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Abstract

This paper improves the estimation procedure of the Multifractal Random Walk

model by means of an optimal iterated Generalized Method of Moments (GMM)

estimator using an enhanced moments function. We report good estimation results

within the scope of a Monte Carlo simulation study, with normally distributed es-

timates for the intermittency coefficient λ2. This allows us to construct statistical

hypothesis tests about λ2. Moreover, the GMM estimator proves to be robust to

variations in the parameter starting values. In a financial application we estimate

the Multifractal Random Walk model from the daily values of the German DAX

stock market index. Throughout our study, computing time is considerably re-

duced by means of an efficient algorithm for Heteroscedasticity and Autocorrelation

Consistent (HAC) covariance matrix estimation. This algorithm outperforms the

classical HAC estimation methods developed for GAUSS or R due to a fast Toeplitz

matrix-vector multiplication procedure.

Keywords: GMM, multifractal processes, Multifractal RandomWalk, HAC, Toeplitz

matrices
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1 Introduction

The current financial crisis, which has been affecting international financial markets

since 2007, has set a challenge to improve risk management methods and to rigor-

ously assure their quality. This challenge is addressed in this paper with respect to

a multifractal model of asset returns, the Multifractal Random Walk.

It is well known that the dynamics of financial prices varies with the employed

sampling rate, from high-frequency data to daily, quarterly or annual data. Multi-

fractal processes offer a reach and parsimonious tool for modeling price fluctuations

at different time scales within one unifying framework. They account for the re-

lation between the sampling period and the probability distribution of financial

returns, which constitutes a valuable piece of information for risk forecasting. Cor-

respondingly, multifractal models offer a fruitful approach to volatility modeling

outperforming standard volatility forecasts with models of the GARCH/FIGARCH

family (for example, see Calvet and Fisher 2004, Bacry et al. 2008a, Lux 2008).

The first multifractal model of asset returns was introduced in 1997 by the pi-

oneering work of Calvet, Fisher and Mandelbrot.1 Today, financial multifractality

can be described in the context of two models: the Markov-Switching Multifractal

(MSM) by Calvet and Fisher (2001) and the Multifractal Random Walk (MRW)

by Muzy and Bacry (2002). Recently, statistical inference issues for multifractal

processes were brought into focus following two directions of research: Monte Carlo

simulation studies, to assess the performance of estimation and forecast methods in

small samples2 and analytical derivation of probability distributions, a particularly

exigent research area due to the nonlinearity of multifractal models (Bacry et al.

2008b).

This paper pursues these recent developments, in respect of the MRW model.

In this connection, we introduce a new Generalized Method of Moments (GMM)

estimator for the MRW with enhanced performance in finite samples. The second

contribution of this paper is in the field of computational econometrics. The resource

efficient computer-based manipulation of large data sets is a typical challenge in

finance. We propose a new algorithm for the computation of Heteroscedasticity and

Autocorrelation Consistent covariance matrix estimators that can cope with large

data sets due to a fast Toeplitz matrix-vector multiplication procedure.

After a short overview of the MRW model in the next section, a new optimal

iterated GMM estimator for the MRW is introduced in Section 3. Due to the

nonlinearity of the model, the GMM estimation is performed numerically by means of

a constrained nonlinear optimization procedure, which can be initialized effectively

using preliminary estimates. Section 4 is dedicated to the finite sample behaviour

1See Calvet et al. 1997, Fisher et al. 1997, and Mandelbrot et al. 1997.
2For example, see Calvet and Fisher (2004) on the performance of Maximum Likelihood estima-

tion for the MSM, Lux (2008) on the performance of Generalized Method of Moments estimation

and linear forecasts of volatility with the MSM, Bacry et al. (2008b) on the perfomance of Gener-

alized Method of Moments estimation for the MRW.
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of the MRW estimator within the scope of a Monte Carlo study. Moreover, we

discuss the robustness of our estimator to variations of the parameter starting values.

Section 5 contains an application to the evolution of the German stock market over

the past 50 years using the DAX index. The algorithm for the Heteroscedasticity

and Autocorrelation Consistent covariance matrix estimation introduced in Section

6 outperforms standard estimation routines for GAUSS and R significantly in terms

of computational efficiency. Concluding remarks and prospects are presented in

Section 7.

2 The Multifractal Random Walk model

Today, financial data is available at various sampling rates. Electronic stock markets

allow the collection of tick by tick (transaction by transaction) data sampled every

0.01 seconds, also called high-frequency data. The comparison of differently sampled

time series can give a deeper insight into the dynamics of the corresponding financial

price process. The following figure displays the evolution of the German DAX stock

index with sampling intervals (time scales) of 1 day, half an hour and 2.5 minutes.

Going over the plot from top to bottom, one can zoom in on the evolution of the

DAX from its activity over a period of 19 years to its activity in the space of 1 month.

Is there a statistical correspondence between these time series? Is it possible to gain

useful information about the activity of a price process over a wider period of time

from its evolution over a shorter period? And if so, can this knowledge constitute a

solid basis for price forecasts?
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DAX log−values, 1990−2008, τ = 1 day 
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DAX log−values, 2006, τ = 0.5 hours

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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8.55

8.6

8.65

8.7

DAX log−values, June 2006, τ = 2.5 minutes

Figure 1: The log-values of the German DAX stock market index with the sampling

interval τ = 1 day, τ = 30 minutes and τ = 2.5 minutes respectively. The red lines

mark the data section displayed in the subsequent plot.

These questions can be explored within the framework of scale-invariant processes,
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which can capture the relation between the sampling period and the probability dis-

tribution of financial returns (Calvet and Fisher 2002, pp. 385-386). In the following

we will denote the increments of a real-valued process X (t) between times t and

t− τ by δτX (t) := X (t)−X (t− τ).

Definition 1 Let X (t) be a stochastic process with stationary increments δτX (t).

Suppose that the absolute moments E [|δτX (t)|q] exist and are finite for all q ∈ Q,

where Q ⊂ R is a suitable set containing the interval [0, 1]. Consider cq the q-th

absolute moment of the increments δτX (t) with scale τ = 1: cq := E [|δ1X (t)|q].
Further, let ζ : Q→ R denote a differentiable function and T a real positive number.

The process X (t) is scale-invariant with multifractal exponent ζ (q) and integral scale

T if we have

E [|δτX (t)|q] = cqτ
ζ(q) (1)

for all τ ∈ [0, T ], for all t ∈ R+ and for all moment orders q ∈ Q.

According to (1), the statistical moments of the increments of a scale-invariant

process are exact power laws as a function of the sampling interval τ . Generally

one can distinguish between two types of scale-invariant processes subject to their

multifractal exponents ζ (q): fractal processes (also called monofractal, unifractal or

uniscaling) when ζ (q) is linear3 and multifractal processes (also called multiscaling

or intermittent) when ζ (q) is non-linear (Muzy and Bacry 2002). Non-linear ex-

ponents ζ (q) are necessarily concave and have finite T (Bacry and Muzy 2003, p.

