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Abstract

This paper presents a tractable endogenous two-sector growth model with
non-Gorman intra-temporal preferences and directed technical change. One of
the two consumption goods is a necessity, whereas the other is a luxury. If the
economy starts with a low initial knowledge stock, households are relatively
poor and a high expenditure share is devoted to necessities. Therefore, in early
phases of development, technical innovations are mainly directed toward the
necessity sector. According to Engel’s law, growth in income increases the
expenditure share of the luxury sector. Biased technical change constitutes
another force that leads to shifts in expenditure shares. The resulting struc-
tural change is accompanied by increasing R&D investments in the luxury
sector, whereas investments in the necessity sector become less attractive.
The asymptotic equilibrium consists of a nonbalanced constant growth path
along which the Kaldor facts hold, and growth is mainly driven by the luxury
sector.
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1 Introduction

It is a well documented, long-standing empirical fact that on a sectoral level eco-

nomic growth is nonbalanced (see Kuznets (1957)). There are significant differences

in total factor productivity growth rates across sectors and we can observe major

shifts in sectoral expenditure and employment shares in the long run. These sec-

toral shifts are summarized under the term “structural change”.1 Most striking and

robust is the fall of the agricultural labor share over time.2 Kongsamut, Rebelo and

Xi (2001) refer to these nonbalanced features of economic growth as the “Kuznets

facts”.

In contrast to these very robust nonbalanced findings, standard growth theory fo-

cused on the balanced picture of growth presented by more aggregated variables. It is

well-known that the “Kaldor facts” are reflected in aggregate data. These facts state

that the growth rate of output, the capital-output ratio, the real interest rate and

the labor income share are constant over time (see Kaldor (1961) and Kongsamut,

Rebelo and Xi (2001)). In growth theory these stylized facts have become a bench-

mark and a successful model should (at least) be able to replicate these empirical

regularities. The shortcoming that standard growth theory is not able to explain the

nonbalanced nature of sectoral economic development has stimulated a small but

emerging literature that strives to generate features of nonbalanced growth without

significantly deviating from balanced growth on the aggregate level. The theoretical

1See for instance Kongsamut, Rebelo and Xi (2001), Gollin, Parente and Rogerson (2002) and

Greenwood and Uysal (2005).
2In the US the agricultural employment share decreased over the last two centuries from 74%

to 2.5% (see Greenwood and Uysal (2005)).
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literature on structural change can be divided in two strands. A first strand explains

nonbalanced features of development by a demand side mechanism which relies on

non-homotheticity of intra-temporal preferences.3 With non-homothetic preferences,

expenditure elasticities of demand differ across sectors. As a consequence, expand-

ing consumption expenditure levels (caused by endogenous or exogenous growth)

induce a shift in expenditure shares and therefore structural change. This story is

consistent with Engel’s law, one of the most robust empirical regularity in economics

(see Engel (1857), Houthakker (1957) and Houthakker and Taylor (1970)).

A second strand of the literature emphasizes supply side explanations of structural

change which rely on differences in productivity growth rates across sectors (see

Baumol (1967), Nagai and Pissarides (2006) and Acemoglu and Guerrieri (2008)).4

Changes in relative productivities will generate movements in relative prices and

therefore changes in expenditure and employment shares. The direction of struc-

3See Matsuyama (1992), Echevarria (1997), Laitner (2000), Kongsamut, Rebelo and Xi (2001)

Caselli and Coleman (2001) and Gollin, Parente and Rogerson (2002) which use quasi-homothetic

intra-temporal preferences. Another tractable way to generate non-homotheticities is to use hierar-

chical preferences (see Matsuyama (2002), Foellmi and Zweimueller (2008) and Buera and Kaboski

(2009b)). For a nice literature overview see Matsuyama (2005). The model of this paper uses

a new approach, with preferences that fall into the “price independent general linearity” (PIGL)

class of preferences. Hence, it will be neither based on quasi-homothetic intra-temporal preferences

nor on hierarchical preferences.
4The paper by Acemoglu and Guerrieri constitutes the first work with a supply side explanation

of structural change that determines biased technical change endogenously. Differences is sectoral

total factor productivity growth rates are generated by a combination of capital deepening and

factor intensity differences. In the working paper version of their model also directed technical

change is considered (see Acemoglu and Guerrieri (2006)).
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tural change depends crucially on the inter-sectoral elasticity of substitution. If the

elasticity of substitution is less than one, the expenditure share of the faster grow-

ing sector decreases. If the elasticity of substitution is larger than one, the opposite

holds (see Nagai and Pissarides (2006)).5

This paper combines both, supply and demand side explanations of structural

change. It presents a two-sector dynamic general equilibrium model with non-

Gorman intra-temporal preferences and directed technical change. The main con-

tribution is theoretical. I specify intra-temporal preferences that imply an Engel’s

law and an intra-sectoral elasticity of substitution of less than one. One of the two

consumption goods is a necessity with an expenditure elasticity of demand smaller

than one, whereas the other good is a luxury with an expenditure elasticity larger

than one. Hence, the model comprises the standard demand side explanation of

structural change. With biased technical change, the elasticity of substitution is a

key variable since it controls the direction of structural change. In the literature

there seems to be a consensus that an elasticity of substitution of less than one is

the empirically relevant case.6

5With an elasticity of substitution equal to one, changes in relative prices induce no structural

change in terms of expenditure and employment shares.
6Baumol, Blackman and Wolff (1985) document a structural change toward the slower growing

sector, which is in line with an elasticity of substitution of less than one. Buera and Kaboski

(2009a) calibrate their model with an elasticity of substitution equal to 0.5 (their model’s best fit

is even attained with an elasticity of substitution equal to zero). See also Nagai and Pissarides

(2006) and Acemoglu and Guerrieri (2008) which both emphasize the case where the inter-sectoral

elasticity of substitution is less than one (in their calibration Acemoglu and Guerrieri (2008) use

an elasticity of substitution equal to 0.76).
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Although the model assumes non-Gorman preferences aggregation is simple. This

is due to the fact that I use preferences that fall into the “price independent general

linearity” (PIGL) class of preferences originated by Muellbauer (1975) and Muell-

bauer (1976). PIGL preferences allow for a “representative household” in Muell-

bauer’s sense which exhibits the same expenditure shares as the aggregate economy.

Income inequality matters, but its effect is fully captured by one summary statis-

tic (in my case by the squared coefficient of variation), which makes the analysis

tractable. The analytical solvability of the model does not require an exclusion of

income heterogeneity.

The endogenous technical change part of the model draws from the literature on

directed technical change (see Acemoglu (1998), Acemoglu and Zilibotti (2001) and

Acemoglu (2002)). The bias of technical change is driven by the market size of the

two sectors.7 Combined with Engel’s law, this generates the following pattern of

nonbalanced growth: In early phases of development households are relatively poor.

Due to Engel’s law, this implies that a large expenditure share is devoted to necessi-

ties. As a consequence, a large fraction of the workforce is employed in the necessity

sector. This market size generates an incentive for technical change to be bias to-

ward the necessity sector. Hence, the necessity sector is the main driver of growth

at an early stage of development. According to Engel’s law, growth (in expendi-

ture levels) tends to decrease expenditure and employment shares of the necessity

sector. Furthermore, because growth is initially biased toward the necessity sector

7Furthermore, the literature on directed technical change stresses that technical change is biased

toward sector that use relatively expensive production factors more intensively. Such an effect is

not present in my model since I only consider one homogeneous type of labor.
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and the elasticity of substitution is less than one, also directed technical change

tends to increase the expenditure share devoted to luxuries. Overall, this generates

a structural change in early phased of development away form necessities toward

luxuries. This structural change results in higher incentive for R&D investments

in the luxury sector, whereas the attractiveness of the necessity sector is lowered.

As a consequence, eventually the luxury sector takes lead as the driver of aggregate

growth.

The model is consistent with a globally saddle path stable constant growth path

(CGP), where all variables grow at constant rates. Along the CGP employment

shares are constant and the “Kaldor facts” hold. Nevertheless, productivity growth

rates and growth rates of real output are higher in the luxury than in the neces-

sity sector. This points to the nonbalanced nature of growth even along the CGP.

Moreover, even along the CGP Engel’s law applies and biased technical change af-

fects the economic structure. To the best of my knowledge this is the first model

with an asymptotic equilirium in which both explanations of structural change are

still at work. A simple simulation illustrates that although transitional dynamic

are typically associated with a considerable shift in expenditure and employment

shares, the “Kaldor facts” are not significantly violated. This property of the model

is similar to Acemoglu and Guerrieri (2008). But in contrast to their model my

model includes a demand side explanation of structural change.8

8Acemoglu and Guerrieri (2008) explicitly point to the importance of a theoretical model that

incorporates both, a supply side explanation of structural change and Engel’s law. Their paper

concludes with the sentence: “It would be particularly useful to combine the mechanism proposed

in this paper with nonhomothetic preferences...”(p. 493).
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The remainder of the paper is organized as follows: Section 2 presents the two-sector

growth model with non-homothetic intra-temporal preferences and directed techni-

cal change. Section 3 provides a simulations of the transitional dynamic for a simple

parameter specification. Finally, Section 5 concludes. All proofs are provided in the

Appendix A.

2 The Model

2.1 Initial Endowments

There is a mass of n infinitely living households. Each household i is endowed with

li > 0 units of labor and Wi(0) ≥ 0 units of initial wealth. Households supply their

labor inelastically at every instant of time. The aggregate labor supply is denoted

by L. Both initial wealth and labor endowments can differ among households.

2.2 Preferences

Each household has the following additively separable representation of inter-temporal

preferences

Ui(0) =

∫ ∞

0

exp (−ρt)V (P1(t), P2(t), ei(t)) dt, (1)

where ρ > 0 is the rate of time preference and V (P1(t), P2(t), ei(t)) is an indirect in-

stantaneous utility function specified over the prices of the two consumption goods,

P1(t) and P2(t), and the nominal expenditure level, ei(t).
9 The indirect instanta-

9For a more general preference specification with an inter-temporal CRRA utility function see

Appendix C.
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neous utility function takes the following form

V (P1(t), P2(t), ei(t)) = −
P1(t)

αP2(t)
1−α

ei(t)
−

β

1− α + γ

(

P2(t)

P1(t)

)1−α+γ

+
β

1− α + γ
,

(2)

where α ∈ (0, 1], β ∈ [0,∞) and γ ∈ [0, 1).10 The desirable features of this utility

function are discussed below.11 We have the following Lemma:

Lemma 1. The function (2), (i) is a valid indirect utility specification that rep-

resents a locally non-satiated preference relation defined over the two consumption

goods if and only if

β
ei(t)

P1(t)1+γP2(t)−γ
≤

1

4

[

3α− 2− γ +
√

α2 + (2 + γ)2 − 2α(2 + 3γ)
]

, (3)

and (ii) is increasing and strictly concave in ei(t).

