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Abstract

This paper develops a comprehensive endogenous growth framework to deter-
mine the optimal mix of growth policies. The analysis is novel in that we capture
important elements of the tax-transfer system and fully take into account tran-
sitional dynamics in our numerical analysis. Currently, for calculating corporate
taxable income US firms are allowed to deduct approximately all of their capital
and R&D costs from sales revenue. Our analysis suggests that the status quo
policy leads to severe underinvestment in both R&D and physical capital. We
find that firms should be allowed to deduct between 2-2.5 times their R&D costs
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1 Introduction

There is common sense among economists that business enterprises in advanced economies

conduct too little R&D. This conviction can be substantiated by noting that the social

rate of return to business enterprise R&D is far above the private rate of return. The

empirical productivity literature has identified social rates of return to R&D between

70 percent and more than 100 percent (e.g., Scherer, 1982; Griliches and Lichtenberg,

1984). Jones and Williams (1998) argue that, due to methodical shortcomings, these

estimates should indeed be viewed as lower bounds. Hall (1996) reports that estimates

of the private rate of return to R&D cluster around 10 percent to 15 percent. It is also

widely believed that this R&D underinvestment bias is likely to cause a substantial

loss in economic efficiency and social welfare. Moreover, there is now strong evidence

showing that fiscal incentives are effective in increasing the economy-wide R&D inten-

sity (e.g., Bloom, Griffith and van Reenen, 2002). Now, if one wants to turn all this

research effort and the associated findings into something of practical value, one final

question must be answered: What is the level of fiscal intervention which is required

to remove the R&D underinvestment gap?

To answer this question, it is necessary to take both the general equilibrium di-

mension and the intertemporal dimension associated with R&D into account. Hence,

endogenous growth theory provides a natural analytical framework for studies that aim

at advising policy makers about the design of welfare-maximizing growth policy. How-

ever, any such analysis faces severe difficulties. The first important problem is to meet

a balance between maintaining analytical tractability and avoiding that the model is

too stylized to base policy recommendations upon it. It is true that any specific pol-

icy advise (like the calculation of the optimal R&D subsidy rate) requires numerical

evaluations at some stage of the analysis. Nevertheless, we want to limit ourselves to

models where the steady state can be derived analytically. For instance, the steady

state seems to be a natural anchor in the context of the US economy to match endoge-

nous variables to observables when calibrating the model. At the same time, it seems

indicated to account for all three major engines of economic growth: private investment
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in physical capital, human capital, and R&D. Moreover, the model should capture the

important elements of the tax-transfer system in order to account for existing tax dis-

tortions when designing growth policy. Taxes on labor income, capital income, capital

gains and corporate income may be levied for other (e.g., redistributive) purposes than

stimulating economic growth. For instance, an education subsidy is not only required

to offset human capital externalities but should also alleviate negative education in-

vestment incentives which arise if labor income is taxed. In addition, the way income

is taxed affects the calibration of the model when we take the steady state under the

current tax-transfer system as an anchor. Failing to account for income taxation thus

potentially gives rise to misleading growth policy implications.

A second problem concerns the numerical challenges associated with the analysis of

transitional dynamics in complex growth models, arising in response to policy shocks,

which are characterized by highly dimensional differential equation systems. It is well-

known that, in growth models with decreasing marginal productivity of capital, it may

take a long time (possibly more than hundred years) after some shock until per capita

income adjusts to anywhere near the new steady state. It is thus salient to compute

the policy mix which maximizes the intertemporal welfare gain from policy reform and

not just focus on maximization of steady state welfare.

This paper develops a comprehensive endogenous growth framework to evaluate

reforms of US growth policy and to derive the optimal policy mix. We allow for

investment in physical capital, human capital and R&D as engines of economic growth.

The analysis is novel in that we capture important elements (i.e., existing distortions) of

the tax-transfer system and take into account transitional dynamics in our numerical

analysis. We are also careful to calibrate the model by making use of steady state

values under the status quo policy mix of a variety of endogenous variables which can

be observed in the data. We thereby substantially limit the degree of freedom in the

numerical analysis.

Technically, the major challenge is to calculate the entire transition path in response

to policy shocks. The underlying R&D-based growth model represents a non-linear,
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highly dimensional, saddle-point stable, differential-algebraic system. Moreover, for

plausible calibrations, the stable eigenvalues differ substantially in magnitude; hence,

the dynamic system belongs to the class of stiff differential equations. Simulating such

a dynamic model is all but trivial. The growth literature has used the techniques of

linearization, time elimination, or backward integration. Linearization delivers bad

approximations if the deviation from the steady state is large, time elimination does

not work if there are non-monotonic adjustments, and backward integration fails in

case of stiff differential equations. For these reasons we employ a recent procedure,

called relaxation algorithm (Trimborn, Koch and Steger, 2008), which can deal with

the conceptual difficulties mentioned above.

Our analysis suggests that the current R&D subsidization in the US leads to dra-

matic underinvestment in R&D. We find that innovating firms should be allowed to

deduct from sales revenue more than twice their R&D costs for calculating corporate

income, rather than just 1.1 times their R&D costs under the current policy. Inter-

estingly, raising the R&D subsidy rate from its current level may entail no or just a

small trade-off between long-run gains and short-run losses with respect to per capita

consumption. There may even be an immediate increase in the level of per capita

consumption. Such a possibility of an “intertemporal free lunch” arises because indi-

viduals anticipate the substantial future productivity gains and therefore may reduce

savings immediately after the reform.

Moreover, we find that the US stimulus for investment in physical capital, and

therefore the investment rate, is suboptimally low. The investment rate is biased

downwards due to price setting power of firms. The underinvestment problem is less

severe than for R&D, but is still substantial. Currently, for calculating corporate

taxable income firms are able to deduct basically all of their capital costs from sales

revenue. Our analysis suggests that they should be able to deduct somewhat more

than 1.5 of their costs. Investment in human capital should also be subsidized, roughly

to the extent labor income is taxed.

A policy reform targeted to all three growth engines simultaneously entails huge
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welfare gains. According to our preferred calibration, an appropriate policy reform

could achieve an (intertemporal) welfare gain which is equivalent to a permanent in-

crease in per capita consumption by about 86 percent. Unlike the optimal policy mix,

the potential welfare gains are, however, quite sensitive to the underlying calibration.

There are only a few endogenous growth models which encompass all three growth

engines. Funke and Strulik (2000) employ a three engines of growth model to show that

economic development can be represented as a sequence of growth stages. Each stage

is characterized by one of the growth engines being the dominant growth driver. Jones

(2002) sets up a Solovian-type model (i.e., allocation variables are fixed) with physical

capital accumulation, education, and R&D. Employing a growth accounting exercise,

he shows that the average growth rate of US output per working hour (1953-1993)

has a large transitional dynamics component. This is due to rising educational attain-

ment over time and an increasing share of labor devoted to R&D. Papageorgiou and

Perez-Sebastian (2006) set up a non-scale, R&D-based growth model with endogenous

human capital à la Bils and Klenow (2000). The model is employed to replicate sev-

eral empirical regularities of economic development in Japan and South Korea during

the Post-WWII period. These contributions thus focus on different questions than our

study, which is concerned with the optimality of the resource allocation in the economy

and policy implications associated with it.

Our paper is most closely related to the literature which studies the R&D underin-

vestment problem in a steady state. Our analysis suggests that R&D underinvestment

is more severe than previously found. Our main point of reference is the innovative

study by Jones and Williams (2000). Like we do, they build on a horizontal inno-

vation model without strong scale effects à la Jones (1995). Other contributions in

this direction are Steger (2005) and Strulik (2007) who find an even smaller degree

of underinvestment in R&D than Jones and Williams (2000). Similar to our steady

state analysis, however, Steger (2005) finds that the market economy quite heavily

underinvests in physical capital accumulation.

There are several differences of our analysis to these contributions. First, we also
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allow for human capital accumulation. Second, we use a different calibration strategy

which does not require to calibrate the economy’s labor share, being notoriously difficult

to pin down empirically (see, e.g., Krueger, 1999). Third, and importantly, we account

for existing distortions from income taxation. We demonstrate that doing so is the main

reason why our (steady state) analysis suggests a more dramatic R&D underinvestment

problem in the US economy than Jones and Williams (2000). Fourth, our analysis

explicitly suggests how to correct underinvestment in the various growth channels, by

introducing policy instruments targeted to the market failures captured in the model

and calculate the optimal growth policy mix. Fifth, we are able to solve numerically also

for the transition path. This allows us to evaluate policy reforms and compute welfare-

maximizing values of policy instruments not only from a steady state perspective but

also from a dynamic one.

The plan of the paper is as follows. Section 2 describes the underlying model.

Section 3 derives the steady state solution for the market economy and for the social

planning optimum. The calibration strategy is outlined in Section 4, while the optimal

long run policy mix is presented in Section 5. The dynamic evaluation of policy reforms

is discussed in Section 6. The main conclusions are summarized in Section 7. Technical

details have been relegated to an appendix.

2 The Model

Consider the following continuous-time model with three engines of economic growth:

horizontal innovations, physical capital accumulation and human capital formation.

There is a homogenous final output good with price normalized to unity. Final output

is produced under perfect competition according to

Y =

⎛⎝ AZ
0

(xi)
β−1
β di

⎞⎠
αβ
β−1

(HY )1−α, (1)
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0 < α < 1, β > 1, where HY is human capital (efficiency units of labor) in the

manufacturing sector, A is the mass (“number”) of intermediate goods and xi denotes

the quantity of intermediate good i. (Time index t is omitted whenever this does not

lead to confusion.) The number of varieties, A, expands through horizontal innovations,

protected with (potentially) infinite patent length. As usual, A is interpreted as the

economy’s stock of knowledge. A0 > 0 is given. The labor market is perfect.

In each sector i there is one firm − the innovator or the buyer of a blueprint for an
intermediate good − which has access to a one-to-one technology: one unit of foregone
consumption (capital) can be transformed into one unit of output. Capital depreciates

at rate δK ≥ 0. Capital supply in the initial period, K0, is given. The capital market

is perfect.

Moreover, in each sector i there is a competitive fringe which can produce a per-

fect substitute for good i (without violating patent rights) but is less productive in

manufacturing the good: one unit of output requires κ units of capital; 1 < κ ≤ β
β−1 .

1

There is free entry into the R&D sector. Suppose that in each point of time,

(1+ψ)Ȧ patents are generated. As in Jones and Williams (2000), ψȦ of these patents

replace existing patents, such that there will be “business stealing”. Thus, in each

point of time, the probability of an existing innovator to be replaced is equal to the

fraction of firms driven out of business, ψȦ/A; the expected effective patent life is

therefore limited to the inverse of this probability. Ideas for new intermediate goods

are generated according to

(1 + ψ)Ȧ = ν̃AφHA, with ν̃ ≡ ν
¡
HA
¢−θ

, (2)

whereHA is the human capital level in the R&D sector, ν > 0, φ < 1, 0 ≤ θ < 1, ψ ≥ 0.
ν̃ is taken as given in the decision of R&D firms; that is, similar to Jones and Williams

(2000), R&D firms perceive a constant-returns to scale R&D technology, although the

social return to higher R&D input is decreasing whenever θ > 0. The wedge between

private and social return may arise because firms do not take into account that rivals

1See Aghion and Howitt (2005), among others, for similar way of capturing a competitive fringe.
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may work at the same idea such that from a social point of view some of the R&D

input is duplicated (“duplication externality”). Parameter θ captures the extent of

this externality. If φ > 0, there is the standard “standing on shoulders” effect, whereas

the case φ < 0 implies by contrast that R&D productivity declines with the number

of preceding innovations (possibly because the most obvious innovations are detected

first; see Jones, 1995, for a discussion).

