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Abstract

This article investigates the consequences of population aging for

long-run economic growth perspectives. We introduce age specific het-

erogeneity of households into a model of technological change. We

show that the framework incorporates two standard specifications as

special cases: endogenous growth models with scale effects and semi-

endogenous growth models without scale effects. The introduction of

an age structured population implies that aggregate laws of motion

for capital and consumption have to be obtained by integrating over

different cohorts. It is analytically shown that these laws of motion

depend on the underlying demographic assumptions. Our results are

that (i) increases in longevity have positive effects on per capita out-

put growth, (ii) decreases in fertility have negative effects on per capita

output growth, (iii) the longevity effect dominates the fertility effect

in case of endogenous growth models and (iv) population aging fos-

ters long run-growth in endogenous growth models, while the converse

holds true in semi-endogenous growth frameworks.

JEL classification: O41, J10, C61

Keywords: population aging, endogenous technological change, long-
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1 Introduction

Most recently, population aging in industrialized countries has been iden-

tified as one central issue regarding future economic development (see for

example Bloom et al., 2008; The Economist, 2009). While declining fertil-

ity – even far below the replacement level – triggers increases in the mean

age of a certain population and slows down population growth, decreasing

mortality allows individuals to enjoy the benefits of retirement for longer

time periods (cf. United Nations, 2007; Eurostat, 2009). The consequences

of these developments are expected to be huge. To mention only the most

well known examples: support ratios will decline such that fewer and fewer

workers will have to carry the burden of financing more and more retirees

(see for example Gertler, 1999; Gruescu, 2007); overall productivity levels

will change because individual workers have age specific productivity profiles

and age decompositions of western societies will shift (see Skirbekk, 2008, for

an overview); the savings behavior of individuals will change because they

expect to live longer (see for example Futagami and Nakajima, 2001). How-

ever, as regards the implications of population aging on per capita output

growth, there are only transient effects of changing support ratios, changing

saving behavior of households and changing aggregate productivity profiles.

The reason is that on the one hand, a one time shift from high to low fertility

cannot lead to a permanently changing age decomposition of a certain popu-

lation and on the other hand, changes in the savings behavior of households

have only level effects on per capita output in the presence of diminishing

returns to capital (Ramsey, 1928; Solow, 1956).

In this paper we concentrate on the implications of population aging

for per capita output growth over a long time horizon. Since technologi-

cal progress has been identified as the main driving force behind economic

development (see for example Romer, 1990), we are particularly interested

in the effects of changing age decompositions on research and development

(R&D)1. Therefore the natural model class to examine our research question

are endogenous and semi-endogenous growth models, where the research

1Futagami and Nakajima (2001) impose the assumption that there are no diminishing
returns to scale with respect to the capital stock in the aggregate production function (cf.
Romer, 1986) which allows them even to draw conclusions on the effects of a changing
saving behavior on long-run economic growth performance. However, their contribution
does not consider the effects of aging on R&D.
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effort is determined in a general equilibrium framework assuming utility

maximizing households and profit maximizing firms.

Endogenous growth models (see for example Romer, 1990; Grossman

and Helpman, 1991; Aghion and Howitt, 1992) state that, aside from other

influences, the population size of a certain country is crucial for long-run

economic performance. Larger countries are able to grow faster because

they have more scientists to employ and they have a larger market such

that profit opportunities of firms engaging in R&D are larger. This effect is

called the scale effect which has been questioned by Jones (1995) because it

was not supported by empirical evidence. In setting up a scale-free model

of technological change, Jones (1995) paved the way for semi-endogenous

growth models (see for example Kortum, 1997; Segerström, 1999), where

long-run economic performance is affected by population growth rather than

population size. The basic idea of semi-endogenous growth models is that

R&D becomes more and more complex with an expanding technological

frontier. Consequently, ever more resources have to be devoted to research

activities in order to sustain a certain pace of technological progress.

Although the described models examine the effects of changes in demo-

graphic patterns as represented by population size and population growth,

they remain silent when it comes to the consequences of population aging

because they assume that economies are populated by representative in-

dividuals who live forever. We introduce age dependent heterogeneity of

individuals by generalizing these frameworks to account for finite individ-

ual planning horizons and overlapping generations in the spirit of Blanchard

(1985) in case of endogenous growth and in the spirit of Buiter (1988) in case

of semi-endogenous growth. In doing so we assume that individuals do not

live forever but that they have to face a certain probability of death at each

instant. The standard endogenous and semi-endogenous growth models are

then special cases with the probability of death being equal to zero.

Our results show that allowing for a more realistic demographic structure

in traditional endogenous and semi-endogenous growth models is desirable

because first, we can disentangle the growth affects of changing fertility from

those of changing mortality and second, we can show that population aging

has a crucial impact on long-run economic growth perspectives.

The paper proceeds as follows: Section 2 describes a model that nests

the Romer (1990) and the Jones (1995) frameworks as special cases and
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features a richer demographic structure. Section 3 examines the effects of

demographic change for long-run economic growth in both types of models.

