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Abstract. Focusing on adult members of German households, this paper investigates

the determinants of public transit ridership with the aim of quantifying the effects of

fuel prices, fares, person-level attributes, and characteristics of the transit system on

transport counts over a five-day week. The reliance on individual data raises several

conceptual and empirical issues, the most fundamental of which is the large proporti-

on of null values in transit counts. To accommodate this feature of the data, we employ

modeling procedures referred to as zero-inflated models (ZIMs), which order obser-

vations into two latent regimes defined by whether the individual never uses public

transport. The model estimates reveal fuel prices to have a positive and substantial

influence on transit ridership, though there is no evidence for a statistically signifi-

cant impact of the fare. Methodologically, ZIMs are seen to have superior predictive

accuracy over the classical count data models, and thus may serve as the method of

choice when the aim is to predict trip frequency for modes that a large fraction of the

population never uses.
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1 Introduction

Quality control management of manufacturing processes is a typical field where count

data play a major role. When large product samples are drawn for quality control pur-

poses, the number of defect products is usually low, as is clearly desirable from the

perspective of manufacturers. The preponderance of zero counts, which indicates that

the manufactured product fulfills the required quality standards, is therefore a distin-

guishing characteristic of quality control experiments. The classical approach to mo-

deling rarely occurring events, such as a defect manufacturing output, is the Poisson

regression model (PRM), which is based on the well-known Poisson distribution.1

Departing from this classical approach, many other models have been designed

to account for the specific feature of count data for which the concrete values of the

variable of interest are discrete, nonnegative numbers. Apart from the PRM, among

the most popular are the negative binomial regression model (NBRM), as well as the

so-called zero-inflated models (ZIMs), which are particularly appropriate for data sets

with a substantial share of zero counts. There are two common ZIMs, referred to as

the zero-inflated Poisson (ZIP) and the zero-inflated negative binomial (ZINB) models,

both of which are generalizations of the PRM and NBRM.

Using household survey data from Germany, this paper applies zero-inflated mo-

deling approaches to the issue of public transport patronage, another area in which

the outcome of count processes is typically characterized by an overwhelmingly large

number of zero counts. A basic question emerging from this data pattern is whether

a zero count indicates an individual who never uses public transport, or alternatively

the chance event that the individual does not use public transport during the sampling

period. Zero-inflated modeling procedures take particular account of this distinction

1This distribution was developed in 1837 by the French mathematician Siméon Denis POISSON (1781-

1840) and results from the binomial distribution as a limiting case to describe the probability of rare

events. It was the Russian and in Germany living economist and statistician Ladislaus VON BORTKE-

WITSCH (1868-1931), however, who first applied the Poisson distribution for the description of rare

events such as deaths due to horse riding accidents in the Prussian army.
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by ordering observations into two latent regimes defined by whether an individual

never uses public transport and are therefore perfectly appropriate in this instance. By

contrast, both the PRM and NBRM rest on the assumption that the probability for a

positive value of the dependent variable is non-zero for every individual. With the ex-

ception of a handful of studies that mostly focus on accident rates (SHANKER et al. ,

1997, CHIN and QUDDUS, 2003), this feature of unobservable membership in either of

two groups – the group of never-users and its complement – has rarely been addressed

in the transportation literature.

We focus here on the determinants of adult transit ridership, with the specific aim

of quantifying the effects of fuel prices and fares on public transport counts over a five-

day week, while controlling for the effects of person-level attributes and characteristics

of the transit system. A large empirical literature has emerged to address this issue,

but, as with the literature on fuel price elasticities for automobile travel (GRAHAM and

GLAISTER, 2002), elasticity estimates for transit vary widely. Based on a comprehen-

sive survey of the literature, LITMAN (2004) finds short-run elasticity estimates with

respect to the fare varying between -0.2 and -0.5, with a subsequent meta-analysis by

HOLMGREN (2007) finding the short-run elasticity to reach as high as -0.75 for Europe.

The elasticity estimates of fuel prices tend to be lower, but also highly variable, ranging

from 0.05 (LITMAN, 2004) to 0.4 (HOLMGREN, 2007).

As NIJKAMP and PEPPING (1998) note, the most important factor accounting for

the differences in transit estimates is whether aggregate or disaggregate data is used.

As aggregate data makes no allowance for the large variation of individual choices ma-

de in specific circumstances, it typically yields less precise estimates that are, moreover,

more subject to bias. To date, however, the majority of empirical attempts to estimate

price effects have drawn on country-level data or data aggregated at sub-national ad-

ministrative districts, typically from the U.S., with a smaller pool of studies relying on

household-level data. Departing from this reliance, our analysis is predicated on the

notion that transit use is an individual decision, albeit one that is dependent on intra-

household allocation processes. This tack is in line with a growing body of literature

that has identified the importance of socioeconomic factors such as employment sta-

2



tus, gender, and the presence of children in determining mode choice, distance trave-

led, and other aspects of mobility behavior (e.g. PICKUP, 1985, TURNER and NIEMEIER,

1997, KAYSER, 2000, FRONDEL and VANCE, 2009, 2010, and VANCE and HEDEL, 2007).