There is an infinitely-living, representative dynasty with initial per capita wealth,

a0 > 0. Household size, N , grows with constant exponential rate, n ≥ 0. N0 is given

and normalized to unity. Preferences are represented by the standard utility function

U =

∞Z
0

(ct)
1−σ − 1
1− σ

e−(ρ−n)tdt, (3)

ρ > n, σ > 0, where c is consumption per capita. Households take factor prices as

given.

The process of skill accumulation depends on the amount of human capital input

per capita in the education sector, hH . Moreover, it is characterized by human capital

transmission within the representative household.2 We also assume that human capital

depreciates over time at rate δH > 0. Formally, suppose that the human capital level

per capita, h, evolves according to

ḣ = ξ
¡
hH
¢γ

hη − δHh, (4)

γ, η, ξ > 0, γ+η < 1. γ < 1 captures decreasing returns to teaching input. Parameter η

is associated with human capital transmission within the household over time. γ+η < 1

(thus, η < 1) implies that, on a balanced growth path, h assumes a stationary long-run

value.3

2There is overwhelming evidence for the hypothesis that the education of parents affects the human
capital level of children, even when controlling for family income. For recent studies, also providing
an overview of the previous literature, see Plug and Vijverberg (2003) as well as Black, Devereux and
Salvanes (2005).

3We abstract from human capital externalities in education of the kind formulated by Lucas (1988).
In fact, there seems to be little evidence in favor of such externalities (see, e.g., Acemoglu and Angrist,
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The government possesses a variety of policy instruments which potentially affect

the three engines of growth in the model. At the household level it may subsidize

education at rate sH per unit of educational input. At the firm level, we assume that

there is corporate income taxation. The corporate tax rate is identical across sectors

and denoted by τ c. Intermediate good firms may deduct at least part of their capital

costs (for instance, via depreciation allowances or an investment tax credit), at rate

1 + sd. If sd = 0, capital costs are fully deductible; if sd < (>)0, they are less than

(more than) fully deductible. Similarly, the R&D sector may deduct 1 + sR of their

R&D spending from sales revenue. Households are taxed in various ways. There is a

tax on wage income at rate τw, a tax on income from asset holdings at rate τ r, and a

capital gains tax paid on increases in share prices. To be able to calibrate all the tax

instruments at realistic levels, we also allow for redistribution via a lump sum transfer

to households.4 The government balances the budget in each point of time.

Let w and r denote the wage rate per unit of human capital and the interest rate,

respectively. Moreover, denote by T the transfer per capita, which equals the sum of

tax revenue minus subsidies, both divided by N . Financial wealth per individual, a,

accumulates according to

ȧ = [(1− τ r)r − n] a+ (1− τw)wh− (1− sH)wh
H − c+ T. (5)

It turns out that, for the transversality conditions of both the household optimiza-

tion problem and the social planner problem to hold and the value of the utility stream,

U , to be finite, we have to restrict the parameter space such that

ρ− n+ (σ − 1)g > 0 with g ≡ α(1− θ)n

(1− α)(β − 1)(1− φ)
. (A1)

As will become apparent, g is the economy’s long run growth rate both in decentralized

equilibrium and in social planning optimum. We maintain assumption A1 throughout.

2000).
4Note that there may well be heterogeneity of individuals, despite the assumption that there exists

a (positive) representative consumer (consistent with the homothetic utility function (3)). See Mas-
Colell, Whinston and Green (1995) for a discussion.
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3 Steady State Analysis

The long run, decentralized equilibrium is compared to the social planning optimum.

We also conduct a comparative-static analysis of the impact of changes of tax parame-

ters on the equilibrium allocation of human capital.

3.1 Market Equilibrium

We start with intermediate goods producers. Denote by R ≡ r + δK the user cost

of capital for an intermediate good firm (before taxation). As one unit of capital is

required for one unit of output and firms are eligible to deduct capital costs at subsidy

rate sd from pre-tax profits to obtain the corporate tax base, producer i has profits

πi = pixi −Rxi − τ c [pixi − (1 + sd)Rxi] (6)

= (1− τ c) [pi − (1− sK)R]xi, (7)

where we defined sK ≡ τcsd
1−τc for the latter equation.

According to (1), the demand function for intermediate good i reads

xi =
αY (pi)

−β

P 1−β , (8)

where pi is the price of good i and

P ≡
⎛⎝ AZ
0

(pi)
1−βdi

⎞⎠
1

1−β

(9)

is a price index. Profit maximization implies that the optimal price of each firm i is

given by

pi = p = κ(1− sK)R. (10)

To see this, note that a firm which owns a blueprint would choose a mark-up factor
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which is equal to β
β−1 if it were not facing a competitive fringe.

5 Moreover, the com-

petitive fringe would make losses at a price lower than κ(1− sK)R. Thus, as κ ≤ β
β−1 ,

each firm i sets the maximal price allowing it to remain monopolist. According to (8)

and (9), resulting output is given by

xi = x =
αY

Aκ(1− sK)R
. (11)

Substituting (11) into (1) and solving for Y implies

y ≡ Y

N
= A

α
(1−α)(β−1)

µ
α

κ(1− sK)R

¶ α
1−α

hY (12)

for per capita income, where hY ≡ HY /N . Thus, the total amount of physical capital,

K =
R A
0
xidi = Ax, divided by population size, is given by

k ≡ K

N
= A

α
(1−α)(β−1)

µ
α

κ(1− sK)R

¶ 1
1−α

hY . (13)

Expressions (12) and (13) suggest that, if the interest rate r is stationary in the long

run, the capital stock per capita and per capita income grow at the same rate along a

balanced growth path.

Let PA denote the present discounted (after-tax) value of the profit stream gen-

erated by an innovation. Thus, PA is the price an intermediate good producer pays

to the R&D sector for a new blueprint as well as the stock market evaluation of an

intermediate good firm. In equilibrium, arbitrage possibilities in the capital market are

absent. Thus, the dividends paid out by an intermediate good firm (being identical for

all i due to symmetry, i.e., πi = π), π/PA, plus the growth rate of PA after capital

gains are taxed, (1 − τ g)Ṗ
A/PA, must be equal to the sum of the after-tax interest

rate, (1− τ r)r, and the probability that an existing innovator is driven out of business,

5As each firm is small, and thus takes aggregates Y and P as given, the perceived price elasticity
of demand is −β.
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ψȦ/A.6 The no arbitrage condition for the capital market therefore reads

(1− τ g)
ṖA

PA
+

π

PA
= (1− τ r)r +

ψȦ

A
. (14)

In the R&D sector, where firms are eligible to deduct R&D costs at subsidy rate sR

from pre-tax profits to obtain the corporate tax base, a representative firm maximizes

Π = PA(1 + ψ)Ȧ− wHA − τ c
h
PA(1 + ψ)Ȧ− (1 + sR)wH

A
i

(15)

= (1− τ c)
£
PAν̃AφHA − (1− sA)wH

A
¤
, (16)

taking A and ν̃ as given, where we defined sA ≡ sRτc
1−τc and used (2) for the latter

equation. Rates sA and sK are referred to as behaviorally relevant subsidies of R&D

costs and capital costs, respectively.

The household’s problem is to solve

max
{ct,hHt }

∞Z
0

(ct)
1−σ − 1
1− σ

e−(ρ−n)tdt s.t. (4), (5), (17)

ht ≥ 0, lim
t→∞

at exp

⎛⎝− tZ
0

[(1− τ r)rs − n] ds

⎞⎠ ≥ 0. (18)

The household chooses the optimal consumption path, where savings are supplied to

the financial market, and the optimal (path of) education investment.

As will become apparent, in steady state, the per capita human capital level is

stationary. According to (4), ḣ/h = 0 implies that

h =

µ
ξ

δH

¶ 1
1−γ−η ¡

hH
¢ γ
1−γ−η , (19)

in the long run, where hH ≡ hH/h is the fraction of human capital devoted to the

education sector.
6Note that the after-tax income from asset holding of a household is (1 − τr)rK/N + (1 −

τg)Ṗ
AA/N + πA/N − PAψȦ/N . Under (14) and since Na = K + PAA, this equals (1 − τr)ra,

as reflected in the budget constraint (5) of a household.
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In the proof of the first proposition we derive the full dynamical system (employed

in the numerical analysis of Section 6), given initial conditions A0, h0, N0 and K0, as

well as the steady state equilibrium. The following holds in a steady state:

Proposition 1. (Long run market equilibrium) There exists a unique balanced

growth equilibrium, which is characterized as follows.

(i) The number of ideas grows with rate

Ȧ

A
=
(1− θ)n

1− φ
≡ gA. (20)

(ii) Equity wealth per capita ( q ≡ PAA/N), the wage rate (w), income per capita

( y), consumption per capita ( c), financial wealth per capita ( a), and the physical

capital stock per capita (k) grow with rate

g =
αgA

(1− α)(β − 1) . (21)

(iii) The human capital level per capita (h) is stationary and we have

hH

h
=
1− τw
1− sH

γδH
ρ− n+ g(σ − 1) + δH(1− η)

≡ hH∗, (22)

and, defining hA ≡ HA/N ,

hA

h
=

1− hH∗
1−sA
1−τcΛ(τ g) + 1

≡ hA∗ with (23)

Λ(τ g) ≡ σg + ρ+ ψgA − (n+ g − gA)(1− τ g)

(1− 1/κ)(β − 1)(1 + ψ)g
. (24)

(iv) The savings and investment rate, sav ≡ 1− c/y, is given by

sav =
α(n+ g + δK)

(1− sK)κ
³
σg+ρ
1−τr + δK

´ ≡ sav∗. (25)

Proof. See Appendix.
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Like in Jones (1995), the growth rate of per capita income along a balanced growth

path is independent of economic policy (in contrast to the level of income). This is an

attractive feature for our numerical analysis. It allows us to attribute growth effects of

policy shocks (starting from balanced growth equilibrium) entirely to the transitional

dynamics. Proposition 1 also implies that life-time utility (3) is finite if and only if

assumption (A1) holds.

Moreover, Proposition 1 shows that the three policy instruments which are targeted

to the three engines of growth in the model affect only the respective engine where

it is designed for in the long run. For instance, subsidizing physical capital does

neither affect the level nor the allocation of human capital in long run equilibrium.

But an increase in the behaviorally relevant capital cost subsidy, sK , raises the long

run savings rate and investment share, sav∗. Similarly, an increase in the education

subsidy rate, sH , raises the long run fraction of human capital devoted to education,

hH∗, and therefore also raises the long run level of human capital per capita, according

to (19). A change in sH has no effect, however, on the long run fraction of human

capital devoted to R&D, hA∗, or on the investment rate, sav∗. Analogously, an increase

in the behaviorally relevant R&D subsidy, sA, stimulates R&D activity of firms (i.e.,

hA∗ increases) but does not affect incentives to invest in education or physical capital

in long run equilibrium.