Finally, section 4 draws conclusions and highlights scope for further research.

2 The model

This section characterizes the basic model of R&D which relies on horizontal

innovations, i.e. on the development of new product varieties2. It nests the

Romer (1990) framework with strong spillovers in the research sector and a

constant population size as well as the Jones (1995) framework with weaker

spillovers in the research sector and a growing population size as special

cases (cf. Strulik, 2009).

2.1 Basic assumptions

The basic structure of our model economy is that there are three sectors: fi-

nal goods production, intermediate goods production and R&D. Altogether

the economy has two productive factors at its disposal: capital and labor.

Labor and machines are used to produce final goods in a perfectly competi-

tive market, capital and blueprints are used in the Dixit and Stiglitz (1977)

monopolistically competitive intermediate goods sector to produce machines

and labor is used to produce blueprints in the perfectly competitive R&D

sector.

In contrast to the representative agent assumption, we introduce over-

lapping generations in the spirit of Blanchard (1985) to the Romer (1990)

case, since there the population size has to stay constant, and in the spirit

of Buiter (1988) to the Jones (1995) case, since there the population size

has to grow. First of all we assume that the total population of an economy

consists of different cohorts that are distinguishable by their date of birth

denoted as t0. Each cohort consists of a measure N(t0, t) of individuals at a

certain point in time t > t0. In addition, we assume that individuals have to

face a constant risk of death at each instant which we denote as µ. Due to

the law of large numbers this rate is equal to the fraction of individuals dying

at each instant. In the Romer (1990) case the population does not grow and

therefore the birth rate is also equal to µ, whereas in the Jones (1995) case

2Using a model with vertical innovations would not change the results.
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the population grows at rate n = β−µ, where β > µ is the birth rate. Note

that demographic change can then be analyzed by changing mortality and

fertility separately in the Jones (1995) case, while in the Romer (1990) case

only the impacts of contemporaneous changes in both demographic param-

eters can be analyzed. In the former framework decreases in fertility lead

to a slowdown of population growth as well as to population aging, while

decreases in mortality only increase the population growth rate and have no

effect on the aggregate age decomposition (cf. Preston et al., 2001). In the

latter framework decreases in both mortality and fertility lead to population

aging, while leaving the population size constant.

2.2 Consumption side

Suppressing time subscripts, a certain individual maximizes its discounted

stream of lifetime utility

U =

∫ ∞
t0

e−(ρ+µ)(τ−t0)

(
c1−σ − 1

1− σ

)
dτ, (1)

where t0 is the date of birth of the individual, ρ > 0 is the subjective time

discount rate, the mortality rate µ > 0 augments the subjective time dis-

count rate because individuals who face the risk of death are less likely to

postpone consumption into the future to the same extent as in case of no

lifetime uncertainty, c refers to individual consumption of the final good and

σ > 0 is a coefficient of relative risk aversion such that the intertemporal

elasticity of substitution is equal to 1/σ. We implement the assumption

of Yaari (1965) that individuals insure themselves against the risk of dying

with positive assets by using their whole savings to buy actuarial notes of a

fair life-insurance company. This company redistributes wealth of individ-

uals who died to those who survived and therefore the real rate of return

on capital is augmented by the mortality rate. Consequently, the wealth

constraint of individuals reads

k̇ = (r + µ− δ)k + wl − c, (2)

where k refers to the individual capital stock, r is the rental rate of capital,

δ > 0 is the rate of depreciation, w represents the wage rate and l refers

to the efficiency units of labor an individual supplies on the labor market.
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The left hand side of the constraint denotes the change in the individual’s

capital stock, while the right hand side comprises total individual savings,

i.e. capital income and wage income net of consumption expenditures. Note

that we refer to final goods as the numéraire. For simplicity reasons we

assume that each individual inelastically supplies her available efficiency

units of labor and use the normalization l ≡ 1 from now on. Carrying

out utility maximization subject to the wealth constraint yields the familiar

individual Euler equation

ċ

c
=

(r − ρ− δ)
σ

, (3)

stating that consumption expenditure growth is positive if and only if the

interest rate, r−δ, exceeds the time discount rate, ρ. However, our economy

does not feature only one single representative individual in this setting and

we have to use certain aggregation rules to come up with expressions for

aggregate consumption expenditure growth as well as laws of motion for

aggregate capital. This is done in subsection 2.2.1 for the Romer (1990)

case of a constant population and in subsection 2.2.2 for the Jones (1995)

case of a growing population.