Among the key findings of our analysis is that ZIMs have superior predictive ac-

curacy over the PRM and NBRM, and thus may serve as the method of choice when the

aim is to predict trip frequency for modes that a large fraction of the population never

uses. The model estimates reveal fuel prices to have a positive and substantial influence

on transit ridership, though we find no evidence for a statistically significant impact

of the fare. In this regard, our findings highlight the importance of referencing both

the coefficients and associated marginal effects when interpreting the results. Due to

the non-linearity of the model, the magnitude and significance level of these estimates

can vary markedly from one another, requiring that inferences be cast in more specific

terms than is conventionally the case.

The following section describes the data base used for estimating individual mo-

bility behavior of adults. Section 3 explicates the econometric methods and model spe-

cifications, followed by the presentation and interpretation of the results in Section 4.

The last section summarizes and concludes.

2 Data

The main data source used in this research is drawn from the German Mobility Panel

(MOP 2010), an ongoing travel survey financed by the Federal Ministry of Transport,

Building, and Urban Affairs. The panel is organized in waves, each comprising a group

of households whose members are surveyed for a period of one week over each of three

years. The data set includes twelve waves of the panel, spanning 1996 through 2007,

and is limited to adult individuals who are at least 18 years old.

In total, the data set contains 8,577 individuals, 5,131 of whom participated in one

year of the survey with the remaining 3,446 participating in two or three years. For this
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latter group, we randomly selected a single year for inclusion in the data set to avoid

repeat observations on the same individual. In this regard, it bears noting that public

transit use and the variables that determine it vary little or not at all over the three

years of the survey, dictating the use of pooled data in model estimation.

Individuals that participate in the survey are requested to fill out a questionnaire

eliciting general household information and person-related characteristics, including

zip code of residence, gender, age, employment status and relevant aspects of ever-

yday travel behavior. In addition to this general survey, the MOP includes a separate

survey focusing specifically on vehicle travel among a 50% sub-sample of randomly se-

lected car-owning households. These households are drawn from the larger MOP-data

set used in the present analysis. This so-called “tank survey” takes place over a rough-

ly six-week period, during which time respondents record sundry automobile-related

information, including the price paid for fuel.

As this variable is a potentially important determinant of transit pass ownership,

it was linked with the larger sample of households in the MOP by using a Geographic

Information System to create a coverage of spatially interpolated fuel prices (in real

terms) for all of Germany. The coverage was then overlaid onto a map of household

locations in the MOP data, thereby allowing for each household to be ascribed the lo-

cally prevailing fuel price. This process was repeated for each year of the data, yielding

a data set of fuel prices that varies over space and time. An accuracy assessment of the

data was undertaken by calculating the yearly average fuel prices and comparing the-

se with those published for the German market by the oil company Aral (2009). The

correspondence between the two sources is tight, deviating by an average of less than

1% over the 1996-2007 time-interval (see FRONDEL and VANCE, 2010).

In addition to fuel prices, another important cost-determinant of transit use is the

fare. Data on this variable was obtained by an internet-based survey that retrieved the

price for a single-trip and monthly ticket for each of the 90 regional transit authorities

in Germany. Each household was then assigned the fare of the transit authority to

which it belongs. Fares, as well as fuel prices, were converted into real terms using
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a consumer price index published by the German Statistical Office (DESTATIS, 2010).2

From the same source, we also obtained a variable measuring the density of transit

service that was merged with the MOP data. This variable is constructed by dividing

the milage of transit travel for all modes by the area of the transit zone.

The remaining suite of variables selected for inclusion in the model measures the

individual and household-level attributes that are hypothesized to influence the allo-

cation of travel expenditures in maximizing utility. Variable definitions and descriptive

statistics are presented in Table 1. As many of these variables could either positively

or negatively affect the use of public transit, it is not always possible to state a prio-

ri which effects are expected to prevail. Negative signs are expected for the variables

that either increase the opportunity- and/or transaction costs of transit use or decrease

these costs for automobile use, including household income, the distance to the nea-

rest transit stop, the fare ticket price, and dummies indicating driver-license holders

and households in which the number of cars equals or exceeds the number of licensed

drivers. Positive signs are expected for variables that are indicative of the availabili-

ty or quality of public transit, including public transit density and the dummies for

residence in a large city and for rail transit service at the nearest transit stop. Higher

fuel prices are also expected to have a positive effect as they encourage the substituti-

on of public transit for private car travel. The inclusion of time dummies in the model

was also explored, but as these were individually and jointly insignificant, they were

excluded from the final specification.

While the included explanatory variables afford reasonably broad coverage of

the determinants of transit use, we cannot completely rule out the possibility that they

are correlated with additional unobserved factors that impact travel. Such correlation

would give rise to endogeneity bias and preclude us from ascribing a causative inter-

pretation to the estimated coefficients. It is plausible, for example, that decisions per-

taining to transit use and residential choice are jointly determined, implying that the

coefficients of the urban form variables are partially picking up the effects of neighbor-

2In the analysis that follows we use the monthly fare price, noting that our qualitative findings do

not change when using the trip-based fare.

