%-confidence intervals.

figure 2 shows mean values (solid black lines) and 95% confidence intervals for Welfare41 as a

function of caps on scarcity prices (for different number of firms). The right graph of figure

2 gives welfare maximizing caps as a function of the number of firms in the industry. We

observe that caps below 260 ¿/MWh increase industry capacity for any market structure

based on up to 20 firms. For concentrated markets we find surprisingly low optimal caps

at around 110 ¿/MWh for the case of up to 4 firms in the industry. The empirical results

show that the impact of choosing appropriate caps on scarcity prices can be substantial,

the range of caps having those beneficial properties is rather large.

41Notice that all values are normalized with respect to welfare generated in the first best scenario, which
is given by roughly 100 bn ¿.
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7 Conclusion

In this article we have analyzed the impact of restricting scarcity prices in markets with

fluctuating demand and its implications for investment decisions of strategic firms. Espe-

cially during hours of high demand and tight supply many of those markets are suspected

to be subject to the exercise of market power (with a prominent example beeing electricity

markets). Caps on scarcity prices have been proposed and are currently used in order to

mitigate this exercise of market power. In the short run, when firms’ investment decisions

can be assumed to remain fixed, there is undisputed consensus regarding the impact of such

caps. They reduce firms’ incentives to withhold production and are thus considered to be

a powerful tool to discipline market power. As an increasing number of experts in the field

points out there seems to be a trade–off to be solved when also taking into account firms’

investment incentives in the long run. In a competitive market scarcity prices, which result

during the hours of high demand and tight supply, convey optimal investment signals to

firms. Restricting those price spikes leads to the so called problem of missing money, and

to suboptimal investment activity of firms (see Hogan (2005), or Joskow (2007)).

It has been the purpose of the present article, to contribute to this discussion, by

precisely modeling investment behavior of strategic firms. The rationale for doing so is

straight forward: If firms are suspected to behave strategically at the spot markets (being

the sole justification for the currently active caps in those markets), then it seems natural

to consider firms to also behave strategically when making their investment decisions. We

furthermore established that a meaningful contribution to the discussion of missing money

necessarily has to take into account fluctuating demand at several spot markets.42

In the present article we thus did analyze investment decisions of strategic firms in two

different technologies (i.e. base–load and peak–load) for the case of fluctuating demand43

at several spot markets. In section 3 we first characterized the market equilibrium for

investment in both technologies for a given cap on scarcity prices and deriveed its existence

and uniqueness. We then showed in section 4 that appropriately chosen caps always lead to

an increase of investment in the peak–load technology (k, c), leaving investment in the base–

load technology (k1, c1) unaffected. We characterized them and also derived the optimal

cap. That is, if firms are suspected to have market power in a market with fluctuating

demand and a cap on scarcity prices is put in place to mitigate the exercise of market

42Also compare footnote 9.
43Firms could furthermore be uncertain regarding the precise pattern of fluctuations at the time of

making their investment.
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power at the spot market, then an appropriately chosen cap does not lead to a reduction of

firms’ investment incentives. Unlike suggested in the current discussion of missing money

and suppressed scarcity rents, this implies that for strategic investment choice there is no

trade-off to be solved between the long run and the short run perspective.

Since the problem of missing money has been discussed extensively in the context of

investment decisions in recently liberalized electricity markets, we then quantified desirable

and optimal caps on scarcity prices for the case of a specific electricity market (the German

market). We found a surprisingly large interval of caps leading to a substantial increase of

total investment for almost any market structure. Those results confirmed the relevance

of our framework for the currently rather intensive discussion of proper design of caps on

scarcity prices in those markets.44
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FERC (2000). Federal Energy Regulatory Commissions Order, 92 FERC 61,073.

FERC (2000b). Federal Energy Regulatory Commissions Order, 92 FERC 61,112.

FERC (2009). Federal Energy Regulatory Commissions Order, 127 FERC 61,156.

Gas Turbine World Handbook (2006). Vol. 25, Pequot Publishing, Inc.

von der Fehr, N.-H. and D. Harbord (1993). Spot Market Competition in the UK

Electricity Industry. Economic Journal 103 (418), 531 – 46.

Green, R.J. and D. Newbery (1992). Competition in the British Electricity Spot

Market. Journal of Political Economy 100 (5), 929 – 53.

Hogan, W. (2005). On an Energy Only Electricity Market Design for Resource Ade-

quacy. Harvard working paper series.

Joskow, P. , and J. Tirole (2007). Reliability and competitive electricity markets.

Rand Journal of Economics, 38, 60–84.

Joskow, P. (2007). Competitive Electricity Markets and Investment in New Generat-

ing Capacity. The New Energy Paradigm (D. Helm, Editor). Oxford Univ. Press.

Kreps, D. and J. Scheinkman (1983). Quantity Precommitment and Bertrand Com-

petition Yield Cournot Outcomes. Bell Journal of Economics, 14, 326–337.

Laffont, J.-J. and J. Tirole (1993). A Theory of Incentives in Procurement and

Regulation. MIT Press.

Lijsen, M. (2006). The Real-Time Price Elasticity of Electricity. Energy Economics,

29, 249–258.

Pint, E. (1992). Price cap versus rate-of-return regulation in a stochastic cost model.

Rand Journal of Economics 23, 564–578.

Roques, F. and N. Savva (2006). Price Cap Regulation and Investment Incentives

under Demand Uncertainty. University of Cambridge working paper CWPE 0636.

Walsh, C. (2001). Worst may be Ahead for West Coast Power Market, Dow Jones

Newswires, May 23.

22



Weber, C. and D. Swider (2004). Power Plant Investments Under Fuel and Carbon

Price Uncertainty, mimeo.

Wolfram, C. (1999). Measuring Duopoly Power in the British Electricity Spot Market.