2.2.1 Aggregation in case of a constant population

In our framework, agents are heterogeneous with respect to age and therefore

also with respect to accumulated wealth because older agents have had more

time to build up positive assets. In order to get to the law of motion for

aggregate capital and to the economy-wide (“aggregate”) Euler equation,

we have to apply the following rules to aggregate over all cohorts alive at

time t (cf. Heijdra and van der Ploeg, 2002):

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0, (4)

C(t) ≡
∫ t

−∞
c(t0, t)N(t0, t)dt0. (5)
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By applying our demographic assumptions for the Romer (1990) case, we

can rewrite these rules as

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0, (6)

K(t) ≡ µN

∫ t

−∞
k(t0, t)e

µ(t0−t)dt0 (7)

because in case of a constant population size, each cohort is of size µNeµ(t0−t)

at a certain point in time t > t0
3. After carrying out the calculations

described in Appendix A, we arrive at the following expressions for the law

of motion of aggregate capital and for the aggregate Euler equation

K̇ = (r − δ)K(t)− C(t) +W (t), (8)

Ċ(t)

C(t)
=

(r − ρ− δ)
σ

− µΩ, (9)

where we denote C(t)−c(t,t)
C(t) as Ω. Due to the fact that aggregate consump-

tion, C(t), is always higher than consumption of the newborns, c(t, t), it

holds that Ω ∈ [0, 1]. Therefore aggregate consumption expenditure growth

will always be lower than individual consumption expenditure growth. The

reason is that at each instant, a fraction µ of older and therefore wealthier

individuals die and they are replaced by poorer newborns. Since the latter

can afford less consumption than the former, the turnover of generations

slows down aggregate consumption expenditure growth as compared to in-

dividual consumption expenditure growth (cf. Heijdra and van der Ploeg,

2002). Regarding the law of motion for aggregate capital, we see that the

mortality rate does not show up. The reason is that the live insurance com-

pany only redistributes capital between cohorts and does not itself create or

subtract capital from the whole economy.

2.2.2 Aggregation in case of a growing population

In case of the Jones (1995) model, population growth is allowed for. The

aggregation rules in such a setting remain the same as in the previous sub-

section but the demographic assumptions change because the rate of birth,

3Consequently, we have that
∫ t
−∞ µNe

µ(t0−t)dt0 = L holds for the total population
size at time t and due to the normalization l ≡ 1 also for the total labor supply.
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β, has to exceed the mortality rate, µ. Therefore the population grows at

rate n = β − µ and we normalize the initial population size to L(0) such

that we can write the size of a cohort born at t0 < t at a certain point in

time as (see appendix A):

N(t0, t) = βL(0)eβt0e−µt. (10)

Integrating over all cohorts alive yields the population size, i.e. the available

amount of efficiency units of labor at time t as

L(t) = L(0)e(β−µ)t. (11)

Therefore we can define the aggregate capital stock and aggregate consump-

tion according to

C(t) ≡ βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0, (12)

K(t) ≡ βL(0)e−µt
∫ t

−∞
k(t0, t)e

βt0dt0. (13)

After carrying out the calculations described in appendix A, we arrive at

the aggregate law of motion for capital and the aggregate Euler equation

K̇ = (r − δ)K(t)− C(t) +W (t), (14)

Ċ

C
=

(r − ρ− δ)
σ

+ βΩ′ − µ, (15)

where we denote H(t)
F (t)+H(t) as Ω′. In this expression, F (t) refers to aggregate

financial wealth and H(t) to aggregate human wealth (see appendix A). We

can immediately conclude that Ω′ ∈ [0, 1] holds and economy-wide consump-

tion growth differs from individual consumption growth. Now the argument

still holds that an increase in mortality means that older and richer individu-

als die more frequently and their replacement by newborns without financial

wealth leads to a slowdown of aggregate consumption expenditure growth as

compared to individual consumption expenditure growth. However, there

is an additional effect arising from changes in fertility: higher fertility leads

to faster population growth and this spurs aggregate consumption expen-

diture growth as compared to individual consumption expenditure growth.

Note that the law of motion for aggregate capital is the same as in case of
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a constant population size (cf. Buiter, 1988).

2.3 Production side

Now we turn to the production side of our model economies. The final goods

sector produces the consumption aggregate with labor and intermediates as

inputs. To have a sensible economic interpretation, we refer to intermediate

varieties as differentiated machines. The production function of the final

goods sector can be written as

Y = L1−α
Y

∫ A

0
xαi di, (16)

where Y represents output of the consumption aggregate, LY refers to labor

used in final goods production, A is the technological frontier, i.e. loosely

speaking the “number” of differentiated machines available, xi is the amount

of a certain specific machine used in final goods production and α ∈ [0, 1]

is the intermediate input share. Profit maximization and the assumption

of perfect competition in the final goods sector imply that factors are paid

their marginal products:

wY = (1− α)
Y

LY
, (17)

pi = αL1−α
Y xα−1

i , (18)

where wY refers to the wage rate paid in the final goods sector and pi to

prices paid for intermediate inputs. Note that all specific machines are used

to the same extent so the index i can be dropped due to symmetry.

