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Systemic Risk, Contagion, and State-Dependent Sensitivities 
in Value-at-Risk Estimation: Evidence from Hedge Funds 

Abstract 

The occurrences of the 2007/2008 financial crisis revealed the relevance of systemic 

risk and contagion effects for proper risk management practice. Adrian and Brunnermeier 

(2009) propose a CoVaR framework by incorporating contagion and systemic risk into 

value-at-risk estimation. We build upon this important concept by showing that the current 

approach of estimating the CoVaR neglects the economic condition of the financial 

environment and thus cannot model the spillover intensities between two asset classes 

adequately. In this paper we propose a state-dependent sensitivity VaR (SDS-VaR) to show 

that contagion varies considerably over different market conditions. In particular, shocks to 

the VaR of one asset class only have a marginal impact on the VaR levels of other asset 

classes during normal market conditions while the same shocks lead to considerable 

contagion in volatile market periods. During this state of the market, hedge funds have by far 

the largest impact on the VaR of the financial system. Impulse response functions from this 

SDS-VaR measure can be used to reveal the amount of interdependencies between asset 

classes during market periods of financial distress which will be a highly relevant indicator 

for risk management purposes. The modeling of spillover effects between several financial 

institutions allows us to expand existing hedge fund risk factor models by a systemic risk 

factor. 

Keywords: State-dependent sensitivity (SDS) value-at-risk; systemic risk; contagion; 
quantile regression; hedge funds 

JEL-Classification: G10, G12 
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1  Introduction 

From a risk management perspective one of the most important lessons from the 2007/2008 

financial crisis is probably that systemic risk and spillover effects are carelessly underestimated 

in most current risk measures and that risk measurement instruments such as value-at-risk (VaR) 

are in need of proper adjustments if the level of risk is to be measured adequately.1 Recent 

promising work in this direction is the working paper of Adrian and Brunnermeier (2009) who 

introduce CoVaR as a measure for systemic risk.2 This conditional VaR measure incorporates the 

additional risk in asset i caused by asset j being in distress. If the focus is on macroprudential 

bank regulation asset i is taken to be the financial system. A substantial difference between asset 

j’s CoVaR and its VaR measure then indicates significant contribution of this asset to general 

systemic risk and should result in higher capital surcharges for this institution. From the point of 

view of an investor CoVaR may be useful for quantifying spillover risk between assets of a 

portfolio thus providing additional information concerning the tail behavior of the asset’s joint 

distribution. 

In this paper we propose a state-dependent sensitivity VaR (SDS-VaR) which builds on the 

CoVaR framework but estimates the spillover sensitivities conditional on the state of the 

economy. Our empirical results show that the contagion effects from other asset classes are 

negligible during tranquil and normal market conditions but become a major risk driver during 

turbulent market periods. Measuring the spillover sensitivities over all states of the economy 

                                                 
1 In line with literature we define a crisis to be systemic in nature if many companies fail together, or if one 

company’s failure propagates as contagion causing the failure of many other companies. See e.g., Acharya (2009). 
2 CoVaR stands for “contagion” or “conditional” VaR. Note that in the literature, the term “conditional VaR” 

or CVaR (Artzner et al., 1999) usually refers to the mathematical expectation of the return under the condition that 

the VaR has been exceeded. This common VaR measure however is based on the own past return history and does 

not condition on spillover effects from other assets. 
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results in an average value that is not representative of any of the economic states. Even in the 

context of risk management where the efficient control of capital reserves and risk budgeting 

plays a major role, state-dependency cannot be neglected. 

The remainder of this paper is organized as follows. The next section gives a short 

overview of the existing approach to CoVaR estimation and proposes the SDS-VaR approach of 

modeling contagion risk conditional on the state of the economy. We discuss the full-sample-

static and the rolling-window-dynamic properties of this model. Impulse response functions 

showing the dynamics in risk spillovers are presented in Section 3. Based on our previous 

results, we derive a systemic risk factor and enhance the hedge fund multi-factor model of Fung 

and Hsieh (1997) in Section 4 to render more precisely the risk premiums of hedge fund 

investments. Some concluding remarks are drawn in Section 5. 