Proof: See Appendix A.

In the following I assume that condition (3) is fulfilled for all households at all

10For γ = 0 and α = 1 we get the limit case

V (P1(t), P2(t), ei(t)) = −
P1(t)

ei(t)
− β log

[

P2(t)

P1(t)

]

.

Then, the instantaneous utility function coincides with example 3 introduced by Diewert (1974)

page 129.
11The instantaneous utility function is a special instant of the “price independent general lin-

earity” (PIGL) class of preferences and the class of “quadratic expenditure systems” (QES). The

PIGL class is specified by Muellbauer (1975) and Muellbauer (1976). PIGL preferences imply that

there exists a “representative household” (in Muellbauer’s sense) that exhibits the same expen-

diture shares as the aggregate economy. The representative expenditure level is independent of

prices and just depends on the income distribution. Gorman preferences are also part of the PIGL

class. The QES class is specified by Howe, Pollak and Wales (1979) and Van Daal and Merkies

(1989).
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dates.12 Households maximize (98) with respect to {ei(t),Wi(t)}
∞
t=0, subject to the

budget constraint

Ẇi(t) = r(t)Wi(t) + w(t)li − ei(t),

and a standard transversality condition which can be expressed as

lim
t→∞

exp (−ρt)
P1(t)

αP2(t)
1−α

ei(t)2
Wi(t) = 0. (4)

r(t) and w(t) are the (nominal) interest and wage rate, respectively, and Wi(t)

denotes the wealth of household i at date t. Wi(0) is exogenously given. The result

of household’s optimization is summarized in the following Lemma.

Lemma 2. (i) At each point in time we have the following expenditure system

xi
1(t) =

[

α− β
ei(t)

P1(t)1+γP2(t)−γ

]

ei(t)

P1(t)
(5)

and

xi
2(t) =

[

1− α + β
ei(t)

P1(t)1+γP2(t)−γ

]

ei(t)

P2(t)
, (6)

where xi
j(t) is the quantity of good j = 1, 2 that household i purchases at date t.

(ii) Inter-temporal optimization yields the following Euler equation

2gei(t)− αgP1(t)− (1− α)gP2(t) = r(t)− ρ, (7)

12Later, a restriction in terms of exogenous parameters is stated that ensures (3) for all house-

holds at all dates. The necessary restriction implies an upper bound on the joint distribution of

labor endowments and initial wealth stocks. For γ = 0, condition (3) can be written as

α2 ≥ 4βxi
1(t),

where xi
1(t) denotes the units of necessities consumed by household i. Hence, non-satiation is

ensured as long as the number of consumed necessities is not too high.
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where gei(t) is the growth rate of consumption expenditures of household i and gPj
(t)

is the growth rate of prices of good j at date t.

Proof: See Appendix A.

The squared brackets in (5) and (6) constitute the expenditure shares of the two

goods. With β = 0 expenditure shares reduce to α and 1 − α, respectively, which

corresponds to the Cobb-Douglas case. This illustrates that (2) can be viewed as

a generalization of Cobb-Douglas preferences. Clearly, in the Cobb-Douglas case

(β = 0) the expenditure elasticities of demand and the elasticity of substitution are

all equal to one, which excludes an Engel’s law or an effect of biased technical change

on the demand structure. Therefore, I focus in the following on the more interesting

cases which allow for changing expenditure shares. This is done by assuming13

β > 0. (8)

For β > 0, we see that the Engel curves are quadratic functions of the expenditure

level, ei(t). The Engel curves are depicted in Figure 1. This highlights that we have

non-Gorman preferences, where the marginal propensities to consume depend on

the expenditure level.14 Moreover, the terms in squared brackets of (5) and (6) re-

veal that the expenditure shares are linear functions of the expenditure level, where

13For the sake of completeness, the equilibrium dynamic of the Cobb-Douglas case (β = 0) is

provided in Appendix B.
14Demand systems that are quadratic in expenditure levels have attracted some attention in the

empirical literature (See Howe, Pollak and Wales (1979) and Ryan and Wales (1999)). Quadratic

expenditure systems fit the data much better than linear ones. For instance Ryan and Wales (1999),

p. 285, conclude: “...the coefficients on the quadratic terms are found to be highly significant, and
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β controls their slope (Figure 2 draws the expenditure shares as a function of the

expenditure level). Thus β can be interpreted as a measure of the degree of non-

homotheticity of preferences. α, in contrast, is the expenditure share of necessities

of a household with a marginally positive expenditure level (i.e. ei(t) → 0).

ei(t)

xi1(t), x
i
2(t)

xi
1(t)

xi
2(t)

Figure 1: Engel curves

ei(t)

α

xi
1(t)P1(t)

ei(t)

1− α

xi
2(t)P2(t)

ei(t)

Figure 2: Expenditure shares

The demand system exhibits another special feature: The expenditure shares just

depend on the ratio ei(t)
P1(t)1+γP2(t)−γ . As a consequence, when P1(t)

1+γP2(t)
−γ and ei(t)

grow pari passu expenditure shares are constant. This allows for a constant (non-

balanced) growth path in an endogenous growth model despite non-homotheticity

of preferences. Furthermore, the condition that ensures non-satiation, (3), can be

consistent with a constant ei(t)
P1(t)1+γP2(t)−γ . Thus, the functional form of preferences

allows for unbounded growth without causing satiation.

the inclusion of these terms yields marginal budget shares and own-price elasticities that behave

quite differently from those obtained when Engel curves are restricted to be linear.” Given this

empirical evidence and the tractability of quadratic expenditure systems, it is surprising that they

are so far ignored by macroeconomic theory.
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Although we have non-Gorman preferences, part (ii) of Lemma 2 shows that house-

hold’s inter-temporal optimization results in a relatively simple Euler equation. It

directly follows from (7) that growth rates of expenditure levels must be the same

for all households at a given date, t (i.e. gei(t) = ge ∀t).

When we derive the expenditure elasticities of demand and the elasticity of substi-

tution we get the following Lemma.

Lemma 3. With β > 0, (i) the elasticity of substitution between the two goods is

strictly less than one. (ii) The expenditure elasticities of demand are

∂xi
1(t)

∂ei(t)

ei(t)

xi
1(t)

= 1−
βei(t)

αP1(t)1+γP2(t)−γ − βei(t)
∈ [0, 1) ,

and

∂xi
2(t)

∂ei(t)

ei(t)

xi
2(t)

= 1 +
βei(t)

(1− α)P1(t)1+γP2(t)−γ + βei(t)
> 1.

Proof: See Appendix A.

This Lemma reflects two important features.

First, the elasticity of substitution is less than one. The elasticity of substitution is

the key parameter that controls which sector will benefit (in terms of expenditure

shares) from biased technical change (see Nagai and Pissarides (2006)). An elasticity

of substitution of less than one implies that the expenditure share of the slower

growing sector tends to increase. In the literature there is a consensus that this is

the empirically relevant case.

Second, because the expenditure elasticity of demand for good one is strictly less

than one, it is called henceforth “necessity”. Although being less than one, note that

the expenditure elasticity of good one is always greater than zero, which expresses



13

the exact formulation of Engel’s law.15 The expenditure elasticity of demand for

good two is greater than one. Therefore, I refer to good two as “luxury”.

The next Lemma describes aggregate market demands.

Lemma 4. (i) Aggregate demands can be written as

X1(t) =

[

α− β
E(t) [1 + φe(t)]

n

1

P1(t)1+γP2(t)−γ

]

E(t)

P1(t)
, (9)

X2(t) =

[

(1− α) + β
E(t) [1 + φe(t)]

n

1

P1(t)1+γP2(t)−γ

]

E(t)

P2(t)
, (10)

where φe(t) is the squared coefficient of variation of consumption expenditures across

households and E(t) is the aggregate consumption expenditure at date t.

(ii) A household with ei(t) = E(t)[1+φe(t)]
n

≡ eRA(t) is the representative agent in

Muellbauer’s sense.

Proof: See Appendix A.

This Lemma highlights the tractability of preferences which fall into the “price in-

dependent general linearity” (PIGL) class. Aggregate demands can be written as

functions of the aggregate expenditure level, the per capita expenditure level and

a (scale invariant) measure of inequality of consumption expenditure levels across

households (the coefficient of variation). This constitutes a tractable way to deal

15See for instance Browning (2008): “Engel’s law states that food is not a luxury. This is one of

the earliest empirical regularities in economics and also one of the most robust. The widespread

finding is that regressions of food expenditures, quantities or budget shares on income or total

expenditure and other variables such as prices, demographics and regional dummies uniformly

imply that the income elasticity of food is less than 1 (and greater than zero).”
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with inequality in a dynamic general equilibrium model.16 The representative agent

is defined after Muellbauer (1975) and possesses the same expenditure shares as

the aggregate economy. As long as there is household heterogeneity, the expendi-

ture level of the representative agent is larger than per capita expenditures, E(t)
n
.

Because the marginal propensity to consume luxuries increases in the expenditure

level, aggregate demand for luxuries increases in the per capita expenditure level

and in inequality, φe(t).

Because the Euler equation, (7), implies that growth rates of expenditure levels

across households are equalized at a given date, and because the relevant inequality

measurement is scale invariant we can write

φe(t) = φe, ∀t.

This simplifies the equilibrium analysis dramatically.

To reduce the number of model parameters I assume henceforth α = 1. Empirically

this is a plausible case, since it implies that a household just consumes necessities

as his level of consumption expenditures goes to zero. Moreover, it gives rise to a

simple case which is well-suited to illustrate the model’s key features. Qualitatively,

as Appendix C shows, these central features are unchanged when we have α < 1.