450). The stronger the concavity of the multifractal exponent ζ (q), the stronger the

multifractality of the scale-invariant process. A common measure of the degree of

multifractality is the intermittency coefficient

λ2 := −ζ ′′ (0) ≥ 0.
λ2 increases with the bending of the multifractal exponent, i.e. with the degree of

multifractality, and it is 0 in the case of fractal processes.

The Multifractal Random Walk is a continuous nonlinear multifractal process

which was first propounded in Bacry et al. (2001). The model was generalized by

Bacry and Muzy (Muzy and Bacry 2002, Bacry and Muzy 2003), who introduce

a continuous random cascade model on the upper half-plane by means of an inde-

pendently scattered infinitely divisible 2D random measure. This cascade model

generates the log-infinitely divisible Multifractal Random Walk in the limit of small

scales ℓ→ 0.

In this paper we employ a (log-normal) Multifractal Random Walk, which can be

constructed by means of a Gaussian process ωℓ (t).

Definition 2 Consider the stationary Gaussian process ωℓ (t) with mean

E [ωℓ (t)] = −λ2
(
ln

(
T

ℓ

)
+ 1

)

3In this case, the scale-invariance property holds for all scales τ (T =∞). Self-similar processes

with stationary increments (e.g. the fractional Brownian motion) are fractal.
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and autocovariance function γωℓ (h) := Cov [ωℓ (t) , ωℓ (t+ h)] ,

γωℓ (h) =





λ2
(
ln

(
T
ℓ

)
+ 1− h

ℓ

)
, 0 ≤ h < ℓ

λ2 ln
(
T
h

)
, ℓ ≤ h < T

0, h ≥ T

,

also called a Gaussian magnitude.

The Multifractal Random Walk (MRW) is the weak limit process X (t)

X (t) = lim
ℓ→0+

t∫

0

eωℓ(u)dB (u) , (2)

where ωℓ (u) is a Gaussian magnitude with λ2 < 1
2
and dB (u) is a Gaussian White

Noise with mean 0 and variance σ2, independent of ωℓ (u). The MRW X (t) has the

increments

δτX (t) = lim
ℓ→0+

t∫

t−τ

eωℓ(u)dB (u) . (3)

The structure of the Gaussian magnitude ωℓ (t) plays a decisive role for the pro-

perties of the MRW. Let us remark that the magnitude ωℓ (t) is uncorrelated and

hence is independent for lags h ≥ T . For this reason, the integral scale T is also

called the decorrelation scale. Analogously, the MRW increments (3) are indepen-

dent for lags h ≥ T + τ . According to this, the increments process is ergodic. This

property will facilitate the estimation of the model in the following section.4

Note that the (limit) probability distribution of the MRW is unknown except for

some statistical moments:

E
[
X (t)2

]
= σ2t

and accordingly

E
[
δτX (t)

2] = σ2τ . (4)

Additionally, Bacry et al. (2008a, 2008b) derived an approximate distribution of the

MRW increments in the limit of small intermittency λ2 ≪ 1 given by the rescaled

product of a Gaussian White Noise and a log-normal process. This facilitated the

formulation of approximate expressions for the mean and the autocovariance func-

tion (ACF) of the logarithmic absolute increments Zτ (t) := ln (|δτX (t)|). In the

following we reproduce these moment approximations for increments Z (t) := Z1 (t)

4Bacry and Muzy (2003, pp. 456-460) prove the existence and non-degeneracy of the MRW.

The authors show that the model is stochastically self-similar with the random self-similarity factor

Wℓ/L =
√
ℓ /LeΩℓ/L , Ωℓ/L ∼ N

(
λ2 ln (ℓ /L ) ,−λ2 ln (ℓ /L )

)
, ℓ < L and that it has stationary

increments. See also Bacry et al. (2008b, Section II) on a detailed exposition of the model.
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with τ = 1. We denote the ACF Cov [Z (t) , Z (t+ h)] by γ (h) and the mean

E [Z (t)] by µ. We then have for h ≥ 1 for all t

γ (h) =

{
λ2g (h, T ) + o

(
λ2

)
, h ≤ T − 1

o
(
λ2

)
, h ≥ T + 1

(5)

with

g (h, T ) =





ln (T ) + 1.5− 2 ln (2) , h = 1, T ≥ 2

ln
(
T
h

)
− (h+1)2

2
ln

(
1 + 1

h

)
− (h−1)2

2
ln

(
1− 1

h

)
+ 1.5, 2 ≤ h ≤ T − 1 ,

where o
(
λ2

)
satisfies lim

λ2→0+

o(λ2)
λ2

= 0. The mean of the process Z (t) is

µ = ln (σ)− γ + ln (2)

2
− λ2 (1.5 + ln (T )) + o

(
λ2

)
(6)

with γ the Euler constant.

The MRW features three parameters: the intermittency coefficient λ2, the log-

arithmic decorrelation scale ln (T ) and the logarithmic standard deviation ln (σ).

The following plot exhibits the first 300 lags of the ACF in (5) with λ2 = 0.02 and

T = 200. The value of T is given by the point where the ACF becomes zero. One

can see that the ACF passes very smoothly on to zero. On account of this, the

identification of T (or ln (T )) proves to be a demanding task, even within the deter-

ministic framework. The estimation of ln (T ) is consequently all the more ambitious,

and will be considered together with the estimation of λ2 and ln (σ) in the following

two sections.

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

h

γ
(h

)

Figure 2: The ACF γ (h) of the process Z (t) with λ2 = 0.02 and T = 200.

3 The estimation procedure

This section addresses the estimation of the MRW parameters: the intermittency

coefficient λ2, the logarithmic decorrelation scale ln (T ) and the logarithmic stan-
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dard deviation ln (σ). Bacry et al. (2008b) supplied the 2nd moment of the MRW

increments as well as approximate expressions for the mean and the autocovari-

ance function of the logarithmic increments Z (t) in the limit of small intermittency

λ2 ≪ 1. These moment conditions can be used to estimate the MRW parameters

with the Generalized Method of Moments (GMM). In this paper we employ a new

moments configuration which improves the performance of the GMM estimation

in finite samples. Moreover, we introduce an effective initialization method of the

GMM estimation for the variance parameter using a preliminary estimate.

3.1 The GMM estimator

Let us denote with index 0 the unknown MRW parameters λ20, ln (T0) and ln (σ0),

which we want to estimate from a time series Z (k) , k ∈ N, 1 ≤ k ≤ N with N the

time series length. Accordingly

θ0 =
(
λ20 ln (T0) ln (σ0)

)′

will identify the unknown parameter vector. This is assumed to lie in a given set

Θ ⊂ [0, 0.5) × R2. Without loss of generality we choose Θ compact. The moment

conditions (4), (5) and (6) with lags h1 ≤ h ≤ hH for the ACF can be written

compactly as follows:

E [f (Z (t) , θ0)] = 0 (7)

with the moments function f given by

f (Z (t) , θ) =




exp (2Z (t))

Z (t)

(Z (t)− µ (θ)) (Z (t+ h1)− µ (θ))
...

(Z (t)− µ (θ)) (Z (t+ hH)− µ (θ))



−




σ2

µ (θ)

γ (h1, θ)
...

γ (hH , θ)




∀θ ∈ Θ.