American Economic Review, 89, 805–26.
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Appendix

Proof of Theorem 1

I) Spot Market Equilibria. We first determine the equilibrium which obtains at a
given spot market θ and given investment choices x. Note that we have to consider also
asymmetric investments, w.l.g. we order firms according to their investment levels, i. e. x1 ≤
x2 ≤ · · · ≤ xn. Depending on their investment–choices and on demand at the spot market
θ, firms produce either the unconstrained Cournot–output, or are capacity constrained by
their investment decision. Consider a spot market θ, where firms i = 1, . . . , m are capacity
constrained, producing their invested capacities xi. Firms i = m + 1, . . . , n produce their
unconstrained Cournot output y. We first define the range of spot markets θ ∈ [θ̃X

m, θ̃X
m+1],

where this is indeed the case. Critical demand realizations θ̃X
m solve:

P

(
m∑

i=1

xi + (n−m)xm, θ̃X
m

)
+ Pq

(
m∑

i=1

xi + (n−m)xm, θ̃X
m

)
xm = c.

Output y of unconstrained firms at the spot markets θ ∈ [θ̃X
m, θ̃X

m+1] solves:

P

(
m∑

i=1

xi + (n−m) y, θ

)
+ Pq

(
m∑

i=1

xi + (n−m) y, θ

)
q̃Cm
i = c.

We denote the spot market output of each player by q̃i(x, θ) = min{xi, y}, industry output

is then given by Q̃(x, θ) =
∑n

i=1 q̃i. Profit of firm i in a spot market θ ∈ [θ̃X
m, θ̃X

m+1] is given

as follows:

π̃m
i =

(
P (Q̃(x, θ), θ)− c

)
q̃i(x, θ).

If demand at a spot market is high and capacity is binding, prices will rise, leading to

scarcity prices. We consider caps designed to limit those scarcity prices. We denote by

θ̃p̄(x) = {θ : p̄ = P (X, θ)} the spot market realization, where the cap starts to be binding.

Profits of firm i in spot market θ ∈ [θ̃p̄, θ] are given by:

π̃p̄
i = (p̄− c) q̃i(x, θ).
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The results obtained for the spot market equilibria enable us to derive firm i’s profit

when investing xi in technology (k, c), given that the other firms invest x−i and output at

the spot markets is given by q̃(x, θ) for θ ∈ [θ̃X
m, θ̃X

m+1]. A firm’s profit from given levels

of investments, x, is the integral over equilibrium profits at each θ given x on the entire

domain of spot market realizations [θ, θ]. In order to simplify the exposition we define

θ̃X
0 := θ and θ̃X

n+1 := θ̃p̄. Then, the profit of firm i can be written as follows

πi(x) =
m=n∑
m=0

∫ θ̃X
m+1

θ̃X
m

π̃m
i (x, θ)dF (θ) +

∫ θ

θ̃p̄

π̃p̄
i (x, θ)dF (θ)− kxi. (8)

Note that at each critical value θ̃X
m, m = 1, . . . , n it holds that π̃m−1

i (x, θ̃X
m) = π̃m

i (x, θ̃X
m).

Thus, πi(x) is continuously differentiable. Differentiating πi(x) yields45

dπi (x, q̃)

dxi

=
n∑

m=i

∫ θ̃X
m+1(x)

θ̃X
m(x)

dπ̃m
i (x, θ)

dxi

dF (θ) +

∫ θ

θ̃p̄(x)

dπ̃p̄
i (x, θ)

dxi

dF (θ)− k (9)

II) Existence Symmetric Equilibrium. In the following we show that a symmetric
equilibrium of the investment game exists, and that equilibrium choices x∗i = 1

n
X∗, i =

1, . . . , n, are defined by equation (2). For this purpose it is sufficient to show quasiconcavity
of firm i’s profit given the other firms invest x∗−i, πi(xi, x

∗
−i), which we do in the following.

Note that πi(xi, x
∗
−i) is defined piecewisely. For xi ≤ x∗i , we have to examine the profit of

firm 1 (by convention the lowest capacity firm) given that x2 = x3 = · · · = xn. Since this
implies that θ̃X

2 = · · · = θ̃X
n and thus it follows from (8) that

π1(x1, x
∗
−1) =

∫ θ̃X
1 (x)

θ

π̃0
1(x, θ)dF (θ) +

∫ θ̃X
n (x)

θ̃X
1 (x)

π̃1
1(x, θ)dF (θ) (10)

+
∫ θ̃p̄

θ̃X
n (x)

π̃n
1 (x, θ)dF (θ) +

∫ θ

θ̃p̄

π̃p̄
1(x, θ)dF (θ)− kx1

For xi ≥ x∗i , the profit of firm i is the profit of the highest capacity firm (firm n according
to our convention), given all other firm have invested the same, i. e. x1 = · · · = xn−1.

πn(xn, x∗−n) =
∫ θ̃X

n−1(x)

θ

π̃0
n(x, θ)dF (θ) +

∫ θ̃X
n (x)

θ̃X
n−1(x)

π̃n−1
n (x, θ)dF (θ) (11)

+
∫ θ̃p̄

θ̃X
n (x)

π̃n
n(x, θ)dF (θ) +

∫ θ

θ̃p̄

π̃p̄
n(x, θ)dF (θ)− kx1

45Note that continuity of π̃i implies that due to Leibnitz’ rule the derivatives of the integration limits
cancel out. Moreover, π̃m

i only changes in xi if firm i is constrained, i. e. i ≤ m. Thus, the sum does not
include the cases where firm i is unconstrained, i. e. m < i.
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(i) For xi ≥ x∗i , the second derivative of the profit function πn is given by:

d2πn

(dxn)2
= −dθ̃X

n (x)
dxn

[
dπ̃n

n(x, θ̃X
n )

dxn

]

︸ ︷︷ ︸
=0 (xn is opt. atθ̃X

n )

f(θ̃X
n ) +

∫ θ̃p̄

θ̃X
n (x)

d2π̃n
n(x, θ)

(dxn)2︸ ︷︷ ︸
<0 by A1 part (iv)

f(θ)dθ < 0. (12)

Note that the first term cancels out and the second term is negative by concavity of the

spot market profit function (implied by assumption 1). We find that for xi ≥ x∗i , πi(xi, x
∗
−i)

is concave, which implies that upwards deviations are not profitable.