Furthermore, we find that taxing wages gives a disincentive to invest in education,

i.e., an increase in τw lowers hH∗. Similarly, an increase in the corporate tax rate

(entering arbitrage condition (14) via instantaneous profits of intermediate good firms,

π) gives a disincentive to invest in R&D; consequently, hA∗ is decreasing in τ c, all other

things equal. Moreover, an increase in the rate at which capital gains are taxed (τ g)

lowers R&D incentives, leading to a decline in hA∗, if n+ g > gA (which turns out to

hold with our calibration outlined in Section 4). Finally, the long run savings rate,

sav∗, is decreasing in the capital income tax rate, τ r.
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3.2 Social Planning Optimum

A social planner chooses a symmetric capital allocation across intermediate firms, i.e.,

xi = K/A for all i. Noting the output technology (1), per capita output (y = Y/N)

may be expressed as:

y = A
α

β−1kα(hY )1−α. (26)

Thus, the capital stock per capita (k = K/N) evolves according to

k̇ = A
α

β−1kα(hY )1−α − (δK + n)k − c. (27)

Also note that the social planner takes R&D externalities into account. Using (2), he

observes the knowledge accumulation condition

Ȧ =
ν

1 + ψ
Aφ(NhA)1−θ. (28)

The social planner’s problem thus is to solve

max U s.t. (4), (27), (28), hA = h− hY − hH , (29)

and non-negativity constraints, where c, hA, hH , hY are control variables and h, k, A

are state variables.

Proposition 2. (Long run social optimum) There exists an interior, unique long-

run solution of the social planner problem (29) which is characterized as follows:

(i) As in decentralized long run equilibrium, the growth rate of A is given by gA

(see (20)) and the growth rates of c, k, y are given by g (see (21)).

(ii) The fraction of human capital devoted to education and R&D are given by

hH

h
=

γδH
ρ− n+ g(σ − 1) + δH(1− η)

≡ hHopt, (30)

hA

h
=
1− hHopt
Γ+ 1

≡ hAopt with Γ ≡ ρ+ gσ − θn− g

(1− θ)g
. (31)

14



(ii) The savings and investment rate reads as follows

sav =
α(n+ g + δK)

σg + ρ+ δK
≡ savopt. (32)

Proof. See Appendix.

As for the decentralized equilibrium, the productivity of R&D and education, para-

meterized by ν and ξ, respectively, do neither affect the allocation and level of human

capital nor the investment rate in the long run social optimum. Unlike in steady state

market equilibrium, also parameter ψ, which captures the strength of the business

stealing effect, and the mark-up factor κ do not affect the optimal resource allocation.

These results parallel those of Jones and Williams (2000).

Like in their model, there are four R&D externalities. The duplication external-

ity (θ > 0) promotes overinvestment in R&D, whereas a standing on shoulders effect

(φ > 0) promotes underinvestment. (In the case where φ < 0, there is a force towards

overinvestment.) The business stealing effect (ψ > 0) gives rise to two counteracting ef-

fects on the human capital allocation in the market economy (relative to the unaffected

social optimum). On the one hand, existing intermediate good firms are at risk of being

replaced by future innovators. An increase in ψ thus lowers the value of patents (PA)

by raising the effective discount rate (right-hand side of (14)) and therefore depresses

the long run equilibrium fraction of human capital devoted to R&D, hA/h. On the

other hand, an innovator obtains a rent from an innovation even when he does not con-

tribute to the knowledge stock of the economy, A. To achieve the same increase in A,

more R&D labor is required if ψ increases, which tends to raise the equilibrium value of

hA/h. If and only if the latter effect dominates, the fraction of human capital devoted

to R&D in decentralized equilibrium increases in ψ. In this case, ψ > 0 promotes

overinvestment. According to (23), hA∗ is increasing in ψ, for instance, if the capital

gains tax rate (τ g) is zero or small. Finally, innovators may not be able to appropriate

the full economic surplus from raising the knowledge stock of the economy. To see this,

note from (7), (10) and (11) that instantaneous profit of an intermediate goods firm i
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reads πi = α(1 − τ c)
κ−1
κ

Y
A
, whereas ∂Y

∂A
= α

β−1
Y
A
holds, according to (26). If and only

if (1− τ c)(1− 1
κ
) < 1

β−1 , there is a “surplus appropriability problem” which promotes

underinvestment. (If (1− τ c)(1− 1
κ
) > 1

β−1 , there is a force towards overinvestment.)

Thus, depending on parameter values, there may be over- or underinvestment in R&D.

This leaves a critical role for the calibration strategy to obtain useful numerical results

on the optimal resource allocation and policy mix.

Comparing (22) and (30), we find that in the case where the tax rate on wage income

equals the effective education subsidy rate (τw = sH), both the long run fraction of

human capital devoted to education and, according to (19), the long run level of human

capital are socially optimal. That is, the distortion stemming from wage taxation can

be exactly offset by an education subsidy. Generally, we find that hH∗ < (=, >)hHopt if

sH < (=, >)τw. Finally, in absence of a capital cost subsidy (sd = sK = 0), the savings

rate will be too low whenever τ r ≥ 0, i.e., sav∗ < savopt, according to (25) and (32).

We next characterize the optimal policy mix in the long run.

Proposition 3. (Optimal long run policy mix)There exists a policy mix (soptH , soptA , soptK )

which for any feasible values of tax parameters (τw, τ c, τ g, τ r) implements the long-run

social planning optimum. It is characterized as follows:

sH = τw, (33)

sA = 1− (1− τ c)Γ

Λ(τ g)
≡ soptA , i.e. sR =

1− τ c
τ c

soptA ≡ soptR , (34)

sK = 1− σg + ρ+ δK

κ
³
σg+ρ
1−τr + δK

´ ≡ soptK , i.e. sd =
1− τ c
τ c

soptK ≡ soptd . (35)

Proof. Set hH∗ = hHopt, h
A∗ = hAopt and sav∗ = savopt to derive (33), (34) and (35),

respectively, by using the expressions in Proposition 1 and 2.

How subsidies on R&D and capital costs depend on tax parameters follows from

the tax distortions discussed after Proposition 1. Moreover, note that a higher mark up

factor κ drives a bigger wedge between the equilibrium investment rate and the socially

optimal investment rate, provided that capital income is not subsidized (τ r ≥ 0). Thus,
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an increase in price setting power calls for a higher subsidy on capital costs.

Interestingly, in the proposed model the first-best allocation and the first-best

level of human capital can be restored, despite numerous distortions from goods mar-

ket imperfection, externalities and income taxation, with a very limited number of

tax/subsidy instruments (one targeted to each engine of growth). This suggests, for

instance, that an appropriate growth policy can mitigate distortions from redistribu-

tive policies along with correcting market failures. That is, any redistribution (which

in the present context is reflected by the lump-sum transfer) can be achieved without

sacrificing efficiency. In this sense there is no equity-efficiency trade-off.

4 Calibration

A calibration strategy is proposed which attempts to match observable endogenous

variables for the US. We assume that the observed values correspond to the steady

state in the model under the status quo policy.

4.1 Policy Parameters

In the US, the statutory tax rate on dividend income and corporate income coincide.

We thus set τ r = τ c = 0.395, as published by the OECD tax database (federal and

sub-central government taxes combined). Using the same source, the labor income

tax, τw, is set equal to the total tax wedge (wage income tax rate including all social

security contributions and from all levels of governments combined) which applies to

average wage income. It is given by τw = 0.3. The behaviorally relevant R&D subsidy

rate, sA, is (for the year 2007) taken from OECD (2007a, p.73), sA = 0.066,7 in turn

implying sR = 0.1.

Devereux, Griffith and Klemm (2002, p. 459) report for the US a rate of depreciation

allowances for capital investments of almost 80 percent. This would suggest that sd
7The OECD reports a R&D subsidy rate RDTS = 1 − Bindex, where the so-called B-index is

given by Bindex = 1−Ξ
1−τc , with τ c being the statutory corporate income tax rate and Ξ the net present

discounted value of depreciation allowances, tax credits and special allowances on R&D assets. In the
context of our model, Ξ = τ c(1 + sR). Thus, RDTS = τcsR

1−τc = sA.
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is somewhat above −0.2 and thus sK < 0. However, as the authors point out, the

definition of corporate income tax base is very complex and there are other possibilities

than depreciation allowances to deduct capital costs, which they cannot provide data

on. We take into account further allowances by assuming that, initially, sd = sK = 0

(i.e. full deduction of capital costs).

As a result of the ‘Jobs and Growth Tax Relief Reconciliation Act’ of 2003, long-

term capital gains are taxed at 15 percent if income is above some threshold. Otherwise,

until 2008 it was 5 percent and until 2010 it is 0 percent. Before 2003 it was 20 percent.

We calibrate τ g to 12 percent.

Finally, we need to calibrate the education subsidy rate (sH), which is most difficult.

For instance, we observe the fraction of public education expenditure in total expen-

diture. In the year 2004, the average was 68.4 percent in the US (OECD, 2007b, Tab.

B3.1, p. 219); among the public spending, 20.7 percent was on student loans, scholar-

ships and other household grants (rather than direct public spending on institutions).

To complicate things further, a substantial fraction of total household spending on edu-

cation is unobservable, like private teachers at home, time costs of parents etc. (neither

counted as education expenditure in databases nor subsidized). It is thus difficult to

come up with a well-founded estimate. We assume that the education subsidy is set

such that the long run equilibrium value hH∗ is socially optimal (as the long run level

of human capital), given the distortion introduced by wage taxation, sH = τw(= 0.3).

That is, we focus on distortions of R&D investment and physical capital investment in

our numerical analysis.

4.2 Other Parameters

Other parameters are calibrated as follows. First, n is set to the average population

growth rate for the period 1990-2004. Taking data from the PennWorld Tables (PWT)

6.2 (Heston, Summers and Baten, 2006), we find n = 0.01. For the same period and

again from PWT 6.2, the average growth rate of per capita income is 2.1 percent. We

calibrate g to match this growth rate (thereby averaging out business cycle phenomena).
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We use measures for the investment rate (sav) and the capital-output ratio to

calibrate the depreciation rate of physical capital, δK , as follows. The investment rate

is given by sav = (K̇ + δKK)/Y = (K̇/K + δK)k/y. Using K̇/K = n+ g and solving

for δK yields

δK =
sav

k/y
− n− g. (36)

Averaging over the period 1990-2004, sav is equal to about 21 percent, according to

PWT 6.2. For the capital-output ratio, we take averages over the period 2002-2007

calculated from data of the US Bureau of Economic Analysis. The capital stock is

taken to be total fixed assets (private and public structures, equipment and software).

At current prices, this gives us k/y = 3. From (36), the evidence then suggests that

δK is about 4 percent, which is a standard value in the literature. In the literature, the

depreciation rate of human capital is typically set slightly lower than δK . We choose

δH = 0.03. This is in the range of the estimated value in Heckman (1976), who finds

that δH is between 0.7 and 4.7 percent. For the steady state analysis in Section 5, we

do not need to know δH , as will become apparent.