(8)

By contrast Bacry et al. (2008a, 2008b) use the moments function

f∗ (Z (t) , θ) =




exp (2Z (t))

(Z (t)− µ (θ)) (Z (t+ h1)− µ (θ))
...

(Z (t)− µ (θ)) (Z (t+ hH)− µ (θ))


−




σ2

γ (h1, θ)
...

γ (hH , θ)


 ∀θ ∈ Θ,

(9)

which doesn’t exploit the mean condition directly but only by means of the ACF.

It is reasonable to investigate to what extent the moment conditions (7) hold in

the sample Z (k). The GMM estimator θ̂N is the value of θ, which minimizes the

deviation of the sample moments from their theoretical counterparts with respect

to the quadratic norm:

θ̂N = argmin
θ∈Θ

QN (θ) (10)



8

with

QN (θ) =

(
1

N

N∑

k=1

f (Z (k) , θ)′
)

WN

(
1

N

N∑

k=1

f (Z (k) , θ)

)
(11)

where the weighting matrix WN is positive semi-definite and is assumed to converge

in probability to a positive definite matrix of constants, W (Greene 2003, pp. 536-

538; Hall 2005, p. 14).

As discussed in Section 2, the MRW increments and accordingly the process

Z (t) are stationary and ergodic. These properties together with some regularity

conditions5 ensure the weak consistency of the GMM estimator

p lim
N→∞

θ̂N = θ0.

Additionally, θ̂N is asymptotically normally distributed

√
N

(
θ̂N − θ0

)
d→N (0,MSM ′) (12)

with the large sample distribution

θ̂N
·∼ N

(
θ0,

1

N
MSM ′

)
,

where

S = lim
N→∞

N · V ar

[
1

N

N∑

k=1

f (Z (k) , θ0)

]

is the asymptotic covariance matrix of the normalized sample mean, and

M = (J ′WJ)
−1

J ′W

with J = E [∂f (Z (t) , θ0) /∂θ
′ ] the expected value of the Jacobian matrix of f at

θ0 (Hall 2005, pp. 66-72).

The GMM estimator has minimum asymptotic variance MSM ′ = (J ′S−1J)
−1

with respect to the choice of the limit weighting matrix W , when using W = S−1

(Davidson and MacKinnon 1993, pp. 597-598). On account of this θ̂N with the limit

weighting matrix W = S−1 is called the optimal GMM estimator. Its determination

requires a weakly consistent estimator of the unknown asymptotic covariance matrix

S and can be accomplished as follows: first, one constructs a suboptimal estimator

θ̂N (1) of θ0 with the weighting matrix WN (1) = I, where I denotes the identity

matrix. The estimator θ̂N (1) is used to construct the weakly consistent estimator

ŜN (1) for S. As a second step, WN (2) = Ŝ−1N (1) is employed to estimate θ̂N (2).

The estimator θ̂N (2) is then optimal for θ0.

One can iterate this estimation algorithm and re-estimate ŜN (2) by means of

θ̂N (2) and consecutively θ̂N (3) with WN (3) = Ŝ−1N (2). θ̂N (3) is also optimal.

5See Hall (2005, pp 50-71) for a detailed discussion of the regularity conditions.
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Moreover θ̂N (3) tends to fluctuate less then θ̂N (2) around θ0 in finite samples.

Generally, the larger the number of estimation steps, the more efficient the optimal

estimator in finite samples (Hall 2005, Chapter 6). This estimation procedure can

be repeated until the estimates converge to a solution θ̂N (i) called optimal iterated

GMM estimator.6

The MRW estimation in this paper employs an optimal iterated GMM estimator

with the moments function (8). For this purpose the asymptotic covariance matrix S

will be estimated by means of an Heteroscedasticity and Autocorrelation Consistent

(HAC) covariance matrix estimator.

3.2 The HAC estimator

Consider the following alternative expression for S

S = Γ0 +
∞∑

i=1

(Γi + Γ
′

i) (13)

with Γi the i
th autocovariance function matrix of f

Γi = E
[
(f (Z (k) , θ0)−E [f (Z (k) , θ0)]) (f (Z (k − i) , θ0)− E [f (Z (k) , θ0)])

′
]

(Hamilton 1994, pp. 261-262, 279-281). In the GMM context, the autocovariance

function matrix Γi can be simplified to

Γi = E
[
f (Z (k) , θ0) f (Z (k − i) , θ0)

′
]
,

since the moment conditions (7) are satisfied. The HAC estimator ŜN is a nonpara-

metric kernel estimator originated from the estimation of spectral density, introduced

to econometrics literature by Newey and West (1987):

ŜN = Γ̂0 +
N−1∑

i=1

ωi,N

(
Γ̂i + Γ̂

′

i

)
(14)

where Γ̂i is the i
th empirical autocovariance matrix of f

Γ̂i =
1

N

N∑

k=i+1

f
(
Z (k) , θ̂N

)
f
(
Z (k − i) , θ̂N

)′
(15)

(Hall 2005, pp. 79-86). Under weak assumptions on f the HAC estimator is weakly

consistent

p lim
N→∞

ŜN = S,

6We say that the estimation procedure converged to a solution θ̂N (i) in iteration step

i when the difference between the estimates θ̂N (i) and θ̂N (i+ 1) becomes negligible, i.e.∥∥∥θ̂N (i+ 1)− θ̂N (i)
∥∥∥ < ε with ε an arbitrarily small positive constant. In this study the max-

imum number of iteration steps was restricted to 50.



10

which ensures the weak consistency of the optimal GMM estimator.

We can write Γ̂i compactly as follows

Γ̂i =
1

N
(F ((i+ 1) : N))′ F (1 : (N − i)) (16)

by means of the matrix F ∈ RN×q containing the sample values of the moments

function f

F=




f
(
Z (1) , θ̂N

)′

f
(
Z (2) , θ̂N

)′

...

f
(
Z (N) , θ̂N

)′




(17)

and where the expression F (j : k) denotes the rows j till k of F for any j, k ∈ N,
1 ≤ j, k ≤ N

F (j : k) =




f
(
Z (j) , θ̂N

)′

f
(
Z (j + 1) , θ̂N

)′

...

f
(
Z (k) , θ̂N

)′




.

Based on a sample of size N , one can compute N empirical autocovariance matri-

ces Γ̂i with lags i between 0 and N − 1. These empirical estimates are less efficient
with i. Hence it is pointless to use the estimates for large lags i. Instead these are

excluded from the HAC estimator (14) by multiplying them with weights ωi,N = 0.

In this way, the weights function ωi,N controls the number of estimates Γ̂i to be

considered in (14). Furthermore, ωi,N controls the relative contribution of Γ̂i to ŜN .