The intermediate goods sector is monopolistically competitive in the

spirit of Dixit and Stiglitz (1977) such that each firm produces one of the

differentiated machines. In doing so, it has to purchase one blueprint from

the R&D sector and afterwards employ capital as variable input in produc-

tion. The costs of blueprints represent fixed costs to each firm. Free entry

ensures that operating profits equal fixed costs such that overall profits are

zero4. After an intermediate goods producer has purchased a blueprint, it

can transform one unit of capital into one unit of the intermediate good.

4If positive overall profits were present, new firms would enter the market until these
profits vanish.
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Thus operating profits can be written as

π = p(x)k − rk

= αL1−α
y kα − rk. (19)

Profit maximization of firms yields prices of machines

p =
r

α
, (20)

where 1/α is the markup over marginal cost (cf. Dixit and Stiglitz, 1977).

The aggregate capital stock is equal to the amount of all intermediates

produced, i.e. K = Ax, such that equation (16) becomes

Y = (ALY )1−αKα. (21)

The R&D sector employs scientists to discover new blueprints. Depend-

ing on the productivity of scientists, λ, and the size of technology spillovers,

φ, the number of blueprints evolves according to

Ȧ = λAφLA, (22)

where LA denotes the amount of scientists employed. Consequently, the

technological frontier expands faster if scientists are more productive or

technological spillovers are higher5. If φ = 1, spillovers are strong enough

such that developing new blueprints does not become ever more difficult as

the technological frontier expands. If, in contrast, φ < 1, the spillovers are

insufficiently low and developing new blueprints becomes more and more

difficult with an expanding technological frontier6. In the former case our

economy behaves like in the Romer (1990) scenario, whereas in the latter

case our economy behaves like in the Jones (1995) scenario. Furthermore,

there is perfect competition in the research sector such that firms maximize

max
LA

πA = pAλA
φLA − wALA, (23)

5Note that we do not allow for the possibility of duplication in the research process.
The reason is that this increases the comparability between the Romer (1990) model and
the Jones (1995) model. Furthermore, allowing different researchers to develop the same
blueprint would not change the results.

6This can easily be shown by dividing equation (22) by the technological frontier A.
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with πA being the profit of a firm in the R&D sector and pA representing

the price of a blueprint. The first order condition pins down wages in the

research sector to

wA = pAλA
φ. (24)

The interpretation of this equation is straightforward: wages of scientists

increase in their productivity as well as in the prices of blueprints. If φ = 1,

an expanding technological frontier gradually increases wages of scientists,

whereas φ < 1 means that the increases in scientist’s wages caused by tech-

nological progress become smaller and smaller. Since the wages of workers

in the final goods sector linearly increase in A, this means that being a

scientist would become less and less attractive.

2.4 Market clearing

There is perfect labor mobility between sectors, therefore wages of final

goods producers and wages of scientists equalize. The reason is that workers

in the final goods sector and scientists do not differ with respect to education

or with respect to productivity. Consequently, if wages were higher in one of

these two sectors, it would attract workers from the other sector until wages

are equal again. Therefore we can insert (17) into (24) to get to following

equilibrium condition:

pAλA
φ = (1− α)

Y

LY
. (25)

Firms in the R&D sector can charge prices of blueprints that are equal to the

present value of operating profits in the intermediate goods sector because

there is always a potential entrant who is willing to pay that price due to

free entry. Therefore we have

pA =

∫ ∞
t0

e−(R(τ)−R(t0))π dτ, (26)

where R(t0) =
∫ t0

0 (r(s)− δ) ds, i.e. the discount rate is the market interest

rate paid for household’s savings. Via the Leibniz rule and the fact that

prices of blueprints do not change in the steady state, we can obtain

pA =
π

r − δ
(27)
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such that these prices are equal to operating profits of intermediate goods

producers divided by the market interest rate7. Next, we obtain profits by

using equation (19) as

π = (1− α)α
Y

A
(28)

such that equation (27) becomes

pA =
(1− α)αY

(r − δ)A
. (29)

Assuming that labor markets clear, i.e. L = LA+LY , we can determine the

amount of labor employed in the final goods sector and in the R&D sector

by using equation (25):

LY =
(r − δ)A1−φ

αλ
,

LA = L− (r − δ)A1−φ

αλ
. (30)

The interpretation of these two equations is straightforward: the higher the

market interest rate on capital, r − δ, the higher are the opportunity costs

of R&D and consequently, the lower is the number of scientists and the

higher is the number of final goods assemblers employed; the higher the

productivity of researchers, λ, the more scientists and the less assemblers of

final goods are employed; if knowledge spillovers φ are insufficiently low to

prevent R&D from becoming ever more complex, an expanding technological

frontier A reduces employment of scientists and increases employment of

workers in the final goods sector; finally, an increase in the intermediate

share of final output, α, increases the number of scientists and decreases the

number of workers in the final goods sector because more blueprints have

to be produced if the number of intermediate goods producers is higher.