16With the exception of Foellmi and Zweimüller’s (2006) model with 0/1 preferences, I am

not aware of any other dynamic general equilibrium model that features a demand sided effect

of inequality (by assuming non-Gorman preferences) and does not have to exclude households

heterogeneity. Moreover, in contrast to Foellmi and Zweimüller (2006), where two income groups

are considered, my model allows for any - possibly continuous - distribution of expenditure levels

with an upper bound.
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With α = 1 condition (3) simplifies to

2β
ei(t)

P1(t)1+γP2(t)−γ
≤ (1− γ). (11)

For the Euler equation we get

2gei(t)− gP1(t) = r(t)− ρ, (12)

and the aggregate demand functions are

X1(t) =

[

1− β
E(t) [1 + φe(t)]

n

1

P1(t)1+γP2(t)−γ

]

E(t)

P1(t)
, (13)

and

X2(t) =

[

β
E(t) [1 + φe(t)]

n

1

P1(t)1+γP2(t)−γ

]

E(t)

P2(t)
. (14)

2.3 Production

The two final goods are produced competitively by a continuum of sector specific

intermediate inputs. We have the following standard CES production functions

Y1(t) =

[

∫ M1(t)

0

y1,ω(t)
1
2dω

]2

and Y2(t) =

[

∫ M2(t)

0

y2,ω(t)
1
2dω

]2

,

y1,ω(t)’s and y2,ω(t)’s denote the amount of intermediate inputs used at date t in

sector 1 and 2, respectively.17 M1(t) and M2(t) are the numbers of different sector

specific input varieties that are available at date t (I also refer to Mj(t) as the

17The elasticity of substitution between intermediate inputs is assumed to be 2. If the elasticity

of substitution is unequal to two (but constant) the growth rates of output, Yj(t), differ from the

growth rates of the sector specific knowledge stock, Mj(t), by a constant factor. This complicates

the notation without changing the main results or delivering new insights.



16

knowledge stock of sector j). M1(0) and M2(0) are exogenously given. The sector

specificity of intermediate inputs allow for separated growth rates.

Each machine type ω suitable for sector j = 1, 2 is produced by monopolistically

competitive firms according to the following production functions

y1,ω(t) = l1,ω(t) and y2,ω(t) = l2,ω(t), (15)

where lj,ω(t), j = 1, 2 is employed labor by firm j, ω. To ease notation, I define

L1(t) ≡

∫ M1(t)

0

l1,ω(t) dω and L2(t) ≡

∫ M2(t)

0

l2,ω(t) dω. (16)

Furthermore, I define ηj,ω as the price of intermediate input ω of sector j. Under

these assumptions, the static market equilibrium outcome is characterized by the

following Lemma.

Lemma 5. Equilibrium output of sector j can be written as

Yj(t) = Lj(t)Mj(t), j = 1, 2. (17)

Firms instantaneous profits, πj,ω(t), are given by

πj,ω(t) =
1

2
Pj(t)Lj(t), ∀ω, j = 1, 2, (18)

and the wage rate can be expressed as

w(t) =
1

2
Pj(t)Mj(t). (19)

Wage equalization across sectors implies

P1(t)M1(t) = P2(t)M2(t). (20)
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Proof: See Appendix A.

This Lemma shows that output of sector j can be written as the product of the

stock of knowledge, Mj(t), to a constant power and the number of labor employed

in sector j, Lj(t). The output of final goods, Yj(t), j = 1, 2, is consumed. Labor

is either used to produce intermediate inputs or is employed in R&D. The R&D

process is described next.

2.4 Innovation Possibilities Frontiers

In order to create a new type of intermediate input suitable for sector j, f

Mj(t)
units

of labor are needed. f is a positive constant. The fixed investment costs decrease in

Mj(t) because of intra-sectoral spillovers.18 Inter-sectoral spillovers are excluded.19

An innovator gets a monopoly position for the new variety of intermediate input

until there is a “bad shock” which destroys his innovation. Such a “bad shock”

occurs for a intermediate input variety suitable for sector j with probability δj. We

have δ1 > 0.20 Under these assumptions, the innovation possibilities frontiers of the

18I prefer a spillover to a lab-equipment framework because in this case R&D activities in the

two sector do not affect the relative market size of the sectors, L1(t)
L2(t)

. Hence, in this spillover model,

relative market size is fully determined by preferences.
19This is important, because it allows me to generate a constant growth path along which growth

rates of the two sectors differ. See also the model of Acemoglu and Guerrieri (2006), which relies

on the same assumption.
20Examples for such bad shocks are natural disasters, new regulations or major changes in pro-

duction circumstances. A positive exit probability in sector one is needed to allow for a decreasing

stock of knowledge in the necessity sector. A similar constant and exogenous exit probability is

assumed in Melitz (2003). As long as we have γ > 0 or we approach the CGP from below, the

equilibrium dynamic is unchanged with δ1 = 0. In any case, δ2 is not restricted to be (strictly)
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two sectors can be written as follows

Ṁj(t) = LR
j (t)

Mj(t)

f
− δjMj(t), j = 1, 2, (21)

where LR
j (t) is the number of “researchers” that are employed in R&D for sector j

at date t.

It is worth noting, that with respect to technology, the two sectors are fully symmet-

ric (with the exception of possible differences in the exit probability). Technically,

both sectors can constitute an “engine of growth”. Thus the production side allows

for sustainable growth in both sectors independent of the other sector.

There is free market entry, which implies that in equilibrium, R&D activity in sector

j is either zero or is determined by a zero profit condition.

To ease notation, P2(t) is chosen henceforth as numéraire, i.e.

P2(t) = 1, ∀t. (22)

Then, R&D activity is characterized by the following Lemma.

Lemma 6. Under free market entry we must have

f ≥
L1(t)

r(t) + δ1 − g2(t) + g1(t)
, (23)

f ≥
L2(t)

r(t) + δ2
, (24)

LR
j (t) ≥ 0, j = 1, 2, ∀t, (25)

LR
1 (t)

[

f −
L1(t)

r(t) + δ1 − g2(t) + g1(t)

]

= 0, (26)

positive.
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and

LR
2 (t)

[

f −
L2(t)

r(t) + δ2

]

= 0, (27)

where gj(t) ≡
Ṁj(t)

Mj(t)
.

Proof: See Appendix A.

gj(t) is the growth rate of the knowledge stock in sector j. The incentive to innovate

in sector j is determined by market size, Lj(t), the nominal interest rate, r(t), the

exit probability, δj and the price dynamic of good j.21

2.5 Equilibrium

2.5.1 Definitions

In this economy an equilibrium is defined as follows:

Definition 1. A dynamic market allocation is a time path of individual con-

sumption expenditures {ei(t)}
∞
t=0 , ∀i; a time path of aggregate R&D investments

and stock of knowledge in both sectors,
{

LR
j (t),Mj(t)

}∞

t=0
, j = 1, 2; a time path of

prices of final goods {P1(t), P2(t)}
∞
t=0; a time path of prices and quantities of all in-

termediate inputs {ηj,ω(t), yj,ω(t)}
∞
t=0, ∀ω, and j = 1, 2; and a time path of nominal

interest rate and wages {r(t), w(t)}∞t=0.

Definition 2. A dynamic market equilibrium is an allocation in which mo-

nopolistically competitive intermediate input producers chose prices and quantities,

such that the discounted value of profits is maximized, the time paths of P1(t), P2(t),

21Note that g2(t)− g1(t) is the growth rate of the price of the necessity, since P2(t), ∀t is chosen

as numéraire.
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r(t) and w(t) are consistent with market clearing and perfect mobility in the labor

market, and the evolution of ei(t), ∀i, LR
j (t) and Mj(t) j = 1, 2 are consistent with

optimization, free market entry, market clearing and perfect competition in final good

sectors.

2.5.2 Equilibrium Conditions

Labor is used in R&D and in production of intermediate inputs. Then, labor market

clearing implies

L = L1(t) + L2(t) + LR
1 (t) + LR

2 (t). (28)

Market clearing of good markets is given by

Yj(t) = Xj(t), j = 1, 2. (29)

The next Lemma states a collapsed system of equations, that characterizes the

equilibrium dynamic.

Lemma 7. The equilibrium can be characterized by the following equations:

f ≥
L− L2(t)− f [g1(t) + δ1]− f [g2(t) + δ2]

r(t) + δ1 − g2(t) + g1(t)
, (30)

f ≥
L2(t)

r(t) + δ2
, (31)

f [gj(t) + δj] ≥ 0, j = 1, 2, (32)

f [g1(t) + δ1]

[

f −
L− L2(t)− f [g1(t) + δ1]− f [g2(t) + δ2]

r(t) + δ1 − g2(t) + g1(t)

]

= 0, (33)

f [g2(t) + δ2]

[

f −
L2(t)

r(t) + δ2

]

= 0, (34)

g2(t) + g1(t)− 2
f ġ1(t) + f ġ2(t)

L− f [g1(t) + δ1]− f [g2(t) + δ2]
= r(t)− ρ, (35)
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L2(t) = β
[1 + φe]

n
m(t) [L− f [g1(t) + δ1]− f [g2(t) + δ2]]

2
, (36)

and

ṁ(t) = [(1 + γ)g1(t)− γg2(t)]m(t), (37)

where m(t) ≡ M1(t)1+γ

M2(t)γ
.

Proof: See Appendix A.

We have the following endogenous variables: r(t), g1(t), g2(t), ġ1(t), ġ2(t), m(t) and

L2(t). m(0) = M1(0)1+γ

M2(0)γ
is inherited from the past. (30) - (34) are the free entry

slackness conditions of the two sectors. (35) denotes the Euler equation, whereas

(36) guarantees market clearing in the second sector.22 Finally the transversality

condition, (4), has to hold. With α = 1 this can be rewritten as

lim
t→∞

exp (−ρt)
P1(t)

ei(t)2
Wi(t) = 0. (38)

2.6 Constant Growth Path

Definition 3. A constant growth path (CGP) is an equilibrium path, along which

growth rates of all variables are constant.

This definition is according to Acemoglu and Guerrieri (2008). Kongsamut, Rebelo

and Xi (2001) uses the terminology “generalized balanced growth path” for the same

concept. It is worthwhile to note, that growth rates must be constant but can (and

actually will) differ across sectors. Let us assume the following condition holds

L > 2f(δ1 + δ2 + ρ). (39)

22Walras’ law ensures that the market for necessities clears.
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This condition ensures positive growth along the CGP.

Then, the next Proposition states that there exists a unique CGP. CGP values are

denoted by asterisks.

Proposition 1. If assumption (8), (11) and (39) hold, there exists a unique CGP

with

g∗1 =
γ [L− 2f(δ1 + δ2 + ρ)]

2f(1 + 3γ)
, (40)

g∗2 =
(1 + γ) [L− 2f(δ1 + δ2 + ρ)]

2f(1 + 3γ)
, (41)

m∗ =
2n(1 + 3γ) [L(1 + 2γ) + 2f(γδ2 + γρ− (1 + 2γ)δ1)]

β(1 + φe) [L(1 + 4γ)− 2f(γ(δ1 + δ2)− ρ(1 + 2γ))]2
, (42)

[

E(t)

M2(t)

]∗

=
(1 + 4γ)L− 2fγ(δ1 + δ2) + 2f(2γ + 1)ρ

2(1 + 3γ)
, (43)

L∗
1 =

γL+ f [(δ1 + ρ)(1 + γ)− 2γδ2]

2(1 + 3γ)
, (44)

L∗
2 =

(1 + 2γ)L+ 2fγ(δ2 + ρ)− 2f(1 + 2γ)δ1
2(1 + 3γ)

, (45)

LR∗
1 =

γ [L− 2f(δ2 + ρ)] + 2f(1 + 2γ)δ1
2(1 + 3γ)

,

and

LR∗
2 =

(1 + γ) [L− 2f(δ1 + ρ)] + 4fγδ2
2(1 + 3γ)

.