In this paper, we use Bartlett weights

ωi,N =

{
1− i

bN+1
, 1 ≤ i ≤ bN + 1

0, i > bN + 1

with bN the optimal bandwidth selected according to Newey and West (Hall 2005,

pp. 81-82). The bandwidth bN gives the number of estimates Γ̂i, i ≥ 1 to be

considered in (14) (weighted with ωi,N �= 0) so that we can also write

ŜN = Γ̂0 +

bN+1∑

i=1

ωi,N

(
Γ̂i + Γ̂

′

i

)
. (18)

3.3 The numerical minimization procedure

The GMM estimator θ̂N is the global solution of the minimization problem (10) with

bound constraints θ ∈ Θ. For the purpose of the MRW estimation in this paper

the parameter space was restricted to Θ = [0, 0.5]× [0,∞)× (−∞,∞). This choice
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of Θ is justified by the moment conditions (5) and (6), which are valid only in the

small intermittency regime λ20 ≪ 1. Furthermore, we consider ln (T0) ≥ 0 (T0 ≥ 1)
for the sake of simplicity. In this case the MRW increments exert influence at least

on the increments during the following two periods. This is satisfied in financial

applications, where the MRW increments model logarithmic asset returns.

Due to the nonlinearity of the MRW, the minimization problem (10) cannot be

solved to produce a closed form solution for θ̂N . Instead we determine θ̂N numerically

by means of an iterative search using a trust region algorithm for constrained non-

linear optimization. Trust region algorithms build a distinct class of relatively new

optimization techniques with very strong convergence properties. Unlike line search

algorithms, in a trust region algorithm, the minimization problem is approximated

at each iteration step only within a neighbourhood centered at the current candi-

date value for θ̂N , called the trust region. This approximate model is then solved for

search direction and trial step simulationeously (Geiger and Kanzow 1999, Chapter

14).

In this study we implemented the trust region optimization algorithm with the

computer program MATLAB (The MathWorks 2009a).7 We assess convergence of

the algorithm to a solution θ̂N := θ (i) at iteration step i if one of the following three

stopping criteria is met:

• stopping criterion with respect to the parameters: the new candidate θ (i+ 1)

is located within a negligible distance from θ (i)

∥∥θ (i+ 1)− θ (i)
∥∥ < ε1

• stopping criterion with respect to the minimand: the difference between the

minimands on step i and i+ 1 is insignificant

∣∣QN

(
θ (i+ 1)

)
−QN

(
θ (i)

)∣∣ < ε2

• stopping criterion with respect to the first-order conditions: the first-order

conditions for constrained optimization are given by the Karush-Kuhn-Tucker

conditions. MATLAB provides a first-order optimality measure based on the

Karush-Kuhn-Tucker conditions. Convergence is assessed if the optimality

measure is less than ε2.

The tolerances ε1 and ε2 were set to 10
−6. Alternatively we exit the procedure if

the maximum number of iteration steps, here set to 400, is reached.8

The choice of the parameter starting value for θ plays a decisive role in the

performance of the minimization algorithm. If the starting value lies far from the

7We use the MATLAB function fmincon in the Optimization Toolbox.
8See also The MathWorks (2009b, Chapter 2, pp. 35-36 and Chapter 3, pp.11-13) for a detailed

discussion of the optimization settings.
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global solution of the minimization problem or it lies in a complex region of the

parameter space, the search method may get stuck in a parameter area of local

optimality and fail to reach the global solution (Hall 2005, pp. 59-60). In this case,

the GMM estimator θ̂N is set automaticly to a local minimum and performs poorly.

The moment condition (4) facilitates the construction of a preliminary estimate

ln (σ) for ln (σ) which can be used to initialize the minimization algorithm:

ln (σ) =
1

2
ln

(
σ̂2

)
. (19)

This pre-estimate employs the trivial variance estimator

σ̂2 =
1

N

N∑

k=1

δ1X (k)2

based on (4) with τ = 1. In the next section we will address the performance of this

initialization method for ln (σ) within the scope of a Monte Carlo simulation study.

4 Finite sample behaviour of the estimation pro-

cedure

The GMM estimator is weakly consistent and asymptotically normally distributed.

However for the purpose of empirical studies it is important to understand how it

behaves in finite samples. In this section we investigate the performance of the GMM

estimator for the MRW in finite samples by means of an extensive Monte Carlo

simulation study. We also examine the performance of the initialization method

for ln (σ) as well as the influence of the starting values for λ2 and ln (T ) on the

estimation.

4.1 The Monte Carlo simulation study

In the last section the GMM estimator θ̂N for the true MRWparameter vector θ0 was

considered. For simplicity reasons we will further omit the subscripts for the true

values and estimators of the individual MRW parameters. These will be denoted

simply by λ2, ln (T ), ln (σ) and λ̂2, l̂n (T ), l̂n (σ) respectively.

We consider three parameter specifications, which are depicted in Table (1),9

and five sample sizes N ∈ {1897, 3945, 8041, 16233, 31849}. For each model con-

figuration and sample size we simulate the MRW process at discrete time points

n ∈ N, 1 ≤ n ≤ Nsim 10,000 times, with Nsim = N + 151, and estimate the true

model parameters λ2, ln (T ) and ln (σ) via GMM. The simulated sample sizes Nsim

9The variance parameter σ2 is a simple multiplicative factor for the MRW, which doesn’t affect

the estimation performance (Bacry et al. 2008b, p. 12). On account of this we keep the parameter

ln (σ) constant throughout the entire simulation study.
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differ from the sample sizes N employed in the estimation for two reasons:10 First,

the estimation is based on the simulated series Z (n) = ln (|δ1X (n)|) of length
Nsim− 1. Second, the maximum lag of the ACF considered in the GMM estimation

is h = 150. Accordingly, we can employ only N = Nsim − 1− 150 datapoints in the

estimation in order to compute the empirical ACF with lag 150.

Model configuration λ2 ln (T ) ln (σ)

MRW1 0.02 5.3 0

MRW2 0.04 5.3 0

MRW3 0.02 9.7 0

Table 1: Model configurations. The values of the parameter ln(T ) correspond to the

decorellation scales T = 200 and T = 16384 respectively.

The simulation procedure is based on a discrete time representation of equation

(2) which can be accomplished in two steps according to Bacry et al. (2008b, p. 6).

First we construct the process Xℓ (mℓ) on a fine grid mℓ,m ∈ N with ℓ > 0, ℓ ≪ 1

and ℓ−1 integer

Xℓ (mℓ) =
m∑

k=1

eωℓ(kℓ)ε (kℓ)
√
ℓ

where ωℓ (kℓ) is a stationary Gaussian process with the mean and the ACF in Defin-

ition 2 and ε (kℓ) is a Gaussian White Noise with mean 0 and variance σ2, indepen-

dent of ωℓ (kℓ). In this paper we employ sampling intervals of length ℓ = 2−7. The

process Xℓ (mℓ) corresponds to the right-hand side of equation (2) when we omit

the limit for ℓ → 0+. The limit is then replicated in the second step by extracting

only the representations of Xℓ (mℓ) at integer time points mℓ

X (n) := Xℓ (mℓ) with n = mℓ ∈ N

with X (n) the simulated discrete-time MRW.

The simulation study in this paper comprises 150,000 series X (n). All the simu-

lation parameters are concordant with the parameters in Bacry et al. (2008b) and

ensure the comparability of our results. By contrast we employ an optimal itera-

ted GMM estimator of the MRW, with an enhanced moments configuration whose

performance will be evaluated below.