Inserting (30) into (22) leads to the evolution of knowledge:

Ȧ = λAφL− (r − δ)A
α

, (31)

7Note that we cannot analyze transition dynamics. Instead, as in Romer (1990), the
capital stock is assumed to be on its optimal level immediately.
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where we see that the technological frontier expends faster, the larger the

population size is. All factors identified above to reduce the amount of sci-

entists employed in the R&D sector also reduce the pace of technological

progress. From now on we have to distinguish between the Romer (1990)

case, where technological spillovers are strong and the population size is con-

stant, and the Jones (1995) case, where technological spillovers are weaker

and the population grows at rate n8.

3 Effects of demographic change on economic

growth

This section is devoted to deriving the per capita steady state growth rates

of the Romer (1990) and the Jones (1995) case and to analyze the effects of

demographic change in these different frameworks.

3.1 The steady state growth rate in the Romer (1990) case

After implementing the central assumption φ = 1 of the Romer (1990)

model, the growth rate of the economy can be written as

g =
Ȧ

A
= λL− r − δ

α
. (32)

To calculate the steady state growth rate, we use the aggregate Euler equa-

tion for a constant population size to get the following expression for the

market rate of return on capital

r = (g + µΩ)σ + ρ+ δ, (33)

where we used that Ċ/C = g. We insert this expression into equation (32)

such that the equilibrium growth rate becomes

gR =
λLα− ρ− µΩσ

α+ σ
(34)

and the subscript refers to the Romer (1990) case. At this stage we can

state the following Lemma:

8Note that our assumption ṗA = 0 implies a constant interest rate r. Therefore we
cannot analyze the equilibrium growth rate and its steady state version in the Jones (1995)
case by using equation (31). Instead, we use a slightly different approach in appendix A.
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Lemma 1. The term Ω is constant over time.

Proof. Due to the fact that Ω can be expressed as (see appendix A):

Ω = (ρ+ µ)
F (t)

C(t)
, (35)

we see that it is constant as long as aggregate financial wealth, F (t), and

aggregate consumption, C(t), grow at the same rate. Since there are no

transitional dynamics because ṗA = 0, the aggregate capital stock is al-

ways at its optimal steady state value. Consequently, the economy never

finds itself on a transition path, where capital would accumulate faster than

consumption grows.

Due to Lemma 1, the equilibrium growth rate is equivalent to the steady

state growth rate, which we denote as gssR , because the right hand side of

equation (34) is constant. Now we can state the first central result:

Proposition 1. In case of endogenous growth in the spirit of Romer (1990),

increasing longevity has a positive effect on the steady state growth rate of

an economy.

Proof. Using equation (35), the derivative of equation (34) with respect to

mortality is equal to

∂gssR
∂µ

=

(
−(ρ+ 2µ)F (t)σ − µ(ρ+ µ)∂F (t)

∂µ σ
)

(α+ σ)C(t)

[(α+ σ)C(t)]2
+

+
µ(ρ+ µ)F (t)σ(α+ σ)∂C(t)

∂µ

[(α+ σ)C(t)]2
.

We know that ρ, µ, F (t), σ, α and C(t) are positive. From the aggregate Eu-

ler equation it follows that ∂C(t)/∂µ is negative and consequently ∂F (t)/∂µ

is positive. Therefore the whole expression is negative and due to the fact

that an increase in longevity is represented by a decrease in mortality µ, the

proposition holds.

The intuition for this finding is that a decrease in mortality slows down

the turnover of generations and so a lower market interest rate is required to

sustain a given growth rate of aggregate consumption. Due to the fact that

future profits of R&D investments are discounted with this market interest
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rate, the profitability of R&D rises. Consequently, R&D efforts increase

which fosters long-run growth because intertemporal knowledge spillovers

in the Romer (1990) case are high enough for the effect to be sustainable.

3.2 The steady state growth rate in the Jones (1995) case

To come up with the steady state growth rate in the Jones (1995) case de-

noted as gssJ , we search for an expression where the growth rate of technology

is constant and carry out the associated calculations in appendix A. This

leads us to

gssJ =
β − µ
1− φ

(36)

and therefore we state the second central result:

Proposition 2. In case of semi-endogenous growth in the spirit of Jones

(1995), increasing longevity raises the steady state growth rate of an econ-

omy.

Proof. The derivative of equation (36) with respect to mortality is equal to

∂gssJ
∂µ

= − 1

1− φ

which is unambiguously negative because φ < 1 is the central assumption

in the Jones (1995) case. As an increase in longevity is represented by a

decrease in mortality µ, the proposition holds.

The interpretation for this finding is that a decrease in mortality, while

holding fertility constant, leads to an increase in the population growth

rate. This represents a permanent increase in the flow of scientists devoted

to R&D and therefore a faster growth rate of the number of patents can be

sustained. Of course, the same holds true for increasing fertility:

Proposition 3. In case of semi-endogenous growth in the spirit of Jones

(1995), increasing fertility raises the steady state growth rate of an economy.