Moreover, we match the steady state interest rate to 7 percent, which coincides

with the real long-run stock market return estimated by Mehra and Prescott (1985).8

In our framework, the standard Keynes-Ramsey rule,

ċ

c
=
(1− τ r)r − ρ

σ
, (37)

holds (see the proof of Proposition 1). In steady state, ċ/c = g, according to Proposition

1. Thus, preference parameters (σ, ρ) fulfill:9

σg + ρ = (1− τ r)r. (38)

For g = 0.021, r = 0.07, τ r = 0.395 and a typical value for the time preference rate of

8Jones and Williams (2000) argue that this rate of return is more appropriate for calibration of
growth models than the risk-free rate of government bonds.

9Rewriting assumption (A1) by using (38) implies that (1− τr)r > n+g, i.e., the after-tax interest
rate must exceed the long-run growth rate of aggregate income.
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ρ = 0.02, we find σ = 1.08. For the steady state analysis in Section 5, we do not need

to set the values for ρ and σ separately but only their combination on the left-hand side

of (38), which equals the (after-tax) long run interest rate, (1− τ r)r (= 0.042). When

the transitional dynamics are fully taken into account in Section 6, we set ρ = 0.02

and σ = 1.08.

Production technology parameters α and β are potentially critical since they de-

termine the elasticity of output with respect to the state of knowledge, A. To see this,

use xi = K/A for all i and HY = NhY in (1) to find

Y = BKαN1−α with B ≡ A
α

β−1
¡
hY
¢1−α

. (39)

We employ a relationship between α and β which can be recovered from estimates of

the output elasticity with respect to the R&D capital stock. Using (39), this elasticity

is equal to ∂Y
∂A

A
Y
= α

β−1 ≡ ϕ. Thus,

β = 1 +
α

ϕ
. (40)

We can write logB = Υ + ϕ logA, where Υ ≡ (1 − α) log hY , according to (39). Re-

gressing logB (by using that the total factor productivity is given by B = Y K−αNα−1)

on a measure of knowledge capital (logA), Coe and Helpman (1995) obtain ϕ = 0.23,

which is the value we use.

The steady state fraction of intermediate good firms driven out of the market each

instant is ψgA. Its inverse is equal to the effective patent life, EPL. Thus, we have

ψ =
1

EPL

1

gA
, (41)

where

gA =
(1− α)(β − 1)g

α
, (42)

according to (21). We follow Jones and Williams (2000) in assuming an effective patent

life of 10 years (EPL = 10).
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Moreover, using (12) and (13), we find the following relationship between α and

mark-up factor κ:

κ =
α

(1− sK)(r + δK)
k
y

. (43)

A key parameter is α, which according to (40)-(43) determines β, ψ, gA and κ, for

given calibrated values of ϕ, EPL, g, sK, r, δK , k/y. In the literature, the value of α

is typically motivated by using the labor share in total income. However, due to the

existence of R&D workers and teachers in the model, α is related to the fraction of

income which accrues to production workers only (rather than to the entire labor share):

we have whY /y = 1− α. Moreover, as pointed out by Krueger (1999), among others,

there is little consensus on how to measure the total labor share as fraction of GDP. In

our context, the labor share is wh/y. When two thirds of business proprietor’s income

is added to labor income, Krueger (1999) shows that the US labor share fluctuates

over time between 75 and 80 percent. Otherwise the labor share would be significantly

lower.10 For the purposes of our model, however, income from all kinds of human

capital should be taken into account; thus, wh/y may even exceed 80 percent. Due to

the uncertainty about the labor share, we propose a different route than typically taken

in the literature. Our calibration strategy is to determine the human capital income

share endogenously, together with the salient parameter α. This is done as follows.

Defining ω ≡ wh/y, ωH ≡ whH/y and ωA ≡ whA/y, we obtain from hY +hA+hH = h

and whY /y = 1− α that

ω = 1 + ωH + ωA − α. (44)

By definition, we have hA/h = ωA/ω and hH/h = ωH/ω. Substituting both hA∗ =

ωA/ω and hH∗ = ωH/ω into expression (23) for the long run equilibrium fraction of

human capital devoted to R&D, and then using (44), we find

1− sA
1− τ c

Λ(τ g)ω
A = 1− α. (45)

Given ωA and taking into account relationships (38), (40), (41), (42) and (43) to find

10For instance, the OECD reports a labor share around 65 percent for the US.
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Λ(τ g) as defined in (24), α is implied by (45). Note that ωA is the R&D intensity

in the economy. For the period 1990-2006 we find that the average R&D costs of

business enterprises (BERD) as fraction of GDP is 1.9 percent (OECD, 2008a). When

we use gross R&D investment intensity (GERD), the figure would be higher (about

2.6 percent). As most but not all R&D costs are labor costs, this suggests to calibrate

ωA = 0.02. However, one may argue that not all R&D activity in the sense of the

model is captured by typical R&D intensity measures. According to OECD (2008b,

Tab. 1.1), total investment in intangible assets in the US as a fraction of GDP was

almost 12 percent for the period 1998-2000. However, 5 percent of GDP was spent

to develop intangible assets like brand equity, firm-specific human capital and the

organizational firm structure, which are not R&D activities in the sense of our model.

We therefore consider ωA = 0.07 as an alternative scenario to the case of ωA = 0.02 in

our numerical analysis.

Note that we do not need to know the fraction of human capital used in education,

ωH , to calibrate α. Moreover, all parameters which are needed can be led back to

observables. With n = 0.01, g = 0.021, r = 0.07, k/y = 3, sav = 0.213 (thus,

δK = 0.04), EPL = 10, τ r = τ c = 0.395, τw = 0.3, τ g = 0.12, we find for the case

where the R&D intensity is ωA = 0.02 that α = 0.36. In turn, this value of α implies

β = 2.58, ψ = 1.74, gA = 0.06 and κ = 1.1. If the R&D intensity is set to ωA = 0.07,

we obtain α = 0.44, β = 2.93, ψ = 2, gA = 0.05 and κ = 1.35. Interestingly, both

values for mark-up factor κ are in the range (between 1.05 and 1.4) which has been

estimated by Norrbin (1993).

To calculate the long run equilibrium allocation of human capital, characterized by

hA∗ = ωA/ω and hH∗ = ωH/ω, we next need to find the human capital income share, ω,

by calibrating ωH and using (44). To calibrate ωH , we add expenditure from public and

private sources over all education levels. This gives us an average value of 7 percent for

the time period 1990-2003 (OECD, 2007b, Tab. B2.1, p. 205).11 As not all education

11Although there is no publicly provided education in our model, it is more appropriate to take
such expenditure into account, in addition to private education spending. An underlying assumption
which justifies that choice is that credit constraints are negligible for advanced economies, such that
publicly provided education and private education are perfect substitutes. In fact, recent studies find
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expenditure is on salary of teaching personnel, we use ωH = 0.05. For ωA = 0.02, we

then find ω = 0.71 and therefore hH∗ = hHopt =
5
70.8

= 0.071 and hA∗ = 2
70.8

= 0.028.12

For ωA = 0.07, we obtain ω = 0.68, hH∗ = hHopt = 0.074 and h
A∗ = 0.104.

Parameters ρ, σ, γ, η, φ, δH , ν, ξ do not have to be known for the steady state

analysis in Section 5. Scale parameters ν and ξ in the technology of accumulating

knowledge and human capital, respectively, do not enter the long run values for the

allocation variables derived in Proposition 1 (decentralized equilibrium) and Proposi-

tion 2 (social optimum). They also do not affect the allocation variables of interest in

the transitional dynamics and can thus be set arbitrarily.13

In contrast, the duplication externality parameter θ plays an important role. Given

g, n, α, β and θ, we obtain φ from (20) and (21):

φ = 1− αn(1− θ)

(1− α)(β − 1)g . (46)

Finally, also parameters γ and η are not independent from each other when assuming

that the economy initially is in steady state. According to (22), given ρ+σg = (1−τ r)r,
g, n, δH , sH = τw and hH/h = hH∗, we obtain the relationship

γ =
(1− τ r)r − n− g + δH(1− η)

δH
hH∗. (47)

In Section 6 we consider η ∈ {0.15, 0.3} and obtain γ by using (47). It turns out that

results are basically insensitive to variations in η (and γ).

no evidence for the relevance of educational borrowing constraints in the US (see, e.g., Cameron and
Taber, 2004, and the references therein).
12We shall note that hA/h does not necessarily correspond to the fraction of workers in R&D

and thus cannot be readily observed even under the assumption that the economy is in steady state.
Although there is a representative agent, there may well be heterogeneity, such that not all individuals
possess the same level of human capital. Thus, an implied hA/h which exceeds the fraction of R&D
workers (equal to about 1 percent) is consistent with the fact that the average R&D worker has a
higher level of human capital than the average worker in the labor force.
13We can show numerically that ν and ξ do not affect the Eigenvalues of the dynamical system.

23



5 Optimal Long Run Policy Mix

The endogenous growth literature has discussed whether R&D activity and physical

capital investment are too high or too low from a social point of view. The question

has to be examined numerically. Before analyzing the transition path in the aftermath

of policy reforms, we compare the long run social optimum to the decentralized steady

state equilibrium, under existing US tax policy. This also allows us to compare the

results with the previous literature, which exclusively focussed on a long run analysis

(e.g., Jones and Williams, 2000; Steger, 2005; Strulik, 2007). Importantly, we also

derive the optimal subsidy rates targeted to R&D and capital costs, by employing

Proposition 3. Regarding human capital, recall that sH = τw is optimal.

5.1 R&D Investment

We start with R&D investment, for different values of the degree of duplication exter-

nality θ.

θ hAopt (in%) hA∗ (in%) hAopt/h
A∗ soptA soptR

0 45.4 2.8 16.1 0.97 1.48

0.25 41.7 2.8 14.8 0.96 1.48

0.5 35.9 2.8 12.7 0.95 1.46

0.75 25.3 2.8 8.9 0.92 1.41

0.9 13.4 2.8 4.7 0.83 1.27

0.95 7.5 2.8 2.7 0.67 1.02

0.99 1.7 2.8 0.6 −0.61 −0.93
(a) Parameters matched to R&D intensity of 2 percent.
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θ hAopt (in %) hA∗ (in %) hAopt/h
A∗ soptA soptR

0 45.3 10.4 4.4 0.88 1.34

0.25 41.6 10.4 4.0 0.86 1.31

0.5 35.8 10.4 3.5 0.81 1.25

0.75 25.2 10.4 2.4 0.69 1.05

0.9 13.3 10.4 1.3 0.30 0.46

0.95 7.5 10.4 0.7 −0.34 −0.52
0.99 1.7 10.4 0.2 −5.45 −8.35
(b) Parameters matched to R&D intensity of 7 percent.

Table 1: Long run fraction of human capital in R&D (decentralized and social

optimum) and optimal R&D policy.