5



Table 1: Variable Definitions and Descriptive Statistics

Variable Definition Variable Name Mean Std. Dev.

# public transits during 5-day week y 1.47 3.30

Real fuel price in e per liter real fuel price 1.01 0.12

Real fare for a monthly ticket in e fare 32.40 5.88

Density of the public transit service public transit density 35.44 51.05

Dummy: 1 if person has a high school diploma high school diploma 0.35 0.48

Dummy: 1 if person has a driver license license 0.87 0.34

Age of adult age 48.38 16.00

Dummy: 1 if person is employed in a
full-time or part-time job employed 0.54 0.50

Dummy: 1 if person is female female 0.52 0.50

Net real household monthly income in 1,000 e income 2.363 0.822

Dummy: 1 if number of cars in a household is
at least equal to the number of licensed drivers enoughcars 0.54 0.50

Number of children younger than 10 # children < 10 0.27 0.63

Dummy: 1 if household resides in a large city big city 0.42 0.49

Walking time to the nearest public
transportation stop minutes 5.75 4.95

Dummy: 1 if household has a
private parking space or garage parking space at home 0.76 0.43

Dummy: 1 if household has a
parking space at work parking space at work 0.37 0.48

Dummy: 1 if there is a direct public
direct transit connection to work transit to work 0.16 0.36

Dummy: 1 if the nearest public transportation
stop is serviced by rail transit rail transit 0.13 0.33
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hood preferences. We consequently abstain from making claims about causality, and

instead apply a descriptive interpretation to the estimates.

3 Methodology

The reliance on individual data over a tightly circumscribed time interval raises sever-

al conceptual and empirical issues, the most fundamental of which is the presence of

null values in the data. Slightly less than 75% of the adult individuals in the estimation

sample do not use public transport systems during a given week and for whom the

observation on transit counts is consequently recorded as zero. To accommodate this

feature of the data, we employ modeling procedures referred to as zero-inflated models

(ZIMs) that order observations into two latent regimes defined by whether the indivi-

dual never uses public transport systems. As this kind of model builds on the classical

count data models, we start with a brief description of the Poisson (PRM) and the nega-

tive binomial regression (NBRM) models and highlight the differences between these

classical and the zero-inflated models, thereby following the general outline of CHIN

and QUDDUS (2003).

Zero-inflated models assume that there is a substantial share of individuals with

a zero probability that the dependent variable takes on positive values. For example,

many citizens of rural areas suffer from the unavailability, or impracticability, of public

transport systems, so that they are forced to the exclusive usage of cars for commuting.

When employing the zero-inflated Poisson model (ZIPM) and the zero-inflated nega-

tive binomial model (ZINBM), one accounts for this feature, whereas the PRM and

NBRM rest on the assumption that the probability for a positive value of the depen-

dent variable is non-zero for every observation.
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3.1 Classical Count Data Models

The univariate Poisson distribution is fundamental to understanding count data mo-

dels. On this basis, the relationship between the expected count λ and the probability

of observing any count y is given by

Pr(y|λ) =
λy exp{−λ}

y!
for y = 0, 1, 2, ..., (1)

where the mean E(y) = λ > 0 is the parameter that is uniquely defining this distri-

bution. A limiting characteristic of the Poisson distribution, known as equidispersion,

is that the variance V ar(y) is identical to the expected value: V ar(y) = E(y) = λ. In

practice, though, the variance of many count variables is greater than their mean, a fact

that is called overdispersion.

The Poisson regression model (PRM) extends the Poisson distribution by allow-

ing for each observation i to have a different mean λi. The most common parameteri-

zation of the ideosyncratic means is the loglinear model (GREENE 2003: 740):

λi = E(yi|xi) = exp{xTi β}, (2)

where β is a parameter vector to be estimated and observed heterogeneity is incorpo-

rated by the vector xi, which includes the observable characteristics that determine the

individual number of counts yi. Note that taking the exponential of xTi β in equation

(2) ensures that the expected value λi is positive, which is a natural property of count

data.

While being a useful starting point, the PRM suffers from at least four shortco-

mings. First, it underestimates the number of zero counts, as can be seen from our

empirical example presented in the subsequent section (see Table 2). Second, the PRM

does not fit to real data in the case of overdispersion, i. e. if V ar(y) > E(y). Third, the

standard errors pertaining to the PRM estimates are biased downward, resulting in

spuriously large z-values and small p-values (CAMERON, TRIVEDI, 1986:31). Fourth,

the PRM does not account for unobserved heterogeneity. These failures are circumven-

ted by the NBRM, which addresses the last point by adding an error term εi that is
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assumed to be uncorrelated with the factors included in xi:

λ̃i = E(yi|xi) = E(exp{xTi β + εi}) = exp{xTi β}E(δi), (3)

where δi := exp{εi}. By assuming that E(δi) = 1, which corresponds to the assumption

E(εi) = 0 of the classical linear regression approach, the model is identified. From this

assumption, it follows that the PRM and NBRM have the same mean structure:

λ̃i = exp{xTi β}E(δi) = λ. (4)

In the NBRM, the probability distribution of the counts yi is still Poisson, that is, yi

obeys equation (1) with λi being replaced by λ̃i.3

3.2 Testing Overdispersion

A basic assumption of the PRM is equidispersion, i. e. the conditional mean equals the

conditional variance:

V ar(yi|xi) = E(yi|xi) = λi. (5)

This rarely fulfilled assumption is relaxed in the NBRM, for which CAMERON and

TRIVEDI (1986) show that there is a variety of alternatives to the constant-variance

function given by (5). The most commonly used generalization is

V ar(yi|xi) = λi + αλ2
i . (6)

This term suggests examining the null hypothesisH0 : α = 0 in order to test for overdi-

spersion. If the null holds true, equidispersion according to (5) prevails and the NBRM

collapses to the PRM.

3δi is commonly assumed to be drawn from a Gamma(1, α) distribution, where α is the variance

parameter (see CAMERON, TRIVEDI, 2009:555, for details). Then, the probability of the counts Y follows

the negative binomial distribution:

Pr(Y = yi|x, α) =
Γ(yi + α−1)

yi!Γ(α−1)
(

α−1

α−1 + λ
)α

−1

(
λ

α−1 + λ
)yi ,

where Γ(.) denotes the Gamma function.
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It bears noting that testing the null requires procedures other than the typical

symmetric t-tests, as α must be non-negative. Instead, a Likelihood-Ratio (LR) test can

be employed, where the test statistic follows a χ2-distribution and is computed in the

usual manner:

LR = 2 · (lnLNBRM − lnLPRM). (7)

lnLNBRM and lnLPRM denote the Loglikelihood functions of the NBRM and PRM,

respectively. The significance level of the test has to be adjusted to account for the

truncated sampling distribution of α̂.

3.3 Zero-inflated Models

The NBRM improves upon the underprediction of zero counts in the PRM by increa-

sing the conditional variance without altering the conditional mean. In contrast, zero-

inflated models (ZIM) such as the ZIPM, which was introduced by LAMBERT (1992),

change the mean structure, thereby increasing the probability of zero counts. Zero-

inflated models assume that there are two latent groups, for which membership is un-

observable: the Always-Zero Group A, for which

Pr(yi = 0|Ai = 1,xi) = 1, (8)

where Ai = 1 designates membership of individual i in Group A, and Ai = 0 indica-

tes membership in the complementary group, for which Pr(yi = 0|Ai = 0,xi) is the

outcome of the PRM or NBRM in case of the ZIP or ZINBM, respectively.

Group membership is a binary outcome that can be modeled using standard logit

or probit estimation procedures:

ψi := Pr(Ai = 1|zi) = F (zTi γ), (9)

where ψi is the probability of being in Group A, F (.) stands for the cumulative distri-

bution function Φ(.) or Λ(.) of the normal or logistic distribution, respectively. γ is a

parameter vector to be estimated, and vector zi includes variables that inflate the num-

ber of zero counts. Hence, they are referred to as inflation variables and (9) is called the

10



inflation equation. The vector of inflation variables zi may or may not differ from the

determinants xi of the number of counts yi.

If we knew probability ψi, the probability of a zero count could be calculated as

follows:

Pr(yi = 0|xi, zi) = Pr(Ai = 1|zi) · Pr(yi = 0|Ai = 1,xi)

+Pr(Ai = 0|zi) · Pr(yi = 0|Ai = 0,xi) (10)

= ψi · 1 + (1− ψi) · Pr(yi = 0|Ai = 0,xi),

as Pr(Ai = 0|zi) = 1− ψi and the probability of zero counts is 100% in the Always-Zero

Group A: Pr(yi = 0|Ai = 1,xi) = 1. For outcomes yi = k > 0,

Pr(yi = k|xi, zi) = ψi · 0 + (1− ψi) · Pr(yi = k|Ai = 0,xi)

= (1− ψi) · Pr(yi = k|Ai = 0,xi), (11)

where we have used the assumption that the probability of non-zero counts is 0% in

Group A: Pr(yi = k|Ai = 1,xi) = 0.