Proof. The derivative of equation (36) with respect to fertility is equal to

∂gssJ
∂µ

=
1

1− φ

which is unambiguously positive because φ < 1 is the central assumption in

the Jones (1995) case.
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The interpretation for this finding is that an increase in fertility, while

holding mortality constant, leads to an increase in the population growth

rate and therefore to a growing number of scientists devoted to R&D activ-

ities.

The interesting fact is that in the Romer (1990) model a decrease in mor-

tality is accompanied by a decrease in fertility. Both effects offset each other

with regards to population growth such that the population size stays con-

stant as in the standard Romer (1990) framework. This allows us to conclude

that the benefits of decreasing mortality for economic growth overcompen-

sate the drawbacks of decreasing fertility. The reason is that decreasing

mortality not only changes the population growth rate but also decreases

the market interest rate by which future profits of R&D investments are

discounted. This leads to a shift of resources into R&D and consequently

fosters per capita output growth. We summarize this finding in the following

remark:

Remark 1. In case of endogenous growth in the spirit of Romer (1990), the

benefits of decreasing mortality overcompensate the drawbacks of decreasing

fertility for long-run economic growth perspectives.

Furthermore, we know that population aging is described by contem-

poraneous decreases in fertility and mortality in the Romer (1990) case,

whereas population aging is only described by decreases in fertility in the

Jones (1995) case. Therefore we have that population aging has a positive

impact on long-run economic growth if endogenous growth models are the

accurate description of underlying growth processes, whereas the converse

holds true for semi-endogenous growth models. We summarize this finding

in the following remark:

Remark 2. In case of endogenous growth in the spirit of Romer (1990),

population aging has positive impacts on the long-run economic growth rate,

while in in case of semi-endogenous growth in the spirit of Jones (1995),

population aging has negative impacts on the long-run economic growth rate.

Altogether, we have been able to describe some important impacts of

demographic change on economic development. In general, decreases in fer-

tility negatively impact upon long-run growth, whereas decreasing mortality

fosters long-run growth. The effects of population aging depend on the un-

derlying model used to describe the growth process. While population aging
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is beneficial in the Romer (1990) case, the converse holds true in a Jones

(1995) environment.

4 Conclusions

We set up a model of endogenous technological change that nests the Romer

(1990) and the Jones (1995) frameworks. We generalized these models by

introducing finite individual planning horizons and thereby allowing for over-

lapping generations and heterogeneous individuals. Altogether we showed

that the underlying demographic assumptions play a crucial role in describ-

ing the long-run growth rates of western economies.

Our results regarding the impacts of demographic change on long-run

economic growth perspectives have been the following: (i) decreasing mor-

tality positively affects long-run growth, (ii) decreasing fertility negatively

affects long-run growth, (iii) the negative effects of decreasing fertility are

overcompensated by the positive effects of decreases in mortality in case

of the Romer (1990) model, (iv) population aging is beneficial for long-run

economic growth in the Romer (1990) case, whereas it hampers economic

growth in the Jones (1995) case.

From an applied perspective, our conclusion is that currently ongoing

demographic changes do not necessarily hamper technological progress and

therefore economic prosperity. If both demographic parameters fertility and

mortality decrease simultaneously, there might only be modest effects on

long-run growth. There are also some studies that support such an outcome

(cf. Bloom et al., 2008, 2010). If we believe that the Romer (1990) model

is an accurate description of the growth process of western economies, de-

mographic change induced by contemporaneous decreases in fertility and

mortality could even be associated with increasing investments into knowl-

edge creation.

Finally, we can state that there is scope for further research because

a constant mortality rate is still at odds with reality and one could try

to introduce age dependent mortality rates. Another promising field for

additional investigations could be to introduce heterogeneity of researchers

with respect to age. These issues are on top of our research agenda.
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Appendix

A Derivations

The individual Euler equation with aging: The current value Hamil-

tonian is

H =

(
c1−σ − 1

1− σ

)
+ λ [(r + µ− δ)k + w − c] .

The first order conditions are:

∂H

∂c
= c−σ − λ !

= 0

⇒ c−σ = λ (37)

∂H

∂k
= (r + µ− δ)λ !

= (ρ+ µ)λ− λ̇

⇒ λ̇ = (ρ+ δ − r)λ. (38)

Taking the time derivative of equation (37)

−σc−σ−1ċ = λ̇

and plugging it into equation (38) yields

−σc−σ−1ċ = (ρ+ δ − r)λ

c−σ−1ċ =
(r − ρ− δ)c−σ

σ
ċ

c
=

(r − ρ− δ)
σ

which is the individual Euler equation.