(ii)For xi ≤ x∗i , the second order condition is more difficult to analyze since the profit

function π1(x1, x
∗
−1) is not concave. We can, however, show quasiconcavity of π1(x1, x

∗
−1).

For this purpose we need property 1 in order to complete the proof of existence (part I).

We can show quasiconcavity of π1(x1, x
∗
−1) by showing that

dπ1(x
0
1, x

∗
−1)

dx1

>
dπ1(x

∗
1, x

∗
−1)

dx1

= 0 for all x0
1 < x∗1.

This holds true, since [compare also equation (9)]

dπ1(x0
1, x

∗
−1)

dx1
=

∫ θ̃X
n (x0

1,x∗−1)

θ̃X
1 (x0

1,x∗−1)

dπ̃1
1(x0

1, x
∗
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸
≥0 by property 1, part (i)

+
∫ θ̃p̄

θ̃X
n (x0

1,x∗−1)

dπ̃n
1 (x0

1, x
∗
−1, θ)

dx1
dF (θ)

≥
∫ θ̃p̄

θ̃X
n (x0

1,x∗−1)

dπ̃n
1 (x0

1, x
∗
−1, θ)

dx1
dF (θ)

=
∫ θ̃X

n (x∗−1,x∗−1)

θ̃X
n (x0

1,x∗−1)

dπ̃n
1 (x0

1, x
∗
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸
≥0 by property 1, part (ii)

+
∫ θ̃p̄

θ̃X
n (x∗1 ,x∗−1)

[
dπ̃n

1 (x0
1, x

∗
−1, θ)

dx1
− dπ̃n

1 (x∗1, x
∗
−1, θ)

dx1

]
dF (θ)

︸ ︷︷ ︸
>0 by property 1, part (ii)

+
∫ θ̃p̄

θ̃X
n (x∗1 ,x∗−1)

dπ̃n
1 (x∗1, x

∗
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸
=

dπi(x∗)
dxi

=0 [recall that θ̃X
1 (x∗)=θ̃X

n (x∗)]

≥ 0.

To summarize, in part II) (i) and (ii) we have shown that πi(xi, x
∗
i ) is quasiconcave. We

conclude that the first order condition given in theorem 1 indeed characterizes equilibrium

investment in technology (k, c).

Property 1 [Properties of Marginal Profits at the Spot Markets] Suppose

all firms but firm 1 have invested symmetric capacities summarized in the vector x0
−1. Firm

1 has invested x1, less than each of the other firms. We obtain:
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(i)
dπ̃1

1(x0
1,x0

−1,θ)

dx1
≥ 0 for θ̃X

1 ≤ θ ≤ θ̃X
n .

(ii)
dπ̃n

1 (x′1,x0
−1,θ)

dx1
≥ dπ̃n

1 (x′′1 ,x0
−1,θ)

dx1
≥ 0 for x′1 < x′′1, θ̃X

n ≤ θ ≤ θ.

Proof (i) The first part holds due to the fact in case firm 1 is constrained, i. e. (θ ≥ θ̃X
1 ),

firm 1 would like to produce more than x1 for all demand realizations θ ≥ θ̃X
1 , which,

however, is not possible due to the capacity constraint.

(ii) The first inequality follows from concavity of the profit functions in the spot markets,

which is implied by assumption 1. Thus, the first order condition at each spot-market is

decreasing in x1 until q̃1, which immediately yields the first inequality of part (ii). The

second inequality is due to the fact that in case all firms are constrained, i. e. (θ ∈ [θ̃X
n ,∞]),

firm 1 would like to produce more for all demand realizations θ (which is not possible

because it is constrained). ¤

III) Uniqueness of the Equilibrium. We now show that (i) x∗ is the unique symmetric

equilibrium and (ii) that there are no asymmetric equilibria.

(i) x∗ is the unique symmetric equilibrium. If capacities are equal, i. e. x0
1 = x0

2 =
· · · = x0

n, we have

dπi(x0)
dxi

=
∫ θ̃p̄

θ̃X
n (x0)

[P (nx0
i , θ) + Pq(nx0

i , θ)x
0
i − c]f(θ)dθ +

∫ θ

θ̃p̄

[p̄− c]f(θ)dθ − k.

Differentiation yields46

d2πi(x0)
(dxi)2

=
∫ θ̃p̄

θ̃X
n (x0)

[
(n + 1)Pq(nx0

i , θ) + nPqq(nx0
i , θ)x

0
i − Cqq(x0

i , θ)
]
dF (θ)−Kxx(x0

i ) < 0,

which is negative due to assumption 1. Thus, since dπi(x
∗)

dxi
= 0 and moreover πi(x) is

concave along the symmetry line, no other symmetric equilibrium can exist.

(ii) There cannot exist an asymmetric equilibrium. Any candidate for an asymmetric

equilibrium x̂ can be ordered such that x̂1 ≤ x̂2 ≤ · · · ≤ x̂n, where at least one inequality

has to hold strictly. This implies x̂1 < x̂n. The profit of firm n can be obtained by setting

i = n in equation (8), and the first derivative is given by

dπn

dxn

=

∫ θ̃p̄

θ̃X
n (x)

dπ̃n
n(x, θ)

dxn

f(θ)dθ +

∫ θ

θ̃p̄

(p̄− c) f(θ)dθ − k.