Note: We make use of Proposition 1-3 with the following calibration: n = 0.01, g = 0.021,

r = 0.07, k/y = 3, δK= 0.04, EPL = 10, ωH= 0.05, τ r= τ c= 0.395, τw= 0.3, τ g= 0.12.

Panel (a): ωA= 0.02, i.e., α = 0.36, β = 2.58, ψ = 1.74, gA= 0.06, κ = 1.1. Panel (b):

ωA= 0.07, i.e., α = 0.44, β = 2.93, ψ = 2.00, gA= 0.05, κ = 1.35.

According to panel (a) of Tab. 1, which is based on an R&D intensity of 2 percent

in long run market equilibrium, there is dramatic underinvestment in R&D in the case

where the duplication externality is not very high. We find that for θ ≤ 0.9, the long
run socially optimal human capital fraction is in the wide range of about 5− 16 times
higher than in market equilibrium. What we would like to know, however, is how to

improve the allocation of labor and to what extent which kind of tax policy should

be used. Interestingly, the necessary R&D policy to restore the social optimum does

not so much depend on θ, if θ ≤ 0.9. Our results suggest that the R&D sector should
be able to deduct from pre-tax profits to obtain the corporate income tax base about

1.27 − 1.48 the amount invested in R&D. Thus, as pre-tax profits in the sense of the
model are already net of R&D costs, this suggests that firms should be allowed to

deduct up to 2.5 times their R&D costs from corporate income to obtain the tax base.

The current R&D subsidy policy in the US thus seems insufficient. Only if θ is very
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high, about 0.98 or higher, there is overinvestment in R&D such that current R&D

subsidies should be cut. Such a large degree of the duplication externality does not

seem to be realistic, however.

Panel (b) shows that when we assume an R&D intensity of 7 percent, the R&D

underinvestment problem is less dramatic, but still substantial. For θ ≤ 0.9 there

should be 1.3− 4.4 times higher human capital investment in R&D. Interestingly and
importantly for a robust policy implication, the optimal R&D subsidy is not that

different to the previous case. For θ ≤ 0.75, firms should be able to deduct 1.05− 1.34
times the amount of R&D costs from pre-tax profits.

In sum, it seems safe to conclude that US firms should be allowed to deduct up not

less than twice their R&D costs from sales revenue for calculating corporate income.

5.2 Physical Capital Investment

For an R&D intensity of 2 percent (parameters like for Tab. 2 (a)), we find that the US

economy underinvests in physical capital. Employing Proposition 2, the optimal long

run investment rate, savopt, is equal to 31.3 percent, whereas in market equilibrium the

investment as a fraction of GDP, sav∗, is 21.3 percent (used for the calibration of capital

depreciation rate δK in (36)). According to Proposition 3, this means that US firms

should be allowed to deduct about one and a half of their capital costs from sales revenue

(i.e. soptd = 0.49) rather than being allowed to deduct their capital costs by 100 percent

(i.e. sd = 0) for calculating corporate income. For an R&D intensity of 7 percent

(parameters like for Tab. 2 (b)), the gap between the decentralized and the socially

optimal investment rate is even larger (sav∗ = 0.213, savopt = 0.38, s
opt
d = 0.68).

5.3 Comparison to the Literature

Previous analyses suggest that the R&D underinvestment problem is considerably less

dramatic than implied by our study. There are two main differences between our

analysis and the literature. First, we explicitly capture tax/subsidy policy and calibrate

the economy accordingly. Second, our calibration strategy does not use some empirical
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measure of the labor share (or human capital income share) to calibrate the output

elasticity of labor/human capital, 1−α. Our baseline calibration rather uses evidence

on the R&D intensity to calibrate α for the long run, in turn determining the human

capital income share, ω, endogenously.

We will now demonstrate, exemplarily, that if we followed the strategy of the im-

portant and prominent contribution of Jones and Williams (2000), we would obtain

results which are similar to theirs. First, one can show how abstracting from the tax

system leads to a downward bias of the extent of R&D underinvestment. According to

(31) in Proposition 2, the optimal fraction of human capital in R&D, hAopt, is decreasing

in both preference parameters, ρ and σ. That is, if individuals are less patient, the

social planner devotes less resources to R&D. According to (38), ρ and σ are positively

related − by the Keynes-Ramsey rule − to the after-tax interest rate, (1− τ r)r. Set-

ting the tax rate on capital income, τ r, to zero rather than to its actual value means

that individuals are assumed to be less patient. This brings the social optimally R&D

resources closer to the market equilibrium. To see the effect numerically, suppose again

n = 0.01, g = 0.021, r = 0.07, k/y = 3, δK = 0.04, EPL = 10, ωH = 0.05 and re-

calibrate the model by assuming that there are no taxes and subsidies. For an R&D

intensity ωA = 0.02, we then obtain α = 0.36 and, accordingly, ω = 1.07 − α = 0.71

for the labor share (recall ωH = 0.05). Thus, the equilibrium fraction of human capital

in R&D, hA∗, is again about 2.8 percent (= 2
71
); moreover, hH∗ = hHopt = 0.07 (=

5
71
).

However, the optimal R&D effort, hAopt, is now given by 28 percent for θ = 0, by 18

percent for θ = 0.5, and by 10.3 percent for θ = 0.75. Thus, the relative gap to the

market equilibrium shrinks considerably compared to the case with taxes and subsidies

shown in Tab. 1 (a); for instance, if θ = 0.75, hAopt/h
A∗ is now equal to 3.7 instead of

8.9.

If, in addition to abstracting from taxes and subsidies, we assume ωA = 0.07 instead

of ωA = 0.02 (calibration as for Tab 1 (b)), then α becomes 0.42 and the implied labor

share, ω = 1.12 − α, is 70 percent, i.e., almost equal to the labor share in the case

where ωA = 0.02. Consequently, we obtain very similar values for hHopt and therefore for
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hAopt as in the case where the R&D subsidy is 2 percent. However, now h
A∗ = 7

70
, i.e.,

10 percent of human capital is allocated to R&D in market equilibrium. This means

that hAopt/h
A∗ is equal to 2.8 for θ = 0, to 1.8 for θ = 0.5, and to 1.03 for θ = 0.75;

that is, for θ = 0.75 the long run equilibrium R&D intensity is about socially optimal.

Interestingly, these figures almost match the results of Jones and Williams (2000) who

also assume an interest rate of 7 percent and an effective patent life of 10 years in

their baseline calibration. In fact, they set the output elasticity of labor such that

the R&D intensity is about 7 percent and abstract from taxes or subsidies − the case
just examined. As a result, for the same extent of the duplication externality which

corresponds to θ = 0, θ = 0.5 and θ = 0.75, they obtain an R&D investment in social

optimum relative to the equilibrium investment of 2.2, 1.7 and unity, respectively. This

demonstrates that the different results of our study, shown in Tab. 2, stem from the

public finance side in the model, which is supposed to capture some key elements of

the US tax-transfer system.14

Regarding investment in physical capital, Steger (2005) finds a similar extent of

underinvestment problem like we do. He employs a general, semi-endogenous R&D-

based growth model to investigate the allocative bias in the R&D share and the saving

rate along the balanced growth path. The main finding is that the market economy

slightly underinvests in R&D but heavily underinvests in physical capital accumulation.

For his baseline calibration, the optimal investment rate along a balanced growth path

should be about 15 percentage points higher than the steady state equilibrium rate.

This figure is largely robust to parameter variations. Our analysis suggests a gap of

10-17 percentage points.

6 Dynamic Policy Evaluation

The analysis in Section 5 parallels the previous literature in that transitional dynamics

were ignored. We therefore have, so far, abstracted from the question whether there

14Allowing for human capital as the third engine of growth (not considered in Jones and Williams,
2000), by contrast, does not affect the results considerably.
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are intertemporal trade-offs involved with bringing the long run equilibrium allocation

of labor closer to the long run social optimum. As will become apparent, there may be

very slow adjustment to the new steady state in response to policy shocks. It is thus not

evident whether policies which maximize steady state welfare should be implemented.

We evaluate the consequences of growth-related policy measures on intertemporal

welfare and on the evolution of central macroeconomic variables, starting from an initial

balanced growth path. The resulting change in intertemporal welfare is measured by the

consumption-equivalent change in intertemporal welfare, Θ (see appendix for details).

The transitional dynamics is simulated by applying the relaxation algorithm (Trimborn

et al., 2008).15

6.1 Change in Single Policy Instruments

We start by investigating the consequences of small changes in the policy instruments

sR and sd by 10 percentage points, starting from observed values (Tab. 1). The focus

is at first on the dynamic consequences of consumption per capita and intertemporal

welfare. Panel (a) of Fig. 1 displays the time path of consumption per capita in response

to an increase in the R&D subsidy rate sR from 0.1 to 0.2. Assuming ωA = 0.07 the

level of (scale-adjusted) consumption per capita increases in the long run by about

12.9 percent.16 The associated change in intertemporal welfare, Θ, is about 3.8 percent.

Compared to the reference scenario of no policy change, as represented by the horizontal

line, initial consumption drops. That is, the usual intertemporal consumption trade-

off (gains in the longer run at the expense of short-term losses) can be observed. For

ωA = 0.02 the long run increase in consumption per capita is about 15 percent and the

associated change in intertemporal welfare, Θ, amounts to 4.2 percent. It is remarkable

that there is an “intertemporal free lunch” in this case. Initial consumption does not

drop but jumps up instead; however, the upward jump is small, i.e., about 0.17 percent.

15Details of the numerical evaluations presented in this section are discussed in supplementary
material available on request.
16In other words, consumption per capita along the (new) balanced growth path is by about 12.9

percent higher compared to consumption per capita along the initial balanced growth path (reference
scenario of no policy shock).
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The large gain in intertemporal welfare, as well as the “intertemporal free lunch”, is

of course due to the substantial R&D underinvestment in the market economy, as

suggested by Tab. 1. An increase in sR reduces this allocation bias; the economic

intuition behind the intertemporal free lunch is sketched below. Finally, it should be

observed that the speed of convergence appears fairly small, the half life amounts to

about 160 years (assuming ωA = 0.07).

Panel (b) of Fig. 1 shows the consequences of an increase in sd from 0 to 0.1.

Assuming ωA = 0.07 per capita consumption increases in the long run by about 3.6

percent and the associated change in welfare, Θ, amounts to 2.5 percent. If one assumes

ωA = 0.02, the long run increase in per capita consumption is about 1.9 percent and

welfare rises by about 1.2 percent. The positive welfare effect is due to the fact that

decentralized saving rate is too low compared to the social optimum. This effect is

stronger for ωA = 0.07 compared to ωA = 0.02 since the saving bias is more pronounced

in this case (see Section 5.1.2). The half life is about 21 years in this case (assuming

ωA = 0.07). The speed of convergence obviously depends on the specific shock under

study, i.e. it is quite low in the case of an expansionary R&D-policy and fairly high

for an expansionary investment policy.
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Figure 1: Per capita consumption (scale adjusted) in response to policy shocks. Note:

ρ = 0.02, σ = 1.08, δH = 0.03, θ = 0.5 and η = 0.15; corresponding to θ and η, we have

φ = 0.91, γ = 0.087 for ωA = 0.02 and φ = 0.9, γ = 0.091 for ωA = 0.07. All other

parameter values are like in Tab. 1.