Aggregate capital and aggregate consumption in the Romer (1990)

case: Following Heijdra and van der Ploeg (2002) and differentiating equa-
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tions (6) and (7) with respect to time yields

Ċ(t) = µN

[∫ t

−∞
ċ(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

]
+ µNc(t, t)− 0

= µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0 (39)

K̇(t) = µN

[∫ t

−∞
k̇(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
k(t0, t)e

µ(t0−t)dt0

]
+ µNk(t, t)− 0

= µN k(t, t)︸ ︷︷ ︸
=0

−µK(t) + µN

∫ t

−∞
k̇(t0, t)e

−µ(t−t0)dt0. (40)

From equation (2) it follows that

K̇(t) = −µK(t) + µN

∫ t

−∞
[(r + µ− δ)k(t0, t) + w(t)− c(t0, t)] e−µ(t−t0)dt0

= −µK(t) + (r + µ− δ)µN
∫ t

−∞
k(t0, t)e

−µ(t−t0)dt0

−µN
∫ t

−∞
c(t0, t)e

−µ(t−t0)dt0 +N

(
µw(t)e−µ(t−t0)

µ

)t
−∞

= −µK(t) + (r + µ− δ)K(t)− C(t) +W (t)

= (r − δ)K(t)− C(t) +W (t)

which is the aggregate law of motion for capital. Reformulating an agent’s

optimization problem subject to its lifetime budget restriction, stating that

the present value of lifetime consumption expenditures have to be equal

to the present value of lifetime wage income plus initial assets, yields the

optimization problem

max
c(t0,τ)

U =

∫ ∞
t

e(ρ+µ)(t−τ)

(
c(t0, τ)1−σ − 1

1− σ

)
dτ

s.t. k(t0, t) +

∫ ∞
t

w(τ)e−R
A(t,τ)dτ =

∫ ∞
t

c(t0, τ)e−R
A(t,τ)dτ,

(41)

where RA(τ, t) =
∫ τ
t (r(s)+µ−δ)ds. The FOC to this optimization problem

is

c(t0, τ)−σe(ρ+µ)(t−τ) = λ(t)e−R
A(t,τ).
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In period (τ = t) we have

c(t0, τ) =
1

λ1/σ
.

Therefore we can write

c(t0, τ)−σe(ρ+µ)(t−τ) = c(t0, τ)−σe−R
A(t,τ)

c(t0, τ)e(ρ+µ)(t−τ) = c(t0, τ)e−R
A(t,τ).

Integrating and using equation (41) yields∫ ∞
t

c(t0, τ)e(ρ+µ)(t−τ)dτ =

∫ ∞
t

c(t0, τ)e−R
A(t,τ)dτ

c(t0, τ)

ρ+ µ

[
−e(ρ+µ)(t−τ)

]∞
t

= k(t0, t)︸ ︷︷ ︸
f(t0,t)

+

∫ ∞
t

w(τ)e−R
A(t,τ)dτ︸ ︷︷ ︸

h(t)

⇒ c(t0, τ) = (ρ+ µ) [f(t0, t) + h(t)] , (42)

where f refers to financial wealth and h to human wealth of individuals.

The latter does not depend on the date of birth because productivity is

age independent. The last line holds because a0 = 1 for any a. Therefore

optimal consumption in the planning period is proportional to total wealth

with a marginal propensity to consume of ρ + µ. Aggregate consumption

evolves according to

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

= µN

∫ t

−∞
eµ(t0−t)(ρ+ µ) [f(t0, t) + h(t)] dt0

= (ρ+ µ)F (t) + µN(ρ+ µ)

∫ t

−∞
eµ(t0−t)h(t)dt0

= (ρ+ µ) [F (t) +H(t)] . (43)

Note that newborns do not have financial wealth because there are no be-

quests. Therefore

c(t, t) = (ρ+ µ)h(t) (44)
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holds for each newborn individual and each newborn cohort, respectively.

Putting equations (3), (39), (43) and (44) together yields

Ċ(t) = µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0

= µN(ρ+ µ)h(t)− µ(ρ+ µ) [F (t) +H(t)]

+ µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0

= µ(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)] +

µN

∫ t

−∞

(r − ρ− δ)
σ

c(t0, t)e
−µ(t−t0)dt0

= µ(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)] +
(r − ρ− δ)

σ
C(t)

⇒ Ċ(t)

C(t)
=

(r − ρ− δ)
σ

+
µ(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)]

C(t)

=
(r − ρ− δ)

σ
− µ(ρ+ µ)

F (t)

C(t)

=
(r − ρ− δ)

σ
− µ C(t)− c(t, t)

C(t)︸ ︷︷ ︸
∈(0,1)

which is the aggregate Euler equation that differs from the individual Euler

equation by the term −µC(t)−c(t,t)
C(t) .

Aggregate capital and aggregate consumption in the Jones (1995)

case: Using our demographic assumptions we can write the size of a cohort

born at t0 < t at time t as

N(t0, t) = βL(t0)e−µ(t−t0)

= βL(0)ent0e−µ(t−t0)

= βL(0)eβt0−µt0e−µt+µt0

= βL(0)eβt0e−µt.
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Integrating over all cohorts yields the population size as

L(t) =

∫ t

−∞
βL(0)eβt0e−µtdt0

= βL(0)e−µt
eβt

β

= L(0)e(β−µ)t.