 

2  A State-Dependent Sensitivity VaR Model 

Value-at-risk (VaR) is a risk measure with the appealing property of expressing the risk in only 

one number. Its intuitive interpretation and regulatory importance has led to general acceptance 

and wide application for internal and external purposes. From a statistical standpoint estimation 

of the VaR requires adequate modelling of the time-varying distribution of returns.3 In the past, a 

vast variety of different approaches have been applied. In the expanding literature on VaR 

estimation, GARCH (Bollerslev, 1986), extreme value theory (Danielson and De Vries, 2000), 

conditional autoregressive VaR (Engle and Manganelli, 2004), and simulation based methods 

(Barone-Adesi and Giannopoulos, 2000) seem to dominate. Common to all methods is the fact 

                                                 
3 In the multivariate VaR context additional attention has to be devoted to the tail dependencies in the joint 

density of returns. 
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that the information set that is used to form the VaR estimates is confined to the past return 

history of the asset or portfolio under consideration. The occurrences of the 2007/2008 financial 

crisis, however, has sparked interest in the dependence of a VaR measure of one asset i 

conditional on the VaR of some other asset j and perhaps the total financial system. 

The value-at-risk is the estimated loss of an asset that, within a given period (usually 1-10 

days), will only be exceeded with a certain small probability θ  (usually 1% or 5%). Thus, the 1-

day 5% VaR shows the negative return that will not be exceeded within this day with a 95% 

probability, 

t t tprob return Var θ < − Ω  =  . (1) 

The CoVaR has the same concept, i.e. t t tprob return CoVar θ < − Ω  =   but differs in the 

information set tΩ  that is used in the estimation process. While traditional VaR measures only 

make use of the own past return history, i.e. ( ) { }, 1 , 2 0, , ,t i t i t iVaR r r r− −Ω = K  the CoVaR also 

includes the VaR of some other, however, related asset j: 

( ) { }, 1 , 2 0 ,, , , ,t i t i t i j tCoVaR r r r VaR− −Ω = K . (3) 

The current approach of estimating the CoVaR is to use quantile regression, by regressing the θ -

% quantile of the return distribution on a constant and jVaR  thus generating the VaR as the fitted 

values from this regression: 

, ,
ˆ

i j i j jCoVaR R VaR VaRθ α β= = + ⋅ . (4) 

Adrian and Brunnermeier (2009) extend the basic version of Equation (4) by adding an AR(1) 

term in order to account for the strong autoregressive structure inherent in the time series of 

,i jCoVaR . Furthermore, several firm characteristic variables such as leverage, size, and maturity 
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mismatch enter the equation in lagged form generating a flexible risk measure that reacts 

sensitively to the underlying return process. 

One of the main contributions of this paper is to provide evidence that the coefficient β  

which measures the spillover intensity of jVaR  on iVaR strongly depends on the state of the 

economy. During normal market times β  will have only little economic significance while the 

spillover effects become very large if financial markets in general, and the VaR of asset j in 

particular enters a state of financial distress. This is of course completely in line with our 

understanding of systemic risk, which only becomes significant during a crisis period. The 

spillover coefficient β̂  estimated with the model specification in Equation (4) or some variation 

thereof will be an average over all states of the economy, possibly being not even representative 

of any of the states. We propose a two-step approach that makes use of quantile regression. In 

contrast to the CoVaR model of Adrian and Brunnermeier (2009) who use quantile regression to 

model the distribution of returns, our SDS-VaR models the distribution of the value-at-risk. 

While the former model requires setting the quantile θ  to 5% or 1% in order to model the VaR, 

our model enables us to regress over the whole range of quantiles.4 When using asset classes or 

industry aggregates the quantiles of the VaR can be interpreted as reflecting the state or 

condition of the economy whereby high quantiles correspond to tranquil market periods and low 

quantiles to situations of financial distress. Furthermore, our interpretation of a SDS-VaR model 

differs from the interpretation given in Adrian and Brunnermeier (2009). In their view, the 

,i jCoVaR  estimated from Equation (4) measures the VaR of asset i conditional on asset j being 

under distress. Furthermore, the difference between ,i jCoVaR  and iVaR is supposed to measure 

                                                 
4 In fact, we estimate equation (6) over a range of 16 quantiles with 

{ }0.05,0.125,0.1875,0.25,0.3125,0.375,0.4375,0.5,0.5625,0.625,0.6875,0.75,0.8125,0.875,0.9375,0.99θ =  
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the contribution of asset j to the market risk of asset i. This interpretation, however, is misleading 

since jVaR  is simply used as an additional explanatory variable for modeling iVaR. Asset j 

however will have a corresponding VaR level at any given point in time which in itself does not 

reveal any information about the financial condition of asset j.5 It may also be misleading to 

interpret the differences between ,i jCoVaR  and iVaR as asset j’s risk contribution since both 

models measure the same thing: the value-at-risk.6 We interpret SDS-VaR (i) as an improved 

value-at-risk model that accounts for the spillover or contagion risk that is caused by related 

assets, and (ii) as an approach to explicitly reveal the size of the contagion risk through 

coefficients that vary over time as well as over different states of the economy. 