Fig. 2 describes how the market economy responds to an expansionary R&D-policy

(∆sR = +0.1) by focusing on the time paths of hA/h, hH/h, and sav. In addition,

the time path of (scale-adjusted) per capita income y is displayed. The immediate

response to the policy shock under study comprises an increase in the share of human

capital devoted to R&D (hA/h) as well as a drop in the saving rate (sav). The share

of human capital devoted to education (hH/h) is increased initially; the quantitative

effect is, however, small. Assuming ωA = 0.07 (ωA = 0.02) the long run increase in the

level of (scale-adjusted) per capita income amounts to about 15 percent (12.9 percent).
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Fig. 2, panel (a), helps understanding the economic reasons behind the intertemporal

free lunch mentioned above (which occurs for ωA = 0.02). The immediate reallocations

in human capital imply a drop in hY (i.e., y falls initially). However, the expansionary

R&D policy under study attenuates the substantial R&D underinvestment in the mar-

ket economy. Rational, forward-looking agents understand that there is an associated

wealth effect. They therefore reduce the saving rate (i.e., increase the rate of consump-

tion). Since the implied proportional increase in the rate of consumption (wealth effect)

exceeds the proportional decrease in per capita income (due to the reallocation effect),

per capita consumption jumps up (see Fig. 1, panel (a)). It is also remarkable to notice

that hA/h jumps up and then converges quite rapidly to its final steady state value.

This implies that the results on the steady state level of basic allocation variables (see

Proposition 1) are of high relevance. The associated build up in the stock of knowledge

A (not displayed) as well as the stock of capital per capita k (not displayed) require

a substantial amount of time and therefore the rise in per capita income y proceeds

comparably slowly.
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Figure 2: Impulse responses resulting from expansionary R&D-policy (∆sR = +0.1).

Parameter values as in Fig. 1.

Fig. 3 describes how the market economy responds to an expansionary investment

policy (∆sd = +0.1). The saving rate jumps up in this case and then converges from

above towards its final steady state level, which is higher than the initial steady state

value. The share of human capital devoted to R&D (hA/h) as well as the share of hu-

man capital devoted to education (hH/h) drop and then converge back to their original

steady state levels. The long run increase in the level of income per capita y in re-
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sponse to∆sd = 0.1 is much smaller. Since both hA and hH drop initially, hY increases,

implying that y jumps up immediately, too. The saving rate increases substantially

(associated with an increase in the rate of return to capital, not displayed) such that

per capita consumption falls (see Fig. 1, panel (b)). For ωA = 0.02 (ωA = 0.07) per

capita income y increases in the long run by about 3.7 percent (5.2 percent) compared

to the reference scenario of no policy change.
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Figure 3: Impulse responses resulting from expansionary investment policy

(∆sd = +0.1). Parameter values as in Fig. 1 and 2.

34



6.2 Optimal Policy Mix

In Section 5, we have computed optimal long-run policies by investigating the effect of

policy changes on steady state values of consumption. This means that we neglected

transitional dynamics implied by a parameter change, but instead assumed that the

economy reaches its steady state immediately. We now compute the dynamically opti-

mal policies, i.e. the optimal policy mix by taking into account transitional dynamics.

Since the speed of convergence is fairly low, dynamically optimal policies may consid-

erably deviate from optimal steady state policies.

For tractability reasons we restrict the attention to the case where subsidy rates are

time-invariant.17 That is, we start from an initial steady state under the status quo

policy and calculate the time path of consumption in response to a one-time change

in the subsidy rates. The policy mix which maximizes the welfare gain is denoted by

(s̄optR , s̄optd , s̄optH ).

θ η φ γ soptR s̄optR soptd s̄optR soptH s̄optH Θ

0.5 0.15 0.91 0.09 1.46 1.49 0.49 0.54 0.3 0.27 4.16

0.5 0.3 0.91 0.08 1.46 1.49 0.49 0.54 0.3 0.31 4.16

0.75 0.15 0.95 0.09 1.41 1.44 0.49 0.52 0.3 0.30 0.98

0.75 0.3 0.95 0.08 1.41 1.44 0.49 0.52 0.3 0.32 0.98

(a) Parameters matched to R&D intensity of 2 percent.18

17The optimal rates may change over time during the transition path. See Grossmann, Steger and
Trimborn (2010) for a first analysis of optimal dynamic subsidies in a semi-endogenous growth model.
18For θ = 0.25 and ωA = 0.02 the algorithm does not converge. The initial policy is too far away

from the optimum to find a numerical solution.
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θ η φ γ soptR s̄optR soptd s̄optR soptH s̄optH Θ

0.25 0.15 0.84 0.09 1.31 1.37 0.68 0.71 0.3 0.30 1.62

0.25 0.3 0.84 0.08 1.31 1.37 0.68 0.71 0.3 0.28 1.62

0.5 0.15 0.90 0.09 1.25 1.31 0.68 0.71 0.3 0.31 0.86

0.5 0.3 0.90 0.08 1.25 1.31 0.68 0.71 0.3 0.30 0.86

0.75 0.15 0.95 0.09 1.05 1.10 0.68 0.70 0.3 0.33 0.32

0.75 0.3 0.95 0.08 1.05 1.10 0.68 0.70 0.3 0.27 0.32

(b) Parameters matched to R&D intensity of 7 percent.

Table 2: Optimal growth policy mix and welfare gain, Θ.

Note: ρ = 0.02, σ = 1.08, δH = 0.03. Other parameters as in Tab. 1.

Results are presented in Tab. 2. We find that the dynamically optimal subsidy

rates, when restricted to be time-invariant, are not much different from those suggested

by the steady state analysis (soptR , soptd , soptH ). Both s̄optR and s̄optd are slightly higher than

optimal long run values soptR and soptd , respectively. Deviation of s̄
opt
H from the optimal

long run education subsidy (soptH = 0.3) is overall negligible and does not seem to

follow a pattern. Also note that the results do not critically depend on η (and thus

not on γ). Like in the steady state analysis, the only important parameter we could

not satisfactorily calibrate is the extent of the duplication externality θ. Fortunately,

the optimal policy mix does not critically depend on θ for intermediate values of this

parameter. Thus, we can safely conclude that the underinvestment problem is severe for

R&D and substantial for physical capital. The policy implications outlined in Section

5 roughly apply.

The potential welfare gains when implementing the optimal growth policy mix are

remarkable. For instance, for θ = 0.5, the intertemporal welfare gain is equivalent to a

permanent increase in the annual consumption level per capita, Θ, of about 86 percent

if we start out with an R&D intensity of ωA = 0.07; it even equals 416 percent for the

case ωA = 0.02. Unlike the optimal policy mix, the welfare gain from implementing an

appropriate policy reform critically depends on both θ and ωA. As discussed in Section
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4, it may make more sense to view R&D activity in a broader way as measured by the

officially reported R&D intensity. Therefore, we prefer the case ωA = 0.07 to the case

ωA = 0.02. This suggests that for an intermediate value of θ ≈ 0.5, the welfare gain
from an appropriate policy reform is roughly equivalent to a permanent doubling of

per capita consumption.

7 Conclusion

This paper has employed a comprehensive endogenous growth model to examine the

impact of changes in incentives to invest in the three major engines of economic growth

and to derive the optimal growth policy mix. The main innovation of our study was to

capture important elements of the tax-transfer system and to account for transitional

dynamics induced by policy shocks. We identified a dramatic underinvestment problem

with respect to R&D activity and a substantial one with respect to physical capital

accumulation under the status quo US growth policy mix and the present distortions

from income taxation. Our analysis suggests that there are huge welfare losses from

insufficiently supporting investment in R&D and physical capital, which are far too

large to be ignored and call for a significant policy reform.

One may argue that the results are model-specific and hence not robust with respect

to the underlying endogenous growth model. Admittedly, this objection is (potentially)

correct. However, this characteristic is unavoidable and applies to any numerical analy-

sis which aims at coming up with specific recommendations. Further studies in this

direction, which appropriately account for the tax/ transfer system as well as for tran-

sitional dynamics, could indeed contribute to yield a more complete picture on the

appropriate growth policies.
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Appendix

Proof of Proposition 1: The current-value Hamiltonian which corresponds to the

household optimization problem (17), (18) is given by

H =
c1−σ − 1
1− σ

+ μ
£
ξ
¡
hH
¢γ

hη − δHh
¤
+

λ
¡
[(1− τ r)r − n] a+ (1− τw)wh− (1− sH)wh

H − c+ T
¢
, (48)

where λ and μ are multipliers (co-state variables) associated with constraints (4) and

(5), respectively. Necessary optimality conditions are ∂H7/∂c = ∂H7/∂hH = 0 (control
variables), μ̇ = (ρ − n)μ − ∂H7/∂h, λ̇ = (ρ − n)λ − ∂H7/∂a (state variables), and the
corresponding transversality conditions. Thus,

λ = c−σ (49)

μξγ(hH)γ−1hη = λ(1− sH)w, (50)

μ̇

μ
= ρ− n− ξ

¡
hH
¢γ

ηhη−1 + δH − λ

μ
w(1− τw), (51)

λ̇

λ
= ρ− (1− τ r)r, (52)

lim
t→∞

μte
−(ρ−n)tht = 0, (53)

lim
t→∞

λte
−(ρ−n)tat = 0. (54)

Differentiating (49) with respect to time and using (52), we obtain the Euler equa-

tion
ċ

c
=
(1− τ r)r − ρ

σ
. (55)

Now, define z̃ ≡ zA−
α

(1−α)(β−1) for z ∈ {w, c, a, T}; we will show that the adjusted values
(z̃) of these variables are stationary in the long run. From (55),

·
c̃

c̃
=
(1− τ r)r − ρ

σ
− α

(1− α)(β − 1)
Ȧ

A
. (56)
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Differentiating (50) with respect to time and making use of (4), (50), (51) and (52) we

obtain:

ḣH

hH
=

1

1− γ

∙
(1− τ r)r − n+ (1− η)δH − 1− τw

1− sH

ξγhη

(hH)1−γ
− ẇ

w

¸
. (57)

Moreover, with HA = NhA, (2), (4), (5) can be written as

Ȧ

A
=

ν

1 + ψ
Aφ−1(NhA)1−θ, (58)

ḣ

h
= ξ(hH)γhη−1 − δH , (59)

·
ã

ã
= (1− τ r)r − n+ (1− τw)

w̃h

ã
− (1− sH)

whH

ã
− c̃

ã
− α

(1− α)(β − 1)
Ȧ

A
+

T̃

ã
. (60)

Next, substitute (10) and (11) into (7) and use both (12) and R = r + δK to obtain

the following expression for the profit of each intermediate goods producer i:

πi = π = A
α

(1−α)(β−1)−1(1− τ c)(κ− 1)
³α
κ

´ 1
1−α
[(1− sK)(r + δK)]

− α
1−α HY . (61)

Now define q̃ ≡ PAA1−
α

(1−α)(β−1)/N and differentiate q̃ with respect to time; then use

the resulting expression as well as (61) to rewrite (14) as

·
q̃

q̃
=

µ
1− α

(1− α)(β − 1)
¶
Ȧ

A
− n+

1

1− τ g
×⎛⎝(1− τ r)r + ψ

Ȧ

A
− (1− τ c)(κ− 1)