4.2 The estimation performance

The MRW parameters were estimated from the simulated data by means of the

optimal iterated GMM estimator introduced in Section 3. We used the moments

function (8) with 22 lags 1 ≤ h ≤ 150 for the ACF γ (h). For each simulated series

10The simulated sample sizes are Nsim ∈ {2048, 4096, 8192, 16384, 32000}.
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the minimization procedure was initialized with the corresponding true parameter

values λ, ln (T ) and ln (σ) employed in the simulation. This estimation procedure

was implemented in MATLAB using a revised and reprogrammed GMM toolbox as

created by Kyriakoulis (2007).

The estimation performance can be evaluated using the empirical counterparts

of the loss functions Bias and MSE. In the following we denote the empirical Bias

with eBias and the empirical MSE with eMSE. These are given by the following

expressions when using the example of the GMM estimator λ̂2:

eBias
(
λ̂2

)
=

1

10000

10000∑

k=1

(
λ̂2k

)
− λ2,

eMSE
(
λ̂2

)
=

1

10000

10000∑

k=1

[(
λ̂2k − λ2

)2]
,

where λ̂2k denotes the GMM estimate for λ2 using the kth simulated MRW series.

Tables (2), (3) and (4) comprise the values of the eBias and eMSE for the MRW

estimates for each model configuration and sample size in our simulation study.

Further, we investigate the normality of the MRW estimates by means of QQ plots

which can be found in the Appendix.

λ̂2 l̂n (T ) l̂n (σ)

N eBias eMSE eBias eMSE eBias eMSE

1897 -0.0025 3·10−5 0.0082 2.0242 -0.0102 0.0050

3945 -0.0014 10−5 -0.0257 0.6568 -0.0056 0.0024

8041 -0.0007 6·10−6 -0.0222 0.2767 -0.0028 0.0012

16233 -0.0004 3·10−6 -0.0087 0.1269 -0.0012 0.0006

31849 -0.0002 10−6 -0.0074 0.0614 -0.0007 0.0003

Table 2: The eBias and eMSE values for the model configuration MRW1

λ̂2 l̂n (T ) l̂n (σ)

N eBias eMSE eBias eMSE eBias eMSE

1897 -0.0035 6·10−5 -0.1872 0.8199 -0.0236 0.0111

3945 -0.0018 3·10−5 -0.1013 0.3658 -0.0139 0.0054

8041 -0.0009 10−5 -0.0547 0.1702 -0.0077 0.0027

16233 -0.0003 6·10−6 -0.0338 0.0796 -0.0035 0.0013

31849 0.00003 3·10−6 -0.0224 0.0375 -0.0021 0.0007

Table 3: The eBias and eMSE values for the model configuration MRW2
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λ̂2 l̂n (T ) l̂n (σ)

N eBias eMSE eBias eMSE eBias eMSE

1897 -0.0028 4·10−5 -3.0798 17.5060 -0.0832 0.0824

3945 -0.0016 2·10−5 -2.6151 11.2747 -0.0655 0.0653

8041 -0.0009 8·10−6 -1.9928 7.3995 -0.0484 0.0483

16233 -0.0005 4·10−6 -1.3603 4.9398 -0.0322 0.0326

31849 -0.0003 2·10−6 -0.8093 3.2351 -0.0205 0.0193

Table 4: The eBias and eMSE values for the model configuration MRW3

We report very good estimation results for the parameters λ2 and ln (σ) for all

three model configurations, featuring normally distributed estimates11 with very

small eBias and eMSE. By contrast, the estimator l̂n (T ) for the parameter ln (T )

performs poorly. This confirms our guess expressed in Section 2 based on the plot of

the ACF γ (h) which passes very slowly on to zero. According to this, the transition

point of γ (h) to zero, at T , is difficult to identify from deterministic data and a

fortiori within a stochastic framework.

l̂n (T ) exhibits small eBias and eMSE for the models MRW1 and MRW2, yet

its estimates do not satisfy the normal distribution. The deviations of l̂n (T ) from

the normal distribution are small for large sample sizes N , however the normal

distribution could not be reached for any of the sample sizes N ≤ 31849 in this

study.

The estimator l̂n (T ) fails in the case of the model MRW3 due to its high eBias

and eMSE as well as its considerable deviations from the normal distribution. This is

no surprise since in most cases the MRW3 samples are shorter then the decorrelation

scale T . Hence the MRW3 samples can capture only the first phase h < T of the

correlation structure of the model and miss any information about the transition

point T . Even in the case of N = 31849 with N almost twice as large as T ,

the estimator l̂n (T ) doesn’t work satisfactorily. The sample size is still too short

compared to the decorrelation scale T to allow for its proper identification.

On account of this, we recommend for the purpose of empirical studies the use of

long time series combined with preliminary information about T derived from the

economic theory, in order to ensure that N is much greater than T (N ≫ T ).

The GMM estimators in this paper clearly outperform the results in Bacry et

al. (2008b) in respect of its considerably smaller eMSE. Moreover, the estimates

for λ2 are normally distributed in contrast to Bacry et al. (2008b). This allows the

employment of statistical hypothesis tests for the MRW model with respect to λ2

(see Section 5).

11The λ2 estimates deviate from the normal distribution in the case of MRW1 with N = 1897

and N = 3945 respectively.
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4.3 The performance of the initialization method for ln (σ)

The choice of the starting value for θ in the numerical minimization procedure plays

a decisive role in its performance and consequently in the performance of the GMM

estimation. In the best case, the parameter starting value should lie as close as

possible to the global minimum in order to ensure the (fast) convergence of the

minimization procedure towards the global solution (Hall 2005, pp. 59-60).

In the following we investigate the performance of the starting value ln (σ) in-

troduced in Section 3.3, in the estimation of the MRW, using the simulated MRW1

series with sample sizes N ∈ {1897, 3945, 8041, 16233}. For each sample size N

we will evaluate how close the starting value ln (σ) lies on average to the global

minimum of the GMM problem, for the parameter ln (σ).

For this purpose we compute the starting values ln (σ)k with k ∈ {1, 2, . . . , 10000}
identifying the employed MRW1 realization. The global solutions of the GMM

problem are given by the estimated values l̂n (σ)k in Section 4.2 respectively. We

compute the mean distance d between ln (σ)k and l̂n (σ)k

d =
1

10000

10000∑

k=1

(
ln (σ)k − l̂n (σ)k

)
,

and the mean squared distance d2

d2 =
1

10000

10000∑

k=1

(
ln (σ)k − l̂n (σ)k

)2
.

Our results in the following table show that ln (σ) lies close to l̂n (σ) on average.

Consequently ln (σ) is a reliable starting value for ln (σ). Starting the search at

ln (σ) will contribute to the (fast) convergence of the search method towards the

global solution.

N d d2

1897 0.0055 5·10−4
3945 0.0030 2·10−4
8041 0.0017 6·10−5
16233 0.0009 2·10−5

Table 5: The mean distance d and the mean squared distance d2

Currently corresponding preliminary estimates for the parameters λ2 and ln (T )

are not available. On account of this, the minimization procedure will be arbitrarily

initialized for the purpose of empirical applications. In the following subsection we

investigate the influence of the starting values for λ2 and ln (T ) on the estimation

procedure.
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4.4 The robustness of the estimation procedure to varia-

tions of the starting values for λ2 and ln (T )

Consider the GMM minimand QN in (11) in the first iteration step, as a function

of the parameters λ2 and ln (T ), with WN = I and ln (σ) set to its starting value

ln (σ). Visual inspection of the simulated data for different model configurations and

sample sizes points out that the objective function QN has a global minimum close

to the true parameter value θ0 and a local minimum, separated by a bump. This

can be seen in the following plots when using the example of a simulated MRW1

series with N = 1897.