On the basis of these probability expressions, the unknown parameters β and γ

can be estimated using maximum-likelihood methods. For instance, the Loglikelihood

function of the ZIP reads

lnLZIP =
∑
yi=0

log[ψi · 1 + (1− ψi) · exp{−λi}]

+
∑
yi>0

[yi log(λi)− λi − log(yi!)] · log(1− ψi), (12)

where λi := exp{xTi β} and ψi := F (zTi γ), with F (.) depending on whether a probit or

logit model is specified. Note that one cannot separately estimate the parameters γ in a

first step, as we do not know those zero counts that originate from members of Group

A. Instead, both parameter vectors, β and γ, have to be estimated simultaneously.

Expected counts are computed in a way similar to that of the probabilities:

E(yi|xi, zi) = ψi · E(yi|Ai = 1,xi) + (1− ψi) · E(yi|Ai = 0,xi)

= ψi · 0 + (1− ψi) · λi = (1− ψi) · λi, (13)
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where for the Always-Zero Group A, it is E(yi|Ai = 1,xi) = 0 and E(yi|Ai = 0,xi) = λi

for the complementary group, since the PRM and NBRM have the same mean structure

(4). Because 0 ≤ ψi ≤ 1, the expected value given by (13) will be smaller than λi, so that

the mean structure of zero-inflated models differs from that of the PRM or NBRM. In

fact, the expected count resulting from ZIMs is lower than that of the PRM and NBRM,

thereby better fitting to the large number of zero counts in the empirical evidence on

the dependent variable.

Given E(yi|xi, zi) = (1 − ψi) · λi, marginal effects can be readily calculated. For

the case that the inflation regression is based on a logit model, i. e. ψi = Λ(zTi γ), where

Λ(u) := 1/(1 + exp{−u}) is the logistic function whose derivative is given by Λ′(u) =

Λ(u)(1 − Λ(u)), a marginal change in variable xk included in both x and z yields the

following variation of the expected counts:

∂E

∂xk
= (1− ψi) · λi · βk − ψi · (1− ψi) · λi · γk

= (1− ψi) · λi · (βk − ψi · γk) = E(yi|xi, zi) · (βk − ψi · γk), (14)

as ∂λi
∂xk

= ∂
∂xk

(exp{xTi β}) = λi · βk. This marginal effect collapses to

∂E

∂xk
= E(yi|xi, zi) · βk (15)

if xk is not included in z, that is, if γk = 0.

For the case that the inflation regression is based on a probit model, i. e. ψi =

Φi := Φ(zTi γ), where Φ(u) denotes the cumulative standard normal distribution and

Φ′(u) = φ(u) designates the density function of the standard normal distribution, the

marginal effect reads:

∂E

∂xk
= (1− Φi) · λi · βk − φi · λi · γk = E(yi|xi, zi) · βk − φi · λi · γk, (16)

with φi := φ(zTi γ). If xk is not included in z, i. e. γk = 0, the marginal effect given by

(16) collapses to formula (15).

The marginal effects are generally calculated at the mean of the regressors and

can be requested in the output of most statistical software packages, though some
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care must be taken in their calculation when interaction terms are involved (FRONDEL,

VANCE, 2010). To explore interaction effects of two variables x1 and x2 in non-linear

models, it does not suffice to include interaction terms x1x2 in the model specifica-

tion. Rather, investigating the interaction effect of two variables x1 and x2 requires

computing the cross derivative ∂2E
∂x1∂x2

, whose general formulae are not implemented

in standard statistical software packages. These formulae are consequently derived for

the ZIMs in Appendix B for three cases, if the interacted variables are (i) both conti-

nuous, (ii) both dummy variables, and (iii) if one variable of each type is included in

the interaction term.

3.4 VUONG Test of Non-Nested Models

Neither the NBRM is nested in the ZINBM, nor is the PRM nested in the ZIPM, as

is pointed out by GREENE (1995). While the ZINBM, for instance, would collapse to

the NBRM if ψi were identical to zero for all observations i, this equality cannot hold

in general and is, specifically, not fulfilled for γ = 0, as ψi = F (zTi 0) = 0.5. To the

test the superiority of the ZINBM over the NBRM, as well as of the ZIPM over the

PRM, GREENE consequently suggests using a test specified by VUONG (1989:319) for

non-nested models.

This test is based on the asymptotically normal distributed Vuong test statistic

given by

V :=
m̄

sm/
√
N
, (17)

where m̄ and sm designates the mean and standard deviation of the logged relationship

of the predicted probabilities, mi, obtained from two Models 1 and 2, respectively:

mi := ln{ P̂1(yi|xi)
P̂2(yi|xi)

}. (18)

The Vuong test examines the null hypothesis H0 : E(mi) = 0. Large positive values

of V that exceed the well-known critical value of 1.96 of the normal distribution favor

Model 1, whereas negative values of V below the critical value of -1.96 are supportive

of Model 2.
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4 Empirical Results

Along the lines of the previous section, we estimate both the classical as well as the

zero-inflated models and select the most appropriate approach by comparing the pre-

dicted probabilities for the range of public transit counts reported in Table 2. Begin-

ning the discussion with the PRM, our empirical example is another confirmation for

the fact that this most basic model typically underestimates the number of zero counts:

While 74% of the adult individuals in the estimation sample are observed not to use

public transport systems during a given week, the PRM predicts a markedly lower

probability of 40% for this outcome. Conversely, the PRM drastically overestimates the

probability for a single use and also overshoots for two to five transit counts a week.