The first step in our model setup is to estimate iVaR and jVaR  separately: 

, ,k k t k tVaR zµ σ= +  for k = i,j . (5) 

It has become practice to model tσ  by extracting the conditional standard deviation from a 

GARCH(1,1) model (Kuester et al., 2006, Füss et al., 2009). This will account for the time-

varying distribution of returns accurately and leads to substantial improvements in the sensitivity 

of the VaR to changes in the return process. We will therefore follow this practice. 

In a second step, iVaR now becomes the dependent variable in the quantile regression (see 

Koenker and Bassett, 1978; Koenker, 2005): 

                                                 
5 In fact, even the number of asset j’s VaR exceedances will only reveal information about the goodness of 

the applied VaR model but nothing about the financial condition. In contrast, only a comparison of an asset’s VaR 

level over time is likely to display any reasonable information about it’s health status. 

6 This would be like interpreting the difference between 
1ŷ  and 

2ŷ  as the contribution of 
2x  to y , where 

1ŷ  

and 2ŷ  are the fitted values from the regressions 10 11 1 2 12y x xα β β= + +  and 20 21 1y xα β= + , respectively. This, 

however, is only true for the special case that [ ]1| 0E u x = . In particular, it would require 
, 1j tVaR −  to be 

uncorrelated with 
, 1i tVaR − , an assumption that is highly unlikely to hold in practice. 



8 
 

{ } 1, , 1 2, , 1 3, , 1, , , j t i t i ti j tSDS VaR VaR VaR Rθ θ θ θθ α β β β− − −− = + + + . (6) 

The fitted values in Equation (6) constitute the ,i jSDS VaR−  with the coefficient vector 

( )1, 2, 3,, , ,θ θ θ θα β β β′Β =  depending on the state of the economy. Equation (6) contains the 

following variables: 

The value-at-risk of asset j: This variable can be the VaR of a related asset or the aggregate 

VaR of an asset class or of the financial system. The coefficient of interest is 1,θβ  which, for 

large values of θ , estimates the contagion of asset j on asset i during tranquil market periods. 

Similarly, small values of θ  will result in a 1,θβ  that indicates the amount of contagion during 

periods of financial distress. This variable may enter in lagged form depending on the speed at 

which information is processed by market participants. 

The lagged value-at-risk of asset i: Most VaR estimates will exhibit a considerable amount 

of autoregressive structure. This term controls for this fact and ensures that the main coefficient 

of interest, 1,θβ , is not biased by a possible correlation between , 1i tVaR −  and , 1j tVaR − . 

The absolute return of asset i: This specification corresponds to the symmetric absolute 

value model in Engle and Manganelli (2004), who were the first to apply autoregressive quantile 

regression in a value-at-risk context. This variable measures the response to changes in the 

underlying returns. As positive and negative news should both increase the level of risk, the 

returns are taken in absolute values.7 

 

                                                 
7 Engle and Manganelli (2004) also propose a so called asymmetric slope model which controls for negative 

and positive return changes separately. Although this approach leads to statistically significant differences in the 

coefficients of this term, their increase in model performance is only marginal so that we will only consider the 

symmetric specification above. 
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2.1  Data Description 

The subprime crisis of 2007/2008 spread from asset-backed securities and CDOs to commercial 

banks and on to hedge funds and investment banks.8 For the empirical analysis we therefore use 

the following four asset categories for the time period 04/02/2003 – 12/01/2009 (1,740 

observations): 

1. Residential REIT Index [Datastream series RITRSNA(PI)]: The subprime crisis started 

with the default of mortgage backed securities and collateral debt obligations. REITs are 

an adequate approximation since negative shocks to these financial instruments are 

directly reflected in the market for REITs. 

2. Commercial Bank Index [Datastream series BANKSUS]: The commercial bank index 

from Thomson Reuters. 

3. Investment Bank Index: The investment bank index was created from 25 publicly listed 

investment banks. We used principal component analysis for generating the index 

weights. 