Figure 3: The GMM minimand QN

(
λ2, ln (T )

)
in the first iteration step, with

WN = I and ln (σ) = ln (σ), for a simulated MRW1 series of size N = 1897. QN is

based on the moments function f with 22 lags 1 ≤ h ≤ 150 for the ACF γ (h).

Figure 4: Contour plot of the GMM minimand QN

(
λ2, ln (T )

)
in the first iteration

step, with WN = I and ln (σ) = ln (σ), for a simulated MRW1 series of size N =

1897. QN is based on the moments function f with 22 lags 1 ≤ h ≤ 150 for the

ACF γ (h).
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We want to evaluate the performance of the GMM estimation when starting the

minimization procedure in the vicinity of the local minimum. Will the minimization

algorithm in this case get stuck in the local minimum or will it still converge to

the global solution? For this purpose we estimated the MRW parameters for 1000

simulated MRW1 series, with the starting value θ =
(
0.02 50 ln (σ)

)
, which

will generally lie in the local minimum area. According to our results in Table (6)

the GMM estimation is successful.

λ̂2 l̂n (T ) l̂n (σ)

N eBias eMSE eBias eMSE eBias eMSE

1897 -0.0026 3·10−5 0.0194 1.7823 -0.0109 0.0047

3945 -0.0014 10−5 -0.0281 0.6248 -0.0056 0.0024

8041 -0.0008 6·10−6 -0.0078 0.2501 -0.0015 0.0012

16233 -0.0004 3·10−6 -0.0034 0.1232 -0.0003 0.0006

Table 6: The eBias and eMSE values for the model configuration MRW1, using the

moments function f and the starting value θ

By contrast, the GMM estimation based on the moments function f∗ in (9)

employed by Bacry et al. (2008a, 2008b) is not robust against variations of the

starting values. Figure (5) exhibits the minimand functionQN using f ∗, for the same

MRW1 series as in the Figures (3) and (4). Its shape is similar to the shape of the

minimand in Figure (3), however the minimum close to the true value θ0 is only local.

Table (7) comprises the estimation results with f∗, using the same 1000 simulated

MRW1 series as for Table (6) and the starting value θ =
(
0.02 50 ln (σ)

)
.

According to this, the GMM estimation performs well for the parameters λ2 and

ln (σ), yet the procedure fails dramatically to estimate ln (T ).

Figure 5: The GMM minimand QN

(
λ2, ln (T )

)
in the first iteration step, with

WN = I and ln (σ) = ln (σ), for a simulated MRW1 series of size N = 1897. QN is

based on the moments function f ∗ with 22 lags 1 ≤ h ≤ 150 for the ACF γ (h).



19

Figure 6: Contour plot of the GMM minimand QN

(
λ2, ln (T )

)
in the first iteration

step, with WN = I and ln (σ) = ln (σ), for a simulated MRW1 series of size N =

1897. QN is based on the moments function f ∗ with 22 lags 1 ≤ h ≤ 150 for the

ACF γ (h).

λ̂2 l̂n (T ) l̂n (σ)

N eBias eMSE eBias eMSE eBias eMSE

1897 0.0029 7·10−5 48.4124 29·102 -0.0110 0.0047

3945 0.0013 3·10−5 49.2939 27·102 -0.0060 0.0024

8041 0.0008 2·10−5 49.3211 26·102 -0.0019 0.0012

16233 0.0004 8·10−6 49.7714 26·102 -0.0005 0.0006

Table 7: The eBias and eMSE values for the model configuration MRW1, using the

moments function f ∗ and the starting value θ

5 Empirical study

In Section 3 we introduced a new optimal iterated GMM estimator for the MRW,

with an enhanced moments function and an efficient initialization procedure for the

variance parameter. This estimator is robust to variations in the starting values

for λ2 and ln (T ) , and allows for the estimation of the parameters intermittency

coefficient λ2 and logarithmic standard deviation ln (σ) with good performance in

finite samples. Yet the logarithmic decorrelation scale ln (T ) can only be reliably

estimated from very large data sets with the sample size N much greater than T

(N ≫ T ).

We now present an application of the MRW to the evolution of the German DAX

stock market index over the past 50 years using the GMM estimation procedure

described in Section 3. The DAX consists of the 30 most actively-traded German

stocks. It was launched on July 1, 1988, whereas historical data for the index has
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been retrospectively calculated back to 1959. Our data set comprises 11854 daily

quotes between October 1, 1959 and April 30, 2009, which were kindly supplied by

the German stock exchange Deutsche Börse AG.

The MRW models the logarithmic values of the DAX

X (t) := ln (p (t)) ,

with p (t) being the closing value at time t in days. The decorrelation scale T

indicates the time span over which the DAX log-returns (logarithmic increments)

δ1X (t) = ln (p (t)) − ln (p (t− 1)) are dependent. Accordingly, the log-returns are

independent of the log-returns T + 1 days later and the subsequent log-returns. It

is sensible to assume that the log-returns are dependent only over a period of time

shorter than 50 years (N > T ), yet we can not say whether N ≫ T is satisfied. On

account of this, the estimation of ln (T ) should be handled circumspectly. Table (8)

displays the estimation results for the DAX data.

λ̂2 l̂n (T ) l̂n (σ)

estimated value 0.0185 8.8941 −4.4786
s.e. 0.0029 1.0192 0.0406

c.i. [0.0128,0.0242] [6.8964,10.8918] [-4.5583,-4.3990]

Table 8: Estimation results for the DAX data, via optimal iterated GMM based on

the moments function f with 22 ACF lags ranging between 1 and 150 days, using the

initialization method for ln(σ) introduced in Section 3.3. The estimation procedure

converges invariably to the same estimates irrespective of the starting values for

λ2 and ln(T ). s.e. denotes the standard error and c.i. denotes the 0.95 confidence

interval.

Based on the asymptotic normality of the GMM estimators θ̂N,i for the individual

MRW parameters θ0,i with θ0,1 = λ2, θ0,2 = ln (T ) and θ0,3 = ln (σ) , the quantities

θ̂N,i − θ0,i

s.e.
(
θ̂N,i

)

with s.e.
(
θ̂N,i

)
the standard error of θ̂N,i, are asymptotically standard normally

distributed respectively. This facilitates the construction of approximate confidence

intervals for the MRW parameters in large samples (Hall 2005, pp. 71, 161-164).

To simplify matters we will use in the following the example of λ̂2 with

z =
λ̂2 − λ2

s.e.
(
λ̂2

) ·∼ N (0, 1) .

The two-sided confidence interval for λ2 at level α is then given by
[
λ̂2 − z1−α

2
· s.e.

(
λ̂2

)
, λ̂2 + z1−α

2
· s.e.

(
λ̂2

)]
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with z1−α

2
the 1− α

2
quantile of the standard normal distribution.