The accordance of the observed frequencies and the predictions gleaned from the

NBRM is clearly superior to the PRM, particularly for the predicted non-use of public

transit systems. The superiority of the NBRM over the PRM is additionally confirmed

by the Likelihood Ratio test on overdispersion, for which the chi-squared test statistic

amounts to 16,000. While the existence of always-zero observations is ignored by both

the PRM and NBRM, the special treatment of this feature by the ZIMs leads us to expect

a further improvement in the fit due to their employment. And indeed, the observed

frequency for zero counts is perfectly reproduced by both the ZINBM and ZIP model.

Relative to the NBRM, the ZINBM also provides for a substantially better fit for a single

count, whereas the predictions of the probabilities of yi = 3, 4, 5 counts are somewhat

worse. Therefore, an ultimate decision on whether the ZINBM is superior to the NBR

model requires a VUONG test, whose large positive value of 21.75 for the standard-

normal distributed normal test statistic favors the ZINB model. Finally, the probability-

by-probability comparison of the ZIPM and ZINBM is clearly in favor of the ZINBM.

This conclusion is confirmed by the Likelihood-Ratio test on overdispersion, for which

the test statistic amounts to about 1,679.

Turning to the coefficient estimates of the ZINBM reported in Table 3, the majo-

rity are statistically significant and have signs that are consistent with intuition.4 Two
4The coefficients from the inflation equation of the model are given in the Appendix.
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Table 2: Comparison of Observed Frequencies with Predicted Probabilities Resulting

from Various Counts Data Models.

Observed ZINBM NBRM ZIPM PRM

Frequencies Predictions Predictions Predictions Predictions

P̂ (yi = 0): 0.740 0.740 0.721 0.740 0.400

P̂ (yi = 1): 0.028 0.034 0.103 0.011 0.280

P̂ (yi = 2): 0.065 0.036 0.048 0.022 0.144

P̂ (yi = 3): 0.019 0.034 0.029 0.033 0.073

P̂ (yi = 4): 0.025 0.030 0.019 0.038 0.039

P̂ (yi = 5): 0.013 0.025 0.013 0.038 0.023

P̂ (yi = 6): 0.019 0.020 0.001 0.033 0.014

P̂ (yi = 7): 0.012 0.016 0.008 0.026 0.009

P̂ (yi = 8): 0.013 0.013 0.006 0.020 0.006

P̂ (yi = 9): 0.014 0.010 0.005 0.014 0.004

notable exceptions are the coefficients on fuel prices and fares: neither appear to be

important determinants of the number of public transits over the 5-day week. The sta-

tistically insignificant impact of fares maintains when considering the marginal effect

(right-hand panel of Table 3). With reference to real fuel prices, however, a discrepancy

emerges: the marginal effect is highly significant in this case, and suggests that a 1e

increase in fuel costs increases transit counts by 0.7 trips over the course of a 5-day

week. Fuel cost shocks may thus be highly supportive of transit ridership.

That the effect of the fare does not mirror that of fuel prices might be attributed

to the fact that the majority of public transit users buy lump-sum tickets that allow for

the unlimited use of the transit system during their validation period. To explore whe-

ther insignificant effects of the fare main under alternative specifications, we estimated

models that included interaction terms and calculated interaction effects according to

the formulae of Appendix B. These specifications accommodated the possibility of dif-

ferential effects of fuel and fare prices by income level, residential location, and car

availability (LITMAN, 2004). In all cases, the interaction effects were found to be stati-

stically insignificant.
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Stark differences between coefficient estimates and marginal effects are to be ob-

served for female persons, as well as in case of the existence of private parking spaces

and the prevalence of rail transits, with the coefficient estimates being statistically in-

significant for all these factors. Being female, for instance, seems to be irrelevant when

focusing on coefficients, but, in fact, increases the number of transit counts by about

0.19 based on the marginal effect. A similar discrepancy is seen with respect to the rail

transit dummy, whose coefficient estimate is statistically negligible. In fact, the exis-

tence of rail transit service, which tends to afford greater speed and comfort, signifi-

cantly increases transit counts, by about 0.32. Such differences highlight the relevance

of additionally reporting marginal effects, rather than merely coefficient estimates.

Table 3: Estimation Results of the Zero-Inflated Negative Binomial Model

Robust Marginal Robust

Coeff.s Std. Errors Effects Std. Errors

female -0.001 0.034 ∗∗ 0.173 0.050

age ∗∗ -0.031 0.007 ∗∗-0.086 0.010

age squared ∗∗ 0.0002 0.000 ∗∗ 0.001 0.000

employed ∗∗ 0.380 0.056 ∗∗ 0.486 0.084

high school diploma ∗ 0.096 0.039 ∗∗ 0.465 0.066

license ∗∗ -0.225 0.043 ∗∗-1.440 0.131

employed×(parking space at work) ∗∗ -0.316 0.050 ∗∗-0.784 0.068

parking space at home -0.081 0.047 ∗∗-0.500 0.084

enoughcars ∗∗ -0.191 0.040 ∗∗-0.829 0.062

minutes ∗-0.010 0.005 ∗∗-0.036 0.007

direct public transit to work ∗∗ 0.167 0.049 ∗∗ 0.535 0.106

big city ∗ 0.098 0.045 ∗∗ 0.424 0.070

rail transit 0.083 0.049 ∗∗ 0.341 0.099

# children < 10 ∗-0.089 0.037 ∗∗-0.305 0.052

income ∗ -0.063 0.027 ∗∗-0.105 0.039

real fuel price 0.262 0.149 ∗∗ 0.663 0.230

fare 0.001 0.003 -0.003 0.005

public transit density ∗∗ 0.002 0.000 ∗∗ 0.007 0.001

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

Number of observations used in estimation: 8,577.