¡
α
κ

¢ 1
1−α

[(1− sK)(r + δK)]
− α
1−α hY

q̃

⎞⎠ .(62)

The capital market clearing condition reads Na = K + PAA; it implies, by using

(13) and R = r + δK (as well as the definitions of ã and q̃), that

ã =

µ
α

κ(1− sK)(r + δK)

¶ 1
1−α

hY + q̃. (63)

The wage rate equals the marginal product of human capital in the final goods
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sector, i.e., w = (1− α)Y/HY . Using (12) we obtain

w̃ = (1− α)

µ
α

κ(1− sK)(r + δK)

¶ α
1−α

. (64)

Moreover, in equilibrium, Π = 0 holds. This leads to

w =
PAν̃Aφ

1− sA
, (65)

according to (16). Combining (65) with (2) and using both q̃ = PAA1−
α

(1−α)(β−1)/N and

w̃ = A−
α

(1−α)(β−1)w, we can write

hA =
q̃(1 + ψ) Ȧ

A

(1− sA) w̃
. (66)

We next derive steady state values. In steady state, the growth rate of A must

be equal to zero. Differentiating the right-hand side of (58) with respect to time and

setting the resulting term to zero leads to Ȧ/A = gA as given by (20), provided that

ḣA = 0. In the following we show that ḣA = 0 indeed holds if Ȧ/A = gA; we therefore

set Ȧ/A = gA to derive the following (candidates of) steady state values. Setting
·
c̃ = 0

in (56) and using g = αgA
(1−α)(β−1) , we find

r =
σg + ρ

1− τ r
. (67)

Note that substituting (67) into (64) also gives us a stationary value for w̃ in terms of

exogenous parameters only. According to (59) and ḣ = 0, we obtain

h =

µ
ξ

δH

¶ 1
1−η

(hH)
γ

1−η . (68)

Setting ḣH = 0 in (57) (which holds in steady state, as will become apparent) and
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employing both ẇ/w = g and (67) implies19

hH =

µ
1− τw
1− sH

γ

(σ − 1)g + ρ− n+ (1− η)δH

¶ 1−η
1−γ−η

µ
ξ

(δH)η

¶ 1
1−γ−η

. (69)

Combining (68) and (69) gives us expression (22) for the equilibrium fraction of human

capital devoted to education.

Using Ȧ/A = gA in (66), we furthermore obtain

hA =
(1 + ψ)gAq̃

(1− sA) w̃
(70)

To find the steady state values for hY and q̃, first substitute (70) into labor market

clearing condition hY = h− hH − hA, which gives us

hY = h− hH − (1 + ψ)gAq̃

(1− sA) w̃
. (71)

Also set
·
q̃ = 0 in (62) and use Ȧ/A = gA to find q̃ = ΩhY with

Ω ≡ (1− τ c)(κ− 1)
¡
α
κ

¢ 1
1−α

[(1− τ r)r + ψgA − (n+ g − gA) (1− τ g)] [(1− sK)(r + δK)]
α

1−α
. (72)

Substituting q̃ = ΩhY into (71) and solving for hY yields

hY =
h− hH

1 + (1+ψ)gAΩ
(1−sA)w̃

(73)

and thus

q̃ =
Ω(h− hH)

1 + gAΩ
(1−sA)w̃

. (74)

Substituting (74) into (70) yields

hA =
h− hH

(1−sA)w̃
Ω(1+ψ)gA

+ 1
. (75)

19That the wage rate grows with rate g in steady state follows from w = w̃A−
α

(1−α)(β−1) and
·
w̃ = 0.
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Dividing by both sides of (75) by h, substituting into it both expressions (64) for w̃

and (72) for Ω as well as using (1 − τ r)r = σg + ρ from (67) gives us expression (23)

for the steady state fraction of human capital devoted to R&D.

Equations (68), (73), (74) and (75) give us explicit expressions for h, hY , q̃ and hA,

respectively, noting that hH is explicitly given by (69) and w̃ by (64), using (67) for the

latter. Setting next
·
ã = 0 in (60) and using (67), Ȧ/A = gA as well as g =

αgA
(1−α)(β−1)

yields

c̃ = [(σ − 1)g + ρ− n] ã+ (1− τw)w̃h− (1− sH)w̃h
H + T̃ . (76)

We also need to show that the adjusted lump-sum transfer per capita, T̃ , is sta-

tionary in the long run when r, h, hA, hY , hH , w̃, c̃, ã, q̃ are stationary. Under a

balanced government budget it must hold that the sum of education subsidy payments

(sHwNhH) and lump-sum transfer payments (TN) is equal to the sum of revenue from

labor income taxation (τwwNh), taxation of capital income from asset holding (τ rrK),

taxation of capital gains (τ gṖAA), and corporate income taxation of intermediate good

firms after depreciation allowances (
R A
0
τ c(pixi − Rxi − sdRxi)di), and of R&D firms

after R&D subsidy (τ c
³
PAȦ− wHA − sRwH

A
´
). Hence, using pi = κ(1 − sK)R for

all i, K =
R A
0
xidi, R = r + δK as well as expressions (14) and (61), we have

T̃ = τww̃h+ τ rrk̃ + τ c [κ(1− sK)− (1 + sd)] (r + δK)k̃ +
τ g

1− τ g
×Ã"

(1− τ r)r + ψ
Ȧ

A

#
q̃ − (1− τ c)(κ− 1)

³α
κ

´ 1
1−α

[(1− sK)(r + δK)]
− α
1−α hY

!

τ c

"
q̃(1 + ψ)

Ȧ

A
− (1 + sR)w̃h

A

#
− sHw̃h

H , (77)

where k̃ ≡ A−
α

(1−α)(β−1)k. According to (13), k̃ is stationary in the long run if hY is;

thus, provided that Ȧ/A = gA as claimed, T̃ is stationary. We also see that, in steady

state both per capita capital stock k and, according to (12), per capita income grow

with rate g as given by (21).

The investment share is given by sav = (K̇ + δKK)/Y = (K̇/K + δK)k/y. Using
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K̇/K = n + g together with expressions (13) and (12) for k and y, respectively, we

obtain

sav =
α(n+ g + δK)

κ(1− sK)R
. (78)

Using R = r + δK and expression (67) for r confirms (25).

Finally, it remains to be shown that the transversality conditions (53) and (54) hold

under assumption (A1). Differentiating (50) with respect to time and using ḣ = ḣH = 0

as well as ẇ/w = g implies that, along a balanced growth path, μ̇/μ = λ̇/λ+ g. From

(52) and (67) we find λ̇/λ = −σg and thus μ̇/μ = (1− σ)g. As h becomes stationary,

(53) holds if limt→∞ e[(1−σ)g+n−ρ]t = 0, or ρ > (1−σ)g+n. Using the expression for g in

(21) shows that the latter condition is equivalent to (A1). Similarly, using λ̇/λ = −σg
and the fact that a grows with rate g in the long run, we find that also (54) holds if

ρ > (1− σ)g + n. This concludes the proof. ¥

Proof of Proposition 2: The current-value Hamiltonian which corresponds to

the social planning problem (29) is given by

H =
c1−σ − 1
1− σ

+ λk(A
α

β−1kα(hY )1−α| {z }
=y

− (δK + n)k − c) +

λh
£
ξ
¡
hH
¢γ

hη − δHh
¤
+ λA

=Ȧz }| {
ν̄AφN1−θ(h− hY − hH)| {z }

=hA

1−θ
, (79)

ν̄ ≡ ν
1+ψ
, where λk, λh and λA are co-state variables associated with constraints (27),

(4) and (28), respectively. Necessary optimality conditions are ∂H7/∂c = ∂H7/∂hH =
∂H7/∂hY = 0 (control variables), λ̇z = (ρ − n)λz − ∂H7/∂z for z ∈ {k, h,A} (state
variables), and the corresponding transversality conditions. Thus,

λk = c−σ (80)

λhξγ(h
H)γ−1hη = λA(1− θ)ν̄AφN1−θ(hA)−θ, (81)

43



λk(1− α)A
α

β−1kα(hY )−α = λA(1− θ)ν̄AφN1−θ(hA)−θ| {z }
=Ȧ/hA

, (82)

λ̇k
λk
= ρ− αy

k
+ δK, (83)

λ̇h
λh
= ρ− n− ξ

¡
hH
¢γ

ηhη−1 + δH − λA
λh
(1− θ)ν̄AφN1−θ(hA)−θ, (84)

λ̇A
λA

= ρ− n− λk
λA

α

β − 1A
α

β−1−1kα(hY )1−α − φ
Ȧ

A
(85)

lim
t→∞

λz,te
−(ρ−n)tzt = 0, z ∈ {k, h,A}. (86)

(λz,t denotes the co-state variable associated with state variable z at time t.)

We exclusively focus on the long run. In steady state, with hA being stationary, A

must grow with rate gA. Moreover, y, k, and c must grow at the same rate g, if hY is

stationary. Differentiating (80) with respect to time, we obtain

λ̇k
λk
= −σ ċ

c
= −σg, (87)

where we used ċ/c = g for the latter equation. Combining (87) with (83) implies a

capital output ratio
k

y
=

α

ρ+ δK + σg
. (88)

Next, differentiate (81) with respect to time to find that in steady state, under a

stationary allocation of human capital,

λ̇h
λh
=

λ̇A
λA
+ gA (89)

holds, where we used Ȧ/A = gA, Ṅ/N = n and the fact that (1 − θ)n = (1 − φ)gA,

according to (20). Making use of the same properties, differentiating (82) with respect

to time leads to
λ̇k
λk
+

µ
α

β − 1 − 1
¶
gA + αg =

λ̇A
λA

. (90)
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Using (87) and the definition of g in (21), we can rewrite (90) to

λ̇A
λA

= (1− σ)g − gA (91)

and thus, according to (89),
λ̇h
λh
= (1− σ)g. (92)

Moreover, substituting the right-hand side of (81) into (84) as well as using both

(92) and the fact that ξ
¡
hH
¢γ

hη = δHh when ḣ = 0, eventually confirms the expression

for hH/h in (30).

Next, rewrite (82) to

λk
λA

=
(1− θ) Ȧ

A
hY

hA

(1− α)A
α

β−1−1kα(hY )1−α
. (93)

Substituting (93) into (85) and using Ȧ/A = gA together with the definition of g in

(21) leads to
λ̇A
λA

= ρ− n− (1− θ)g
hY

hA
− φgA. (94)

Combining (94) with (91) and using the fact that (1− φ)gA = (1− θ)n leads to

hY

hA
=

ρ− θn+ g(σ − 1)
(1− θ)g

= Γ. (95)

Using hY = h− hA − hH then confirms the expression for hA/h in (31).

To confirm the socially optimal savings and investment rate (sav = 1−c/y) as well,
note from (27) that

sav =

Ã
k̇

k
+ δK + n

!
k

y
. (96)

Using k̇/k = g and expression (88) for k/y confirms (32).