It is easy to show that firm n’s profit function is concave by examination of the second

derivative [see equation (12)]. Thus, any asymmetric equilibrium x̂, if it exists, must satisfy

46Differentiation works as in (12).
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dπn(x̂)
dxn

= 0. We now show that whenever it holds that dπn(x̂)
dxn

= 0, firm 1’s profit is increasing

in x1 at x̂ (which implies that no asymmetric equilibria exist).

From equation (9) it follows that the first derivative of firm 1’s profit function is given by

dπ1

dx1

=

∫ θ̃X
2 (x)

θ̃X
1 (x)

dπ̃1
1(x, θ)

dx1

f(θ)dθ + · · ·+
∫ θ̃p̄

θ̃X
n (x)

dπ̃n
1 (x, θ)

dx1

f(θ)dθ +

∫ θ

θ̃p̄

(p̄− c) dF (θ)− k.

Note that all the integrals in dπ1

dx1
are positive since firm 1 is constrained at all demand

realizations and therefore would want to increase its production. Thus, we have

dπ1

dx1
>

∫ θ̃p̄

θ̃X
n (x)

dπ̃n
1 (x, θ)
dx1

dF (θ) +
∫ θ

θ̃p̄

(p̄− c) dF (θ)− k,

where the RHS are simply the last three terms of dπ1

dx1
. Now we can conclude that

dπ1(x̂)
dx1

>

∫ θ̃p̄

θ̃X
n (x̂)

dπ̃n
1 (x̂, θ)
dx1

dF (θ)+
∫ θ

θ̃p̄

(p̄− c) dF (θ)−k >

∫ θ̃p̄

θ̃X
n (x̂)

dπ̃n
n(x̂, θ)
dxn

dF (θ)+
∫ θ

θ̃p̄

(p̄− c) dF (θ)−k = 0.

The last equality is due to the fact that this part is equivalent to the first order condition of

firm n, which is satisfied at x̂ by construction. To summarize, we have shown that dπ1

dx1
> 0,

which implies that there exist no asymmetric equilibria, since at any equilibrium candidate,

firm 1 has an incentive to increase its capacity.

Proof of Theorem 2

I) Spot Market Equilibria. For given investment choice (x1, x), the spot market equi-
libria are determined analogously to appendix 7, when analyzing the case of investment in
a single technology. Notice, however, that for the case of investment in two technologies,
marginal cost of production are not constant, but given by a step function as character-
ized by expression 1. Additionally to the critical spot market realizations introduced in
appendix 7, we have to define those demand realizations, where investment in technology
(k1, c1) starts and stops to be binding for each firm. We denote by θ̃X1

l the demand realiza-
tion, when firm l = 1, . . . , n starts to produce the constrained quantity x1

l at marginal cost
c1. We denote by θ̃X

l the demand realization, when firm l stops to produce at marginal cost
c1 of the base–load technology, and decides to produce at marginal cost c of the peak–load
technology. Formally, those critical spot market realizations are defined as follows:

θ̃X1
l : P

(
l∑

i=1

x1
i + (n− l)x1

l , θ̃
X1
l

)
+ Pq

(
l∑

i=1

x1
i + (n− l)x1

l , θ̃
X1
l

)
xl = c1

θ̃
X
l : P

(
l∑

i=1

x1
i + (n− l)x1

l , θ̃
X
l

)
+ Pq

(
l∑

i=1

x1
i + (n− l)x1

l , θ̃
X
l

)
xl = c.

That is, for θ ∈ [θ, θ̃X1
i ] firm i produces its unconstrained Cournot output at marginal cost

of the base–load technology c1. For θ ∈ [θ̃X1
i , θ̃X

i ] firm i produces x1
i , the amount invested
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in the base–load technology, still at marginal cost c1. For θ ∈ [θ̃X
i , θ̃X

i ] firm i produces
again the unconstrained Cournot output, at marginal cost of the peak-load technology c,
however. And finally for [θ̃X

i , θ], firm i produces at its overall capacity bound. Analogous to
expression (9), we can now determine first order conditions for firms’ investment decisions.
For each player i, the derivative wrt x1

i (Investment in technology (k1, c1)) is given by: 47

dπi

(
x1, x

)

dx1
i

=
n∑

l=i

∫ θ̃X1
l+1

θ̃X1
l

dπ̃l
i

(
x1, θ

)

dx1
i

dF (θ) +
i∑

l=1

∫ θ̃
X
l+1

θ̃
X
l

dπ̃l
i

(
x1, θ

)

dxi
dF (θ) +

∫ θ

θ̃
X
i

(c− c1) dF (θ)− (k1 − k) (13)

For each player i, the derivative wrt xi (Investment in technology (k, c)) is given by:48

dπi

(
x1, x

)

dxi
=

n∑

m=i

∫ θ̃X
m+1

θ̃X
m

dπ̃m
i (x, θ)
dxi

dF +
∫ θ

θ̃p̄

dπ̃p̄
i (x, θ)
dxi

dF (θ)− k (14)

We observe that for the case of investment in two technologies, the first order condition

of investment in technology (k, c) remains unchanged. That is, expressions (14) and (9) are

identical, independently of firms’ possibility to also invest in the second technology (k1, c1).

We can thus directly apply the results derived in appendix 7, and conclude that any market

equilibrium where firms can invest in two technologies gives rise to unique and symmetric

total investment x∗, as characterized in expression (3). In order to derive the entire market

equilibrium for the case of two technologies, we now have to analyze firms’ equilibrium

investment in technology (k1, c1).