4. Hedge Fund Index [Datastream series HFRXEW$]: The Hedge Fund Research Equal 

Weighted Strategies Index is comprised of all eligible hedge fund strategies. 

All series are price indices as the dividend policy of companies would contaminate the 

estimation of spillover effects among asset prices. 

 

2.2  Static SDS-VaR Estimation 

In this section we will provide empirical evidence for the general direction and size of the state 

dependent coefficient estimates of Equation (6) in general and the spillover coefficient 1,θβ  in 

                                                 
8 See for a comprehensive discussion of these linkages Brunnermeier (2008). 
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particular. The estimation uses the sample period from 04/02/2003 – 12/01/2009 (1,740 

observations) in order to cover tranquil, normal, and volatile market periods. Although a 

dynamic rolling window estimation of 1-step-ahead forecasts would be preferable from a 

practitioner’s point of views, the static approach has the advantage of presenting all coefficients 

in one table and thus facilitates comparison between assets and economic states. 

The need to model the contagion coefficient in a state-dependent way is demonstrated in 

Figure 1 which shows the slopes of this coefficient for different quantiles. The upper left panel in 

Figure 1 shows a scatter plot of the VaR level of commercial banks against the VaR of 

residential REITs while the upper right panel depicts the effects from changes in the aggregate 

hedge fund VaR on the VaR of investment banks.9 

 

<< Figure 1 about here >> 

 

In both graphs, the solid blue regression line shows the spillover coefficient as implied by 

the CoVaR model in Equation (4). This line however clearly does not capture the differences in 

spillover intensities for different states of the economy. For instance, the simple CoVaR model 

would estimate the slope of the spillover effects from the residential REITs VaR to the VaR of 

commercial banks to be 1.2. This corresponds to the solid red line in the lower left panel of 

Figure 1. If we interpret this situation as normal market conditions, it is striking to see the slope 

of this coefficient to almost double during market conditions of financial distress. Similarly, the 

spillover effects are only half the size of the simple CoVaR estimate during tranquil markets. The 

                                                 
9 Similar pictures can be seen for other asset combinations. However, the scatter plots above are most suitable 

for demonstrating the effects of state dependencies. Furthermore, our empirical results in the next section suggest 

that these are of particular importance. 
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lack of representativeness of the spillover coefficient of the simple CoVaR model becomes even 

more apparent when considering the spillovers from hedge funds to investment banks as shown 

in the right panel of Figure 1. In this case the spillovers are estimated to be much higher than for 

other assets. At the same time, the range between the high quantile effect and the low quantile 

effect are also much larger. 

The general SDS-VaR model in Equation (6) can be estimated with a larger number of 

combinations of dependent and independent variables as well as different market conditions. In 

fact, if we choose the 75% quantile for tranquil market conditions, 50% for normal market 

conditions, and 12.5% for conditions of financial distress 144 coefficients and their respective 

significance measures have to be estimated and presented in a way that enables comparison 

between market conditions and coefficients.10 Panel A in Figure 2 shows a level plot of the 

coefficient estimates with the lower panel showing the corresponding p-values. Axis names on 

the left of each box denote the dependent variable while the axis labels on the bottom or top 

denote the respective spillover variable on the right hand side of Equation (6). The coefficient 

estimates are furthermore divided into tranquil, normal, and volatile market conditions. Rather 

than showing the exact coefficient estimate, the plot uses a color key and relative box sizes to 

indicate the coefficient size. This allows for quick and easy comparison of coefficients between 

asset classes and market conditions. Figure 2 shows that the largest coefficient is attributed to the 

autoregressive term with values close but generally below 1. This autoregressive structure further 

becomes stronger as market conditions turn bleak. 

 

                                                 
10 The number 144 is the result of 4 coefficients per equation times 4 different independent variables times 3 

different spillover variables for a given independent variable times 3 different market conditions, namely tranquil, 

normal, and volatile. 
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<< Figure 2 about here >> 

 