With respect to the remaining coefficients, age is seen to have a non-linear effect,
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which is initially negative up to about an age of 72 after which it becomes positive.

The dummies for employed persons and those with a high school diploma both have

positive signs and are roughly the same magnitude (at least with respect to the mar-

ginal effects), suggesting that these individuals have transit counts that are about 49%

higher than their counterparts. Likewise, those living in a big city and with a direct

transit connection from home to work are also more frequent users of public transport,

as are individuals who live in regions with a denser transit network. Consistent with

expectations, factors that increase the costs of transit use or that decrease the cost of car

use have negative effects. These include the dummies indicating license holders, those

with a parking space at work, and those who live in households with at least as many

cars as licensed drivers.

5 Conclusion

In Germany, as elsewhere in the industrialized world, the promotion of public tran-

sit use is a central policy tool in the mitigation of pollution, congestion, and other

automobile-caused externalities. Despite Germany’s relative success in capping emis-

sions from transport, which rose by 1% between 1990 and 2005 compared to a 26%

increase in the European Union (EEA, 2008), public transit use has been on the decli-

ne. Between 1994 and 2003, the percentage of trips traveled by transit dropped by 1%,

contrasted by a 16% increase in motor vehicle trips (DESTATIS, 2006). To counter this

trend, the country’s transport ministry has placed a high priority on improving the

competitive position of public transit relative to the automobile (BMVBS, 2009).

An important step in this endeavor is to identify the economic and structural

factors that draw or repel potential transit customers, thereby enabling the design of

measures to increase ridership among those segments of the population where the

scope for mode switching is greatest. From a planning perspective, one particularly

important factor is the responsiveness of transit riders to both gas prices and fares.

This paper investigates this issue with an analysis of the determinants of weekly transit
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usage by drawing on household survey data from Germany.

To our knowledge, this is the first study to parameterize the effects of fares and

fuel prices, as well as socioeconomic and geographic determinants, on the basis of

individual-level data. Although necessarily neglected in studies on the effects of fuel

and fare prices using aggregated data, the discrete decision to occasionally or regularly

use public transit system appears to be of particular relevance in the analysis of indivi-

dual data, as fuel price peaks may trigger a reduction of car use and a switch to public

transit.

We have addressed this issue by employing zero-inflated modeling approaches,

which is particularly appropriate when the question at hand requires distinguishing

between those who never use public transit from those who have some non-zero pro-

bability of a positive trip count. Our estimates suggest that a 1e increase in fuel prices

increases transit use by 0.7 trips over a week, an effect that is statistically significant at

the 1% level. Somewhat unexpectedly, we find that that the effect of the fare, by con-

trast, is not significantly different from zero, even when allowing for differential effects

according to residential location, car ownership, and the income of the household. Ta-

ken together, these findings suggest that fuel prices are a more effective lever than fares

for influencing transit ridership.

As this is one of the few studies to be conducted on this topic using micro-level

data in a European context, it would be of interest to see whether the qualitative fin-

dings presented here are corroborated by studies using other data sets from within

Germany and other European countries. A particularly useful line of inquiry would

focus on distinguishing short- and long-run price responsiveness using micro-level

data, which is not subject to the aggregation problems that commonly afflict regional-

level temporal studies of transit use. Data constraints precluded such an analysis in

the present study, but it is one that would further facilitate the formulation of pricing

strategies to encourage transit use.
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Appendix A: Tables

Table A1: Regression Results of the Inflation Equation

Robust Marginal Robust

Coeff.s Std. Errors Effects Std. Errors

female ∗∗ -0.242 0.059 ∗∗ -0.038 0.009

age ∗∗ 0.078 0.013 ∗∗ 0.013 0.002

age squared ∗∗ -0.001 0.000 ∗∗ 0.000 0.000

employed -0.171 0.098 ∗ -0.039 0.015

high school diploma ∗∗ -0.478 0.067 ∗∗ -0.082 0.011

license ∗∗ 1.173 0.090 ∗∗ 0.232 0.019

employed×(parking space at work) ∗∗ 0.752 0.088 ∗∗ 0.124 0.013

parking space at home ∗∗ 0.516 0.081 ∗∗ 0.091 0.015

enoughcars ∗∗ 0.846 0.065 ∗∗ 0.145 0.010

minutes ∗∗ 0.036 0.008 ∗∗ 0.006 0.001

direct public transit to work ∗∗ -0.415 0.092 ∗∗ -0.078 0.017

big city ∗∗ -0.435 0.079 ∗∗ -0.076 0.013

rail transit ∗∗ -0.315 0.097 ∗∗ -0.056 0.017

# children < 10 ∗∗ 0.301 0.059 ∗∗ 0.053 0.009

income 0.062 0.046 0.013 0.007

real fuel price ∗-0.565 0.265 ∗ -0.095 0.042

fare 0.005 0.006 0.001 0.001

public transit density ∗∗ -0.007 0.001 ∗∗ -0.001 0.000

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

Number of observations used in estimation: 8,577.