II) Existence Symmetric Equilibrium The symmetric equilibrium candidate (x∗, x1∗)

is characterized by the first order conditions (3 ) and (4) respectively. As already estab-

lished, firms have no inventive to deviate from total investment choice X∗/n. We have to

verify, however, if some firm i has an incentive to deviate from the candidate investment

x1∗
i = X1∗/n in technology (k1, c1).

(i) We first verify downwards deviations from the candidate, i.e. x1
i ≤ X1∗/n:

The derivative of firm i’s profits for x1
i ≤ X1∗/n is given as follows:

dπi(x1
i , x

1∗
−i)

dx1
i

=

θ̃X1
−i∫

θ̃X1
i

[
P

(
xi, BR−i(x1

i ), θ
)

+
(
1 + BR′−i(x

1
i )

)
Pq

(
x1

i , BR−i(x1
i ), θ

)
x1

i − c1

]
dF (θ) + (15)

θ̃
X
i∫

θ̃X1
−i

[
P

(
x1

i + X1∗
−i, θ

)
+ Pq

(
x1

i + X1∗
−i, θ

)
x1

i − c1

]
dF (θ) +

θ∫

θ̃
X
i

(c− c1) dF (θ)− (k1 − k)

47For a condensed representation of the first derivative, define θ̃X1
n+1 := θ̃

X
1 and θ̃

X
i+1 := θ̃

X
i .

48As in expression (9), for condensed representation, define θ̃X
n+1 := θ̃p̄.

28



The critical demand realizations have been defined above. They characterize those spot

markets, where firm i (or all other firms −i) start to produce at the capacity bound of tech-

nology (k1, c1) (i.e. θ̃X1
i and θ̃X1

−i ). At the demand realization θ̃X
i firm i starts to produce

with technology (k, c). Since we analyze a downwards deviation, firm i will be constrained

for lower demand realizations than its rivals, which play the unconstrained Cournot equi-

librium for θ ∈ [θ̃X1
i , θ̃X1

−i ] (the first integral of expression (15)). The unconstrained Cournot

spot market output of all firms other than i in those scenarios is denoted by BR−i(x
1
i ).

Comparing the first order condition of firm i obtained for the case of downwards devia-

tion with the one obtained in the symmetric candidate given by (4) we can establish:

0 =
dπi(X

1∗)
dx1

i

<
dπi(x

1
i , x

1∗
−i)

dx1
i

.

This result is driven by the following observations:

� The integrand of the first integral of expression (15), is strictly positive, since by

definition, marginal profits of firm i are strictly positive whenever firm i is capacity

constrained. Since furthermore θ̃X1
−i < θ̃X1

i < θ̃X1, the integrand of the corresponding

demand realizations θ equals to zero.

� The integrand (marginal spot market profits) of the second integral of expression

(15) is decreasing in output, since profits are concave in output (see assumption

1). A downwards deviation xi ≤ X1∗/n implies thus a point wise increase for each

corresponding demand realization θ, as compared to expression (4).

We can conclude that downwards deviation from the equilibrium candidate is never

profitable for firm i.

(ii) Analyze upwards deviations from the candidate equilibrium, i.e. x1
i ≥ X1∗/n:

The derivative of firm i’s profits for x1
i ≥ X1∗/n is given as follows:

dπi(x1
i , x

1∗
−i)

dx1
i

=

θ̃
X
−i∫

θ̃X1
i

[
P

(
x1

i + X1∗
−i, θ

)
+ Pq

(
x1

i + X1∗
−i, θ

)
x1

i − c1

]
dF (θ)− (k1 − k) (16)

θ̃
X
i∫

θ̃
X
−i

[
P

(
xi, BR−i(x1

i )θ
)

+
(
1 + BR′−i(x

1
i )

)
Pq

(
x1

i , BR−i(x1
i )θ

)
x1

i − c1

]
dF (θ) +

θ∫

θ̃
X
i

(c− c1) dF (θ)

The critical demand realizations have been defined above. For the spot markets θ ∈
[θ̃X1

i , θ̃X
−i], all firms produce at the capacity bound (x1

i , x
1
−i) of investment in technology

(k1, c1). Since we analyze an upwards deviation of firm i, for higher spot market realizations,
θ ∈ [θ̃X

−i, θ̃
X
i ], firm i can still produce precisely x1

i units with technology (k1, c1), but all other
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firms already produce with the less efficient technology (k, c). Those firms will produce
their unconstrained Cournot output which is denoted by BR−i(x

1
i ). In order to verify

second order conditions we determine the second derivative
d2πi(x

1
i ,x1∗

−i)

(dx1
i )

2 of firm i’s profits for

x1
i > X∗/n. The resulting second order condition reads as follows:

θ̃
X
−i∫

θ̃X1
i

[
2Pq (·) + Pqq (·) x1

i

]
dF (θ) +

θ̃
X
i∫

θ̃
X
−i

[
2Pq (·) (

1 + BR′−i(·)
)

+ Pqq (·) x1
i

(
1 + BR′−i(·)

)2 + Pq(·)x1
i BR′′−i(·)

]
dF (θ)

−dθ̃
X
−i

dx1
i

f
(
θ̃

X
−i

)
Pq(·)x1

i BR′−i(·) +
dθ̃

X
i

dx1
i

f
(
θ̃

X
i

)
Pq(·)x1

i BR′−i(·) < 0. (17)

Due to assumption 1 (and since −1 < BR′
−i(x

1
i ) < 0 and BR′′

−i(x
1
i ) > 0) both integrals of

expression (17) are strictly negative. The critical demand realizations θ̃X1
i and θ̃X

i depend

on marginal cost of production c1 and c respectively. As marginal cost of production c1 and

c of both technologies get infinitely close, θ̃X1
i and θ̃X

i collapse and both integrals vanish,

however. Then concavity of firm i’s profits (for upwards deviation) cannot be ensured for

every distribution of spot market demand49, and the symmetric equilibrium fails to exist,

since firms have an incentive to deviate upwards increasing their investment in technology

(k1, c1). If on the contrary, however, c1 and c are sufficiently different50, the negative sign

of both integrals dominates expression (17). Then concavity of profits can be ensured and

upwards deviation is thus not profitable for firm i.