The asymptotic covariance matrix of the GMM estimator θ̂N can be estimated

consistently by means of

V̂ =

((
JN

(
θ̂N

))′
Ŝ−1N JN

(
θ̂N

))−1

with ŜN the HAC estimator and

JN

(
θ̂N

)
=
1

N

N∑

k=1

∂f
(
Z (k) , θ̂N

)
/∂θ′ .

Accordingly, the standard error of λ̂2 is given by

s.e.
(
λ̂2

)
=

√
V̂11

N

with V̂11 the first main diagonal element of V̂ (Hall 2005, pp. 86, 88-89). The

standard error and the 95% confidence interval for λ2 from the DAX data can be

found in Table (8) along with the corresponding results for ln (T ) and ln (σ).

The most commonly reported value for λ2 in financial applications is 0.02 (Bacry

et al. 2008b, p. 6). We want to investigate whether the DAX data in this study

is characterized by a different λ2 value. For this purpose we test the hypothesis

H0 : λ
2 = 0.02 against the alternative H1 : λ

2 �= 0.02 using the Wald test. The

95% confidence interval for λ2 reported in Table (8) comprises the value 0.02. On

account of this, we fail to reject H0 at the 5% significance level. The DAX data

doesn’t provide sufficient evidence for concluding that λ2 is different from 0.02.

6 An efficient algorithm for the computation of

the HAC estimator

The HAC estimator ŜN is employed to estimate the asymptotic covariance matrix of

the GMM estimator (see Section 5). Moreover, it is the basis for the optimal weight-

ing methodology of the GMM estimator (see Section 3.1). Its practical computation

proves to be both memory space- and computing time-intensive depending on the

employed sample size N , the bandwidth bN and the number of moment conditions

to be denoted further by q. In this section we introduce a new algorithm for the

computation of the HAC estimator which is more efficient than the classical HAC

estimation procedures developed for the statistical computer programs GAUSS or

R.

6.1 The algorithm

The HAC estimator (14) in Section 3.2 can be written compactly as follows

ŜN =
1

N
F ′T (ω)F (20)
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with F given in (17). The expression T (ω) denotes the symmetric Toeplitz ma-

trix, with the first column ω containing the weights of the empirical autocovariance

matrices Γ̂i in (14)

ω =
(
1 ω1,N ω2,N . . . ωN−1,N

)
,

T (ω) ∈ RN×N (Kyriakoulis 2007).

In this paper we employ a memory space-efficient computation of the matrix

product T (ω)F in (20) using the properties of circulant matrices (Van Loan 1992,

pp. 208-209). For this purpose we embed the Toeplitz matrix T (ω) in a symmetric

circulant matrix C (ω∗) ∈ R2N×2N with the first column ω∗

ω∗ =
(
1 ω1,N ω2,N . . . ωN−1,N 0 ωN−1,N ωN−2,N . . . ω1,N

)
.

We construct the 2N × q matrix F ∗

F ∗ =

(
F

0N×q

)

by adding a N × q zero matrix at the end of F . The matrix product T (ω)F is

then given by the upper N × q block of the 2N × q matrix C (ω∗)F ∗. This is to our

advantage since the matrix product C (ω∗)F ∗ can be computed quickly according

to the following proposition (Golub and Van Loan 1996, pp. 201-202; Brockwell and

Davis 1991, pp. 133-134):

Proposition 1 Given a circulant matrix C (c) ∈ Rn×n with c being the first column,

consider its decomposition

C (c) = V ΛV ∗

with λi, i ∈ {1, 2, . . . , n} the eigenvalues of C (c) and vi the associated eigenvectors,

Λ = diag (λ1, λ2, . . . , λn), V =
(
v1 v2 . . . vn

)
and V ∗ the complex conjugate of

V . The matrix C (c) then has the following properties:

• The eigenvalues λi are the discrete Fourier transform (DFT) of the column

vector c.

• For any vector x ∈ Rn the product V ∗x is given by the DFT of x.

• For any vector x ∈ Rn the product V x is given by the inverse discrete Fourier

transform (IDFT) of x.

Based on these preliminary considerations, we can now introduce the new algo-

rithm for the computation of the HAC estimator. In the following we assume that

the weights ωi,N and the GMM estimator θ̂N are known.
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(Sattarhoff)

Step 1 Determine the eigenvalues λi, i ∈ {1, 2, . . . , 2N} of the matrix C (ω∗) by

means of the DFT of the vector ω∗

ω∗ =
(
1 ω1,N ω2,N . . . ωN−1,N 0 ωN−1,N ωN−2,N . . . ω1,N

)
.

Step 2 Construct the 2N × q matrix F ∗

F ∗ =

(
F

0N×q

)

with F defined in (17) and q the number of moment conditions.

Step 3 For j from 1 to q, compute the columns C (ω∗)F ∗

j = V ΛV ∗F ∗

j of the matrix

C (ω∗)F ∗, with F ∗

j the jth column in F ∗, in 3 steps respectively:

1. Determine V ∗F ∗

j given by the DFT of F ∗

j .

2. Multiply the rows i ∈ {1, 2, . . . , 2N} in V ∗F ∗

j with the eigenvalues λi

respectively, in order to construct ΛV ∗F ∗

j .

3. Determine C (ω∗)F ∗

j given by the IDFT of ΛV ∗F ∗

j .

Step 4 Select the matrix Z = T (ω)F given by the upper N×q block of C (ω∗)F ∗.

Step 5 Determine ŜN =
1
N
F ′Z.

6.2 Computational gains

In this section, we report the gains in computing times that are achieved by the

new algorithm for the computation of the HAC estimator introduced above, in

comparison with three alternative algorithms. For each alternative algorithm we

assume that the weights ωi,N , the bandwidth bN and the GMM estimator θ̂N are

known. Furthermore, q denotes the number of moment conditions, whereas the

matrix F is given in (17).

The first algorithm that we consider was developed by Roncalli in 1996 and can

be found in the time series library TSM (Time Series and Wavelets for Finance) for

the statistical software GAUSS. Here the computation of the HAC estimator ŜN is

implemented by means of a for-loop according to expression (18) combined with an

ingenious matrix product, which enables the fast computation of the autocovariance

matrices Γ̂i:

Γ̂i =
1

N
F ′

(
0i×q

F (1 : (N − i))

)
. (21)
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(Roncalli)

Step 1 Determine Γ̂0 =
1
N
F ′F and set L = Γ̂0.

Step 2 For i from 1 to bN determine Γ̂i according to (21) and L = L+ωi,N

(
Γ̂i + Γ̂

′

i

)
.

Step 3 Determine ŜN = L.

The second algorithm by Zeileis (2004) is part of the gmm package for the sta-

tistical software R. This algorithm is similar to Roncalli’s algorithm except for the

calculation procedure for Γ̂i in Step 2. For the latter Zeileis employs expression (16).

His procedure is less efficient than Roncalli’s as it requires the sequential updating

of two matrices instead of one.

(Zeileis)

Step 1 Determine Γ̂0 =
1
N
F ′F and set L = Γ̂0.

Step 2 For i from 1 to bN determine Γ̂i according to (16) and L = L+ωi,N

(
Γ̂i + Γ̂

′

i

)
.