Note that the dependent variable of the model is 1 if the individual never uses

transit during the 5-day week and zero otherwise.



Appendix B: Interaction Effects

To explore whether the effect of an explanatory variable z1 on the expected value E[y]

of the dependent variable y depends on the size of another explanatory variable z2, it

is indispensable to estimate the interaction effect given by the second derivative ∂2E[y]
∂z2∂z1

.

In this section, we follow FRONDEL and VANCE (2010) and derive general formulae for

the interaction effects resulting from ZIMs if (a) z1 and z2 are both continuous variables,

(b) z1 is continuous, while z2 is a dummy variable, and (c) both are dummy variables.

To this end, we depart from the expected value (13),

E := E[y|z1, z2,w] = [1− F (u)] · exp{u} = [1− F (u)] · λ(u), (19)

where u := γ1z1 + γ2z2 + γ12z1z2 + wTγ, and vector w excludes z1 and z2. F (u) equals

the cumulative normal distribution Φ(u), when the inflation equation is specified as

a probit model and F (u) = Λ(u) = 1/(1 + exp{−u}) for the logit model. As in the

methodology section, we use the abbreviation λ(u) = exp{u}.

(a) If F (u) is a twice differentiable function, with the first and second derivatives

being denoted by F ′(u) and F ′′(u), respectively, the marginal effect with respect to x1

reads:

∂E

∂z1

= {[1− F (u)]− F ′(u)} · λ(u) · ∂u
∂x1

= {[1− F (u)]− F ′(u)} · λ(u) · (γ1 + γ12z2). (20)

The interaction effect of two continuous variables z1 and z2 is given by the second

derivative:

∂2E

∂z2∂z1

= = {[1− F (u)]− F ′(u)} · λ(u) · [(γ2 + γ12z1) · (γ1 + γ12z2) + γ12]

−[F ′(u) + F ′′(u)] · λ(u) · (γ1 + γ12z2)(γ2 + γ12z1)

(b) If z1 is a continuous variable and z2 is a dummy variable, the mixed interaction

effect ∆
∆z2

( ∂E
∂z1

) can be computed on the basis of the first derivative (20) as follows:

∆

∆z2

(
∂E

∂z1

) :=
∂E

∂z1

|z2=1 −
∂E

∂z1

|z2=0

= {[1− F (u1)]− F ′(u1)} · λ(u1) · (γ1 + γ12)

−{[1− F (u0)]− F ′(u0)} · λ(u0) · γ1, (21)



where u0 := γ1z1 + wTγ and u1 := (γ1 + γ12)z1 + γ2 + wTγ.

(c) The interaction effect ∆2E
∆x2∆x1

of two binary variables z1 and z2 is obtained as follows:

∆2E

∆z2∆z1

= {[E[y|z1 = 1, z2 = 1,w]− E[y|z1 = 0, z2 = 1,w]}

−{[E[y|z1 = 1, z2 = 0,w]− E[y|z1 = 0, z2 = 0,w]}

= [1− F (γ1 + γ2 + γ12 + wTγ)] · λ(γ1 + γ2 + γ12 + wTγ) (22)

−[1− F (γ2 + wTγ)] · λ(γ2 + wTγ)− [1− F (γ1 + wTγ)] · λ(γ1 + wTγ)

+[1− F (wTγ)] · λ(wTγ).

For the case that the inflation regression is based on a logit model, i. e. if F (u) =

Λ(u) := 1/(1+exp{−u}), F ′(u) = Λ′(u) = Λ(u)(1−Λ(u)) and F ′′(u) = Λ′′(u) = Λ(u)(1−

Λ(u))(1 − 2Λ(u)). For the case that the inflation regression is based on a probit model,

F (u) equals the cumulative standard normal distribution Φ(u), so that F ′(u) = Φ′(u) =

φ(u) is the density function of the standard normal distribution and F ′′(u) = φ′(u) =

−uφ(u).

If the expected value

E := E[y|z1, z2,w] = [1− F (v)] · exp{u} = [1− F (v)] · λ(u), (23)

differs from (19), because v := β1x1+β2x2+β12x1x2+wTγ does not include the variables

z1 and z2 occurring in u := γ1z1 + γ2z2 + γ12z1z2 +wTγ, the formulae for the interaction

effects simplify slightly.
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