Following Buiter (1988) and differentiating equations (13) and (12) with

respect to time yields:

Ċ(t) =

[∫ t

−∞
βL(0)e−µtċ(t0, t)e

β(t0) − βL(0)µe−µtc(t0, t)e
βt0dt0

]
+ βL(0)e−µtc(t, t)eβt − 0

= βL(0)e−µtc(t, t)eβt − µC(t) + βL(0)e−µt
∫ t

−∞
ċ(t0, t)e

βt0dt0

(45)

K̇(t) =

[∫ t

−∞
βL(0)e−µtk̇(t0, t)e

β(t0) − µβL(0)e−µtk(t0, t)e
βt0dt0

]
+ βL(0)e−µtk(t, t)eβt − 0

= βL(0)e−µt k(t, t)︸ ︷︷ ︸
=0

eβt − µK(t) + βL(0)e−µt
∫ t

−∞
k̇(t0, t)e

βt0dt0.

(46)

From equation (2) it follows that

K̇(t) = −µK(t) + βL(0)e−µt
∫ t

−∞
[(r + µ− δ)k(t0, t) + w(t)− c(t0, t)] eβt0dt0

= −µK(t) + (r + µ− δ)βL(0)e−µt
∫ t

−∞
k(t0, t)e

βt0dt0

−βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0 + L(0)e−µt
(
βw(t)eβt0

β

)t
−∞

= −µK(t) + (r + µ− δ)K(t)− C(t) +W (t)

= (r − δ)K(t)− C(t) +W (t)

which is the aggregate law of motion for capital. Note that the definition of

aggregate wages is W (t) = L(0)w(t)eβ−µ. By making use of equation (42),
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we can write aggregate consumption as

C(t) ≡ βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0

= βL(0)e−µt
∫ t

−∞
eβt0(ρ+ µ) [f(t0, t) + h(t)] dt0

= (ρ+ µ)F (t) + βL(0)e−µt(ρ+ µ)

∫ t

−∞
eβt0h(t)dt0

= (ρ+ µ) [F (t) +H(t)] . (47)

Note that the following definitions apply: F (t) = βL(0)e−µt
∫ t
−∞ e

βt0f(t, t0)dt0

and H(t) = L(0)e(β−µ)th(t). Newborns do not have financial wealth because

there are no bequests, therefore

c(t, t) = (ρ+ µ)h(t) (48)

holds for each newborn individual and each newborn cohort, respectively.

Putting equations (45), (3), (47) and (48) together yields

Ċ(t) = βL(0)e−µtc(t, t)eβt − µC(t) + βL(0)e−µt
∫ t

−∞
ċ(t0, t)e

βt0dt0

= βL(0)e(β−µ)t(ρ+ µ)h(t)− µ(ρ+ µ) [F (t) +H(t)]

+ βL(0)e−µt
∫ t

−∞
ċ(t0, t)e

βt0dt0

= β(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)] +

βL(0)e−µt
∫ t

−∞

(r − ρ− δ)
σ

c(t0, t)e
βt0dt0

= β(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)] +
(r − ρ− δ)

σ
C(t)

⇒ Ċ(t)

C(t)
=

(r − ρ− δ)
σ

+
β(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)]

C(t)

=
(r − ρ− δ)

σ
+
β(ρ+ µ)H(t)− µ(ρ+ µ) [F (t) +H(t)]

(ρ+ µ) [F (t) +H(t)]

=
(r − ρ− δ)

σ
+ β

H(t)

F (t) +H(t)︸ ︷︷ ︸
Ω′∈(0,1)

−µ

which is the aggregate Euler equation that differs from the individual Euler

equation by the term β H(t)
F (t)+H(t) − µ.
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Operating profits for intermediate goods producers: Profits of in-

termediate goods producers can be obtained via equation (19) as

π =
r

α
x− rx

= (1− α)α
Y

A
.

Labor input in both sectors: We determine the fraction of workers

employed in the final goods sector and in the R&D sector by using equation

(25):

pAλAφ = (1− α)
Y

Ly

LY =
(r − δ)A1−φ

αλ

⇒ LA = L− (r − δ)A1−φ

αλ
,

where the last line follows from labor market clearing, i.e. L = LA + LY .

The steady state growth rate in the Romer (1990) case with de-

mography: We insert equation (33) into equation (32) to solve for the

equilibrium growth rate

g =
Ȧ

A
= λL− (g + µΩ)σ + ρ

α

=
λLα− ρ− µΩσ

α+ σ
,

where the steady state growth rate is equivalent to the equilibrium growth

rate because the right hand side is constant.

The steady state growth rate in the Jones (1995) case with de-

mography: The growth rate of the economy is

g =
Ȧ

A
=

λLa
A1−φ .
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Taking logarithms yields

log g = log(λ) + log(LA)− (1− φ) log(A).

Taking the derivative of this expression with respect to time and noting that

in the steady state the growth rate is constant yields

∂g

∂t
= n− (1− φ)g = 0

⇒ g =
n

1− φ

=
β − µ
1− φ

.
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