III) Uniqueness of the Equilibrium We now show that (i) x1∗ is uniquely character-

ized by expression (4), and (ii) that there are no asymmetric equilibria.

(i) Proof that expression (4) indeed uniquely characterizes unique equilibrium investment
x1∗ in technology (k1, c1). We differentiate (4) wrt to symmetric investment x1S to verify
concavity of profits for all symmetric solutions. This yields

d2πi(x1S , x∗)(
dx1S

i

)2 =
∫ θ̃X

θ̃X1

[
(n + 1)Pq(nx1S

i , θ) + nPqq(nx1S
i , θ)x1S

i

]
dF (θ) < 0,

which is negative due to assumption 1. We can conclude that x1∗ is unique.

(ii) There cannot exist an asymmetric equilibrium. Any candidate for an asymmetric equi-

librium x̆1 can be ordered such that x̆1
1 ≤ x̆1

2 ≤ . . . ≤ x̆1
n, where at least one inequality holds

strictly. The first derivative dπ1(x̆1,x∗)
dx1

1
of firm 1’s profit is given by:

49The sign of the sum of the third and fourth term of expression (17) changes with on the precise
distribution of demand at the spot markets.

50To give a simple example: for the case of a uniform distribution F (θ) and linear demand, if c−c1 ≥ 1
13 ,

then condition (17) is satisfied for all x1
i ≤ X∗/n.
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θ̃X1
2∫

θ̃X1
1

[
P

(
x̆1

1, BR−1(x̆1
1)θ

)
+

(
1 + BR′−1(x̆

1
1)

)
Pq (·) x̆1

1 − c1

]
dF (θ) +

θ̃X1
3∫

θ̃X1
2

. . . dF (θ) (18)

+ . . . . . . +

θ̃X1
n∫

θ̃X1
(n−1)

. . . dF (θ) +

θ̃
X
1∫

θ̃X1
n

[
P

(
X̆1, θ

)
+ Pq (·) x̆1

1 − c1

]
dF (θ) +

θ∫

θ̃
X
1

(c− c1) dF (θ)− (k1 − k)

The first derivative dπn(x̆1,x∗)
dx1

n
of firm n’s profit is given by:

θ̃
X
1∫

θ̃X1
n

[
P

(
X̆1, θ

)
+ Pq (·) x̆1

n − c1

]
dF (θ) +

θ̃
X
2∫

θ̃
X
1

[
P

(
x̆1

n, BR−n(x̆1
n), θ

)
+

(
1 + BR′−n(x̆1

n)
)
Pq (·) x̆1

n − c1

]
dF (θ)

+

θ̃X
3∫

θ̃
X
2

. . . dF (θ) + . . . +

θ̃X
n∫

θ̃
X

(n−1)

. . . dF (θ) +

θ∫

θ̃
X
n

(c− c1) dF (θ)− (k1 − k) (19)

In order to proof nonexistence of an asymmetric equilibrium, we show that x̆1
n cannot be

optimal for firm n, given x̆1
1 is the optimal choice of firm 1. Consider investment x̆1

n of firm

n in technology (k1, c1) and analyze the impact of firm n lowering its investment level to

x1
n < x̆1

n. As we show, this always leads to an increase of marginal profits of firm n.

For concave profits as established in expression (17), deviations x̆1
n−1 ≤ x1

n < x̆1
n always

lead to an increase of marginal profits of firm n. A further decrease to x̆1
n−2 ≤ x1

n < x̆1
n−1

will have a positive impact on marginal profits through two channels: First, a reduction

of investment levels above x̆1
n−2 leads to an increase of marginal profits of firm i due to

concavity established in expression (17). Second a reduction of investment levels below

x̆1
n−1 leads to an increase of marginal profits of firm i (compare part II) of this proof).

We proceed analogously in order to establish an increase of firm n’s marginal profits

as x1
n is further reduced to x̆1

n−2 ≤ x1
n < x̆1

n−1. Such reduction of the investment x1
n of

firm n in technology (k1, c1) is then carried through till x1
n = x̆1

1. Since for the asymmetric

candidate equilibrium the inequality x̆1
1 < x̆1

n is strict, we can conclude that marginal profits

of firm n are strictly higher when choosing x1
n = x̆1

1 and not x1
n = x̆1

n. Since an asymmetric

equilibrium has to satisfy dπ1(x̆1,x∗)
dx1

n
= 0, marginal profits when choosing x1

n = x̆1
n will be

strictly lower, becoming necessarily negative. To sum up, whenever it is optimal for firm 1

to choose x̆1
1, it cannot be optimal for firm n to indeed choose x̆1

n > x̆1
1, since it could strictly

increase its profits by reducing its investment by choosing x1
n < x̆1

n. We can conclude that

an asymmetric equilibrium cannot exist.
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Proof of Theorem 3

The proof of existence and uniqueness for the case of perfect competition follows the same

lines as the proof in case of oligopoly. Moreover under the hypothesis of price taking

behavior, firms will not change their output in response to changed investment decision of

its rivals. More specifically concavity of profits can always be ensured, the second order

condition for upwards deviation, as given by expression (17), is always satisfied, there always

exists a unique and symmetric competitive market equilibrium given by (5) and (6).