The main interest, however, lies in the spillover coefficient 1θβ .11 Although being smaller 

in size compared to 2θβ , most of the coefficients are highly significant. Perhaps the most striking 

fact to derive from this figure is that the VaR spillovers from hedge funds to the other asset 

classes increases during periods of financial distress with the largest increase for spillovers to the 

investment banking industry. In contrast, the hedge fund industry itself does not seem to be much 

affected by shocks in any of the other asset classes. This can be explained by the fact that the 

financial stress experienced by major prime brokers affected hedge funds by margin calls as well 

as a tightening of credit availability first. This constitutes significant financial shocks on the 

funding and the asset side of hedge funds during market downturn. As a consequence spillovers 

of risk among hedge funds arise and affect the entire hedge fund industries. However, because 

hedge funds and banks are interconnected, the failure of hedge funds produces capital losses 

among banks (Klaus and Rzepkowaki, 2009). In fact, Panel B in Figure 2 reveals that the p-

values for spillovers to hedge funds are insignificant. Finally, the coefficient 3θβ  shows the 

responsiveness of the SDS-VaR to absolute changes in the return process. This effect becomes 

stronger (i.e. more negative) for periods of financial distress so that VaR measures seem to be 

more susceptible to changing market conditions during theses periods. 

 

2.3  Dynamic SDS-VaR Estimation 
                                                 

11 Note that the color key does not use equal distances, since the distribution among the four coefficient 

estimates in Equation (6) varies considerably. For instance, while the autoregressive coefficient 
2θβ  is distributed 

with mean 0.96 and standard deviation 0.05, the mean value and the standard deviation of spillover coefficient 
1θβ  is 

only 0.09 and 0.15, respectively. 



13 
 

If the SDS-VaR was to be implemented in practice, a risk manager would realistically estimate 

the model in a rolling window and subsequently forecast one or more steps into the future. This 

requires estimating the SDS-VaR for different quantiles and selecting the model which quantile 

represents the economic conditions at time t. For instance, a SDS-VaR model with coefficient 

estimates that correspond to the lower tail of the iVaR distribution is applied during times of 

financial distress. In this situation a forecast incorporates the “coefficients of the crisis” rather 

than some average measure which may not be representative of the dependence structure during 

this time.12 For instance, the empirical results from the static model indicate a higher sensitivity 

to shocks coming from the hedge fund industry when financial markets are in distress. Panel A 

of Figure 3 shows the SDS-VaR for Investment banks with spillovers from the hedge fund 

industry for the period 3/01/2005 – 12/01/2009. In contrast to other common VaR methods such 

as the normal VaR the SDS-VaR reacts sensitively to changes in the underlying return process 

and indicates an appropriate level of risk during the crisis period of 2008 and the first half of 

2009. In this respect this model is quite similar to established flexible VaR measures such as the 

GARCH-VaR or the CAViaR model of Engle and Manganelli (2004). In fact, recent studies 

show that these univariate VaR models are already very efficient so that room for improvements 

is marginal at best.13 The contribution of the SDS-VaR model to the body of existing VaR 

techniques is that it (i) explicitly reveals the magnitude of the spillover at time t which will guide 

                                                 
12 The short memory in the autoregressive structure of the SDS-VaR model lends itself to one-step-ahead 

forecasts whereas multi-step-ahead forecasts will quickly loose in efficiency. The forecast performance will also 

depend on the stability of the current economic condition. As shown below, the quantile selection procedure in fact 

does not lead to erratic “quantile hopping” so that the error of selecting the wrong quantile for the forecast remains 

small. 
13 See for example the studies on VaR performance comparison of Kuester et al. (2006) and Füss et al. 

(2009). 
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the investor in pursuing the right hedging strategy, and (ii) provides useful information for 

scenario analysis in asking questions such as “how will a shock to the hedge fund industry affect 

a certain asset class?”.14 

Panel B of Figure 3 shows the changes in coefficients and their corresponding 95% error 

bands for a rolling 500 trading day window. The spillover coefficient 1,θβ  shows the sensitivity 

of the investment bank VaR to changes in the VaR of hedge funds. As market conditions change 

from tranquil to turbulent, the magnitude of this contagion coefficient increases markedly with 

spillovers for the lower 12.5% quantile of the investment bank VaR being roughly twice the size 

of the spillovers during more steady market phases. The two standard deviation error bands 

shows that this effect is also significant over the whole sample period. The coefficient 2,θβ  

shows that the SDS-VaR is highly autoregressive, with coefficients being generally higher 

during volatile market periods and for lower quantiles. These coefficients are also highly 

significant. Finally, the value-at-risk becomes more negative for absolute changes in the return 

process and this effect is again more pronounced for lower quantiles. 