Finally, it is easy to see from (87), (92) and (91) that, under assumption (A1),

transversality conditions (86) hold for k, h and A, respectively (using k̇/k = g, ḣ = 0

and Ȧ/A = gA). This concludes the proof. ¥
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Supplementary Material (not intended for publication)

This supplement provides details of numerical evaluations in Section 6.

Consumption-equivalent change in intertemporal welfare - derivation of

Θ: First, adjust per capita consumption to c̃ ≡ cA−
α

(1−α)(β−1) , which is stationary in the

long run (Proposition 1). Moreover, denote the change in life-time utility by ∆U and

the (hypothetical) change in adjusted steady per capita consumption by ∆c̃. Initially,

there is an adjusted steady consumption stream c̃0, as we start from an initial balanced

growth path. Then we have

∆U =

Z ∞

0

((c̃0 +∆c̃)egt)
1−σ − 1

1− σ
e−(ρ−n)tdt−

Z ∞

0

(c̃0e
gt)

1−σ − 1
1− σ

e−(ρ−n)tdt (97)

which we can solve to find

Θ ≡ ∆c̃

c̃0
=
(c̃1−σ0 +∆U(σ − 1)(g(1− σ) + n− ρ))

1
1−σ

c̃0
− 1. (98)

We numerically find c̃0 under the status quo policy and obtain the change in welfare

∆U which results from a policy reform. In turn, we get Θ = ∆c̃/c̃0 from (98).
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Consistency checks and the goods market clearing condition: To rule

out errors from typos in the program code or due to software limitations, we took

caution as follows. First, we implemented the model in two different software packages,

Mathematica and Matlab, by two different authors separately. Second, we checked

numerically whether the goods market clears (which must hold true due to Walras’

law). We now show that the goods market clearing condition Y = C + I, where

I ≡ K̇ + δKK is total investment and C ≡ Nc is total consumption spending, is

fulfilled. That is, K̇ = Y −C − δKK. This condition is not used in the program codes

and therefore can be used as a test of correct implementation.

The following relationships will be used to show that Y = C + I.

• The no-arbitrage condition (14) implies

(1− τ r)rPA − ṖA = π − τ gṖ
A − ψPA Ȧ

A
. (99)

• Tax revenue in intermediate goods sector: From profit function of an intermediate
good producer i,

πi = π = pixi −Rxi − τ c(pixi −Rxi − sdRxi),

we obtain

Z A

0

τ c(pixi −Rxi − sdRxi)di

=

Z A

0

(pixi −Rxi − πi) di

= [κ(1− sK)− 1]RK − πA. (100)

To derive the latter equation we used the facts that pi = κ(1− sK)R for all i and

K =
R A
0
xidi.

• Tax revenue fromR&D firms: From the expression for profits of the representative
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R&D firm,

Π = PA(1 + ψ)Ȧ− wHA − τ c
³
PA(1 + ψ)Ȧ− wHA − sRwH

A
´
,

and the fact that Π = 0 in equilibrium, we have

τ c
³
PA(1 + ψ)Ȧ− wHA − sRwH

A
´
= PA(1 + ψ)Ȧ− wHA. (101)

• From the asset accumulation equation (5) of households:

Nȧ = [(1− τ r)r − n]Na+ (1− τw)wNh− (1− sH)NwhH −Nc+NT. (102)

Now we proceed in several steps:

• Step 1: Given the linear-homogenous production function (1) and due to perfect
competition we know that profits are zero in the final goods sector. Thus,

Y =

Z A

0

pixidi+ wHY .

Using pi = κ(1− sK)R, K =
R A
0
xidi and HY = N(h− hA − hH), we obtain

Y = κ(1− sK)RK + wN(h− hA − hH)

and thus

Y − wNh−RK + wNhH = [κ(1− sK)− 1]RK − wHA. (103)

• Step 2: Under a balanced government budget, the aggregate lump-sum transfer
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to households is

NT = τwwNh+ τ rrK + τ gṖ
AA− sHNwhH +Z A

0

τ c(pixi −Rxi − sdRxi)di+

τ c
³
PA(1 + ψ)Ȧ− wHA − sRwH

A
´

= τwwNh+ τ rrK + τ gṖ
AA− sHNwhH +

[κ(1− sK)− 1]RK − πA+ PA(1 + ψ)Ȧ− wHA, (104)

where we used (100) and (101) for the latter equation. Using (103), we can

rewrite (104) as

NT = τwwNh+ τ rrK + τ gṖ
AA− sHNwhH +

Y − wNh−RK + wNhH − πA+ PA(1 + ψ)Ȧ,

or, equivalently,

Y = (1− τw)wNh+RK + πA− PA(1 + ψ)Ȧ+

NT − τ rrK − τ gṖ
AA− (1− sH)NwhH . (105)

This gives us an expression for GDP from the distribution side.

• Step 3: Total assets of households are given by Na = K + PAA. Differentiating

with respect to time yields:

Ṅa+Nȧ = K̇ + ṖAA+ PAȦ.

Using Ṅ = nN we can write

Nȧ = K̇ + ṖAA+ PAȦ− nNa. (106)
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Combining (106) with asset accumulation equation (102) we find

K̇ + ṖAA+ PAȦ− nNa

= [(1− τ r)r − n]Na+ (1− τw)wNh− (1− sH)NwhH −Nc+NT.

Using Na = K + PAA and rearranging terms we obtain

K̇ = (1− τ r)rK + (1− τw)wNh− (1− sH)NwhH −Nc+NT +h
(1− τ r)rP

A − ṖA
i
A− PAȦ.

Using (99) and r = R− δK this leads to

K̇ = RK − δKK − τ rrK + (1− τw)wNh− (1− sH)NwhH +

πA− τ gṖ
AA− PA(1 + ψ)Ȧ−Nc+NT.

Finally, using expression (105) for Y confirms the goods market clearing condition

K̇ = Y −Nc− δKK,

or,

Y = C + I,

where I ≡ K̇+δKK is aggregate gross investment and C ≡ Nc is total consump-

tion. Q.E.D.

Dynamical system: The following equations are employed for numerical simula-

tions in Section 6.1.

ċ

c
=
(1− τ r)r − ρ

σ
. (107)

μξγ(hH)γ−1hη = c−σ(1− sH)w, (108)
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μ̇

μ
= ρ− n− ξ

¡
hH
¢γ

ηhη−1 + δH − c−σ

μ
w(1− τw), (109)

ṖA

PA
=

1

1− τ g

µ
(1− τ r)r +

ψν

1 + ψ
Aφ−1(NhA)1−θ−

(1− τ c)(κ− 1)
¡
α
κ

¢ 1
1−α

[(1− sK)(r + δK)]
− α
1−α NhY

PAA1−
α

(1−α)(β−1)

⎞⎠ , (110)

Ȧ

A
=

ν

1 + ψ
Aφ−1(NhA)1−θ, (111)

ḣ

h
= ξ(hH)γhη−1 − δH , (112)

Ṅ

N
= n, (113)

ȧ = [(1− τ r)r − n] a+ (1− τw)wh− (1− sH)wh
H − c+ T, (114)

T = τwwh+ τ rrk + τ c [κ(1− sK)− (1 + sd)] (r + δK)k +

τ g
1− τ g

µ
(1− τ r)rP

AA

N
+

PA

N

ψν

1 + ψ
Aφ(NhA)1−θ−

A
α

(1−α)(β−1) (1− τ c)(κ− 1)
³α
κ

´ 1
1−α

[(1− sK)(r + δK)]
− α
1−α hY

!
+

τ c
h
PAνAφN−θ ¡hA¢1−θ − (1 + sR)wh

A
i
− sHwh

H , (115)

k = A
α

(1−α)(β−1)

µ
α

κ [(1− sK)(r + δK)]

¶ 1
1−α

hY , (116)

a = k +
PAA

N
, (117)

w = A
α

(1−α)(β−1) (1− α)

µ
α

κ(1− sK)(r + δK)

¶ α
1−α

. (118)

hA =
1

N

µ
PAνAφ

(1− sA)w

¶ 1
θ

. (119)

hA + hH + hY = h. (120)
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Initial conditions are: a0, K0, A0, N0, h0.

We obtain the following (initial) steady state values:

r =
σg + ρ

1− τ r
, (121)

w = A
α

(1−α)(β−1) (1− α)

µ
α

κ(1− sK)(r + δK)

¶ α
1−α

, (122)

hH =

µ
1− τw
1− sH

γ

(σ − 1)g + ρ− n+ (1− η)δH

¶ 1−η
1−γ−η

µ
ξ

(δH)η

¶ 1
1−γ−η

, (123)

h =

µ
ξ

δH

¶ 1
1−η

(hH)
γ

1−η , (124)

Ω =
(1− τ c)(κ− 1)

¡
α
κ

¢ 1
1−α

[(1− τ r)r + ψgA − (n+ g − gA) (1− τ g)] [(1− sK)(r + δK)]
α

1−α
. (125)

hA =
(1 + ψ)gAΩ(h− hH)

(1− sA)wA
− α
(1−α)(β−1) + (1 + ψ)gAΩ

, (126)

hY =
h− hH

1 +A
α

(1−α)(β−1) (1+ψ)gAΩ
(1−sA)w

, (127)

PA =
NA

α
(1−α)(β−1)−1Ω(h− hH)

1 +A
α

(1−α)(β−1) (1+ψ)gAΩ
(1−sA)w

, (128)

c = [(σ − 1)g + ρ− n] a+ (1− τw)wh− (1− sH)wh
H + T, (129)

T = τwwh+ τ rrk + τ c [κ(1− sK)− (1 + sd)] (r + δK)k +

τ g
1− τ g

µ
[(1− τ r)r + ψgA]P

AA

N
− (130)

A
α

(1−α)(β−1) (1− τ c)(κ− 1)
³α
κ

´ 1
1−α

[(1− sK)(r + δK)]
− α
1−α hY

!
+

τ c

∙
PA(1 + ψ)gA

A

N
− (1 + sR)wh

A

¸
− sHwh

H , (131)

k = A
α

(1−α)(β−1)

µ
α

κ [(1− sK)(r + δK)]

¶ 1
1−α

hY , (132)
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a = k +
PAA

N
. (133)

(Also recall that gA =
(1−θ)n
1−φ and g = αgA

(1−α)(β−1) .)

Numerical procedure for the optimal dynamic policy mix: As a reference

point of our analysis in Section 6.2, we compute the transition path from the initial

steady state to the steady state, implied by the parameters (soptR , soptd , soptH ), which max-

imize steady state consumption. Obviously, this transition path does not yield the

maximum welfare for time-invariant policies. Then, a search algorithm is applied to

find a set of parameters, which induces a transition path yielding a higher level of

welfare. This transition path starts at the initial steady state and terminates at the

steady state implied by the set of test parameters. We then vary one parameter at

a time and calculate the implied transition as well as the associated welfare. If this

welfare is higher, the reference set of policy parameters is updated accordingly. The

procedure is terminated when no further significant improvements in welfare can be

achieved.

The parameters are varied stochastically. A deterministic search grid would either

lead to a high computational demand (in case of a “fine grid”), or a low accuracy (in

case of a “rough grid”). By varying the policy parameters stochastically, the algorithm

uses small and large steps to improve welfare.
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