In order to prove the second part of the theorem, we derive welfare optimal total in-

vestment XFB and show that it coincides with the solution under perfect competition in

the absence of a cap. Welfare given x and p̄ is

W (x, p̄) =

θ̂X(x)∫

θ

Q∫

0

(P (y, θ)− c) dydF (θ) +

θ∫

θ̂X(x)

X∫

0

(P (y, θ)− c) dydF (θ)− nK

(
X

n

)

Thus, welfare is maximized at

XFB =





X :

θ∫

θ̂X(x)

(P (X, θ)− c) dF (θ) = k





. (20)

Note that this coincides with the solution under perfect competition for θ̂p̄(x) = θ, i. e. for

a non–binding cap. Pointwise comparison of expressions (5) and (20) directly reveals that

for any fixed X the LHS of (5) is smaller than the LHS of (20) for all binding caps. This

yields lower industry capacity choice under perfect competition for any binding cap than

in the first best solution.

Proof of Theorem 4

1) Investment: First we show X∗(p̄) > X∗∞ for all p̄ ∈ [MR, ρ̄∞]. Denote equilibrium

production in absence of a cap by X∗∞ := X∗(ρ̄∞), which solves the following first order

condition:

θ∫

θX(x∗∞)

[
P (X∗∞, θ) + Pq (X∗∞, θ)

X∗∞

n
− c

]
dF (θ)− k = 0 (21)

Remember MR is defined to be given by MR =
[
P (X∗∞, θ) + Pq (X∗∞, θ) X∗∞

n
− c

]
θ=θ

,

which is the highest value the integrand of expression (21)can take. In order to prove
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that a cap p̄ ∈ [MR, ρ̄∞] increases equilibrium capacity choice, we compare pointwise the

first order condition without cap (given above by (21)) with the first order condition with

binding cap as given by expression (2):

θp̄(x∗)∫

θX∗ (x∗)

[
P (X∗, θ) + Pq (X∗, θ)

X∗

n
− c

]
dF (θ) +

θ∫

θ̃p̄(x∗)

(p̄− c) dF (θ)− k = 0 (22)

By construction of MR, for any fixed value X0, the LHS of (22) is strictly bigger than

the LHS of (21). Since profits of firms along the symmetry line are concave and cost of

investment weakly convex, both expressions (22) and (21) are strictly decreasing in X.

This implies however that condition (22) can only be satisfied for strictly bigger investment

levels than (22), which proofs X∗(p̄) > X∗∞ for all p̄ ∈ [MR, ρ̄∞].

2) Welfare: In order to show that total welfare always increases if a cap p̄ ∈ [MR, ρ̄∞] is

chosen (as compared to the case without a cap) we just need to show that from a welfare

perspective investment chosen by strategic firms for a given cap are always below the welfare

maximizing level and thus any increase in total capacity increases welfare.

Welfare maximizing capacity choice solves expression (20) and equilibrium investment

of strategic firms for any binding cap on scarcity prices solves (22). As above we observe

that for any fixed investment level X0, the LHS of (20) is strictly bigger than the LHS

of (22), since the LHS of both expressions are decreasing in capacity choice X, first best

capacity choice is strictly bigger than capacity choice of strategic firms for any cap.

3) Consumer Surplus: Since production is always increasing for any cap p̄ ∈ [MR, ρ̄∞]

(as compared to the case without a cap), consumer surplus also increases.

4) Average Prices: We show that average prices decrease in the relevant range. For a

given X∗(p), average prices are uniquely given by

E

[
P

]
=

∫ θX(x∗(p̄))

θ

0dF (θ) +

∫ θp̄(x∗(p̄))

θ̃X(x∗(p̄))

P (X∗(p), θ)dF (θ) +

∫ θ

θp̄(x∗(p̄))

pdF (θ). (23)

If we lower caps from ρ̄∞ to some p̄0 ∈ [MR, ρ̄∞], average prices are affected as follows.

For the limits of integration in (23) we obtain θX(x∗(p̄)) and θp(x∗(p̄)) increase. For the

integrands we obtain P (X∗∞, θ) > P (X∗(p̄), θ) and ρ̄∞ > p̄0. Thus, average prices decrease.
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Proof of Theorem 5

We proof the theorem by showing that ̂̄p∞ = MR under the assumptions of the theorem.

This allows then to apply theorem 4. In other words we show that in absence of a cap, the

perfectly competitive equilibrium price just equals marginal equilibrium revenue:

P (X∗
PC , θ) = P (X∗∞, θ) + Pq(X

∗∞, θ)
X∗∞

n
∀ θ ∈ [θ̃X(x∗∞) = θX(x∗∞), θ],

Thus, setting the highest price observed in the perfectly competitive benchmark is equiv-

alent to setting the lowest price from the interval of welfare increasing caps identified in

theorem 4.

In order to do so we show that for undistorted scarcity prices the equilibria of the

market game under perfect competition and the Cournot market game can be character-

ized by the same condition. To this end, define T (XFB) := P̃ (XFB) and T (X∗∞) :=

P̃ (X∗∞) + P̃q(X
∗∞)X∗∞

n
(recall XFB denotes first best equilibrium quantity, while X∗∞

denotes the market outcome for uncapped scarcity prices). Observe that the unique equi-

librium production in both cases is characterized by the following equation,

θ∫

θ̃T

(a(θ) + b(θ)T − c) dF (θ) = k, (24)

where θ̃T = {θ : a(θ) + b(θ)T = c}.
Thus both, the solution under perfect competition and under imperfect competition

involve an identical value T ∗ solving (24). For all θ ∈ [θT ∗ , θ] we obtain

a(θ) + b(θ)T ∗ = P (X∗
PC , θ) = P (X∗∞, θ) + Pq(X

∗∞, θ)
X∗∞

n
.