Proof: See Appendix A.

We see that condition (39) ensures positive growth. Moreover, (39) guarantees that

m∗ is positive.

Several features of the CGP are worth noting. First, the algebraic structure is rela-

tively simple. Despite the fact of non-Gorman preferences, per capita consumption
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expenditures and inequality do not affect growth rates along the CGP. The distri-

bution of expenditure levels only matters for m∗. The growth rate of both sector

increase in L due to a standard scale effect present in the model. Moreover, g∗j

j = 1, 2 decrease in the exit probabilities, δj, the rate of time preference, ρ, and the

R&D investments costs, f .

Second, along the CGP the “Kaldor facts” are fulfilled. The growth rates of output,

the capital-output ratio, the share of capital income in GDP and the real interest

rate are constant over time.

Third, the employment shares of the two sectors are constant along the CGP. Thus,

there is no structural change in terms of employment. The intuition for this is that

there are two counterbalancing effects at work. On the one hand, since there is

positive growth in income and expenditure levels, Engel’s law applies and the ex-

penditure share of the luxury sector tends to be increased whereas the expenditure

share of the necessity sector tends to be lowered.23 On the other hand there is an

effect of biased technical change that goes in the opposite direction. The growth

rate of the luxury sector is higher. Since the inter-sectoral elasticity of substitution

23It is important to emphasize that there is an Engel’s law in the CGP. This contrasts to models

that use quasi-homothetic preferences to generate structural change for which Engel’s law vanishes

asymptotically. This undesirable implication of quasi-homothetic preferences explains why the

standard model does a poor job in fitting the data. Buera and Kaboski (2009) acknowledge: “A

major problem is that the relative price of services to industry was rising during this period but

at a slower rate than the relative shares. Thus, in this later period, both the relative quantity and

relative price of services were rising relative to industry. Explaining this would require a large,

delayed income effect toward services. This is not possible with the Stone–Geary preferences, where

the endowments and subsistence requirements are most important at low levels of income.”
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is less than one, biased technical change tends to shift expenditure shares from the

luxury to the necessity sector. Along the CGP these two effect exactly cancel each

other.24

Finally, there are features of nonbalanced growth even along the CGP. Productivity

growth rates differ (growth is higher in the luxury sector). Moreover, real output of

necessities expands at a lower rate than the real output of luxuries. This sectoral

difference is solely generated by the non-homotheticity of preferences (because oth-

erwise the two sectors are fully symmetric).

The CGP bears some resemblance to the asymptotic equilibrium in Acemoglu and

Guerrieri (2008). In both models, although the growth rates differ across sectors

and there is a structural change in terms of real output, the dynamic is consistent

with the “Kaldor facts”. But note also the important differences. In contrast to

Acemoglu and Guerrieri (2008), the CGP does not only exist asymptotically and

the relative employment share of one sector did not become vanishingly small. And

most important, there is also a Engel’s law present in this model.

Finally, we are now ready to specify assumption (11) in terms of exogenous pa-

rameters. Suppose the economy starts directly along its CGP (i.e. m(0) = m∗).

Furthermore, suppose household i′ is the one with the highest consumption expen-

24This feature is graphically illustrated and discussed below for a simple case where γ = 0.
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diture level along the CGP, i.e.25

e∗i′(t) ≥ e∗i (t), ∀i. (46)

Let us write

e∗i′(t) = κE(t)∗, (47)

where κ ≥ 1
n
is the share of aggregate consumption expenditure that is spent by the

richest household. When we use (20), (2.6.1), (2.6.1), (2.6.1) we can rewrite (11) as

2 [L(1 + 2γ) + 2f(γδ2 + γρ− (1 + 2γ)δ1)]

[L(1 + 4γ)− 2f(γ(δ1 + δ2)− ρ(1 + 2γ))]

κn

(1 + φe)
≤ 1− γ. (48)

Without inequality this can be expressed as26

L(1 + γ + 4γ2) ≤ 2f
[

(2 + γ)(1 + γ)δ1 − γ(3− γ)δ2 + (1− γ − 2γ2)ρ
]

. (49)

This condition implies that there is an upper bound on the distribution of per capita

expenditure levels at t = 0. Note that (39) and (48) are not mutually exclusive.27

So fare we just analyzed the equilibrium dynamic along the CGP. Clearly, it would be

a sheer coincidence if the knowledge stocks inherited from the past implym(0) = m∗.

Therefore, in the next Section transitional dynamic is analyzed and global saddle

path stability of the CGP is proven. But before doing, this the CGP of a very

25Along the CGP, the propensity to consume out of labor income and out of wealth income are

constant and given by 1 and ρ
r∗
, respectively. This implies that

e∗i (t) = liw(t) +Wi(t)(ρ),

where w(t) = 1
2M2(t) and Wi(t) grows at constant rate g∗2 . Then, for a given joint distribution of

initial wealth and labor endowments, i′ can be identified.
26Note that no heterogeneity (φe = 0) would imply κ = 1

n
.

27For instance with γ = 0, (49) can be written as L ≤ 4fδ1 + 2fρ.
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simple case (γ = 0) is illustrated. It is shown that the dynamic of this simple case

is identical to a prominent example in the literature.

2.6.1 The CGP for a very simple case (γ = 0)

The CGP simplifies to a very simple case if we have γ = 0. Then the CGP values

are given by

g∗1 = 0,

g∗2 =
L

2f
− δ1 − δ2 − ρ,

M∗
1 =

n

β(1 + φe)

2(L− 2fδ1)

(L+ 2fρ)2
,

[

E(t)

M2(t)

]∗

=
L

2
+ fρ,

L∗
1 = (ρ+ δ1)f,

L∗
2 =

L

2
− fδ1

LR∗
1 = δ1f,

and

LR∗
2 =

L

2
− f [δ1 + ρ] .

This illustrates that the model is then algebraically as simple as a standard textbook

growth model. For this simple case productivity growth along the CGP is entirely

driven by the luxury sector and we have m(t) = M1(t). It is worth noting to

note that then the dynamic along the CGP is exactly the same as in a well-known

example introduced by Baumol (1967). We have one “progressive” sector with

positive productivity growth and one “nonprogressive” sector with constant labor
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productivity. But in contrast to Baumol (1967), here sectoral differences in growth

rates are not exogenously assumed but determined endogenously. With γ = 0 the

intra-temporal utility maximization along the CGP is illustrated in Figure 3. Point

A depicts the optimal consumption point for a given initial expenditure level, ei(t),

and a given initial relative price of the necessity sector, P1(t) (note that the price of

the luxury has been normalized to one). Since we only have growth in the luxury

sector along the CGP, ei(t) and P1(t) grow pari passu over time. Then, at a later

date t′ the budged line is steeper but has the same intercept on the horizontal

axis. For γ = 0, the individual demand system (5) and (6) reveals that as long

as ei(t)
P1(t)

is constant the expenditure share do not change. Hence, the new optimal

consumption bundle C must contain the same amount of necessities as the initial

consumption bundle A. So the adjustment of the consumption structure from point

A to C looks as if the household has Cobb-Douglas preferences. This is the nice

feature of the assumed preferences, what makes the model consistent with a GCP.

But when we decompose the total effect in an income and substitution effect, the

important deviations form Cobb-Douglas preferences become apparent. First, we

see that the income effect from B to C includes an effect on the demand structure,

which manifests the Engel’s law. Moreover, the substitution effect from A to B is

smaller than it would be in the Cobb-Douglas case (in the Cobb-Douglas case the

substitution effect would go from A to B̃). This visualizes that the substitution

effect is less than one.
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Figure 3: Income and substitution effects along the CGP
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2.7 Transitional dynamic

The next Proposition analyses the transitional dynamic.

Proposition 2. If (11) and (39) hold for all household in every instant of time,

then (i) the CGP is globally saddle path stable. And (ii) within finite time there

must be strictly positive investments in both sectors. Then, (iii) the dynamic is

characterized by

ġ1(t) =



ρ+ (1 + 2γ)
L

2f
− (1 + γ)

√

L
2f

− g1(t)− δ1

β̃m(t)f
− 2γg1(t)− γ(δ1 + δ2)





[

L

2f
− g1(t)− δ1

]

, (50)

and

ṁ(t) =



(1 + 2γ)g1(t)− γ





L

f
− δ1 − δ2 −

√

L
2f

− g1(t)− δ1

β̃m(t)f







m(t), (51)

where β̃ ≡ (1+φe)β
n

.

Proof: See Appendix A.

Part (i) of this Proposition ensures that the economy converges to the CGP no

matter what the initial m(0) is. With equation (50) and (51) the transitional dy-

namic can be illustrated in a phase diagram. This is done in Figure 4.28 Suppose

28We cannot exclude an upward sloping ġ1 = 0 locus or a downward sloping ṁ = 0 locus. But

there is just one intersection of the two isoclines and in this point the ṁ = 0 locus is steeper

than the ġ1 = 0 locus. Together with the dynamic above and below the respective isocline, this

proves saddle path stability (see Appendix A which provides a formal proof of Proposition 2).
g1(t) >

L
2f − δ1 would imply E(t) < 0. Therefore g1(t) >

L
2f − δ1 is not feasible. With γ = 0 a
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Figure 4: Phase diagram
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the economy starts with an initial m(0) < m∗. This means that the initial stock

of knowledge of the necessity sector is relatively low. As a consequence households

devote a high expenditure share to necessities. This high expenditure share results

in a high employment share in the necessity sector. This high employment and ex-

penditure share constitutes a relatively large market for intermediate goods suitable

for the necessity sector and therefore a higher R&D incentive in this sector. As a

consequence we observe an initial productivity growth rate in the necessity sector

that is above its CGP level, whereas growth in the luxury sector is relatively low

(compared to CGP). According to Engel’s law, growth in income and expenditure

levels is associated with a decrease in the expenditure share devoted to the necessity

sector. Moreover, since technical change is directed toward the necessity sector and

the elasticity of substitution is less than one, also biased technical change shifts

expenditure shares from the necessity toward the luxury sector. Overall we then

observe a fast initial structural change in employment and expenditure shares. But

this structural change lets the R&D incentives not unaffected. Due to the changing

market sizes technical change will be more and more biased toward the luxury sec-

tor. Since the elasticity of substitution is less than one biased technical change will

then eventually slow down the structural change. The transitional dynamic with

m(0) < m∗ is summarized in the following Proposition.