An interesting property of the SDS-VaR is shown in the left graph of Panel C, which 

denotes the development of the R-squared of the SDS-VaR equation. While most common VaR 

measures tend to perform less well during periods of financial distress, the amount of total 

variation explained by the SDS-VaR model actually increases as more information concerning 

the spillover variables becomes available. 

In practical applications of the SDS-VaR model a possible point of criticism may be the 

fact that one-step-ahead forecasts are constructed using coefficients that possibly change on a 

                                                 
14 We will answer these kinds of questions in section three when we model the dynamic effects of a one time 

shock using impulse response functions from a 4 equation VAR system. 
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daily basis, thus creating an additional source of uncertainty. Although this “quantile hopping” 

can in principle lead to very erratic forecast behavior Panel A in Figure 3 demonstrated that the 

series of one-step-ahead forecasts captured the risk in the return series efficiently. To strengthen 

this argument the right graph in Panel C shows the quantiles selected by the model. In the period 

before 2007 only medium and high quantiles were used for forecast construction, whereas low 

quantiles were selected during the period of the financial crisis. Note that the variability in the 

quantiles decreases strongly during this period so that any quantile selection error is reduced 

during this time. 

 

3  Risk Spillovers in a System of Hedge Funds 

3.1  Scenario Analysis with Impulse Response Functions 

Figure 3 shows the impulse response functions for tranquil, normal, and volatile market 

conditions. This corresponds to θ  being equal to the 75%, the 50%, and the 12.5% quantiles of 

asset i’s value-at-risk distribution over the period 04/02/2003 – 12/01/2009 (1,740 observations), 

respectively. During calm market periods none of the shocks to the VaR measures of any of the 

four asset classes leads to significant spillovers to the VaRs of other asset classes.15 This supports 

our hypothesis that risk spillovers only take place under certain market conditions but do not 

pose a thread to the whole system when financial markets are in a stable condition. 

 

<< Figure 3 about here >> 

 

                                                 
15 The series are shocked once in the order of -1.5 times their steady state values. 
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As we proceed towards more volatile market conditions, however, our results suggest that 

REITs mainly affect commercial banks and to some extent investment banks. Shocks to the 

VaRs of commercial banks in turn seem to impact the VaRs of the investment industry while 

shocks to the investment bank sector have little effect on the risk levels of other assets even in 

volatile market periods. The most striking effects however come from shocks to the hedge fund 

industry which decreases the VaR measures of REITs and commercial banks even under market 

conditions in which shocks from other assets remain unnoticed. During times of extreme 

volatility, however, shocks in this asset class have tremendous effects on all of the remaining 

three asset classes. The largest impact can be observed for the VaR of the investment bank sector 

for which the response is estimated to be even larger than the initial shock to the hedge fund VaR 

itself.16 In this case, a one time shock at time t will even be visible several months later. 

In the model specification for the hedge funds the responding asset classes enter the SDS-

VaR equation in lagged form whereas responding assets enter in contemporaneous form in all 

other cases. This type of specification has been selected because hedge funds are not publicly 

traded so that any shocks to this industry group only become noticeable through sell-side actions 

taken by the affected hedge fund or through news that become available to the financial system. 

In both cases a lag of one day seems to be reasonable.17 For instance, the impact on the 

                                                 
16 In fact, for very low quantiles the impact on other asset classes is estimated to reach a magnitude that 

causes response functions to explode, i.e. the series do not return to any long-run steady state. The graph that shows 

the responses to a shock in the hedge fund industry therefore does not represent the 12.5% quantile but rather the 

0.375% quantile. 

17 This is also supported by the fact that the impulse response functions for a shock in the hedge fund industry 

show only little reaction when variables enter in contemporaneous form. Note however that we did not follow this 

setup in the static approach above. The current preliminary results in Figure 3 come from VARs that do not contain 

any identifying restrictions and the lag specification might change in the future. 
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investment bank industry reaches its peak at about 25 trading days, at a time in which the initial 

shock to hedge funds has already receded. 

 

4. Systemic Risk in Hedge Fund Factor Models 

This study is at a very preliminary stage. In the near future we will use the SDS-VaR model to 

construct a risk factor of systemic risk for the whole financial system. We expect this systemic 

risk factor to be priced in a factor model for hedge funds as proposed by Fung and Hsieh (1997, 

2004).18 Estimating the systemic risk factor will involve the following steps: 

1. Estimate the return for the financial system using a universe of stocks, bonds, hedge funds, 

commodities and REIT indices. Each asset category will then enter the SDS-VaR equation 

{ } 1, , 1 2, , 1 3, , 1, , , j t i t i ti j tSDS VaR VaR VaR Rθ θ θ θθ α β β β− − −− = + + +  as a spillover term. 