Proof of Theorem 6

Welfare generated in the market equilibrium is given as follows:
∫ θ̃X(x)

θ

[∫ Q

0

(P (Y, θ)− c)Y dY

]
dF (θ) +

∫ θ̃p̄(x)

θ̃X(x)

[∫ X∗

0

(P (Y, θ)− c)Y dY

]
dF (θ) +

∫ θ

θ̃p̄(x)

[∫ X∗

0

(p̄− c)Y dY

]
dF (θ)− kX∗ (25)

In order to derive the optimal pricecap p̄∗ we form the first derivative of (25) with
respect to p̄, which yields after rearranging:

dX∗(p̄)
dp̄

(∫ θ̃p̄(x)

θ̃X(x)

[∫ X∗

0

(P (X, θ)− c)XdX

]
dF (θ) +

∫ θ

θ̃p̄(x)

[∫ X∗

0

(p̄− c)XdX

]
dF (θ)− c

)
= 0
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As established in theorem 3, total investment X∗ always remains strictly below the first

best level, marginal Welfare (i.e. the term in brackets) is thus strictly positive for any cap

p̄. Accordingly, the welfare maximizing cap solves dX∗
dp̄

= 0. In the following we derive the

optimal cap p̄∗ as a solution to dX∗
dp̄

= 0 and show its uniqueness.

We first derive properties and slopes of θ̃p̄(x, p̄). Notice that at the demand realization

where the cap is met in equilibrium we obtain

P (X, θ̃p̄(x, p̄)) ≡ p̄ (26)

We determine the partial derivative of (26) with respect to p̄ given some fixed X,51

∂θ̃p̄(x, p̄)
∂p̄

=
1

Pθ(X, θ̃p̄)
= 1.

And then determine the total derivative of (26), evaluated at X∗(p̄),

Pq(·)dX∗(p̄)
dp̄

+ Pθ(·)dθ̃p̄(x∗(p̄), p̄)
dp̄

= 1 ⇔ dθ̃p̄(x∗(p̄), p̄)
dp̄

= 1− Pq(X∗, θ)
dX∗(p̄)

dp̄
.

Characterization of p̄∗ We can apply the implicit function theorem to the equilibrium
condition (4) in order to obtain dX∗(p̄)

p̄
:

dX∗(p̄)
dp̄

= −∂2πi(x, p̄)
∂xi∂p̄

/
∂2πi(x, p̄)
∂xi∂X

=

[
Pq(X∗, θ̃p̄)
Pθ(X∗, θ̃p̄)

X∗(p)
n

f(θ̃p̄) + 1− F (θ̃p̄)

] /
−∂2πi(x, p̄)

∂xi∂X
. (27)

Rewriting equation (27) using the hazard rate yields

dX∗(p̄)
dp̄

=
[
Pq(·)X∗(p)

n
+

1
h(θ̃p̄)

]/[
−∂πi(x, q∗)

∂xi∂X

1
f(θ̃p̄)

]
. (28)

Define ξ(p̄) =
[
−∂πi(x,q∗)

∂xi∂X
1

f(θ̃p̄)

]
. Note that ξ(p̄) > 0 since profits (along the symmetry line)

are concave. Thus, as established above at the welfare maximum satisfies dX∗(p̄)
dp̄

= 0, which

gives the characterization of the optimal cap as stated in the theorem.

In order to show existence and uniqueness of these maximizers, however, we also need to

show that second order conditions are satisfied, namely d2X∗(p̄)
dp̄2

∣∣∣
dX∗(p̄)

dp̄
=0

< 0. Differentiation

of (28) with respect to p̄ yields52

d2X∗(p̄)
dp̄2

=
1

ξ(p̄)2

[(
dX∗(p̄)

dp̄

(
Pqq

X∗(p̄)
n

+ Pq

)
− hθ(θ̃p̄)

h2(θ̃p̄)
dθ̃p̄

dp̄

)
ξ(p̄)− dX∗(p̄)

dp̄
ξ(p̄)ξp̄(p̄)

]

51Note that Pθ = 1, given the assumptions on demand established for theorem 6.
52Notice that Pqθ = Pθθ = 0, given the assumptions on demand established for theorem 6. Furthermore

dθ̃p̄

dp̄ = 1 at dX∗(p̄)
dp̄ = 0, dX∗(p̄)

dp̄ ξi(p̄) is the enumerator of expression (28).
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This can be evaluated at the optimal p̄∗, which satisfies dX∗(p̄)
dp̄

= 0, we obtain

d2X∗(p̄)
dp̄2

∣∣∣∣
dX∗(p̄)

dp̄ =0

= − 1
ξ(p̄)

hθ(θ̃p̄)
h2(θ̃p̄)

< 0.

Thus, under our assumptions all (local) extrema are necessarily maxima. Since we have

local minima at p = ρ̄0 and p = ρ̄∞, we conclude that the above condition characterizes the

unique welfare maximizing cap.

Finally show that the optimal cap p̄∗ is weakly increasing in the number of firms. In
order to do so we start with the unique characterization of the optimal cap as derived above
and given by expression (28). Applying the envelope theorem yields:

dp̄∗(n)
dn

= − ∂

∂n

[
Pq(X∗, θ̃p̄)

X∗

n
+

1
h(θ̃p̄)

]/
∂

∂p̄∗

[
Pq(X∗, θ̃p̄)

X∗(p)
n

+
1

h(θ̃p̄)

]
.

Since at p̄ = p̄∗ we obtain dX∗(p̄)
dp̄

= 0, this simplifies to give:

dp̄∗(n)
dn

= −PqX
∗−1

n2

/
−hθ(θ̃p̄)
h(θ̃p̄)2

dθ̃p̄

dp̄∗
> 0

Notice that the above expression is positive, since (i) the hazard rate is increasing (i.e.

hθ > 0) and (ii) for higher caps the cap starts to be binding for higher demand realizations

(i.e. dθ̃p̄

dp̄∗ > 0).
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