Proposition 3. When the economy starts with m(0) < m∗, L1(t) and g1(t) decrease

and L2(t), g2(t) and m(t) increase over time. When we have m(0) > m∗, the opposite

simple case emerges, where the ṁ = 0 locus is a vertical line at g1 = g∗1 = 0 and the ġ1 = 0 is a

negative sloped straight line intercepting the horizontal axis at g1 = L
2f − δ1.
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holds.

Proof: see Appendix A.

This illustrates that the model can generate structural change in terms of employ-

ment shares and relative growth rates along the transition. With m(0) < m∗, the

model’s prediction is that we observe a shift in the employment share away from the

necessity toward the luxury sector and that growth is more and more biased toward

the luxury sector (i.e. g2(t)− g1(t) increases over time).

It remains to show that assumption (11) holds along the transition. This is done in

the next Proposition.

Proposition 4. If we have m(0) ≤ m∗ condition (48) is sufficient to ensure (11).

Proof: See Appendix A.

As long as we approach the CGP from below, condition (48) is sufficient to ensure

non-satiation along the transion. When we have m(0) ≥ m∗, (11) holds as long as

m(0) is not too high.

Clearly, the “Kaldor facts” only hold asymptotically. Hence it remains to show that

the model can generate a long-lasting and considerable structural change without

significantly violating the stylized facts of balanced growth. This is done in next

section.
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3 A Simple Simulation

(50) and (51) shows that m(t) enters only multiplicatively with β̃. Moreover, m∗

is proportional to 1
β̃
. This implies that the model if fully specified if we know ρ,

f , L, δ1, δ2, γ and m∗−m(0)
m∗

. Figure 5-10 illustrates the transitional dynamic of the

key variables under the following parameter specification: ρ = 0.02, f = 10, L = 2,

δ1 = 0.04, δ2 = 0, γ = 0.1 and m∗−m(0)
m∗

= 0.4. The equilibrium dynamic is simu-

lated by a shooting algorithm (see Judd (1998, Chapter 10)), where the differential

equations are solved by a fourth-order Runge-Kutta method.

First, Figure 5 reveals that the model generates a considerable structural change

in terms of employment shares (the fraction of the labor force employed in produc-

tion and R&D of the luxury sector increases from 0.15 to 0.36). Furthermore the

transitional dynamic is slow, taking several decades. Figure 6 shows that devel-

opment goes hand in hand with a significant shift in the technical bias of growth.

The growth rate of the luxury sector grows from 0.7 to 3.3 percent, whereas the

growth rate of the necessity sector decreases from 2 to 0.3 percent. Next, Figure 7-9

illustrate that the “Kaldor facts” are not significantly violated although the model

generates structural change along several dimensions. The evolution of the saving

rate, the real interest rate and the growth rate of real consumption expenditure is

non-monotonic and very flat.

Finally, since expenditure shares differ across individuals, the relevant true cost of

living price index is individual specific.29 As a consequence, although all nominal

29The growth rate in the true cost of living index of household i at date t is given by

Ṗi(t)

Pi(t)
=

∂e(P1(t), P2(t), vi(t))

∂P1(t)

Ṗ1(t)

ei(t)
+
∂e(P1(t), P2(t), vi(t))

∂P2(t)

Ṗ2(t)

ei(t)
=

[

1− β
ei(t)

P1(t)1+γ

]

(g2(t)−g1(t)),
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expenditure levels grow at the same rate in a given point in time. Real expenditure

growth differs across expenditure levels. This is visualized in Figure 10. Because

growth is first biased toward the necessity sector real expenditure of relatively poor

individuals grows faster. But since the sectoral bias of growth shifts along tran-

sition toward the luxury sector, real expenditure growth of richer households will

eventually be higher. Since Engel’s law applies also in the CGP, different real expen-

diture growth can also be observed in the asymptotic equilibrium. I am not aware

of any other dynamic general equilibrium model that has an analytically solvable

asymptotic equilibrium with this feature.

4 Conclusion

Differences in sectoral growth rates and systematic shifts in sectoral expenditure and

employment share are very robust findings of an old economic literature. However,

it is also well known that aggregated variables present a balanced picture of eco-

nomic growth (captured by the “Kaldor facts”). Due to technical difficulties there

was a long lack of theoretical models that reconcile the balanced and nonbalanced

nature of growth in a general equilibrium model. This paper presented a tractable

two sector endogenous growth model which can generate a considerable structural

change without significantly deviating from the “Kaldor facts”. The main building

block of the model are Engel’s law and biased technical change, both empirically

well-founded explanations of structural change. The model predicts systematic dif-

where vi(t) is the attained instantaneous utility level of household i at date t. This is the partial

true cost of living index defined by Pollak (1975).
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ferences in the evolution of expenditure shares and sectoral productivity growth

rates between luxuries and necessities. It is left to further research to test these

hypothesis.

The paper relies on a closed economy, dynamic general equilibrium model and there-

fore abstracts form open economy phenomena as trade and international technology

diffusion. Introducing such open economy effects would be an interesting area for

further research. For instance, for technologically lagging countries technology adop-

tion can constitute an attractive alternative to R&D investments. Moreover, it is

worth noting that international trade in final goods would allow for sectoral special-

ization irrespective of the degree of development. But when we look at consumption

data, the model predicts that an Engel’s law should still be observed.
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Appendix A: Proof of Lemmas and Propositions

Proof of Lemma 1

(i) According to Proposition 3.E.2 of Mas-Colell, Whinston and Green (1995), for

an expenditure function to represent a locally non-satiated preference relation it

must be (a) homogeneous of degree one in prices, (b) strictly increasing in Vi(t) and

nondecreasing in all prices, (c) concave in prices and (d) continuous in prices and

Vi(t).

(2) corresponds to the following expenditure function30

e(P1(t), P2(t), Vi(t)) =
P1(t)

αP2(t)
1−α

[

−Vi(t) +
β

1−α+γ
− β

1−α+γ

(

P2(t)
P1(t)

)1−α+γ
] . (52)

It is readily to see, that (a) and (d) are fulfilled. So I start proving (b). For the first

derivative of e(P1(t), P2(t), Vi(t)) with respect to Vi(t) we get

∂e(P1(t), P2(t), Vi(t))

∂Vi(t)
=

P1(t)
αP2(t)

1−α

[

−Vi(t) +
β

1−α+γ
− β

1−α+γ

(

P2(t)
P1(t)

)1−α+γ
]2 > 0.

The first derivative with respect to P1(t) yields (use again (2) to write the derivative

in terms of ei(t))

ei(t)

P1(t)

[

α− β
ei(t)

P1(t)1+γP2(t)−γ

]

This is non-negative as long as

α ≥ β
ei(t)

P1(t)1+γP2(t)−γ
. (53)

30For α = 1 + γ we get again the limit case

e(P1(t), P2(t), Vi(t)) = P1(t)

[

−Vi(t)− β log

[

P2(t)

P1(t)

]]−1

.

To ease notation this case differentiation is neglected in the proof.
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Differentiating with respect to P2(t) gives (use again (2) to write the derivative in

terms of ei(t))

ei(t)

P2(t)

[

1− α + β
ei(t)

P1(t)1+γP2(t)−γ

]

≥ 0.

This is always non-negative. Thus, (b) is fulfilled if and only if (53) holds.

To show (c) we must prove that the Hessian is negative semidefinite. We get the

following Hessian

H = Ξ







−P1(t)
−2 P1(t)

−1P2(t)
−1

P1(t)
−1P2(t)

−1 −P2(t)
−2






,

where

Ξ =

[

(1− α)α− 2

[

β
ei(t)

P1(t)1+γP2(t)−γ

]2

− (2− 3α + γ) β
ei(t)

P1(t)1+γP2(t)−γ

]

ei(t).

The eigenvalues are 0 and −Ξ [P1(t)
−2 + P2(t)

−2]. For negative semi-definiteness

these eigenvalues must be less or equal to zero (which requires Ξ ≥ 0). Since

α ∈ (0, 1] this is fulfilled if and only if

β
ei(t)

P1(t)1+γP2(t)−γ
≤

1

4

[

3α− 2− γ +
√

α2 + (2 + γ)2 − 2α(2 + 3γ)
]

. (54)

As long as γ ≥ 0 we have

α >
α

2
≥

1

4

[

3α− 2− γ +
√

α2 + (2 + γ)2 − 2α(2 + 3γ)
]

.

As a consequence (54) implies

α >
α

2
≥ β

ei(t)

P1(t)1+γP2(t)−γ
, (55)

and is therefore sufficient for (53). Thus properties (b) and (c) are fulfilled if (54)

holds. For β = 0 this condition is always fulfilled. �
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(ii) For the first derivative of the indirect utility function with respect to ei(t), we

obtain

∂V (P1(t), P2(t), ei(t))

∂ei(t)
=

P1(t)
αP2(t)

1−α

ei(t)2
> 0.

Moreover, we have

∂2V (P1(t), P2(t), ei(t))

∂ei(t)2
= −2

P1(t)
αP2(t)

1−α

ei(t)3
< 0.

�

Proof of Lemma 2

(i) The derivation of the demand system is just an application of Roy’s identity. �

(ii) The corresponding current value Hamiltonian is

H = V (P1(t), P2(t), ei(t)) + λ(t) [r(t)Wi(t) + w(t)li − ei(t)] .

We can then derive the following first-order conditions

λ̇(t) = λ(t) [ρ− r(t)] and
P1(t)

αP2(t)
1−α

ei(t)2
= λ(t). (56)

The transversality condition can be written as limt→∞ λ(t)Wi(t) exp (−ρt) = 0. The

first-order conditions, (56), simplify to the following optimality condition

2gei(t)− αgP1(t)− (1− α)gP2(t) = r(t)− ρ.

�

Proof of Lemma 3

(i) In view of (5), (6) and (52), the Hicksian demand functions can be written as

x
i,H
1 (t) = [α− βZ]Z

[

P1(t)

P2(t)

]γ

and x
i,H
2 (t) = [1− α + βZ]Z

[

P1(t)

P2(t)

]1+γ

,
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where Z ≡
[

P2(t)
P1(t)

]1−α+γ
[

−Vi(t) +
β

1−α+γ
− β

1−α+γ

(

P2(t)
P1(t)

)1−α+γ
]−1

. With the Allen-

Uzawa formula, the elasticity of substitution can be written as31

∂x
i,H
1 (t)

∂P2(t)

P1(t)x
i,H
1 (t) + P2(t)x

i,H
2 (t)

x
i,H
1 (t)xi,H

2 (t)
.