Step 3 Determine ŜN = L.

Finally the algorithm by Kyriakoulis (2007) for MATLAB excels in terms of

its elegance and simplicity. This algorithm avoids the resource-intensive recursive

summations employed above by means of expression (20) and is the basis for the

new algorithm introduced in the previous subsection. It consists of only two steps:

(Kyriakoulis)

Step 1 Construct the symmetric Toeplitz matrix T (ω) with the first column

ω =
(
1 ω1,N ω2,N . . . ωN−1,N

)
.

Step 2 Determine ŜN =
1
N
F ′T (ω)F .

A big drawback of this algorithm is the memory space-inefficient handling of the

N ×N matrix T (ω). On account of this the program runs out of memory and fails

to compute ŜN for series longer than N = 5000 data points. This problem could

be solved within the scope of our algorithm, which doesn’t employ the matrix T (ω)

explicitly.

In the following we investigate the computing performance of the four algorithms

for the computation of the HAC estimator developed by Sattarhoff, Roncalli, Zeileis

and Kyriakoulis respectively. For this purpose we employ an unique, randomly ge-

nerated matrix F . For comparability reasons, all algorithms were programmed and
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run under MATLAB.12 The computations were performed on a 1.66 GHz Intel note-

book computer with 1GB RAM. In the following discussion we ignore the algorithm

by Kyriakoulis due to its poor performance.

Table (9) displays the computing times in seconds for various sample sizes N

ranging from 5, 000 to 1, 000, 000 data points. Throughout, the bandwidth and the

number of moment conditions were held constant. One can see that the algorithm

proposed in this paper performs best for all choices of N . This algorithm is at least

twice as fast as the procedure by Roncalli, and at least three times as fast as the

one by Zeileis.

N 5000 20000 100000 500000 1000000

Sattarhoff 0.0707 0.2271 1.5011 8.2581 41.5323

Roncalli 0.1550 0.6973 3.5636 17.9518 1040.5110

Zeileis 0.2765 1.0094 5.0762 24.7022 114.9194

Kyriakoulis 2.8100 - - - -

Table 9: Computing times in seconds using bN = 30 and q = 24. MATLAB runs

out of memory in the case of the algorithm by Kyriakoulis with N > 5000.

Additionally, our algorithm has the advantage that the bandwidth value has no

impact on its performance. By contrast, the number of iterations in Step 2 and

accordingly computing time both increase with the bandwidth in the case of the

algorithms by Roncalli and Zeileis. This can be seen in Table (10), which investigates

the computing performance for different values of bN and q, and a constant N .

q 10 24

bN 30 60 100 30 60 100

Sattarhoff 3.5323 3.5658 3.7565 8.2581 8.1885 8.2767

Roncalli 9.7528 19.7211 31.7664 17.9518 35.2764 58.3308

Zeileis 11.2895 22.3449 38.1082 24.7022 48.9346 81.2929

Table 10: Computing times in seconds for N = 500000

The implications of these findings for the computation of the optimal iterated

GMM estimator are considerable. The asymptotic covariance matrix S has to be

estimated at each step of the iterated estimation procedure. This is necessary for

the determination of the optimal weighting matrix in the following estimation step.

Consequently, if we consider 50 estimation steps, our algorithm will save in the case

of the parameter configurations in Table (10) between 5 and 42 minutes compared

to Roncalli, and between 6 and 61 minutes compared to Zeileis.

12We used the programs created by Kyriakoulis (2007) and Borchers (2005).
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7 Conclusion

Financial time series reveal a very rich and non-trivial statistical structure. Whereas

log-return series are characterized by zero-autocorrelations, absolute and squared

log-returns exhibit significant positive autocorrelations over long lags (Ding et al.

1993). Correspondingly, financial markets experience extended turbulent periods

with large price changes followed by extended silent phases of small price activity.

This phenomenon is known as volatility clustering. Another interesting property of

financial time series is the variation of the log-return distribution as a function of

the employed sampling interval, ranging from normal distributions for rather large

sampling intervals (e.g. weekly or monthly log-returns) to fat tail distributions at

fine scales (e.g. hourly and daily log-returns). From a statistical point of view, this

property can be described within the more general framework of multifractality.13

The MRW is a recent volatility model which can capture the stylized facts of

the financial time series depicted above in a parsimonious way, using only three

parameters: the intermittency coefficient λ2, the logarithmic decorrelation scale

ln (T ) and the logarithmic standard deviation ln (σ). The model is employed by

Bacry et al. (2008a, 2008b) to forecast volatility and Value at Risk with better

results than for GARCH models. The estimation of the model parameters plays a

crucial role for the subsequent prediction of risk.

In this paper we have introduced a new optimal iterated GMM estimator for the

MRW. In addition to deploying the moment conditions of Bacry et al. (2008b), our

estimation procedure also acquires valuable information from the mean condition,

which is exploited explicitly. Consequently, we report better estimation results in

finite samples within the scope of a Monte Carlo simulation study. The estimated

intermittency coefficients are normally distributed. This allows us to construct sta-

tistical hypothesis tests about λ2 using the Wald statistic. Based on the latter, we

fail to reject within our empirical study on the DAX the hypothesis that λ2 = 0.02

at the 5% significance level.

The performance of the GMM estimator using the moments configuration by

Bacry et al. (2008b) depends on the parameter starting values when the mini-

mization procedure employs an iterative search method, and accordingly on the

parameter space in the case of grid search minimization. By contrast, the GMM

estimator in this paper is robust to these factors. Moreover, we propose an efficient

initialization method for the variance parameter. Throughout our study, the com-

putational burden is considerably reduced by means of a computing-time-efficient

algorithm for HAC covariance matrix estimation.

These results encourage further research in this field. In particular, the idea

of constructing a simple test for multifractality using the Wald statistic is very

appealing. Also, the prediction of volatility based on the optimal iterated GMM

estimator introduced in this paper will be addressed in a forthcoming study. Based

13See Krämer (2002) for an overview of the stylized facts of financial time series.
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on this sound estimation performance, we are confident that we will achieve further

improvements in forecasting accuracy in the future.
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Appendix

Figure 7: QQ plots of the estimates of λ2 versus a normal distribution, for the model

configuration MRW1.

Figure 8: QQ plots of the estimates of ln (T ) versus a normal distribution, for the

model configuration MRW1.
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Figure 9: QQ plots of the estimates of ln (σ) versus a normal distribution, for the

model configuration MRW1.

Figure 10: QQ plots of the estimates of λ2 versus a normal distribution, for the

model configuration MRW2.
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Figure 11: QQ plots of the estimates of ln (T ) versus a normal distribution, for the

model configuration MRW2.

Figure 12: QQ plots of the estimates of ln (σ) versus a normal distribution, for the

model configuration MRW2.
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Figure 13: QQ plots of the estimates of λ2 versus a normal distribution, for the

model configuration MRW3.

Figure 14: QQ plots of the estimates of ln (T ) versus a normal distribution, for the

model configuration MRW3.
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Figure 15: QQ plots of the estimates of ln (σ) versus a normal distribution, for the

model configuration MRW3.
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