2. Compute the fitted values from , , , 1, , 1
ˆ ˆ
i j t j tS VaRθ θ θα β −= + , thus extracting only the systemic 

risk component or contribution to total financial risk of the SDS-VaR of each asset category. 

3. The sum of all , , ,
ˆ
i j tS θ  can be interpreted as the “immediate” systemic risk for the whole 

financial system. Note that this risk factor not only changes in a time dimension but also in a 

state dimension since different state-dependent coefficients 1,
ˆ

θβ  are used to estimate , , ,
ˆ
i j tS θ . 

4. In order to control for the fact that (i) one time shocks to each asset class impact the financial 

system not only in t+1 but also in the following periods and (ii) shocks to one asset class also 

propagate to other asset classes and thus indirectly contributing to the shock in the financial 

                                                 
18 Fung and Hsieh (2004) use the following eight hedge fund risk factors: bonds, currencies, commodities, the 

trend-following risk factor according to Fung and Hsieh (2001); the two equity-oriented risk factors equity market 

and size spread; the two bond-oriented risk factors bond market and credit spread factor; and the emerging market 

index. 
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system, we will extend the vector autoregressive framework of Section 3 in order to estimate 

cumulative impacts by controlling for these interdependencies over an extended time period. 

 

5  Conclusion 

The financial market crisis of 2007/2008 has revealed fundamental shortcomings in the current 

framework of banking regulation. Common value-at-risk measures consider each company in 

isolation and do not control for risk spillovers between companies and asset classes. Recent work 

in this area extends the traditional VaR measures by controlling for spillover effects from other 

assets. The additional insights from such an estimation framework are useful for setting capital 

surcharges in the context of banking supervision. From a practical standpoint the knowledge of 

risk spillovers and their size is relevant for deciding on the right hedging strategy as well as for 

scenario analysis. 

We propose a state-dependent sensitivity VaR model which measures spillover effects 

conditional on the state of the economy. The magnitude in estimated spillovers differs 

considerably over different states of the economy. Ignoring the state dependency in the variables 

leads to an average estimate of contagion that may not be representative of the actual spillovers 

in any of the states. In particular, our empirical results indicate only marginal spillovers risk 

during tranquil and normal market periods while shocks in the VaR of one asset class can lead to 

substantial contagion in times of financial distress. In this context hedge funds are estimated to 

be most relevant in generating systemic risks during turbulent market periods. 

We present the dynamics of shock spillovers using impulse response functions. During 

volatile market periods one time shocks to the VaR of one asset can lead to significant responses 

in the VaRs of other assets. In line with our previous results we find that shocks to the hedge 
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fund industry give rise to considerable VaR reactions of investment banks and other assets. In 

fact, one time shocks in the hedge fund VaR lead to shock reactions in the whole financial 

system that can be observed for several months. 
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Figure 1: Value-at-Risk Scatter Plots and Quantile Effects for Selected Assets 
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Notes: Values above the 75% quantile are denoted as “upper quantiles”, Values between the 12.5% quantile and the 75% quantile are denoted as “middle 
quantiles”, values below 12.5% are denoted as “lower quantiles”. The red points in the scatter plot denote the lowest 5% of the VaR distribution.  
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Figure 2: Coefficients and P-values of the Static SDS-VaR Models 

Panel A: Coefficient Estimates 
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Panel B: p-Values 
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Figure 3: Dynamic SDS-VaR Model for Investment Banks with Spillovers from Hedge Funds 
Panel A: Out-of-Sample Dynamic SDS-VaR 
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Figure 3: Impulse Response Functions For Tranquil, Normal, and Volatile Market Conditions 
Tranquil Market Conditions: 0.75-Quantile 
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Normal Market Conditions: 0.5-Quantile   
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Volatile Market Conditions: 0.125-Quantile   
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NotesThe observation period ranges from 4/02/2003 to 12/01/2009 (1,740 obs.). REITs, commercial banks and investment banks enter the SDS-VaR equation 
without lags whereas the hedge fund index enters the equation with lag 1. For the volatile market conditions, the IRF of the hedge fund index shows the case of the 
37.5% quantile because lower quantiles lead to shocked SDS-VaRs that do not return to a steady state condition. 