When we apply this formula, we obtain for the elasticity of substitution

(1− α)α− 2
[

β
ei(t)

P1(t)1+γP2(t)−γ

]2

− (2− 3α + γ) β ei(t)
P1(t)1+γP2(t)−γ

[

α− β
ei(t)

P1(t)1+γP2(t)−γ

] [

1− α + β
ei(t)

P1(t)1+γP2(t)−γ

] ≥ 0. (57)

The denominator of this expression is larger than zero because of (54). The numer-

ator is non-negative because of (55). (57) can be rewritten as

1−
β

ei(t)
P1(t)1+γP2(t)−γ

[

1− α + β
ei(t)

P1(t)1+γP2(t)−γ + γ
]

[

α− β
ei(t)

P1(t)1+γP2(t)−γ

] [

1− α + β
ei(t)

P1(t)1+γP2(t)−γ

] < 1, (58)

which shows that the elasticity of substitution is less than one (since α ≤ 1 and

γ ≥ 0). �

(ii) We get
∂xi

1(t)

∂ei(t)
ei(t)

xi
1(t)

=
α−2β

ei(t)

P1(t)
1+γP2(t)

−γ

α−β
ei(t)

P1(t)
1+γP2(t)

−γ

. This is between zero and one since

βei(t) ≤
α
2
P1(t)

1+γP2(t)
−γ (see (4)). Moreover, we get

∂xi
2(t)

∂ei(t)
ei(t)

xi
2(t)

=
1−α+2β

ei(t)

P1(t)
1+γP2(t)

−γ

1−α+β
ei(t)

P1(t)
1+γP2(t)

−γ

,

which is greater than one for β > 0. �

Proof of Lemma 4

Aggregation of individual demands yields

X1(t) = α

∫ n

0

ei(t)

P1(t)
di−β

∫ n

0

ei(t)
2

P1(t)2+γP2(t)−γ
di = α

E(t)

P1(t)
−β

1

P1(t)2+γP2(t)−γ

∫ n

0

ei(t)
2di,

31Note that in the two good case, the Allen-Uzawa elasticity of substitution coincides with the

Hicksian elasticity of substitution.



46

where E(t) ≡
∫ n

0
ei(t)di. We can then use

∫ n

0
ei(t)

2di = n

[

var(ei(t)) +
[

E(t)
n

]2
]

,

which gives

X1(t) = α
E(t)

P1(t)
− β

n

P1(t)2+γP2(t)−γ

[

var(ei(t)) +

[

E(t)

n

]2
]

.

For the last step we define φe(t) ≡ n2var(ei(t))
E(t)2

so that var(ei(t)) = φe(t)
[

E(t)
n

]2

.

Then, we get for aggregate demand

X1(t) =

[

α− β
E(t) [1 + φe(t)]

n

1

P1(t)1+γP2(t)−γ

]

E(t)

P1(t)
.

Aggregate demand for good two can be derived in a fully analogous way. The aggre-

gate expenditure share for good one is then given by α− β
E(t)[1+φe(t)]

n
1

P1(t)1+γP2(t)−γ ,

whereas the individual expenditure share is α− β
ei(t)

P1(t)1+γP2(t)−γ . The two are equal-

ized if ei(t) =
E(t)[1+φe(t)]

n
. Thus, the representative agent is the one with eRA(t) =

E(t)[1+φe(t)]
n

. �

Proof of Lemma 5

Because production in the two sectors is fully symmetric, it is enough to derive opti-

mality conditions for one sector j = 1, 2. Let ηj,ω(t) denote the price of intermediate

input ω of sector j at date t. Because of perfect competition, final good producers

take ηj,ω(t) as given and solve the following cost minimization problem,

min
{yj,ω}

Mj(t)

ω=0

∫ Mj(t)

0

ηj,ω(t)yj,ω(t)dω,

subject to the constraint

Yj(t)−

[

∫ Mj(t)

0

yj,ω(t)
1
2dω

]2

= 0, (59)
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where Yj(t) is an exogenously given output level. The first-order conditions of this

minimization are

ηj,ω(t) = µ(t)yj,ω(t)
− 1

2

[

∫ Mj(t)

0

yj,ω′(t)
1
2dω′

]

, ∀ω, (60)

where µ(t) is the multiplier attached to the constraint (59). Zero profits imply

µ(t) = Pj(t). Then, the first-order condition can be rewritten as

yj,ω(t)
1
2 =

[

Pj(t)

ηj,ω(t)

]

[

∫ Mj(t)

0

yj,ω′(t)
1
2dω′

]

, ∀ω, (61)

or

yj,ω(t) =

[

Pj(t)

ηj,ω(t)

]2

Yj(t), ∀ω. (62)

When we sum up over all intermediate inputs ω and solve for Pj(t) we obtain

Pj(t) =

[

∫ Mj(t)

0

ηj,ω(t)
−1dω

]− 1
2

. (63)

Each machine producer maximizes its instantaneous profits,

max
ηj,ω(t), yj,ω(t)

πj,ω(t) = [ηj,ω(t)− w(t)] yj,ω(t),

subject to demand (62). This gives the following first-order condition:

ηj,ω(t) = 2w(t). (64)

This holds for both sectors, every machine type ω and every date t. If we plug (64)

into (63) we get

Pj(t) = 2w(t)Mj(t)
−1. (65)

When we use (64) and (65) in (62) we get

lj,ω(t) = yj,ω(t) = Mj(t)
−2Yj(t), ∀ω. (66)
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Because of symmetry we have Mj(t)lj,ω(t) = Lj(t). Instantaneous profits are given

by

πj,ω(t) = yj,ω(t)w(t) =
1

2
Pj(t)Lj(t), ∀ω.

�

Proof of Lemma 6

The instantaneous profits are given by (see (18))

πj,ω(t) =
1

2
Lj(t)Pj(t).

Cost of an innovation in sector j are (see (19))

f

Mj(t)
w(t) =

f

2
Pj(t). (67)

Suppose there is an interval t′ ∈ [t0, t0 + s] with positive R&D investments in sector

j. Then, we must have

f =
1

Pj(t′)

∫ ∞

t′
Lj(ς)Pj(ς)e

−
∫ ς

t′
[r(ν)+δj ]dνdς, ∀t′ ∈ [t0, t0 + s] . (68)

This is equivalent to

f =
1

Pj(t′)

∫ t

t′
Lj(ς)Pj(ς)e

−
∫ ς

t′
[r(ν)+δj ]dνdς+e−

∫ t

t′
[r(ν)+δj ]dν

1

Pj(t′)

∫ ∞

t

Lj(ς)Pj(ς)e
−

∫ ς

t
[r(ν)+δj ]dνdς.

(69)

with t ∈ (t0, t0 + s]. In view of (68) equation (69) can be rewritten as

f =
1

Pj(t′)

∫ t

t′
Lj(ς)Pj(ς)e

−
∫ ς

t′
[r(ν)+δj ]dνdς + e−

∫ t

t′
[r(ν)+δj ]dν

Pj(t)

Pj(t′)
f. (70)

Then, we differentiate both sides of (70) with respect to t. This gives

0 = Lj(t)
Pj(t)

Pj(t′)
e−

∫ t

t′
[r(ν)+δj ]dν + e−

∫ t

t′
[r(ν)+δj ]dν

f

Pj(t′)

[

Ṗj(t)− (r(t) + δj)Pj(t)
]

.
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This can be simplified to

Lj(t) = f

[

r(t) + δj −
Ṗj(t)

Pj(t)

]

. (71)

Note that (20) and the choice of numéraire implies that P1(t) = M2(t)
M1(t)

. Then, for

j = 1 we can rewrite (71) as

f =
L1(t)

r(t) + δ1 − g2(t) + g1(t)
,

and for j = 2 we get

f =
L2(t)

r(t) + δ2
.

In general we must have

f ≥
L1(t)

r(t) + δ1 − g2(t) + g1(t)
and f ≥

L2(t)

r(t) + δ2
,

where the equations hold with equality, if there are positive investments. �

Proof of Lemma 7

(21) implies

LR
j (t) = f [gj(t) + δj] , j = 1, 2. (72)

If we use that and the labor market clearing condition, (28), in equations (23) - (27),

we obtain (30) - (34). By definition we must have E(t) = X1(t)P1(t) +X2(t)P2(t).

With (17), (20), (22), (28) and (29) this can be rewritten as

E(t) = M2(t)
[

L− LR
1 (t)− LR

2 (t)
]

,

or as

E(t)

M2(t)
= L− f [g1(t) + δ1]− f [g2(t) + δ2] . (73)
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When we use (72), differentiate with respect to time and combine it with (12), (20)

and (22), and set ν = 2, we get (35). If we plug (73) into (14) and set it equal to

(17), we finally obtain (36). �

Proof of Proposition 1

Proof of existence:

It is easy to verify that all the equations of Lemma 7 hold if we plug in the values of

the constant growth path. In addition, the transversality condition (38) has to be

fulfilled too. Next note that along the CGP, wealth and consumption expenditures

of all households grow at the same constant rate g∗2. This implies that it is enough

to show that the transversality condition holds in the aggregate. There are strictly

positive investments in both sectors at every date along the CGP (note that (39)

implies g∗2 > 0 and g∗1 ≥ 0). Therefore, the value of a firm must be equalized to the

cost of innovating at all dates. For the aggregate wealth stock we then get (see (20),

(22) and (67))

W (t) =

∫ n

0

Wi(t)di = M2(t)f.

In view of (73) we get in the aggregate

lim
t→∞

exp (−ρt)
P1(t)

E(t)2
W (t) =

f

M1(0) [L− f(δ1 + g∗1 + δ2 + g∗2)]
2 lim
t→∞

exp (−g∗1t− ρt) .

Because we have g∗1+ρ > 0 the limit is equal to zero and the transversality condition

is fulfilled.

Proof of uniqueness:

First, I state and prove a Claim that turns out to be useful.
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Claim 1. If (39) and (11) holds for all households we must have LR
1 (t) > 0, ∀t.

Proof of Claim 1: Suppose we have LR
1 (t) = 0 which is identical to g1(t) = −δ1.

First suppose we have g1(t) = −δ1 and g2(t) = −δ2. Then we must have

f ≥
L− L2(t)

ρ− δ1
and f ≥

L2(t)

ρ− δ1
. (74)

This implies L− 2fρ+ 2fδ1 ≤ 0, which constitutes a contradiction to (39).

Next suppose we have g1(t) = −δ1 and g2(t) > −δ2. Then, we must have (see (30)

- (34))

f ≥
L− L2(t)− f [g2(t) + δ2]

r(t)− g2(t)
and f =

L2(t)

r(t) + δ2
,

which implies

L2(t) ≥
1

2
L. (75)

Note that we have

L2(t) = β
[1 + φe]

n
m(t) [L− f [g2(t) + δ2]]

2
. (76)

Next note that there exists a household i for all t with ei(t) ≥
[1+φe]

n
E(t) = eRA(t).

If we use α = 1 and this expenditure level of the representative household and

E(t) = M2(t) [L− f [g2(t) + δ2]] in (11), we get

2β
[1 + φe]

n
m(t) [L− f [g2(t) + δ2]] ≤ 1− γ. (77)

If we substitute this into (76), we get

L2(t) ≤
1− γ

2
[L− f [g2(t) + δ2]] .

Because we have γ ≥ 0 and g2(t) > −δ2 by assumption, this constitutes a contra-

diction to (75) (since δ2 < 0). Hence, LR
1 (t) = 0 cannot occur. �
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When we differentiate the labor market clearing condition with respect to time we

get

L1(t)gL1(t) + L2(t)gL2(t) + LR
1 (t)gLR

1
(t) + LR

2 (t)gLR
2
(t) = 0, (78)

where gLj
(t) and gLR

j
(t) are the growth rates of the respective variables Lj and LR

j ,

j = 1, 2. In a CGP these growth rates must be constant. But because we must

have Lj(t) ≤ L and LR
j (t) ≤ L for j = 1, 2 and all t we see that these growth rates

cannot be constantly positive. Then, (78) implies that these growth rates must all

be zero along a CGP. Since along a CGP g1(t) and g2(t) are constant too, gL2(t) = 0

implies gm(t) = 0 (see (36)). Then, we must have along a CGP g1 = γ

1+γ
g2 (see

(37)). Hence, in order to prove uniqueness we have to prove that there is only

one constellation of constant growth rates that is consistent with the equations in

Lemma 7 and g1 = γ

1+γ
g2. From Claim 1 we know that we must have g1 > −δ1.

Thus, we can distinguish two different regimes: regime A with g2 > −δ2 and regime

B with g2 = −δ2.

Suppose we have regime B with g2 = −δ2. This implies

f =
L− L2 − f(g1 + δ1)

2g1 + δ1 + ρ
, and f ≥

L2

g1 + ρ
. (79)

These two equations imply 4fg1 + 2ρf + 2fδ1 ≥ L. With g1 =
γ

1+γ
g2 = − γ

1+γ
δ2 this

can be rewritten as 2ρf +2fδ1 ≥ L+4f γ

1+γ
δ2, which constitutes a contradiction to

(39). Hence we must have regime A with LR
1 > 0 and LR

2 > 0 along a CGP. Hence,

equations (30) and (31) hold with equality. When we then set ġj(t) = 0, j = 1, 2

and g1 = γ

1+γ
g2 and solve the system of equations of Lemma 7 for g2 we get the

unique solution

g∗2 =
(1 + γ) [L− 2f(δ1 + δ2 + ρ)]

2f(1 + 3γ)
. (80)
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This proves the uniqueness of the CGP. �

Proof of Proposition 2

Again, we can discriminate between the following two regimes: regime A with

g2(t) > −δ2 and regime B with g2(t) = −δ2. We know that we must have g1(t) > −δ1

due to Claim (1) in the proof of Proposition 1. First the dynamics of the two regimes

is analyzed.

Equilibrium dynamic of regime A (proof of part (iii))

If we have strictly positive investments in both sectors, we know that (30) and (31)

have to hold with equality. When we solve (30) and (31) for L2(t) and set it equal

to (36), we get

L2(t) = β̃m(t) [L− f [g1(t) + δ1]− f [g2(t) + δ2]]
2 =

L

2
− f [g1(t) + δ1] , (81)

where β̃ ≡ (1+φe)β
n

. Moreover, (35) gives

2f
ġ1(t) + ġ2(t)

L− f [g1(t) + δ1]− f [g2(t) + δ2]
= g2(t) + 2g1(t)−

L

2f
+ ρ+ δ1 + δ2. (82)

Solving (81) for g2(t) we obtain

g2(t) = −g1(t) +
L

f
− δ1 − δ2 −

√

L
2f

− g1(t)− δ1

β̃m(t)f
, (83)
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where I have chosen the relevant solution.32 Then, differentiating (81) with respect

to time and using (81) again yields

2f
ġ2(t) + ġ1(t)

L− f [g1(t) + δ1]− f [g2(t) + δ2]
=

f ġ1(t)
L
2
− f [g1(t) + δ1]

+(1+γ)g1(t)−γg2(t). (84)

When we solve (82), (83) and (84) for ġ1(t), we get

ġ1(t) =



ρ+ (1 + 2γ)
L

2f
− (1 + γ)

√

L
2f

− g1(t)− δ1

β̃m(t)f
− 2γg1(t)− γ(δ1 + δ2)





[

L

2f
− g1(t)− δ1

]

, (85)

Finally, when we use (83) in (37) we get (51).

Necessary conditions for regime B

When we use g2(t) = −δ2 and g1(t) > −δ1 in (30) - (34) we get

f =
L− L2(t)− f [g1(t) + δ1]

r(t) + δ1 + δ2 + g1(t)
and f ≥

L2(t)

r(t) + δ2
.

These two equations imply

L2(t) ≤
1

2
[L− 2f(g1(t) + δ1)] , (86)

which is identical to

L1(t) ≥
1

2
L. (87)

We are now ready to proof global saddle path stability. This is done in two steps.

The first step proves saddle path stability of the CGP within regime A. The second

32The other solution would imply a negative aggregate consumption level

E(t) = M2(t) [L− f [δ1 + δ2 + g1(t) + g2(t)]] .
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step proves that regimeA has to prevail within finite time (part (ii) of Proposition 2).

Step 1: Saddle path stability of the CGP under regime A

Under regime A the dynamic is characterized by (85) and

ṁ(t) =



(1 + 2γ)g1(t)− γ





L

f
− δ1 − δ2 −

√

L
2f

− g1(t)− δ1

β̃m(t)f







m(t). (88)

Clearly we must have L − 2f(g1(t) + δ1) > 0 (which ensures E(t) > 0). When we

differentiate (85) with respect to m(t) we get

∂ġ1(t)

∂m(t)
= fβ̃(1 + γ)

[

L
2f

− g1(t)− δ1

β̃m(t)f

] 3
2

> 0. (89)

Hence, we have ġ1(t) > 0 if m(t) is “large”. When we differentiate (88) with respect

to m(t) and evaluate it along the ṁ(t) = 0 isocline, we get

∂ṁ(t)

∂m(t)

∣

∣

∣

∣

ṁ(t)=0

= −
γ

2

√

L
2f

− g1(t)− δ1

β̃m(t)f
≤ 0. (90)

Thus, with γ > 0, we have ṁ(t) > 0 if m(t) is “small”.33

For saddle path stability we need that the slope of the ṁ(t) = 0 locus is larger then

the slope of the ġ1(t) = 0 locus in the CGP. For the difference between the slope of

the ṁ(t) = 0 locus and the slope of the ġ1(t) = 0 locus we get

8f(1 + 3γ)3 [(1 + 2γ) [L− 2fδ1] + 2fγ(δ2 + ρ)]

β̃γ(1 + γ) [L(1 + 4γ)− 2fγ(δ1 + δ2) + (1− 2γ)ρ]3
> 0, (91)

which is positive because of (39). This proves that the CGP is globally saddle path

stable if regime A prevails forever. Next I show that eventually we must be in regime

33With γ = 0 the ṁ = 0 isocline is given by g1(t) = 0 and m(t) is increasing if g1(t) > 0 = g∗1 .
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A (and stay there).

Step 2: Proof of predominance of regime B within finite time

In general we can discriminate between three cases: A first case where regime A

holds forever, a second case where regime B holds forever and a the third case where

we have a recurring interchange of regime A and B. I proof that cases two and three

cannot occur.

Exclusion of case two (predominance of regime B forever)

First, note that the CGP is unique and only consistent with regime A. As a con-

sequence, g1(t) cannot be constant or converge to a constant level under regime B.

Moreover, a steadily increasing or decreasing (and non-converging) g1(t) is impossi-

ble since g1(t) has an upper and lower bound. Hence, we must have cycle in g1(t)

(phases with ġ1(t) > 0 as well as phases with ġ1(t) < 0). First note that we cannot

have g1(t) > −δ2
γ

1+γ
, ∀t because this implies a steadily growing m(t) (and therefore

eventually a violation of condition (87)). Hence, because we must have cycles in

g1(t) we must have phases with g1(t) ≤ −δ2
γ

1+γ
and ġ1(t) ≥ 0, which clearly implies

that we have r(t) < r∗ and r(t)− g2(t)+ g1(t) ≤ 2g1(t)+ ρ < r∗− g∗2 + g∗1 = 2g∗1 + ρ.

But g1(t) ≤ −δ2
γ

1+γ
and g2(t) = −δ2 implies L1(t) + L2(t) > L∗

1 + L∗
2. Hence there

must be either L1(t) > L∗
1 or L2(t) > L∗

2. But since r(t)−g2(t)+g1(t) < r∗−g∗2 +g∗1

and r(t) < r∗, at least one of the free-entry conditions have to be violated. This

excludes the possibility of a infinite predominance of regime B.

Exclusion of case three (repeated interchanges between regime A and B)

First I show that if we have a regime switch, we must have ġ1(t) < 0 and ṁ(t) > 0.



57

At a regime switch we cannot have discontinuities in gj(t), j = 1, 2.34 Hence right

before/after the regime switch we must have g2(t) = −δ2, ġ2(t) = 0 and regime A.

This implies that we must have (see (81))

β̃m(t) [L− f [g1(t) + δ1]]
2 =

L

2
− f [g1(t) + δ1] , (92)

Because of (11), this equation defines a negative relation between m(t) and g1(t).
35

Then we can discriminate three cases: First, suppose we have m(t) > m∗. This

implies g1(t) < g∗1 (see (92)). Moreover, this leads to L2(t) > L∗
2 (note that L2(t)

is increasing in both E(t) and m(t)). For this to be compatible with regime A we

need r(t) > r∗. This in only possible with ġ1(t) < 0 (since ġ2(t) = 0, g1(t) < g∗1 and

g2(t) = −δ2 < g∗2). Now we can rewrite (84) as

−f 2 ġ1(t) [g1(t) + δ1]

[L− f [g1(t) + δ1]]
[

L
2
− f [g1(t) + δ1]

] =
ṁ(t)

m(t)
. (93)

Then we see, that ġ1(t) < 0 and ġ2(t) = 0 implies ṁ(t) > 0.

Second, suppose we have a regime switch with m(t) < m∗ and g1(t) > g∗1. g1(t) > g∗1

and g2(t) = −δ2 implies ṁ(t) > 0 (see (37)). In view of (84) we get again ġ1(t) < 0.

Finally, suppose we have m(t) < m∗ and g1(t) < g∗1. This implies L1(t) > L∗
1

(because of (11) L2(t) is increasing in E(t) and decreasing in m(t)). Then, we must

34The Euler equation implies continuity in E(t). Thus the sum g1(t) + g2(t) must be continues.

As a consequence Lj(t), j = 1, 2 are continues too. We then see that strictly binding free entry

conditions imply continuity in g1(t)− g2(t).
35To see this note that

β̃m(t) [L− f [g1(t) + δ1]]
2
−

L

2
+ f [g1(t) + δ1] ,

is increasing in g1(t) because of (11).
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have r(t) + δ1 + δ2 + g1(t) > r∗ + δ1 − g∗2 + g∗1 which gives (see (30) and (35))

2g1(t)− f
ġ1(t)

L− f [g1(t) + δ1]
> 2g∗1. (94)

Clearly, this implies ġ1(t) < 0 (and again ṁ(t) > 0).

Thus we have seen that if we have a regime switch we must have ġ1(t) < 0 and

ṁ(t) > 0. Next I proof that a regime switch from B to A cannot be followed by a

switch back to B. Suppose we have a regime switch from B to A at t′ and a switch

back to B at t′′ > t′. From the analysis above we know that we must have ġ1(ς) < 0

and ṁ(ς) > 0 at ς = t′, t′′. Then a closer look on the phase diagram shows that this

implies ġ1(ς) < 0 and ṁ(ς) > 0 for all ς ∈ [t′, t′′]. As a consequence, we must have

m(t′′) > m(t′) and g1(t
′′) < g1(t

′) which implies L2(t
′′) > L2(t

′). Then, we must

have r(t′′) > r(t′) which gives

g1(t
′′)− f

ġ1(t
′′)

L− f [g1(t′′) + δ1]
> g1(t

′)− f
ġ1(t

′)

L− f [g1(t′) + δ1]
. (95)

But this cannot be the case since g1(t
′′) < g1(t

′) and m(t′′) > m(t′) implies 0 >

ġ1(t
′′) > ġ1(t

′) (see (84)). Hence, regime B cannot prevail forever and we cannot

have repeated interchanges between regime B and A. Therefore we conclude, that

within finite time we must have regime A (and stay there). This proves part (i). �

Proof of Proposition 3

The phase diagram already shows that g1(t) must be decreasing and m(t) must be

increasing if we start withm(0) < m∗. Then, a decreasing g1(t) implies an increasing

L2(t) (see (81)). An increasing L2(t) implies an increasing r(t) and therefore we must

have r(t) ≤ r∗ (see (31) and note that it has to hold with equality). Note that both
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gj(t) have to converge (i.e. limt→∞ ġj(t) = 0). Then we cannot have ġ1(t) < 0 and

ġ2(t) < 0 at the same time since this cannot be consistent with a decreasing r(t)

and converging gj(t) (see (35)). Hence we must have ġ2(t) > 0. Finally, we have

L1(t) = f [r(t) + δ1 − g2(t) + g1(t)] (see (30) which holds with equality). Because

r(t) is decreasing, g2(t) is increasing and g1(t) is decreasing this is clearly decreasing

over time. �

Proof of Proposition 4

Note that we have along the transition (see (83))

E(t) = M2(t)

√

L
2
− fg1(t)− fδ1

β̃m(t)
.

Then, with (20), (22) and (47) we can rewrite (11) as

2κ

√

[

L

2
− fg1(t)− fδ1

]

βm(t)
n

1 + φe

≤ 1− γ.

We see that the left-hand side is strictly increasing in m(t) and strictly decreasing in

g1(t). When the economy approaches the CGP from below, we know that we have

m(t) ≤ m∗ and g1(t) ≥ g∗1 = 0 ∀t. Hence, (11) is fulfilled along the transition if it is

fulfilled along the CGP (i.e. as long as (48) holds). �
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Appendix B: Dynamic with β = 0

With Cobb-Douglas preferences we have

L1(t) = α [L− f [g1(t) + δ1]− f [g2(t) + δ2]]

and

L2(t) = (1− α) [L− f [g1(t) + δ1]− f [g2(t) + δ2]] .

Transitional dynamics and shifts in expenditure and employment shares never occur

(comparable with an AK model). We can distinguish four cases: (A); there are no

investments in both sectors, (B); there are positive investments in both sectors, (C);

there are just positive investments in sector one, and (D); there are just positive

investments in sector two.

Case (A):

This case applies if we have

f ≥
αL

ρ− αδ1 − (1− α)δ2
and f ≥

(1− α)L

ρ− αδ1 − (1− α)δ2
.

Then, there are no investments and we have r = ρ−αδ1−(2−α)δ2 and E(t) = M2(t)L

and both sectors shrink at rate δj. The transversality condition holds as long as

ρ > (1− α)δ2 + αδ1.

Case (B):

We must have

f =
α [L− f [g1 + δ1]− f [g2 + δ2]]

(1− α)g2 + (1 + α)g1 + ρ+ δ1
and f =

(1− α) [L− f [g1 + δ1]− f [g2 + δ2]]

(2− α)g2 + αg1 + ρ+ δ2
.
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If we solve these two equations we get

g1 =
L [(2− α)α− 1]− 2f [δ1 − (1− α) [−δ2 + α(δ1 + δ2) + ρ]]

2f [1 + 2(1− α)α]

and

g2 =
L(1− 2α2)− 2f [δ2 + α [δ2 − α(δ1 + δ2) + ρ]]

2f [1 + 2(1− α)α]
.

This case can occur if we have

L [(2− α)α− 1]− 2f(1− α) [α(δ1 − δ2) + δ2 − ρ] > 0,

and

L(1− 2α2) + 2fα [α(δ1 − δ2) + δ2 − ρ] > 0.

Utility is finite as long as ρ+ (1− α)g2 + αg1 > 0.

Case (C):

We then have

f =
α [L− f [g1 + δ1]]

−(1− α)δ2 + (1 + α)g1 + ρ+ δ1
and f ≥

(1− α) [L− f [g1 + δ1]]

−(1− α)δ2 + αg1 + ρ
.

If we solve for g1 we get

g1 =
αL− f((1 + α)δ1 − (1− α)δ2 + ρ)

f(1 + 2α)
.

This case occurs if we have

αL+ f [α(δ1 − δ2) + δ2 − ρ] > 0,

and

L(1− 2α2) + 2fα [α(δ1 − δ2) + δ2 − ρ] ≤ 0.
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With α = 1, we get the standard one sector spillover model.36 Utility is finite as

long as ρ > (1− α)δ2 − αg1.

Case (D) is fully symmetric to case (C).

36Preferences are then given by

Ui(0) =

∫ ∞

0

e−ρt

[

−
P1(t)

ei(t)

]

dt.

Note that this is identical to the standard one sector model with an inter-temporal elasticity of

substitution equal to 0.5. If we normalize P1 to one, we can rewrite preferences as

Ui(0) =

∫ ∞

0

e−ρt 1

1− σ
[ei(t)]

1−σ
dt,

where σ = 2.
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Appendix C: Possible Generalizations of the Model

The aim of this Appendix is to shortly sketch along which dimension the model can

be generalized.

4.1 α 6= 1 and f1 6= f2

The main features of the CGP remain unchanged when we have α 6= 1 or we have ex

ante sectoral differences in the productivity of R& D investments (f1 6= f2). Then,

the CGP is associated with

g∗1 = γ
L− 2f1δ1 − 2f2δ2 − (f1 + f2)ρ

f1(1− α + 3γ) + f2(3(1 + γ)− α)
. (96)

All other CGP values can then be obtained.37 I do not provide an analytical proof of

global stability of the CGP for this case. But simulations show saddle path stability

for reasonable parameter specifications.

Introducing a parameter that controls the inter-temporal elas-

ticity of substitution

With γ ∈ (0, 1) the instantaneous utility function can be rewritten without the last

term as

V (P1(t), P2(t), ei(t)) = −
P1(t)

αP2(t)
1−α

ei(t)
−

β

1− α + γ

(

P2(t)

P1(t)

)1−α+γ

. (97)

Note that this change lets the optimal expenditure system and the derivative of

instantaneous utility with respect to time unaffected. Then, the instantaneous util-

37For instance we have g∗2 = 1+γ
γ

g∗1 and r∗ = αg∗1 + (2− α)g∗2 + ρ.



64

ity level grows along the CGP at constant rate −
[

1− α + α γ

1+γ

]

g∗2.
38 Under this

modified instantaneous utility function the following CRRA inter-temporal utility

function is consistent with a CGP

Ui(0) =

∫ ∞

0

exp (−ρt)
1

1− σ
V (P1(t), P2(t), ei(t))

1−σ
dt, (98)

where σ ∈ (0,∞). Then we have an additional parameter σ in the model that

controls the inter-temporal elasticity of substitution.

Adding a third sector that is neither a luxury nor a necessity

Changing the instantaneous utility function to

V (·) = −
P1(t)

ναP2(t)
ν(1−α)P3(t)

(1−ν)

ei(t)
−

β

ν (1− α) + γ

(

P2(t)

P1(t)

)ν(1−α)+γ

+
β

ν (1− α) + γ
.

(99)

Then, a constant fraction 1−ν of expenditure is devoted to the third neutral sector.

The rest of the model remains almost unaffected and we still get a CGP along witch

m̃ = M1(t)ν+γM3(t)1−ν

M2(t)γ
is constant.

Introducing population growth

Suppose the labor force L grows at constant rate n. This requires an adjustment of

the innovation possibilities frontiers to

Ṁj(t) = LR
j (t)

Mj(t)
ǫ

f
− δjMj(t), j = 1, 2, (100)

38To see this note that we have g∗1 = γ
1+γ

g∗2 . Since the attained utility value is negative, a

negative growth rate implies that the attained instantaneous utility level is growing over time.
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where ǫ is less than one. When we assume that population growth happens within

households, we have to adjust the discount rate to ρ− n. Then, there still exists a

CGP which exhibits the same key features.


